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1 Introduction

A primary feature of the autoregressive conditional heteroscedasticity (ARCH) model,

as developed by Engle (1982), is that the conditional variances change over time.

Following the seminal idea, numerous models incorporating this feature have been

proposed. Among these models, Bollerslev’s (1986) generalized ARCH (GARCH)

model is certainly the most popular and successful because it is easy to estimate and

interpret by analogy with the autoregressive moving average (ARMA) time series

model. Analyzing financial and economic time series data with ARCH and GARCH

models has become very common in empirical research, with a huge literature having

been established. Several excellent surveys on ARCH/GARCH models are available,

such as Bollerslev, Chou and Kroner (1992), Bollerslev, Engle and Nelson (1994),

and Bera and Higgins (1993). More recently, the Stochastic Volatility model of Tay-

lor (1986) offers an alternative to GARCH. Stochastic Volatility models will not be

discussed in this paper and interested readers are referred to the review by Shep-

hard (1996). In a series of papers, Nelson has made important contributions to the

filtering theory of ARCH processes. His work has been nicely summarized by Ross

(1996), and hence will not be the focus of attention in this paper. Gourieroux (1997)

provides a summary of some earlier results on GARCH models.

The aim of this paper is to provide a review of some recent theoretical results

for time series models with ARCH/GARCH errors, and is directed towards prac-

titioners. The plan of the paper is as follows. We begin with the simple ARCH

model in Section 2 and proceed to the GARCH model in Section 3. The stationary

ARMA-GARCH model is considered in Section 4, and its nonstationary counterpart

in Section 5. Finally, we review some results for other ARCH-type models, includ-

ing double threshold ARCH, ARFIMA-GARCH, CHARMA, and vector ARMA-

GARCH, in Section 6. Concluding marks are given in Section 7.
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2 ARCH Models

Engle’s (1982) ARCH (r) model can be defined as follows:

εt = ηth
1/2
t , ht = α0 + α1ε

2
t−1 + · · ·+ αrε

2
t−r, (2.1)

where α0 > 0, αi ≥ 0 (i = 1, · · · , r) and the ηt are a sequence of independently and

identically distributed (i.i.d.) random variables with zero mean and unit variance.

Denote by Ft the σ−field generated by {ηt, ηt−1, · · ·}. Then E(ε2
t |Ft−1) = ht, that is,

the conditional variance of the process εt varies over time instead of being constant,

as in traditional time series analysis.

2.1 Basic Properties

When a new time series model is proposed, a basic question concerns the conditions

under which the model will be stationary. Engle (1982) showed that εt is second-

order stationary (i.e. Eε2
t < ∞) if and only if all the roots of

zr −
r∑

i=1

αiz
r−i = 0 (2.2)

are outside the unit circle. To prove this result, Engle (1982) assumed that εt

starts infinitely far in the past with finite variance, which is impossible to verify in

practice. Using a different method, Milhøj (1985) avoided Engle’s (1982) assumption

and showed that εt is second-order stationary if and only if

α1 + · · ·+ αr < 1. (2.3)

In particular, Milhøj (1985) showed that (2.3) is also a sufficient condition for strict

stationarity and ergodicity of εt. Since αi is nonnegative for i = 1, . . . , r, conditions

(2.2) and (2.3) are equivalent by Lemma 2.1 in Ling (1999b).

For the first-order ARCH model, Engle (1982) showed that, if ηt is normal, the

2mth moment of εt exists if and only if

αm
1

m∏

j=1

(2j − 1) < 1, (2.4)
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under the assumption that εt starts infinitely far in the past with finite 2mth mo-

ment. Without this assumption, Milhøj (1985) obtained the necessary and sufficient

condition for the existence of the 2mth moment of εt. When ηt is normal and r = 1,

Milhøj’s condition is the same as (2.4). A unique drawback is that Milhøj’s (1985)

condition cannot be given an explicit form when r > 1 and m > 2.

It should be noted that (2.3) is not necessary for the strict stationarity of

model (2.1). The necessary and sufficient condition for the strict stationarity of

model (2.1) was established by Bougerol and Picard (1992) in terms of the top Lya-

punov exponent (see §3.1). The regions of strict stationarity are, in general, much

larger than those of second-order stationarity. As an illustration, for the first-order

ARCH model, ARCH(1), the various conditions under normality are summarized as

follows:

Moments

Variable εt Strict stationarity 2nd 4th 8th

Coefficient α1 (0, 3.56214) (0, 1) (0, 0.57735) (0, 0.31239)

Non-normality reduces the permissible range of the ARCH(1) parameter for the 4th

and higher moments. It seems difficult to obtain a closed form expression of strict

stationarity in terms of the ARCH(r) parameters for any r > 1.

2.2 Sample ACVF and ACF

In time series analysis, the autocovariance function (ACVF) and autocorrelation

function (ACF) are important because they usually provide meaningful information

about the series. Define the sample ACVF and sample ACF, respectively, by

γnε(k) =
1

n

n∑

t=k+1

εtεt−k ,

ρnε(k) =
γn,ε(k)

γn,ε(0)
,
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where n is the sample size and k ≥ 0. Correspondingly, the true values are given

by:

γε(k) = E(ε0εk) ,

ρε(k) =
γε(k)

γε(0)
.

As the ARCH process εt is an uncorrelated white noise sequence, γε(k) = ρε(k) = 0

if k > 0. Under the fourth moment condition, Milhøj (1985) showed that γnε(k) and

ρnε(k) are consistent estimators of γε(k) and ρε(k), respectively, and
√

n[γnε(k) −
γε(k)] and

√
n[ρnε(k)− ρε(k)] are asymptotically normal.

It is natural to ask if Milhøj’s results still hold if the fourth moment condition is

not satisfied. This is a difficult problem because ARCH processes exhibit a strong

heavy-tailed feature when Eε4
t = ∞. Using the point process technique, Davis and

Mikosch (1998) showed that, if Eε2
t < ∞ but Eε4

t = ∞, then

n1−2/qL(n)−2γnε(k) →d Vq(k) ,

n1−2/qL(n)−2ρnε(k) →d
Vq(k)

Eε2
t

,

where q ∈ (2, 4) is the unique solution to E(α1η
2
t )

q/2 = 1, Vq(k) is q/2−stable in R,

and L(n) is some slowly-varying function. From the above results, γnε(k) and ρnε(k)

are consistent estimators of γε(k) and ρε(k), respectively, but the convergence rate

is slower than the usual n1/2. This result is different from those for linear processes

with i.i.d. regularly varying noise. Davis and Resnick (1985, 1986) showed that the

sample ACF is still asymptotically normal with scaling n1/2 if the i.i.d. noise has

finite variance but infinite fourth moment.

Furthermore, Davis and Mikosch (1998) showed that, if E|ε|p < ∞ for 0 < p < 2

but Eε2
t = ∞, then

n1−2/qL(n)−2γnε(k) →d Vq(k) ,

ρnε(k) →d
Vq(k)

Vq(0)
,
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where q ∈ (0, 2). In this case, the estimator of the ACF is inconsistent. This result

is quite different from that for linear processes with i.i.d. regularly varying noise, in

which the sample ACF converges to the true ACF with a convergence rate greater

than n1/2 (see Davis and Resnick 1985, 1986).

The sample ACVF and ACF of ε2
t have also been investigated by Davis and

Mikosch (1998). Although they considered only the first-order ARCH model, their

results can be extended to higher-order ARCH models. de Vries (1991) demonstrated

that, under certain conditions, GARCH processes can generate realizations that have

a stable distribution unconditionally.

2.3 Parameter Estimation

The parameters of model (2.1) can be estimated by several methods. The simplest

method is the least squares estimator (LSE). First, write model (2.1) as

ε2
t = α0 + α1ε

2
t−1 + · · ·+ αrε

2
t−r + ξt, (2.5)

where ξt = ε2
t − ht and ξt can now be considered as a martingale difference. Let

δ = (α0, α1, · · · , αr)
′ and ε̃t = (1, ε2

t , · · · , ε2
t−r+1)

′. Then the LSE of δ is

δ̂ = (
n∑

t=2

ε̃t−1ε̃
′
t−1)

−1(
n∑

t=2

ε̃t−1ε̃t).

Weiss (1986) and Pantula (1989) showed that δ̂ is consistent and asymptotically

normal. However, their results assume that the 8th moment of εt exists, which is a

strong condition.

In general, maximum likelihood estimation (MLE) is used to estimate the pa-

rameter δ. Given observations εt, t = 1, · · · , n, the conditional log-likelihood can be

written as

L(δ) =
n∑

t=1

lt, lt = −1

2
ln ht − 1

2

ε2
t

ht

, (2.6)

where ht is treated as a function of εt. Assume that δ ∈ Θ, a compact subset of

Rr+1, and that the true value of δ is δ0. Define

δ̂ = argmaxδ∈ΘL(δ). (2.7)
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Since the conditional error ηt is not assumed to be normal, δ̂ is called the quasi-

maximum likelihood estimator (QMLE). Under the fourth moment condition, Weiss

(1986) and Pantula (1989) showed that the QMLE λ̂ is consistent and asymptotically

normal. Ling and McAleer (1999b) proved that the QMLE of δ is consistent and

asymptotically normal under only the second moment condition. It is expected that,

when εt is strictly stationary but Eε2
t = ∞, the QMLE will still be consistent and

asymptotically normal. The BHHH algorithm is often used to determine δ̂. However,

Mak, Wong and Li (1997) suggested that the BHHH algorithm has a convergence

problem if the starting values are not sufficiently close to the solutions and that a

full Newton-Raphson procedure should instead be used.

When ηt is not normal, the QMLE is not efficient, that is, its asymptotic co-

variance matrix is not minimal in the class of asymptotically normal estimators. In

order to obtain an efficient estimator, one needs to know or estimate the density

function of ηt and use an adaptive estimation procedure. This was considered by

Linton (1993) and Drost, Klaassen and Werker (1995), who proved that the ARCH

model belongs to the locally asymptotically normal (LAN) family. After suitable

re-parameterisation, they also constructed adaptive estimators for the parameters

of interest.

3 GARCH Models

Bollerslev (1986) extended the ARCH model to the generalized autoregressive con-

ditional heteroscedasticity (GARCH (r, s)) model:

εt = ηt

√
ht , (3.1)

ht = α0 +
r∑

i=1

αiε
2
t−i +

s∑

i=1

βiht−i, (3.2)

where α0 > 0, αi ≥ 0, βi ≥ 0, and ηt is defined as in (2.1).
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3.1 Basic Properties

Bollerslev (1986) showed that the necessary and sufficient condition for the second-

order stationarity of models (3.1)-(3.2) is:

r∑

i=1

αi +
s∑

i=1

βi < 1. (3.3)

For the GARCH(1,1) model, Nelson (1990) obtained the necessary and sufficient

condition for strict stationarity and ergodicity as follows:

E( ln(α1η
2
t + β1)) < 0. (3.4)

Condition (3.4) allows α1 + β1 to be 1, or slightly larger than 1, in which case

Eε2
t = ∞. For the general model (3.1)-(3.2), the necessary and sufficient condition

for strict stationarity and ergodicity was established by Bougerol and Picard (1992)

and Nelson (1990). Ling and Li (1997c) proved that, under (3.3), there exists a

unique Ft-measurable and second-order stationary solution to model (3.1)-(3.2),

and that the solution is strictly stationary and ergodic, with the following causal

representation:

ht = α0 +
∞∑

j=1

c′ (
j∏

i=1

At−i) ξt−j a.s., (3.5)

where ξt = (α0ηt, 0, · · · , 0, α0, 0, · · · , 0)(r+s)×1, with the first component α0ηt and

(r + 1)-th component α0, c = (α1, · · · , αr, β1, · · · , βs)
′, and

At =




α1ηt · · · αrηt β1 ηt · · · βsηt

I(r−1)×(r−1) O(r−1)×1 O(r−1)×s

α1 · · · αr β1 · · · βs

O(s−1)×r I(s−1)×(s−1) O(s−1)×1




. (3.6)

Bollerslev (1986) provided the necessary and sufficient condition for the existence

of the 2mth moment of the GARCH(1,1) model, and the necessary and sufficient

condition for the fourth-order moments of the GARCH(1,2) and GARCH(2,1) mod-

els. Using a similar method as in Bollerslev (1986), He and Teräsvirta (1999a)

provided the moment conditions of a family of GARCH(1,1) models. Ling and
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McAleer (1999d) derived the sufficient condition for the existence of the station-

ary solution of this family of GARCH(1,1) models, showed that He and Terävirta’s

(1999a) condition is necessary but not sufficient, and provided the sufficient moment

condition. He and Teräsvirta (1999b) and Karanasos (1999) examined the fourth

moment structure of the GARCH(p, q) process. From the proof in Karanasos (1999),

it can be seen that the condition is necessary but not sufficient. He and Teräsvirta

(1999b) stated that their condition is necessary and sufficient. Ling and McAleer

(1999c) showed that the necessary condition for the existence of the fourth moment

is incomplete, that the condition is not sufficient for the existence of the fourth mo-

ment, and also derived the necessary and sufficient conditions for the existence of

all the moments.

Based on Theorem 2.1 in Ling and Li (1997c) and Theorem 2 in Tweedie (1988),

Ling (1999b) showed that a sufficient condition for the existence of the 2mth moment

of model (3.1)-(3.2) is

ρ[E(A⊗m
t )] < 1, (3.7)

where ρ(A) = max{eigenvalues of a matrix A}. Ling’s result does not need to

assume that the GARCH(r, s) process starts infinitely far in the past with finite

2mth moment, as is required in Bollerslev (1986) and He and Teräsvirta (1999a, b),

and has a far simpler form as compared with that of Milhøj (1985). Ling and McAleer

(1999c) further showed that condition (3.7) is also necessary for the existence of the

2mth moment. Thus, the moment structure of the GARCH(r, s) model in (3.1)-

(3.2) has now been established completely. Bera, Higgins and Lee (1996) considered

a random coefficient formulation of GARCH processes. An asymptotic theory for

the sample autocorrelations and extremes of a GARCH(1,1) process is provided in

Mikosch and Stărică (2000). As an extension of the GARCH(r, s) process, Ling and

McAleer (1999c) also derived the necessary and sufficient moment conditions of the

asymmetric power GARCH(r, s) model of Ding et al. (1993).
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3.2 Quasi-Maximum Likelihood Estimation

The GARCH model is usually estimated by the quasi-maximum likelihood method.

However, the properties of the QMLE are not completely clear. Consider the simple

but important GARCH(1,1) model. In this case, the likelihood can be written as

L(δ) =
n∑

t=1

lt, lt = −1

2
ln ht − 1

2

ε2
t

ht

, (3.8)

where ht is treated as a function of εt, and the parameter δ = (α0, α1, β1)
′ and ht

are calculated through the following recursion:

ht = α0 + α1ε
2
t−1 + β1ht−1, h0 = a positive constant. (3.9)

Lee and Hansen (1994) and Lumsdaine (1996) proved that the local QMLE is con-

sistent and asymptotically normal, assuming that E(ln(α1η
2
t +β1)) < 0, which is the

necessary and sufficient condition for strict stationarity. However, Lee and Hansen

(1994) required that all the conditional expectations of η2+κ
t < ∞ uniformly with

κ > 0, while Lumsdaine (1996) required that Eη32
t < ∞. In addition, Lee and

Hansen (1994) showed that the global QMLE is consistent if εt is second-order sta-

tionary. Lee and Hansen (1994) and Lumsdaine (1996) stated that their methods

are valid only for the simple GARCH(1,1) model and cannot be extended to more

general cases.

For the general order GARCH(r, s) model, Ling and Li (1997b) proved that the

local QMLE is consistent and asymptotically normal if Eε4
t < ∞. Based on uniform

convergence as a modification of a theorem in Amemiya (1985, page 116), Ling and

McAleer (1999b) proved the consistency of the global QMLE under only the second-

order moment condition. They also derived the asymptotic normality of the global

QMLE under the 6th moment condition.

When ηt is not normal, the QMLE is inefficient. Drost and Klaassen (1997)

investigated adaptive estimation of the GARCH(1,1) model. This method was ex-

tended to nonstationary ARMA models with higher-order GARCH(r, s) errors by
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Ling and McAleer (1999a). Francq and Zaköıan (2000) consider the estimation of

weak GARCH representations (Drost and Nijman, 1993) characterized by an ARMA

structure for the squared error terms.

4 Stationary ARMA-GARCH Models

The ARCH process is a non-independent white noise sequence, which first appeared

in the regression model of Engle (1982). Engle’s original motivation seems to have

been that an ARCH structure provides improved statistical inference for the mean

of the regression model, such as confidence intervals and forecasting. Over the last

decade, there has been a tendency to employ the ARCH/GARCH model to analyze

the volatilities of financial and economic data, while ignoring the specification and

estimation of the conditional mean. However, if the conditional mean is not specified

adequately, then it may not be possible to construct consistent estimates of the true

ARCH process, for which statistical inference and empirical analysis regarding the

ARCH component might be misleading. Thus, even though the primary interest

might be on the volatilities in the data, the specification and estimation of the

conditional mean are still important.

The conditional mean is typically given as an AR or ARMA model. However,

since the conditional variances of the white noise are not constant, the generating

mechanism of the AR or ARMA model is quite different from the traditional AR or

ARMA model with i.i.d. errors, or martingale differences with a constant conditional

variance. As a number of statistical properties of the traditional AR or ARMA

model cannot be extended to the present case, it is necessary to have a thorough

investigation of these types of models.

We define the ARMA-GARCH model by the following equations:

yt =
p∑

i=1

ϕiyt−i +
q∑

i=1

ψiεt−i + εt, (4.1)

εt = ηt

√
ht, ht = α0 +

r∑

i=1

αiε
2
t−i +

s∑

i=1

βiht−i. (4.2)
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There is no paper which is especially devoted to the ARMA-GARCH model, al-

though it is a special case of Ling and Li (1997c, 1998) and Ling and McAleer

(1999b). When s = 0, the ARMA-GARCH model reduces to the ARMA-ARCH

model, which is a special case of the ARMA-ARCH model of Weiss (1986). When

q = 0, s = 0 and r = 1, the AR-ARCH(1) model was investigated by Pantula (1988).

The properties of the ARMA-GARCH model appear in Ling and Li (1997c). When

all the roots of φ(z) = zp − ∑p
i=1 ϕiz

p−i lie outside the unit circle, yt is strictly

stationary if εt is strictly stationary, and yt is 2mth order stationary if εt is 2mth

stationary. Thus, in this section, we consider estimation of only the ARMA-GARCH

model.

The parameters in (4.1)-(4.2) consist of two sets: one set includes the parameters

of the conditional mean, denoted by m, and another set includes the parameters of

the conditional variance ht, denoted by δ. In practice, m is first estimated and

then the residuals from the estimated conditional mean are calculated. When the

residuals have been obtained, δ can be estimated using the methods in Sections 2-3.

Furthermore, the estimated ht is used to obtain a more efficient estimator of m.

If the density function of ηt is symmetric, the MLE of m and δ can be obtained

through a separate iteration procedure without loss of asymptotic efficiency. The

following section examines the estimation of m when δ is assumed to be known.

4.1 Least Squares Estimation

Denote the true value of m by m0. Given observations y1, · · ·, yn, the LSE of m0,

m̂, is defined as the values in Θ which minimize

Sn =
n∑

t=1

ε2
t . (4.3)

For the ARMA-ARCH model, Weiss (1986) showed that m̂ is consistent for m0 and

√
n(m̂−m0) −→L N(0, A), (4.4)

11



with

A = E−1

[
∂εt

m

∂εt

m′

]
E

[
ε2

t

∂εt

m

∂εt

m′

]
E−1

[
∂εt

m

∂εt

m′

]

m=m0

.

Pantula (1989) also obtained the asymptotic distribution of the LSE for the AR

model with ARCH(1) errors, and gave an explicit form for A. The results in Weiss

(1986) and Pantula (1989) require that yt has finite fourth moment. As yet, no one

seems to have considered the LSE of m0 for the ARMA-GARCH model. However,

the result in Weiss (1986) for the LSE can be easily extended to the ARMA-GARCH

model. When GARCH reduces to an i.i.d. white noise process, the LSE is equivalent

to the MLE of m0.

There is presently no asymptotic theory for the LSE of the ARMA-GARCH

model when the fourth moment condition is not satisfied. From the results of Davis

and Mikosch (1998), it would be expected that the LSE is inconsistent if the variance

of εt is infinite, but is consistent but with a slower convergence rate than
√

n if εt

has finite variance and infinite fourth moment. In such cases, the results would be

different from those in Davis and Resnick (1985, 1986).

4.2 Quasi-Maximum Likelihood Estimation

Although the LSE is consistent and asymptotically normal if the fourth moment

is finite, it is inefficient for ARMA-ARCH/GARCH models. In such cases, it is

standard to use MLE. The maximum likelihood method was first used by Engle

(1982) for both the AR-ARCH model and a fixed design regression with ARCH

errors. First, the log-likelihood function can be written as

L(m) =
n∑

t=1

lt, lt = −1

2
ln ht − 1

2

ε2
t

ht

, (4.5)

where ht is treated as a function of yt and m, and is calculated through the following

recursion:

ht = α0 +
r∑

i=1

αiε
2
t−i +

s∑

i=1

βiht−i, h0 = a positive constant. (4.6)
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Define m̂ = maxm∈Θ L(m). Since ηt is not assumed to be normal, m̂ is referred to as

the QMLE of m. For the ARMA-ARCH model, Weiss (1986) showed that the QMLE

is consistent and asymptotically normal under a finite fourth moment condition.

From Ling and Li (1997c), there exists a locally consistent and asymptotically normal

QMLE for the ARMA-GARCH model if it has finite fourth moment. When ηt is

normal, the asymptotic covariance matrix of
√

n(m̂−m0) is

B = E

[
1

ht

∂ εt

∂ m

∂ εt

∂ m′ +
1

2h2
t

∂ ht

∂ m

∂ht

∂ m′

]−1

m=m0

. (4.7)

Engle (1982) demonstrated that the MLE is more efficient than the LSE through

a simple fixed design regression model and a first-order ARCH process. Pantula

(1989) also showed that the MLE is more efficient than the LSE for the AR model

with ARCH(1) errors. In fact, it can be shown that A ≥ B for the general ARMA-

GARCH case.

Under the existence of the second moment, Ling and McAleer (1999b) showed

that the global QMLE is consistent. However, in order to derive the asymptotic

normality of the global QMLE, the model must satisfy the sixth moment condition.

For the ARMA-GARCH(1, q) model, it is possible to show that the global QMLE

of m0 is consistent and asymptotically normal, even if the fourth moment condition

is not satisfied.

4.3 Adaptive Estimation

The QMLE of m0 in the stationary ARMA-GARCH model is efficient only if ηt is

normal. When ηt is not normal, adaptive estimation is useful for obtaining efficient

estimators. A comprehensive account of the theory and method of adaptive estima-

tion can be found in Bickel (1982) and Bickel, Klaassen, Ritov and Wellner (1993),

with valuable surveys available in Robinson (1988) and Stoker (1991).

In the time series context, Kreiss (1987a) investigated the stationary ARMA

model with i.i.d. errors. He proved the local asymptotic normality (LAN) property
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of the model and constructed adaptive estimators of m0. Unlike Bickel (1982),

Kreiss’ adaptive procedure avoids the split sample technique, and hence is quite

useful for practical applications. Jeganathan (1995) and Koul and Schick (1996)

constructed adaptive estimators without splitting the sample for some nonlinear AR

time series with i.i.d. noise. Koul and Schick (1996) also showed through simulation

that the adaptive estimator without splitting the sample is superior to those based

on the split sample technique.

Lee and Tse (1991) and Engle and González-Rivera (1991) are among the first

to have used a semiparametric approach for models (4.1)-(4.2), but they did not

obtain any theoretical results. Koul and Schick (1996) investigated adaptive es-

timation for a random coefficient AR model, which is an ARCH-type time series

model. Jeganathan (1995) and Drost, Klaassen and Werker (1997) developed gen-

eral frameworks suitable for stationary ARCH-type times series. The results in Ling

and McAleer (1999a) include the development of the adaptive method for stationary

ARMA-GARCH models and the conditions required for adaptive estimation.

5 Nonstationary ARMA-GARCH Models

Nonstationary time series have now been extensively investigated for the last two

decades. Some important results for nonstationary AR models can be found in Fuller

(1976), Dickey and Fuller (1979), Phillips (1987), Chan and Wei (1987, 1988), Tsay

and Tiao (1990) and Jeganathan (1995), among many others. However, research

on nonstationary time series is almost always limited to innovations with constant

conditional variances. Under the framework of Phillips and Durlauf (1986) and

Phillips (1987), the long-run variance and the innovation variances are equal in the

presence of heteroscedasticity, but it does not include conditional heteroscedastic

processes as defined in (3.1)-(3.2).

The ARMA-GARCH model is called nonstationary if the characteristic polyno-
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mial φ(z) has a root on the unit circle. Consider the simple AR(1) case:

yt = φyt−1 + εt (5.1)

where φ = 1, and εt follows the GARCH(1, 1) process, that is,

εt = ηt

√
ht, ht = α0 + α1ε

2
t−1 + β1ht−1. (5.2)

When β1 = 0, in which case εt follows a first-order ARCH process, Pantula (1989)

derived the asymptotic distribution of the LSE of the unit root under the fourth

moment condition. Ling and Li (1997b) obtained the same result under the second

moment condition, namely α1 + β1 < 1. The asymptotic distribution is

n(φ̂LS − 1)
L−→

∫ 1
0 B(t)dB(t)
∫ 1
0 B2(t)dt

,

where φ̂LS = (
∑n

t=1 y2
t−1)

−1(
∑n

t=1 ytyt−1) and B(t) is a standard Brownian motion.

Thus, the Dickey-Fuller test statistic can still be used. However, Peters and Ve-

loce (1988) and Kim and Schmidt (1993) provided simulation results showing that

Dickey-Fuller tests based on the LSE are generally not robust.

It should be noted that, for stationary ARMA-GARCH models, the QMLE is

more efficient than the LSE. It seems natural to expect this advantage to extend to

nonstationary time series, in which case unit root tests based on the MLE in the

presence of ARCH/GARCH innovations should be useful. According to standard

statistical theory, an efficient estimator will often provide locally most powerful tests

[e.g. see Rao(1973, Chapter 7)]. For this reason, unit root tests based on QMLE

would be expected to be more powerful than those based on LSE.

Note that Leybourne, McCabe and Tremayne (1996) observed that heteroscedas-

ticity will be present automatically if φ is actually a random variable fluctuating

about 1. They developed a score test for such a randomized unit root.

5.1 Quasi-Maximum Likelihood Estimation

In this section, we assume that the characteristic polynomial φ(z) has only a unit

root of +1. The general case was investigated in Ling and Li (1998). Since ϕ(z) has
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a unit root, it can be decomposed as (1 − z)φ(z), where φ(z) = 1−∑p−1
i=1 φiz

i. Let

wt = (1−B)yt, where B is the backshift operator. Model (4.1) can be rewritten as

yt = γyt−1 + wt, wt =
p−1∑

i=1

φiwt−i +
q∑

i=1

ψiεt−i, (5.3)

where γ = 1 and εt is defined by (4.2). The parameters in model (5.3) are γ and m =

(φ′, ψ′)′, where φ = (φ1, · · · , φp−1)
′
and ψ = (ψ1, · · · , ψq)

′. As in the stationary case,

we assume that the parameters in (4.2) are known or can be estimated consistently.

Given the observations y1, · · · , yn, with initial values yi = 0, or some constants,

for i ≤ 0, the log-likelihood function can be written as

L(λ) =
n∑

t=1

lt, lt = −1

2
ln ht − 1

2

ε2
t

ht

, (5.4)

where λ = (γ, m′)′, and ht is treated as a function of yt and λ. Ling and Li (1998)

showed that there exists a locally consistent QMLE such that

G−1
n (λ̂− λ) −→L (ξML, N ′)′ , (5.5)

where

ξML =
c

∫ 1
0 w1(t)dw2(t)

F
∫ 1
0 w2

1(t)dt
, (5.6)

c = [1− φ(1)]−1, N is a normal random vector independent of ξML, F is a constant

depending on the GARCH parameters, κ = Eη4
t −1, and (w1(t), w2(t)) is a bivariate

Brownian motion with covariance tΩ. When r = s = 1,

Ω =

(
Eht 1
1 E(1/ht) + κα2 ∑∞

k=1 β2(k−1)E(ε2
t−k/h

2
t )

)
, (5.7)

and when ηt is normal, κ = 2 and F = E(1/ht) + 2α2 ∑∞
k=1 β2(k−1)E(ε2

t−k/h
2
t ). For

higher-order GARCH models, the structure of Ω can be found in Ling and Li (1998).

Note also that, unlike the least squares case, the moving average parameters do not

appear in (5.6) and (5.7).

The above results were derived under the fourth moment condition in Ling and

Li (1998). Furthermore, under the second moment condition, Ling and Li (1997b)
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derived the same result for models (5.1)-(5.2) when c = 1. If the second moment

condition is not satisfied, the asymptotic distribution for the LSE or QMLE of the

unit root is as yet unknown. For the unit root process with i.i.d. errors having

infinite variance and in the domain of attraction of an α-stable law, Chan and Tran

(1989) and Chan (1990) showed that n−1/α(φ̂LS − 1) converges to a functional of a

Levy process with α ∈ (0, 2). It is conjectured that there is a similar asymptotic

distribution for the LSE or QMLE of the unit root when the GARCH noise has an

infinite variance.

5.2 Unit Root Tests Based on QMLE

The asymptotic distribution for the QMLE of the unit root can be used to construct

a unit root test. For simplicity, we consider only models (5.1)-(5.2). Denote φ̃ML as

the QMLE of φ, and let

B1(t) =
1

σ
w1(t) and B2(t) = − 1

σ2

√
σ2

σ2K − 1
w1(t) +

√
σ2

σ2K − 1
w2(t),

where σ2 = Eht and K is the (2,2)th element of Ω. Then B1(t) and B2(t) are two

independent standard Brownian motions. As shown in Ling and Li (1998),

n(φ̃ML − 1)
L−→

∫ 1
0 B1(t)dB1(t)

σ2F
∫ 1
0 B2

1(t)dt
+

√
σ2K − 1

σ2F

∫ 1
0 B1(t)dB2(t)∫ 1

0 B2
1(t)dt

. (5.8)

The second term in (5.8) can be simplified to [
√

σ2K − 1/Fσ2] (
∫ 1
0 B2

1(t) dt)−1/2ξ,

where ξ is a standard normal random variable independent of
∫ 1
0 B2

1(t)dt (see Phillips,

1989). Thus,

n(φ̂ML − 1)
L−→

∫ 1
0 B1(t)dB1(t)

σ2F
∫ 1
0 B2

1(t)dt
+

√
σ2K − 1

σ2F
(
∫ 1

0
B2

1(t)dt)−1/2ξ. (5.9)

From (5.8)-(5.9), we see that the asymptotic distribution of φ̂ML can be represented

as a combination of the asymptotic distribution of φ̂LS and a scale mixture of nor-

mals. This property is similar to that of the least absolute deviation estimator of

unit roots given in Herce (1996). Ling and Li (1998) showed that the QMLE of φ is

more efficient than the LSE.
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As the asymptotic distribution in (5.9) includes nuisance parameters, we cannot

use it directly to test for a unit root. There are two methods to overcome this

difficulty. The first is to combine the LSE and QMLE to construct a unit root test,

as in Ling and Li (1997b). Let

Lφ = n(φ̂LS − 1), Lt = (
1

n2

n∑

t=1

y2
t−1)

1/2Lφ,

where ȳ = n−1 ∑n
t=1 yt−1. Furthermore, define

Mφ =
σ̂2F̂√

σ̂2K̂ − 1
{n(φ̂ML − 1)− (F̂ σ̂2)−1[n(φ̂LS − 1)]},

Mt = (
1

n2

n∑

t=1

y2
t−1)

1/2Mφ.

Ling and Li (1997b) showed that

Mφ
L−→ [

∫ 1

0
B2

1(t)dt]−1/2ξ and Mt
L−→ ξ,

where ξ is a standard normal random variable independent of
∫ 1
0 B2

1(t)dt.

The limiting distributions of Mφ and Mt are the same as those based on the

least absolute deviations estimators of Herce (1996). However, the test statistics

themselves are quite different. Empirical critical values of these distributions were

reported in Ling, Li and McAleer (1999), who showed that Mφ and Mt can overcome

the excessive sizes, as reported in Peters and Veloce (1988) and Kim and Schmidt

(1993), and have power comparable to that of the Dickey-Fuller test.

Another method of overcoming the presence of nuisance parameters is to con-

struct a unit root test without using the LSE, as used in Seo (1999). First, rewrite

(5.9) as

nc1(φ̃ML − 1)
L−→ ρ

∫ 1
0 B1(t)dB1(t)∫ 1

0 B2
1(t)dt

+
√

1− ρ2

∫ 1
0 B1(t)dB2(t)∫ 1

0 B2
1(t)dt

, (5.10)

where c1 =
σF√
K

and ρ2 = 1/(σ2K) ∈ (0, 1). The t-statistic is then given by

nc2(
1

n2

n∑

t=1

y2
t−1)

1/2(φ̃ML − 1)
L−→ ρ

∫ 1
0 B1(t)dB1(t)

(
∫ 1
0 B2

1(t)dt)−1/2
+

√
1− ρ2

∫ 1
0 B1(t)dB2(t)

(
∫ 1
0 B2

1(t)dt)−1/2
,

(5.11)

18



where c2 = c1/σ. Seo (1999) tabulated the limiting distribution in (5.11) for different

values of ρ. The simulation results in Seo (1999) showed that the unit root test based

on (5.11) not only overcomes the size distortion problem, but is also consistently

more powerful than tests based on the LSE. These results confirm the expectation

that more efficient estimates of unit roots yield more powerful unit root tests.

When the conditional errors ηt are not normal, the estimator of the unit root is

not efficient. Ling and McAleer (1999c) investigated adaptive estimation of the non-

stationary ARMA model with GARCH errors. They obtained the locally asymptotic

quadratic form of the log-likelihood ratio, and showed that it was neither locally

asymptotic normal nor locally asymptotic mixed normal. A new efficiency criterion

was given for a class of defined M -estimators. When the conditional error density

is known, Ling and McAleer (1999c) showed that efficient estimators can be con-

structed using the kernel estimator for the score function. It is also shown that the

adaptive procedure for the parameters in the conditional mean part uses the full

sample.

6 Other ARCH-type Models

In this section, some other ARCH-type models are considered, namely double thresh-

old ARCH, ARFIMA-GARCH, CHARMA, and vector ARMA-GARCH.

6.1 Double Threshold ARCH Models

Given the success of Tong’s (1978, 1980) threshold model in nonlinear time series, it

is natural to consider threshold structures for the conditional variance specification.

The use of thresholds to model asymmetries is supported by well known empirical

characteristics as to the likely asymmetric behaviour of volatility in the stock market

(see, for example, French et al. (1987)).

Li and Li (1996) proposed the double threshold AR conditional heteroskedastic
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(DTARCH) time series model:

yt = φ
(j)
0 +

pi∑

i=1

φ
(j)
i yt−i + εt, aj−1 < yt−b ≤ aj, (6.1)

εt = ηth
1
2
t , (6.2)

ht = α
(k)
0 +

rk∑

i=1

α
(k)
i ε2

t−i, ck−1 < yt−d ≤ ck, (6.3)

where j = 1, · · · , v1; k = 1, · · · , v2; and b and d ≥ 1 are the delay parameters. In

(6.1)-(6.3), the threshold parameters satisfy −∞ = a0 < a1 < · · · < av1 = ∞ and

−∞ < c0 < c1 < · · · < cv2 = ∞, φ
(j)
i and α

(k)
i are constants, α

(k)
0 > 0 and α

(k)
i

≥ 0. The model generalizes the threshold AR model of Tong (1978, 1980) to include

a threshold ARCH component. Tong (1990) referred to this type of hybrid model

as a second generation model. Note that other indicator variables may be used

in place of yt−b and yt−d. The threshold variables are typically defined as a linear

combination of the lagged values of the observed process, but van Dijk, Teräsvirta

and Franses (2000) relaxed this definition of threshold variables to include non-linear

combinations of the lags of the observed process as well as of other variables. Li

and Lam (1995) combined the threshold autoregressive model with a fixed ARCH

specification in studying the asymmetry of a stock index. Extension to a double-

threshold GARCH model was considered by Brooks (2001).

Ling (1999b) showed that, if
∑p

i=1 maxj |φ(j)
i | < 1 and

∑r
i=1 maxk α

(k)
i < 1, then

there exists a strictly stationary solution {yt, εt} satisfying models (6.1)-(6.3), and

Eπ1(|yt|) and Eπ2(ε
2
t ) are finite, where π1 and π2 are the stationary distributions

of {yt} and {εt}, respectively. However, the uniqueness and ergodicity conditions

are as yet unknown. If the second threshold, ck−1 < yt−d ≤ ck, is replaced by

ck−1 < εt−d ≤ ck, the strict stationarity and ergodicity condition has been obtained

by Liu , Li and Li (1997).

Under the assumption that yt is strictly stationary and ergodic, and the threshold

parameters ai and ci are known, Li and Li (1996) proved that the MLE is consistent

and asymptotically normal. In practice, the threshold parameters ai and ci are
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unknown and can be estimated by the maximum likelihood method. However, the

asymptotic distributions of the estimators are as yet unknown. For the threshold AR

model with i.i.d. errors, Chan (1993) showed that the estimator of the threshold

parameter has a convergence rate of n and an asymptotic distribution associated

with the compound Poisson process. This method could possibly be used for the

DTARCH model.

Pesaran and Potter (1997) considered a floor and ceiling model of US output

which may be interpreted as a double threshold ARCH model. Rabemanjara and

Zaköıan (1993) examined an asymmetric ARCH model which may be regarded as a

special case of the DTARCH model. Fornari and Mele (1997) considered a similar

formulation to handle asymmetry in volatility. Lee and Li (1998) developed a smooth

transition double threshold model. Lundbergh and Teräsvirta (1998a) used a double

smooth AR-GARCH model to analyse some high-frequency exchange rate data.

Wong and Li (1997) considered tests for the presence of autoregression under ARCH,

while Wong and Li (1999) examined tests for the null of AR-ARCH against the

double threshold ARCH model.

In the spirit of threshold nonlinear models Wong and Li (2000), Wong and Li

(2001a, b) considered mixtures of autoregressive models and mixtures of autoregres-

sive models with ARCH. Some interesting features of these types of models are that

some components of the mixture can be non-stationary while the entire series can

be stationary, the predictive distributions can be multimodal, and it is fairly easy

to derive the conditions for stationarity and expressions for the autocorrelations.

6.2 Fractional ARIMA Models

Let {yt} satisfy

φ(B)(1−B)d(yt − µ) = θ(B)εt, (6.4)

εt | Ft−1 ∼ N(0, ht), ht = α0 +
r∑

i=1

αiε
2
t−i +

s∑

i=1

βiht−i, (6.5)
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where (1−B)d is defined by the binomial series:

(1−B)d =
∞∑

k=0

(k + d− 1)!

k!(d− 1)!
Bk. (6.6)

The specifications in (6.4)-(6.5) are referred to as the fractional ARIMA-GARCH or

equivalently the ARFIMA-GARCH model, which was investigated by Ling and Li

(1997c). Baillie, Chung and Tieslau (1995) considered a fractional ARIMA(0, d, 1)-

GARCH(1,1) model for the CPI series of 10 different countries. Note that exact

maximum likelihood estimation of (6.4) with ht = a constant has been considered

as early as in 1981 in the University of Western Ontario Ph.D. Thesis by W.K. Li.

Sufficient conditions for stationarity, ergodicity and the existence of higher-order

moments of the fractional ARIMA model were derived by Ling and Li (1997c).

Under some mild conditions, it is shown that the MLE is locally consistent and

asymptotically normal. It is well known that, when p = q = 0 so that (1−B)dyt = εt,

the MLE of d converges to N(0, 6/π2) in distribution if εt is i.i.d. (see Li and McLeod,

1986). However, when εt is a GARCH process, Ling and Li (1997c) showed that the

asymptotic variance is

Ωγ = E[
1

ht

(
∂ εt

∂ d
)2 +

1

2h2
t

(
∂ht

∂ d
)2],

which is no longer independent of d and is less than 6/π2. Ling and Li (1997c) also

examined the large sample distributions of the residual autocorrelations and the

squared-residual autocorrelations, and two portmanteau test statistics. Robinson

(1991) considered tests for conditional heteroskedasticity in long memory processes.

More recently, Beran and Feng (1999) considered local polynomial estimation of a

fractional ARIMA model similar to the above.

6.3 CHARMA Models

Tsay (1987) proposed the conditional heteroskedastic autoregressive moving average

(CHARMA) model, given by:

yt − µ =
p∑

i=1

ψi(yt−i − µ) +
q∑

i=1

θiεt−i + εt, (6.7)
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εt =
r∑

i=1

δitεt−i +
s∑

i=1

wit(yt−i − µ) + w0t(ŷt−1(1)− µ) + et, (6.8)

where the orders p, q, r and s are finite and non-negative integers; µ, ψi and θi are

constant; δit, wit and et are random variables; and ŷt−1(1) = E(yt|Ft−1), where Ft−1

is the σ−field generated by {et−i, wt−i, δt−i|i = 1, 2, · · ·}, wt = (w0t, w1t, · · · , wst)
′,

and δt = (δ1t, · · · , δrt)
′.

The LSE method can be used to estimate the parameters in (6.7). Tsay (1987)

proved that the LSE is consistent if Eε4
t < ∞, and is asymptotically normal if

Eε8
t < ∞. Since the model is an extension of the random coefficient AR model, the

asymptotic MLE results can be obtained using the method in Nicholls and Quinn

(1982). Basic properties such as strict stationarity, ergodicity and the moment

structure are given in Ling (1999a).

The CHARMA model has been extended to the multivariate case. Wong and

Li (1997) considered a stationary multivariate CHARMA model, and Li, Ling and

Wong (1999) investigated a partially nonstationary AR model with conditional het-

eroscedasticity, as follows:

Yt = Φ1Yt−1 + · · ·+ ΦpYt−p + εt (6.9)

and

εt = α1tεt−1 + · · ·+ αqtεt−q + et, (6.10)

where the Φi are constant matrices; det{Φ(z)} = |I − Φ1z − · · · − Φpz
p| = 0 has

d ≤ m unit roots and other roots outside the unit circle; rank[Φ(1)] = m − d;

δt = (α1t, · · · , αqt) is a sequence of i.i.d. matrices with mean zero and nonnegative

covariance E[vec(δt)vec′(δt)] = Ω; and et is an i.i.d. random vector with mean zero

and positive covariance E(ete
′
t) = G.

Under the condition for the finite fourth moment, Li, Ling and Wong (1998)

derived the asymptotic distributions of the LSE, a full rank MLE, and a reduced

rank MLE. When the multivariate ARCH process reduces to the innovation with a
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constant covariance matrix, these asymptotic distributions are the same as in Ahn

and Reinsel (1990). However, in the presence of multivariate ARCH innovations, the

asymptotic distributions of the full rank MLE and the reduced rank MLE involve

two correlated multivariate Brownian motions, which are different from those given

in Ahn and Reinsel (1990). The asymptotic results in Li, Ling and Wong (1998)

can be used to construct cointegration tests based on the MLE.

6.4 Vector ARMA-GARCH Models

Ling and McAleer (1999b) proposed the vector ARMA-GARCH model:

Φ(B)(Yt − µ) = Ψ(B)εt, (6.11)

εt = D
1/2
t ηt, Ht = W +

r∑

i=1

Aiε̃t−i +
s∑

i=1

BiHt−i, (6.12)

where Dt = diag(h1t, · · · , hmt)
′, Ht = (h1t, · · · , hmt)

′, Φ(B) = I −Φ1B − · · · −ΦpB
p

and Ψ(B) = I + Ψ1B + · · · + ΨqB
q are polynomials in B, ε̃t = (ε2

1t, · · · , ε2
mt)

′,

and ηt = (η1t, · · · , ηmt)
′ is a sequence of i.i.d. random vectors with mean zero and

covariance Γ.

Ling and McAleer (1999b) obtained the conditions for strict stationarity and

ergodicity, and the higher-order moments of the model. The consistency of the

global QMLE is proved under the existence of only the second-order moment. In

order to derive the asymptotic normality of the global QMLE, the results require the

second moment condition for the vector ARCH model, the fourth moment condition

for the vector ARMA-ARCH model, and the sixth moment condition for the vector

ARMA-GARCH model.

7 Conclusion

Most of the theoretical results for GARCH-type processes require that the fourth-

or higher-order moments exist. In practice, this condition may not be satisfied.

When the fourth moment of the GARCH process is infinite, it exhibits the feature
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of heavy tails. At present, a theory is lacking for ARMA models derived from

this type of GARCH specification, even for ARMA models with i.i.d. heavy-tailed

noise (see Resnick (1997)). Since heavy-tailed phenomena are often encountered in

finance and economics, an analysis of data exhibiting heavy tails would seem to be

an important direction for future research.

Although there have been many contributions to the ARCH/GARCH literature,

it seems that until recently very little attention has been paid to model selection.

Apart from the diagnostic checking method of Li and Mak (1994) and its extension

by Ling and Li (1997a), there would seem to be few formal tools for checking model

adequacy. Tse and Zuo (1997) provided a simulation study of the Li–Mak test.

More recently, Lundbergh and Teräsvirta (1998b) showed that the Li–Mak test is

equivalent to a Lagrange multiplier test of no residual ARCH. Tse (1999) provides a

recent review of this literature. A generalization of Li and Mak (1994) is obtained by

Horvath and Kokoszka (2001). A robustified version of Li and Mak (1994) against

outliers is developed by Jiang, Shao and Hui (2001). All order selection methods for

ARMA models, such as those in Hannan (1980), Potscher (1983, 1989), Tsay (1984),

and Wei (1992), require that the error processes are i.i.d. or martingale differences

with supt E(ε2
t |Ft−1) ≤ a constant. However, ARCH-type models generally do not

satisfy these conditions. It is important to develop a theory for order selection of

ARCH, GARCH and ARMA-GARCH models, with Wong and Li (1996) and An,

Fong and Li (1999) being two useful attempts in this direction.
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Engle, R. F. and González-Rivera, G.-R. (1991) Semiparametric ARCH models.

Journal of Business & Economic Statistics 9, 345-359.

Engle, R.F. and Kroner, K.F. (1995) Multivariate simultaneous generalized ARCH.

Econometric Theory 11, 122-150 .

Fornari, F. and Mele, A. (1997) Sign-and volatility-switching ARCH models: The-

ory and applications to international stock markets. Journal of Applied Econo-

metrics 12, 49-65.
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