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1. Introduction

We study the possibility of designing strategy-proof rules that yield satisfactory solutions to
matching problems. By matching problems, we refer to the several important allocation prob-
lems in two-sided matching markets where agents, from the start, belong to one of two disjoint
sets: for example, workers and firms, students and colleges, and athletes and teams. Allocations
in these markets are matchings, assigning each agent in one side of the market the agent(s) in
the other side.

A matching rulechooses a matching for each preference profile. A matching rule isefficient
if it always chooses a matching such that no other matching exists that would make all agents
better off. A matching rule isindividually rational if an agent is never assigned to a partner to
whom the agent prefers staying single. Individual rationality is necessary for agents to volun-
tarily participate matchings. A matching isblockedby a pair if each agent in the pair prefers the
other in it to the assigned partner. A matching rule isstableif a matching rule is individually
rational, and for any preference profile, the chosen matching is not blocked by any pair. Sta-
bility guarantees the rights of all agents in the sense of not compelling them into unacceptable
matches.

Because the agents’ preferences are not known to others, there may be incentives for agents
to misrepresent their preferences in order to manipulate the final outcome in their favor. As a
result, the chosen matching may not be socially desirable relative to the agents’ true preferences.
Therefore, matching rules need to be immune to such strategic misrepresentation to certainly
choose desirable matchings based on agents’ true preferences. A matching rule isstrategy-proof
if it is a dominant strategy for each agent to announce its true preference.

The possibility of matching rules satisfying desirable properties has been explored by many
studies. Gale and Shapley (1962) prove that a stable rule, called the “Gale–Shapley mecha-
nism”, exists. Roth (1982) shows that all stable matching rules containing the Gale–Shapley
mechanism are not strategy-proof. Alcalde and Barberá (1994) pursue the possibility of a
strategy-proof rule by relaxing stability to efficiency and individual rationality, and show the im-
possibility of designing matching rules satisfying efficiency, individually rationality and strategy-
proofness.

In this paper, we pursue the possibility of a strategy-proof matching rule by relaxing ef-
ficiency or employing a substitutive concept. A preference profile isunanimousif, unless an
agent prefers to stay single, the partner the agent most prefers also prefers the agent. A match-
ing rule respects unanimityif for any unanimous preference profile, every agent is matched to
the partner the agent prefers most. Our first result is positive. We prove thatthere exists a
strategy-proof rule that is individually rational and respects unanimity.However, this rule is
unreasonable in the sense that a pair of agents who are the best for each other are matched on
only rare occasions.

In order to explore the possibility of better matching rules, we introduce a natural condition,
which we call “respect for pairwise unanimity”. A matching rulerespects pairwise unanimity
if a pair of agents who are the best for each other should be matched, and an agent wish-
ing to stay single should stay single. Compared with stability, respect for pairwise unanimity
“weakly”guarantees the rights of all agents. Our second result is negative. We prove thatthere
exists no strategy-proof rule that respects pairwise unanimity.Since stability implies respect
for pairwise unanimity, this result implies Roth’s (1982) negative result.

Section 2 introduces the one-to-one matching model and presents our results. Section 3
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extends the negative result of the one-to-one matching model to the many-to-one matching
model. Section 4 concludes.

2. One-to-One Matchings

2.1. One-to-one matching model

Here, we consider the one-to-one matching model, known as the marriage problem. LetM =

{m1,m2, . . . ,mn} be the set of men, andW = {w1,w2, . . . ,wl} be the set of women. We assume
that bothM andW are finite and disjoint sets. We also assume thatn ≥ 2 andl ≥ 2.

Eachmi ∈ M has a preference relationP(mi) on W ∪ {mi}. For each manmi ∈ M, the
alternativemi implies thatmi stays single. We assume that preferences are strict. Forx, x′ ∈
W∪ {mi}, xP(mi)x′ means thatmi prefersx to x′. Each womanw j ∈W has a similar preference
P(w j) on M ∪ {w j}. Let P(mi) denote the set of all possible preferences formi, and letP(wj)
denote the set of all possible preferences forw j. We denote preference profiles byP. Let
P =

∏n
i=1P(mi) ×∏l

j=1P(w j) be the set of all possible preference profiles. Given a profileP,
an agentx ∈ M∪W and a preferenceP′(x), we denote byP/P′(x) the profile obtained fromP by
changing the preferences ofx from P(x) to P′(x), and keeping all other preferences unchanged.
For all preferencesP(mi) ∈ P(mi), b(P(mi)) denotes the most preferred element inW ∪ {mi}.
Similarly, for all preferencesP(w j) ∈ P(wj), b(P(wj)) denotes the most preferred element in
M ∪ {w j}.

A (one-to-one)matchingis a functiona : M ∪W→ M ∪W such that

(1) [a(mi) < W⇒ a(mi) = mi] and[a(wj) < M ⇒ a(w j) = w j], and

(2) a(mi) = w j ⇔ a(wj) = mi.

Condition (1) requires that individuals who are not matched with agents of the opposite set
must stay single. Condition (2) requires that if a manmi is matched to a womanwj, then this
womanw j should be matched to that manmi.

Let A be the set of all possible matchings.

Definition. A matchinga is (Pareto) efficient at preference profileP if there does not exist
another matchinga′ , a such that for allx ∈ M ∪W,

a′(x) , a(x)⇒ a′(x)P(x)a(x).

Definition. A matchinga is individually rationalat profileP if each individual who is matched
prefers her or his partner to staying single; i.e.,

[a(mi) ∈W⇒ a(mi)P(mi)mi] for all mi ∈ M, and

[a(w j) ∈ M ⇒ a(w j)P(w j)w j] for all wj ∈W.
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Definition. A matchinga is blocked by a pair(mi ,wj) ∈ M ×W at profileP if wjP(mi)a(mi)
andmiP(w j)a(w j). A matchinga is stableat profileP if it is individually rational and it is not
blocked by any pair inM ×W.

A matching ruleonP is a functionf fromP to A.

In this paper, we title the result of the following algorithm1, theM-optimal matching rule:
Step 1.(a) Each man proposes to his most preferred woman.
(b) Each woman rejects the proposal of any man to whom she prefers staying single. Each

woman who receives more than one proposal rejects all but her most preferred. Any man whose
proposal is not rejected at this point is kept engaged.

.

.

.
Step k.(a) Any man who was rejected in the previous step proposes to his most preferred

woman among those who have not yet rejected him, so long as a woman remains to whom he
prefers to staying single and has not yet proposed.

(b) Each woman receiving proposals rejects any from men to whom she prefers staying sin-
gle, and also rejects all but her most preferred among the group consisting of the new proposers,
together with any man she has kept engaged from the previous step.

The algorithm stops after any step where no man is rejected. At this point, every man is
either engaged to a woman or has been rejected by every woman on his list of women he prefers
to staying single. Now each man who is engaged with a woman is matched with her. Each
woman who did not receive any proposals from men she prefers to staying single, and each man
who is rejected by all women he prefers to staying single, will remain single. This completes
the description of the algorithm.

We call the similar algorithm with women proposing, theW-optimal matching rule.

Remark. (Theorem 2.8 in Roth and Sotomayor, 1990): The M-optimal and W-optimal match-
ing rules produce stable matchings for any preference profile.

We consider an incentive compatibility requirement,strategy-proofness. Strategy-proofness
says that for every agent, stating the true preferences should be a dominant strategy.

Definition. A matching rule f on P is manipulableby an agentx ∈ M ∪ W at P ∈ P via
P′(x) ∈ P(x) if f (P/P′(x))(x)P(x) f (P)(x). A matching rulef is strategy-proofonP if it is not
manipulable at any profile inP by any agentx ∈ M ∪W via any preference inP(x).

We introduce the minimum condition of efficiency, respect for unanimity.2 Respect for
unanimity states that for any preference profile where unless an agent prefers staying single,
the partner the agent most prefers also prefers the agent, every agent should be matched to their
most preferred agent.

1We borrow the description of the algorithm from Roth and Sotomayor (1990).
2Respect for unanimity is the “minimum” condition of efficiency in the sense that it is a necessary condition

for almost all reasonable conditions of efficiency.
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Definition. A matching rulef respects unanimityonP if for all P ∈ P,

[b(P(b(P(x)))) = x for all x ∈ M ∪W] ⇒ [ f (P)(x) = b(P(x)) for all x ∈ M ∪W]

We also introduce a natural axiom,respect for pairwise unanimity. Respect for pairwise
unanimity states that a pair of agents who are the best for each other should be matched, and an
agent for whom staying single is the best should stay single.

Definition. A matching rule f respects pairwise unanimityon P if for all P ∈ P and all
x ∈ M ∪W,

b(P(b(P(x)))) = x⇒ f (P)(x) = b(P(x))

Remark. Respect for pairwise unanimity implies respect for unanimity.

A matching rulef is stableif for all profiles P ∈ P, f (P) is stable atP. A matching rule
f is individually rational if for all profiles P ∈ P, f (P) is individually rational atP. Finally, a
matching rulef is efficient if for all profiles P ∈ P, f (P) is efficient atP.

Remark. Stability implies respect for pairwise unanimity. However, as Example 1 illustrates,
respect for pairwise unanimity does not imply stability.

Example 1.Let n = l = 2. Consider a preference profileP′ ∈ P defined below3:

P′ :

{
P′(m1) = w1w2m1 P′(w1) = m2m1w1

P′(m2) = w1w2m2 P′(w2) = m1m2w2

}
.

Let f be a matching rule that assigns the same matching as the M-optimal rule except for the
preference profileP′ and assigns toP′ the following matchinga:4

f (P′) = a :

{
m1 m2 _
_ w1 w2

}
.

It is easy to see thatf respects pairwise unanimity, yet it is not stable.

Remark. Both efficiency and respect for pairwise unanimity are sufficient conditions for respect
for unanimity. However, as Example 2 illustrates, efficiency and respect for pairwise unanimity
are mathematically independent onP.

Example 2.Let n = l = 2. Consider a preference profileP′ ∈ P defined below:

P′ :

{
P′(m1) = w2w1m1 P′(w1) = m2m1w1

P′(m2) = w2w1m2 P′(w2) = m2m1w2

}
.

Let f1 be such that for allP ∈ P and ally ∈ M ∪W,

(1) if there exists an agenty ∈ M ∪W such thatb(P(b(P(y)))) = y, then f1(P)(y) = b(P(y)), and
3An ordered list of mates indicates the agent’s preference from better to worse among the possible mates.
4We use the same notation as Roth and Sotomayor (1990): a pair(mi ,w j) on the same vertical are matched to

each other and an agent with no mate on its vertical stays single.
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(2) otherwise,f1(P)(y) = y.

Then, f1 assigns toP′ the following matchinga1:

f1(P
′) = a1 :

{
m1 m2 _
_ w2 w1

}
.

It is easy to see thatf1 respects pairwise unanimity, yet it is not efficient.
Meanwhile, let f2 be a matching rule that assigns to each profileP ∈ P a matching that

matchesm1 to b(P(m1)) andm2 to his most preferred agent in(W∪ {m2}) \ {b(P(m1))}. Then, f2
assigns toP′ the following matchinga2:

f2(P
′) = a2 :

{
m1 m2

w2 w1

}
.

It is easy to see thatf2 is efficient, yet it does not respect pairwise unanimity.

Remark. Both individual rationality and respect for pairwise unanimity are necessary con-
ditions for stability. However, as Example 3 illustrates, individual rationality and respect for
pairwise unanimity are mathematically independent onP.

Example 3.Let n = l = 2. Consider a preference profileP′ ∈ P defined below:

P′ :

{
P′(m1) = w2m1w1 P′(w1) = m2m1w1

P′(m2) = w2w1m2 P′(w2) = m2m1w2

}
.

Let f1 be a matching rule that assigns the same matching as the M-optimal matching rule except
for P′ and assigns toP′ the following matchinga1:

f1(P
′) = a1 :

{
m1 m2

w1 w2

}
.

It is easy to see thatf1 respects pairwise unanimity, yet it is not individually rational.
Meanwhile, let f2 be a matching rule that assigns the same matching as the M-optimal

matching rule except forP′ and assigns toP′ the following matchinga2:

f2(P
′) = a2 :

{
m1 m2

w2 w1

}
.

It is easy to see thatf2 is individually rational, yet it does not respect pairwise unanimity.

2.2. Results in one-to-one matchings

Alcalde and Barberá (1994) show that efficient and individually rational matching rules must
be manipulable. Thus we pursue the possibility of strategy-proof rules by relaxing efficiency to
the weaker condition of respect for unanimity.

We call the following rulef , theminimum unanimous rule: First we divideP into the three
subsetsP1, P2 andP3 defined below:

5



P1 : The set of preference profilesP such that for allx ∈ M ∪W, b(P(b(P(x)))) = x.

P2 : The set of preference profilesP such that there exists(mi ,wj) ∈ M ×W such that

(i) b(P(b(P(x)))) = x for all x ∈ M ∪W \ {mi ,wj},
(ii) w jP(mi)mi andmiP(w j)w j, and

(iii) b(P(mi)) , w j or b(P(w j)) , mi.

P3 : = P \ (P1 ∪ P2).

Then the minimum unanimous rulef assigns a matching to each profileP ∈ P by following
Directions1, 2, and3:

Direction1 : For all preference profilesP ∈ P1 and allx ∈ M ∪W, f (P)(x) = b(P(x)).

Direction2 : For all preference profilesP ∈ P2 and allx ∈ (M ∪W) \ {mi ,w j}, f (P)(x) = x,
f (P)(mi) = w j and f (P)(w j) = mi.

Direction3 : For all preference profilesP ∈ P3 and allx ∈ M ∪W, f (P)(x) = x.

Our first result shows that the minimum unanimous rulef is strategy-proof and individually
rational, and respects unanimity.

Proposition 1. The minimum unanimous rule is strategy-proof and individually rational, and
respects unanimity.

Proof. By Direction 1, f respects unanimity onP. By Directions1, 2 and3, f is individually
rational onP. It suffices to show thatf is strategy-proof onP.

First, consider a profileP ∈ P1. Since everyone is matched to her or his best by Direction
1, anyone cannot manipulate at such a profile.

Second, consider a profileP ∈ P2. If mi′ ∈ M \ {mi} tries to manipulate atP, he would
be single by Directions2 and3, and cannot be better off. Meanwhile, if the manmi tries to
manipulate atP, he would be matched tow j or be single by Directions 1, 2 and 3, and cannot
be better off. Similarly, any woman cannot manipulate atP.

Third, consider a profileP ∈ P3. Note that everyone stays single by Direction 3. Pickmi

from M arbitrarily.
Assume that there existswj ∈W such that (i

′
) b(P(b(P(x)))) = x for all x ∈ (M∪W)\{mi ,w j},

and (ii
′
) miP(mi)w j andmiP(w j)w j. Then, if the manmi tries to manipulate atP via anyP′(mi) ∈

P(mi) such thatmiP′(mi)w j, P/P′(mi) is still in P3, and he would stay single by Direction 3.
On the other hand, if the manmi tries to manipulate atP via any P′′(mi) ∈ P(mi) such that
w jP′′(mi)mi, thenP/P′′(mi) is in P1 or P2, and he would be matched with the womanw j to
whom he prefers staying single by Directions1 and2.

Next assume that there does not existw j ∈ W for whom (i
′
) and (ii

′
) hold. Then, even if

the manmi manipulates via anyP′(mi) ∈ P(mi) at P, P/P′(mi) is still in P3, and he would stay
single.

Therefore, the manmi cannot manipulate at any profiles inP3. Sincemi is picked up arbi-
trarily from M, any man cannot manipulate at any profile inP3. Similarly, any woman cannot
manipulate at any profile inP3. �
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Proposition 1 appears a positive result. However, it has one negative aspect in that the min-
imum unanimous rule is unreasonable in the sense that it does not respect pairwise unanimity
and leaves all agents single for most preference profiles. Therefore, we explore the possibil-
ity of better strategy-proof rules that are individual rational and respect pairwise unanimity on
P. However, we prove that there exists no strategy-proof matching rule that respects pairwise
unanimity onP as below.

Proposition 2. There exists no strategy-proof matching rule that respects pairwise unanimity
onP.

Proof. First we prove the statement for the case withn = l = 2 . Later we will explain how to
extend the proof to the cases wheren ≥ 3 or l ≥ 3.

We assume that the rulef respects pairwise unanimity, and prove that it must be manipula-
ble. Note that for the case withn = l = 2, the set of all possible matchingsA is the following:

A =

{
a1 :

{
m1 m2

w1 w2

}
, a2 :

{
m1 m2

w2 w1

}
, a3 :

{
m1 m2 _
_ w1 w2

}
, a4 :

{
m1 m2 _
_ w2 w1

}
,

a5 :

{
m1 m2 _
w1 _ w2

}
, a6 :

{
m1 m2 _
w2 _ w1

}
, a7 :

{
m1 m2 _ _
_ _ w1 w2

} }
.

(1) Let P1 ∈ P be such that

P1 :

{
P1(m1) = w1w2m1 P1(w1) = m2m1w1

P1(m2) = w2w1m2 P1(w2) = m1m2w2

}
.

The set of all matchings satisfying respect for pairwise unanimity forP1 is equal toA.

(2) Let P2 = P1/P1′(w1) whereP1′(w1) = m2w1m1. That is,

P2 :

{
P2(m1) = w1w2m1 P2(w1) = m2w1m1

P2(m2) = w2w1m2 P2(w2) = m1m2w2

}
.

The set of all matchings satisfying respect for pairwise unanimity forP2 is equal toA.

(3) Let P2′(w1) = w1m2m1. Then, f (P2/P2′(w1))(w1) = w1 by respect for pairwise unanimity.
(4) Let P2′(m1) = w2w1m1. Then, f (P2/P2′(m1))(m1) = w2 by respect for pairwise unanimity.
(5) Let P2′(m2) = w1w2m2. Then, f (P2/P2′(m2))(m2) = w1 by respect for pairwise unanimity.
(6) Let P6 = P1/P1′(m1) whereP1′(m1) = w1m1w2. That is,

P6 :

{
P6(m1) = w1m1w2 P6(w1) = m2m1w1

P6(m2) = w2w1m2 P6(w2) = m1m2w2

}
.

The set of all matchings satisfying respect for pairwise unanimity forP6 is equal toA.

(7) Let P6′(m1) = m1w1w2. Then, f (P6/P6′(m1))(m1) = m1 by respect for pairwise unanimity.
(8) Let P6′(w2) = m2m1w2. Then, f (P6/P6′(w2))(w2) = m2 by respect for pairwise unanimity.
(9) Let P6′(w1) = m1m2w1. Then, f (P6/P6′(w1))(w1) = m1 by respect for pairwise unanimity.
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(10) LetP1′′(m1) = w2w1m1. Then, f (P1/P1′′(m1))(m1) = w2 by respect for pairwise unanimity.
(11) LetP1′(m2) = w1w2m2. Then, f (P1/P1′(m2))(m2) = w1 by respect for pairwise unanimity.

Now we prove thatf is manipulable using the above preferences and matchings.
Note that Cases 1, 2, 3 and 4 below cover all the possible matchings off for P1. We show

that f is manipulable for each case.

Case 1 : f (P1) = a1.

If f (P2) = a2 or a3, that is, if f (P2)(w1) = m2, w1 can manipulate atP1 via P1′(w1) by
m2P1(w1)m1. If f (P2) = a1 or a5, that is, if f (P2)(w1) = m1, w1 can manipulate atP2

via P2′(w1) by (3) andw1P2(w1)m1. If f (P2) = a4, m1 can manipulate atP2 via P2′(m1)
by (4) andw2P2(m1)m1. If f (P2) = a6 or a7, m2 can manipulate atP2 via P2′(m2) by
(5) andw1P2(m2)m2.

Case 2 : f (P1) = a2.

If f (P6) = a1 or a5, that is, if f (P6)(m1) = w1, m1 can manipulate atP1 via P1′(m1)
by w1P1(m1)w2. If f (P6) = a2 or a6, that is, if f (P6)(m1) = w2, m1 can manipulate at
P6 via P6′(m1) by (7) andm1P6(m1)w2. If f (P6) = a3 or a7, that is, if f (P6)(w2) = w2,
w2 can manipulate atP6 via P6′(w2) by (8) andm2P6(w2)w2. If f (P6) = a4, w1 can
manipulate atP6 via P6′(w1) by (9) andm1P6(w1)w1.

Case 3 : f (P1) = a3, a4 or a7.

Becausef (P1)(m1) = m1, m1 can manipulate atP1 via P1′′(m1) by (10) andw2P1(m1)m1.

Case 4 : f (P1) = a5 or a6.

Becausef (P1)(m2) = m2, m2 can manipulate atP1 via P1′(m2) by (11) andw1P1(m2)m2.

Next we explain how to prove the statement for the cases wheren ≥ 3 or l ≥ 3. Let
the preferences of agentsy ∈ (M ∪ W) \ {m1,m2,w1,w2} be such thatb(P(y)) = y for all
(M ∪W) \ {m1,m2,w1,w2}. Then, all agentsy ∈ (M ∪W) \ {m1,m2,w1,w2} would stay single
in matchings satisfying respect for pairwise unanimity. Therefore, the proof for these cases is
identical to the above proof.�

Remark. Since stability implies respect for pairwise unanimity, our result implies Roth (1982)
showing that all stable matching rules must be manipulable.5

3. Many-to-One Matchings

In Section 2, we considered the matching problems on the one-to-one matching model. How-
ever, in terms of economic phenomena, many-to-one matchings in two-sided markets are typi-
cal, where one side of the market consists of institutions and the other side of individuals: for
example, colleges and students, firms and workers, hospitals and interns. Accordingly, in this

5Alcalde and Barberá (1994) also extend Roth’s result by relaxing stability to efficiency and individual rational-
ity. However, note that our arguments considered several matchings that satisfy our conditions, but not efficiency
and individual rationality.
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section we extend the negative result in Section 2 to the many-to-one matching model, com-
monly known as the college admissions problem.

3.1. Many-to-one matching model

Let C = {C1,C2, . . . ,Cn} be the set of colleges andS = {s1, s2, . . . , sl} be the set of students. We
assume that bothC andS are finite and disjoint sets. We also assume thatn ≥ 2 andl ≥ 2.

Each collegeCi has a quotaqCi, which indicates the maximum number of positions it may
fill. We assume that eachqCi is a positive integer. Hence, a matching of this model assigns each
student to at most one college and each college to at most its quota of students.

Each studentsj ∈ S has a preference relationP(sj) on M(sj) ≡ {C1, . . . ,Cn, sj}. LetP(sj)
denote the set of all possible preferences forsj ∈ S. Each collegeCi ∈ C has a preference
relationP(Ci) on M(Ci) ≡ {G ⊆ S : |G| ≤ qCi }.

Definition. (Roth and Sotomayor 1990): A preferenceP(Ci) is responsiveif

(1) for all G ⊆ S with |G| < qCi and allsj ∈ S \G,

(G∪ {sj})P(Ci)G⇔ {sj}P(Ci)∅, and

(2) for all G ⊆ S with |G| < qCi and allsj , sk ∈ S \G,

(G∪ {sj})P(Ci)(G∪ {sk})⇔ {sj}P(Ci){sk}.

We assume that preferences of all colleges are responsive. LetP(Ci) denote the set of all
possible responsive preferences forCi ∈ C. We assume that preferences are strict. We denote
preference profiles byP. LetP =

∏n
i=1P(Ci) ×∏l

j=1P(sj) be the set of all possible preference
profiles.

Definition. A matchinga is a functiona : C ∪ S→ 2C∪S such that:

(1) for all sj ∈ S, a(sj) ∈ C ∪ {sj},
(2) for all Ci ∈ C, a(Ci) ⊆ S and|a(Ci)| ≤ qCi , and

(3) for all (Ci , sj) ∈ C × S, a(sj) = Ci ⇔ sj ∈ a(Ci).

Let A be the set of all possible matchings.

Definition. Thebestb(P(Ci),G) is the most preferred subset ofG. That is,b(P(Ci),G) is the
subset ofG such thatb(P(Ci),G)P(Ci)G′ for all G′ ⊆ G such thatG′ ∈ M(Ci) \ {b(P(Ci),G)}.

Definition. A matchinga is blocked by a studentsj ∈ S at P ∈ P if sjP(sj)a(sj). A matchinga
is blocked by a collegeCi ∈ C at P ∈ P if a(Ci) , b(P(Ci),a(Ci)).

Note that since colleges’ preferences are responsive, a matchinga is blocked by a college
Ci ∈ C at P ∈ P if there exists a studentsj ∈ a(Ci) such that∅P(Ci){sj}.
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Definition. A matchinga is individually rational at P ∈ P if it is not blocked by any agent
y ∈ (C ∪ S) at P ∈ P.

Definition. A matchinga is blocked by a pair(Ci , sj) ∈ C × S at P ∈ P if CiP(sj)a(sj) and
a(Ci) , b(P(Ci),a(Ci)∪{sj}). A matchinga is stableat P ∈ P if it is not blocked by any student
sj ∈ S, any collegeCi ∈ C, or any pair(Ci , sj) ∈ C × S.

Remark. (Sönmez 1996): The set of stable matchings is a singleton for each profileP ∈ P on
the many-to-one matching model withqCi ≥ |S| for all Ci ∈ C. Here after, we call the matching
rule f assigning the associated stable matching to each preference profile, thestable rule. The
stable rulef can be described as below: for allP ∈ P and allsj ∈ S,

(1) if there exists a collegeCi ∈ C such that{sj}P(Ci)∅,CiP(sj)sj andCiP(sj)C
′
i for all C

′
i ∈

C \ {Ci} such that{sj}P(C
′
i )∅, then f (P)(sj) = Ci, and

(2) otherwise,f (P)(sj) = sj.

Definition. A matchinga ∈ A is blocked by a coalitionI ⊆ (C ∪ S), if there exists another
matchinga′ , a such that for all studentssj ∈ I and all collegesCi ∈ I ,

(1) a′(sj) ∈ I anda′(sj)P(sj)a(sj), and

(2) [sj ∈ a′(Ci)⇒ sj ∈ (I ∪ a(Ci))] and [a′(Ci)P(Ci)a(Ci)].

Definition. A matching isgroup stableat P ∈ P if it is not blocked by any coalitionI ⊆ (C∪S)
at P ∈ P.

Remark. (Lemma 5.5. in Roth and Sotomayor, 1990): A matching is group stable if and only
if it is stable onP.

Definition. A matchinga is (Pareto) efficientat P ∈ P if there is no other matchinga′ , a such
that for ally ∈ C ∪ S,

a′(y) , a(y)⇒ a′(y)P(y)a(y).

Definition. A matching ruleis a function f from P to A. A matching rulef is individually
rational if for all profiles P ∈ P, f (P) is individually rational atP ∈ P. A matching rulef is
stableif for all profiles P ∈ P, f (P) is stable atP ∈ P. A matching rulef is efficient if for all
profilesP ∈ P, f (P) is efficient atP ∈ P.

Definition. A matching rulef is manipulableby an agenty ∈ C ∪ S at P ∈ P via P′(y) ∈ P(y)
if f (P/P′(y))(y)P(y) f (P)(y). A matching rulef is strategy-proofonP if it is not manipulable at
anyP ∈ P by anyy ∈ C ∪ S via anyP′(y) ∈ P(y).

For all y ∈ C ∪ S and allP(y) ∈ P(y), let b(P(y)) be the best element, that is,b(P(y))P(y)G
for all G ∈ M(y) \ {b(P(y))}.

Remark. Notice thatb(P(Ci),S) = b(P(Ci)) for all Ci ∈ C.

Definition. A matching rulef respects unanimityonP if for all P ∈ P such that
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(1) for all Ci ∈ C, [b(P(Ci)) = ∅] or [ for all sj ∈ b(P(Ci)),b(P(sj)) = Ci], and

(2) for all sj ∈ S, b(P(sj)) = sj or sj ∈ b(P(b(P(sj)))),

for all y ∈ C ∪ S, f (P)(y) = b(P(y)).

Remark. Efficiency implies respect for unanimity.

Definition. A matching rulef respects pairwise unanimityonP if for all P ∈ P,

(1) for all Ci ∈ C such thatb(P(Ci)) , ∅ and allsj ∈ S such thatb(P(sj)) = Ci andsj ∈ b(P(Ci)),
f (P)(sj) = Ci,

(2) for all sj ∈ S such thatb(P(sj)) = sj, f (P)(sj) = sj, and

(3) for all Ci ∈ C such thatb(P(Ci)) = ∅, f (P)(Ci) = ∅.
Remark. Respect for pairwise unanimity implies respect for unanimity.

Remark. Stability implies respect for pairwise unanimity.

Proof. Suppose that there exists a matching rulef that is stable, yet it does not respect pairwise
unanimity onP. Then,

(1) there exists some profileP ∈ P and a pair(Ci , sj) ∈ C × S such thatb(P(sj)) = Ci and
sj ∈ b(P(Ci)), and f (P)(sj) , Ci,

(2) there exists some profileP ∈ P and a studentsj ∈ S such thatb(P(sj)) = sj, and f (P)(sj) ,
sj, or

(3) there exists some profileP ∈ P and a collegeCi ∈ C such thatb(P(Ci)) = ∅, and f (P)(Ci) ,
∅.
Suppose thatf satisfies (1). Sincef satisfies (1) andP(Ci) is responsive,f (P)(Ci) ,

b(P(Ci), f (P)(Ci)∪ {sj}) andCi P(sj) f (P)(sj). Then, f (P) is blocked by the pair(Ci , sj) ∈ C×S
at the profileP ∈ P. Next, suppose thatf satisfies (2). Then,f (P) is blocked by the studentsj

at the profileP ∈ P. Similarly, suppose thatf satisfies (3). Then,f (P) is blocked by the college
Ci at the profileP ∈ P. This is contradicting stability of the matching rulef . �

Remark. As Example 4 illustrates, respect for pairwise unanimity does not imply stability.

Example 4. Let n = l = 2 andqC1 = qC2 = 2. Consider a preference profileP′ ∈ P defined
below:

P′ :

{
P′(C1) = {s1, s2} {s1} {s2} ∅ P′(s1) = C2 C1 s1

P′(C2) = {s2} ∅ {s1, s2} {s1} P′(s2) = C2 C1 s2

}
.

Let f be a matching rule that assigns a matching to each profileP ∈ P\{P′} subject to the stable
rule, and assigns toP′ the following matchinga:6

f (P′) = a :

{
C1 C2

∅ {s2}
}
.

6We use the notation used by Sönmez (1996): a pair(Ci ,S′) ∈ C× 2S on the same vertical are matched to each
other and each student who is matched to herself or himself is omitted for ease of notation .
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It is easy to see thatf respects pairwise unanimity, yet it is not stable.

Remark. Both efficiency and respect for pairwise unanimity are necessary conditions for sta-
bility. However, as Example 5 illustrates, efficiency and respect for pairwise unanimity are
mathematically independent onP.

Example 5.Let n = l = 2 andqC1 = qC2 = 2. Consider the preference profileP′ ∈ P presented
in Example 4. Letf1 be such that, for allP ∈ P, for all Ci ∈ C, for all sj ∈ S,

(1) if there exists a pair(Ci , sj) ∈ C × S such thatb(P(sj)) = Ci and sj ∈ b(P(Ci)), then
f (P)(sj) = Ci, and

(2) otherwise,f1(P)(Ci) = ∅ or f1(P)(sj) = sj.

Then, f1 assigns toP′ the following matchinga1:

f1(P
′) = a1 :

{
C1 C2

∅ {s2}
}
.

It is easy to see thatf1 respects pairwise unanimity, yet it is not efficient.
Meanwhile, consider a preference profileP′′ ∈ P defined below:

P′′ :

{
P′′(C1) = {s1} ∅ {s1, s2} {s2} P′′(s1) = C1 C2 s1

P′′(C2) = {s1} ∅ {s1, s2} {s2} P′′(s2) = C1 C2 s2

}
.

Let f2 be a matching rule that assigns a matching to each profileP ∈ P \ {P′′} subject to the
stable rule and assigns toP′′ the following matchinga2:

f2(P
′′) = a2 :

{
C1 C2

∅ {s1}
}
.

It is easy to see thatf2 is efficient, yet it does not respect pairwise unanimity.

Remark. Both individual rationality and respect for pairwise unanimity are necessary con-
ditions for stability. However, as Example 6 illustrates, individual rationality and respect for
pairwise unanimity are mathematically independent onP.

Example 6. Let n = l = 2 andqC1 = qC2 = 2. Consider a preference profileP′ ∈ P defined
below:

P′ :

{
P′(C1) = {s2} ∅ {s1, s2} {s1} P′(s1) = C1 C2 s1

P′(C2) = {s1, s2} {s1} {s2} ∅ P′(s2) = C2 C1 s2

}
.

Let f1 be a matching rule that assigns a matching to each profileP ∈ P \ {P′} subject to the
stable rule and assigns toP′ the following matchinga1:

f1(P
′) = a1 :

{
C1 C2

{s1} {s2}
}
.

It is easy to see thatf1 respects pairwise unanimity, yet it is not individually rational.
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Meanwhile, let f2 be a matching rule that assigns a matching to each profileP ∈ P \ {P′}
subject to the stable rule and assigns toP′ the following matchinga2:

f2(P
′) = a2 :

{
C1 C2

{s2} {s1}
}
.

It is easy to see thatf2 is individually rational, yet it does not respect pairwise unanimity.

3.2. Results in many-to-one matchings

We show that in the context of one-to-one matching problems, there is no strategy-proof
rule that respects pairwise unanimity. However, there is a significant change in this result when
colleges can admit as many students as they wish. Since respect for pairwise unanimity is a
necessary condition for stability, the stable rule respects pairwise unanimity. On the other hand,
strategy-proofness of the stable rule follows from Sönmez’s (1996) finding that the stable rule
is strategy-proof on the many-to-one matching model withqCi ≥ |S| for all Ci ∈ C. Therefore,
we obtain a positive result as below.

Proposition 3. If qCi ≥ |S| for all Ci ∈ C, then the stable rule is strategy-proof and respects
pairwise unanimity onP.

In the next proposition, we show that our negative result in the one-to-one matching model
extends to the many-to-one matching model where a college exists that cannot admit as many
students as it would like.

Proposition 4. If qCi < |S| for someCi ∈ C, then there is no strategy-proof rule that respects
pairwise unanimity onP.

Proof. First, we prove the result for the case withn = l = 2. Later, we will explain how
to extend the proof to the cases wheren ≥ 3 or l ≥ 3. Let qC1 = 1 < |S| = 2 without loss
of generality. Assume that the rulef respects pairwise unanimity, and prove that it must be
manipulable. Since the case withqC2 = 1 is covered by Proposition 2, it suffices to prove it for
cases withqC2 ≥ 2.

(1) Let P1 ∈ P be such that

P1 :

{
P1(C1) = {s2} {s1} ∅ P1(s1) = C1 C2 s1

P1(C2) = {s1, s2} {s1} {s2} ∅ P1(s2) = C2 C1 s2

}
.

The set of all matchings satisfying respect for pairwise unanimity forP1 is the following:

a1
1 :

{
C1 C2

{s1} {s2}
}
, a1

2 :

{
C1 C2

∅ {s2}
}

& a1
3 :

{
C1 C2

∅ {s1, s2}
}
.

(2) Let P2 = P1/P1′(C2) whereP1′(C2) = {s1}∅{s1, s2}{s2}. That is,

P2 :

{
P2(C1) = {s2} {s1} ∅ P2(s1) = C1 C2 s1

P2(C2) = {s1} ∅ {s1, s2} {s2} P2(s2) = C2 C1 s2

}
.
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The set of all matchings satisfying respect for pairwise unanimity forP2 is the following:

a2
1 :

{
C1 C2

{s1} {s2}
}
, a2

2 :

{
C1 C2

{s2} {s1}
}
, a2

3 :

{
C1 C2

∅ {s1}
}
, a2

4 :

{
C1 C2

∅ {s2}
}
,

a2
5 :

{
C1 C2

{s1} ∅
}
, a2

6 :

{
C1 C2

{s2} ∅
}
, a2

7 :

{
C1 C2

∅ ∅
}

& a2
8 :

{
C1 C2

∅ {s1, s2}
}
.

(3) Let P2′(C2) = ∅{s1}{s2}{s1, s2}. Then, f (P2/P2′(C2))(C2) = ∅ by respect for pairwise una-
nimity.
(4) Let P2′(s2) = C1 C2 s2. Then, f (P2/P2′(s2))(s2) = C1 by respect for pairwise unanimity.
(5) Let P2′(s1) = C2 C1 s1. Then, f (P2/P2′(s1))(s1) = C2 by respect for pairwise unanimity.
(6) Let P1′(C1) = {s1}{s2}∅. Then, f (P1/P1′(C1))(C1) = {s1} by respect for pairwise unanimity.

Now we prove thatf is manipulable using the above preferences and matchings. Note that
Cases 1 and 2 below cover all the possible matchings off for P1. We show thatf is manipulable
for each case.

Case 1 : f (P1) = a1
1.

If f (P2) = a2
2, a2

3 or a2
8, C2 can manipulate atP1 via P1′(C2) by (2) and{s1}P1(C2){s2}

and {s1, s2}P1(C2){s2}. If f (P2) = a2
1 or a2

4, that is, if f (P2)(C2) = {s2}, C2 can
manipulate atP2 via P2′(C2) by (3) and∅P2(C2){s2}. If f (P2) = a2

5 or a2
7, that is,

if f (P2)(s2) = s2, s2 can manipulate atP2 via P2′(s2) by (4) andC1P2(s2)s2. If
f (P2) = a2

6, s1 can manipulate atP2 via P2′(s1) by (5) andC2P2(s1)s1.

Case 2 : f (P1) = a1
2 or a1

3.

Becausef (P1)(C1) = ∅, C1 can manipulate atP1 via P1′(C1) by (6) and{s1}P1(C1)∅.

Next we explain how to prove the result for the cases wheren ≥ 3 or l ≥ 3. Just like
the above proof, letqC1 < |S| without loss of generality. LetS1 ⊆ S \ {s1, s2} be such that
|S1| = qC1 − 1. Let the preferences of all studentssj ∈ S1 be such thatb(P(sj)) = C1, those of
collegesCi ∈ C \ {C1,C2} be such thatb(P(Ci)) = ∅ and those of studentssj ∈ S \ ({s1, s2} ∪S1)
be such thatb(P(sj)) = sj. Let the preferencesP1(C1) andP1′(C1) of C1 ∈ C be such that

P1(C1) = (S1 ∪ {s2}) (S1 ∪ {s1}) G ∅ for all G ∈ M(C1) \ {(S1 ∪ {s1}), (S1 ∪ {s2}), ∅}, and
P1′(C1) = (S1 ∪ {s1}) (S1 ∪ {s2}) G ∅ for all G ∈ M(C1) \ {(S1 ∪ {s1}), (S1 ∪ {s2}), ∅}.

Then, in matchings satisfying respect for pairwise unanimity, each studentsj ∈ S1 would
be matched toC1 ∈ C, each collegeCi ∈ C \ {C1,C2} would be matched to∅ and each student
sj ∈ S \ ({s1, s2} ∪ S1) would be matched to the studentsj. Therefore, the proof for these cases
is identical to the above proof.�

By Propositions 3 and 4, we have the following characterization of the class of matching
problems that admit strategy-proof rules that respect pairwise unanimity.

Theorem. Consider the matching problems with responsive preferences. There exists a strategy-
proof rule that respects pairwise unanimity if and only if each college’s quota is unlimited.
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4. Concluding Remarks

In this paper, we explore the possibility of designing satisfactory matching rules. First, in
the one-to-one matching model, we establish that i)there exists a strategy-proof rule that is
individually rational and respects unanimity, and ii) there exists no strategy-proof rule that
respects pairwise unanimity.Second, we extended the result ii) to the many-to-one matching
model. Our results, together with Roth (1982) and Alcalde and Barberá (1994), suggest the
difficulty of designing strategy-proof rules satisfying better than respect for unanimity.
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