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Summary. This paper studies the possibility of strategy-proof rules yielding satisfactory solu-
tions to matching problems. Alcalde and Barbera (1994) show thatemt and individually
rational matching rules are manipulable in the one-to-one matching model. We pursue the possi-
bility of strategy-proof matching rules by relaxinffieiency to the weaker condition ofspect

for unanimity Our first result is positive. We prove thatstrategy-proof rule exists that is in-
dividually rational and respects unanimitilowever, this rule is unreasonable in the sense that

a pair of agents who are the best for each other are matched on only rare occasions. In order to
explore the possibility of better matching rules, we introduce the natural condition of “respect
for pairwise unanimity.’Respect for pairwise unanimiggates that a pair of agents who are the
best for each other should be matched, and an agent wishing to stay single should stay single.
Our second result is negative. We prove thaistrategy-proof rule exists that respects pairwise
unanimity. This result implies Roth (1982) showing that stable rules are manipulable. We then
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1. Introduction

We study the possibility of designing strategy-proof rules that yield satisfactory solutions to
matching problems. By matching problems, we refer to the several important allocation prob-
lems in two-sided matching markets where agents, from the start, belong to one of two disjoint
sets: for example, workers and firms, students and colleges, and athletes and teams. Allocations
in these markets are matchings, assigning each agent in one side of the market the agent(s) in
the other side.

A matching rulechooses a matching for each preference profile. A matching refgant
if it always chooses a matching such that no other matching exists that would make all agents
better df. A matching rule igndividually rationalif an agent is never assigned to a partner to
whom the agent prefers staying single. Individual rationality is necessary for agents to volun-
tarily participate matchings. A matchingbtockedby a pair if each agent in the pair prefers the
other in it to the assigned partner. A matching rulstableif a matching rule is individually
rational, and for any preference profile, the chosen matching is not blocked by any pair. Sta-
bility guarantees the rights of all agents in the sense of not compelling them into unacceptable
matches.

Because the agents’ preferences are not known to others, there may be incentives for agents
to misrepresent their preferences in order to manipulate the final outcome in their favor. As a
result, the chosen matching may not be socially desirable relative to the agents’ true preferences.
Therefore, matching rules need to be immune to such strategic misrepresentation to certainly
choose desirable matchings based on agents’ true preferences. A matchingtrategy-proof
if it is a dominant strategy for each agent to announce its true preference.

The possibility of matching rules satisfying desirable properties has been explored by many
studies. Gale and Shapley (1962) prove that a stable rule, called the “Gale—Shapley mecha-
nism”, exists. Roth (1982) shows that all stable matching rules containing the Gale—Shapley
mechanism are not strategy-proof. Alcalde and Barbera (1994) pursue the possibility of a
strategy-proof rule by relaxing stability téfieciency and individual rationality, and show the im-
possibility of designing matching rules satisfying@ency, individually rationality and strategy-
proofness.

In this paper, we pursue the possibility of a strategy-proof matching rule by relaxing ef-
ficiency or employing a substitutive concept. A preference profilensnimousf, unless an
agent prefers to stay single, the partner the agent most prefers also prefers the agent. A match-
ing rulerespects unanimitif for any unanimous preference profile, every agent is matched to
the partner the agent prefers most. Our first result is positive. We provéherat exists a
strategy-proof rule that is individually rational and respects unanimigpwever, this rule is
unreasonable in the sense that a pair of agents who are the best for each other are matched on
only rare occasions.

In order to explore the possibility of better matching rules, we introduce a natural condition,
which we call “respect for pairwise unanimity”. A matching rukspects pairwise unanimity
if a pair of agents who are the best for each other should be matched, and an agent wish-
ing to stay single should stay single. Compared with stability, respect for pairwise unanimity
“weakly”’guarantees the rights of all agents. Our second result is negative. We protieetieat
exists no strategy-proof rule that respects pairwise unaningiyce stability implies respect
for pairwise unanimity, this result implies Roth’s (1982) negative result.

Section 2 introduces the one-to-one matching model and presents our results. Section 3



extends the negative result of the one-to-one matching model to the many-to-one matching
model. Section 4 concludes.

2. One-to-One Matchings
2.1. One-to-one matching model

Here, we consider the one-to-one matching model, known as the marriage probleM. = et
{my, my, ..., my} be the set of men, and/ = {w;, ws, ..., w;} be the set of women. We assume
that bothM andW are finite and disjoint sets. We also assume that2 and| > 2.

Eachm, € M has a preference relatidd(m) on W U {m}. For each mam, € M, the
alternativem; implies thatm stays single. We assume that preferences are strictx,Bdre
WU {m}, XxP(m)x" means thain, prefersxto x'. Each womarw; € W has a similar preference
P(w;) on M U {w;}. LetP(m) denote the set of all possible preferencesnigrand letP(w;)
denote the set of all possible preferencesvipr We denote preference profiles By Let
P = TIL, P(m) x H'jzlP(wj) be the set of all possible preference profiles. Given a prBfile
an agenk e MUW and a preferencl’ (x), we denote by/P’(x) the profile obtained fror® by
changing the preferences »from P(x) to P’(x), and keeping all other preferences unchanged.
For all preference®(m) € £(m), b(P(m)) denotes the most preferred elemenivhu {m}.
Similarly, for all preference®(w;) € P(w;), b(P(w;)) denotes the most preferred element in
M U {w;}.

A (one-to-one)matchingis a functiona: M UW — M U W such that
1) [a(m) ¢ W = a(m) = m] and[a(w;) ¢ M = a(w;) = w;], and
(2 am)=w; o aw)=m.

Condition (1) requires that individuals who are not matched with agents of the opposite set
must stay single. Condition (2) requires that if a nmaris matched to a womaw;, then this
womanw; should be matched to that mamn.

Let A be the set of all possible matchings.

Definition. A matchinga is (Pareto) gficient at preference profil® if there does not exist
another matching’ # a such that for alxe M UW,

a(x) # a(x) = a(x)P(x)a(x).

Definition. A matchinga is individually rationalat profileP if each individual who is matched
prefers her or his partner to staying single; i.e.,

[a(m) € W = a(m)P(m)m] for allm € M, and

[a(wj) eEM= a(Wj)P(Wj)Wj] for all Wi € W,



Definition. A matchinga is blocked by a paifm, w;) € M x W at profile P if w;P(m)a(m)
andmP(w;)a(w;). A matchinga is stableat profileP if it is individually rational and it is not
blocked by any pair itM x W.

A matching ruleon® is a functionf from # to A.

In this paper, we title the result of the following algorithnthe M-optimal matching rule

Step 1.(a) Each man proposes to his most preferred woman.

(b) Each woman rejects the proposal of any man to whom she prefers staying single. Each
woman who receives more than one proposal rejects all but her most preferred. Any man whose
proposal is not rejected at this point is kept engaged.

Step k.(a) Any man who was rejected in the previous step proposes to his most preferred
woman among those who have not yet rejected him, so long as a woman remains to whom he
prefers to staying single and has not yet proposed.

(b) Each woman receiving proposals rejects any from men to whom she prefers staying sin-
gle, and also rejects all but her most preferred among the group consisting of the new proposers,
together with any man she has kept engaged from the previous step.

The algorithm stops after any step where no man is rejected. At this point, every man is
either engaged to a woman or has been rejected by every woman on his list of women he prefers
to staying single. Now each man who is engaged with a woman is matched with her. Each
woman who did not receive any proposals from men she prefers to staying single, and each man
who is rejected by all women he prefers to staying single, will remain single. This completes
the description of the algorithm.

We call the similar algorithm with women proposing, ¥eoptimal matching rule

Remark. (Theorem 2.8 in Roth and Sotomayor, 1990): The M-optimal and W-optimal match-
ing rules produce stable matchings for any preference profile.

We consider an incentive compatibility requiremestitategy-proofnessStrategy-proofness
says that for every agent, stating the true preferences should be a dominant strategy.

Definition. A matching rulef on # is manipulableby an agentx € M U W atP € ? via
P(x) € P(x) if f(P/P'(X)(X)P(X)f(P)(X). A matching rulef is strategy-proofon if it is not
manipulable at any profile i by any agenk € M U W via any preference if?(Xx).

We introduce the minimum condition offeiency, respect for unanimity Respect for
unanimity states that for any preference profile where unless an agent prefers staying single,
the partner the agent most prefers also prefers the agent, every agent should be matched to their
most preferred agent.

1We borrow the description of the algorithm from Roth and Sotomayor (1990).
2Respect for unanimity is the “minimum” condition offieiency in the sense that it is a necessary condition
for almost all reasonable conditions dfieiency.



Definition. A matching rulef respects unanimitgn® if for all P € P,
[b(P(b(P(X)))) = xforall xe MUW] = [f(P)(X) = b(P(x)) forall xe M UW]|

We also introduce a natural axiomgspect for pairwise unanimityRespect for pairwise
unanimity states that a pair of agents who are the best for each other should be matched, and an
agent for whom staying single is the best should stay single.

Definition. A matching rulef respects pairwise unanimityn # if for all P € # and all
xe MUW,
b(P(b(P(x)))) = x = (P)(x) = b(P(x))

Remark. Respect for pairwise unanimity implies respect for unanimity.

A matching rulef is stableif for all profiles P € £, f(P) is stable atP. A matching rule
f is individually rationalif for all profiles P € #, f(P) is individually rational atP. Finally, a
matching rulef is efficientif for all profiles P € P, f(P) is eficient atP.

Remark. Stability implies respect for pairwise unanimity. However, as Example 1 illustrates,
respect for pairwise unanimity does not imply stability.

Example 1.Letn = | = 2. Consider a preference profi € P defined below:

P - P'(my) = wawomy P/(wy) = mpmywy
| P(M) = wawomy PY(Wo) = mympWwa |

Let f be a matching rule that assigns the same matching as the M-optimal rule except for the
preference profilé® and assigns t&’ the following matching:*

’ M My
f(P):a.{ " WZ}.

It is easy to see thdt respects pairwise unanimity, yet it is not stable.

Remark. Both dficiency and respect for pairwise unanimity aréisient conditions for respect
for unanimity. However, as Example 2 illustratei@ency and respect for pairwise unanimity
are mathematically independent &n

Example 2.Letn = | = 2. Consider a preference profi € £ defined below:

P P'(my) = wowimy  P'(wy) = mpmywy
I P(MR) = wowimy PY(Wo) = mpmwa |

Let f; be such that for alP € # and allye MU W,

(1) if there exists an agegte M U W such thab(P(b(P(y)))) =y, thenf,(P)(y) = b(P(y)), and

3An ordered list of mates indicates the agent’s preference from better to worse among the possible mates.
“We use the same notation as Roth and Sotomayor (1990): énpaiv;) on the same vertical are matched to
each other and an agent with no mate on its vertical stays single.
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(2) otherwise,f;(P)(y) =Y.

Then, f; assigns td® the following matchingy:

f1(P) = a - {ml M2 —}.

Wy W

It is easy to see thdt respects pairwise unanimity, yet it is nafieient.

Meanwhile, letf, be a matching rule that assigns to each prd#le £ a matching that
matchesm, to b(P(m,)) andm, to his most preferred agent (v U {m,}) \ {b(P(my))}. Then,f,
assigns td™’ the following matchinga,:

fz(P/) =ady. {ml n12} .

Wy W

It is easy to see thd is efficient, yet it does not respect pairwise unanimity.

Remark. Both individual rationality and respect for pairwise unanimity are necessary con-
ditions for stability. However, as Example 3 illustrates, individual rationality and respect for
pairwise unanimity are mathematically independenfon

Example 3.Letn = | = 2. Consider a preference profi® € £ defined below:

P P'(m) = womw,  P/(Wg) = mpmyw,
P(mp) = wowimy PY(Wo) = mpmyws |

Let f; be a matching rule that assigns the same matching as the M-optimal matching rule except
for P’ and assigns t& the following matchinga;:

fl(P/) =4a . {ml mz} .

Wiy W,

It is easy to see thdt respects pairwise unanimity, yet it is not individually rational.
Meanwhile, letf, be a matching rule that assigns the same matching as the M-optimal
matching rule except fd?” and assigns t& the following matchingg,:

B(P) = 2y ; {ml mz}.

Wy W

It is easy to see thd is individually rational, yet it does not respect pairwise unanimity.

2.2. Results in one-to-one matchings

Alcalde and Barbera (1994) show thdtigient and individually rational matching rules must
be manipulable. Thus we pursue the possibility of strategy-proof rules by relaicigmrcy to

the weaker condition of respect for unanimity.

We call the following rulef, theminimum unanimous ruld=irst we divide® into the three
subsets,, P, andP; defined below:



P, : The set of preference profil€ssuch that for alkk € M U W, b(P(b(P(X)))) = x.

P, : The set of preference profil€ssuch that there existen, wj) € M x W such that

(i) b(P(b(P(x)))) = xforall xe M uUW\ {m, w;},
(i) w;P(m)m andmP(w;)w;, and
(iii) - b(P(M)) # w; or b(P(w;)) # M.

Ps . IP\(PlUpz).

Then the minimum unanimous rufeassigns a matching to each profte= £ by following
Directionsl, 2, and3:

Direction1: For all preference profileB € #;, and allxe M U W, f(P)(X) = b(P(x)).

Direction?2 : For all preference profileB € £, and allx € (M U W) \ {m, w;}, f(P)(X) = X,
f(P)(m) = w; and f(P)(w;) = m.

Direction3: For all preference profileB € 3 and allxe M U W, f(P)(x) = x.

Ouir first result shows that the minimum unanimous ruis strategy-proof and individually
rational, and respects unanimity.

Proposition 1. The minimum unanimous rule is strategy-proof and individually rational, and
respects unanimity

Proof. By Direction 1, f respects unanimity of?. By Directionsl, 2 and3, f is individually
rational on®. It suffices to show that is strategy-proof om.

First, consider a profil® € #;. Since everyone is matched to her or his best by Direction
1, anyone cannot manipulate at such a profile.

Second, consider a profil2 € #,. If m, € M \ {m} tries to manipulate aP, he would
be single by Direction® and 3, and cannot be betteiffo Meanwhile, if the mamm tries to
manipulate aP, he would be matched tw; or be single by Directions 1, 2 and 3, and cannot
be better &. Similarly, any woman cannot manipulateRat

Third, consider a profilé®> € £3;. Note that everyone stays single by Direction 3. Rigk
from M arbitrarily.

Assume that there existg € W such that () b(P(b(P(X)))) = xfor all x € (MUW)\{m, w;},
and (i) mP(m)w; andmP(w;)w;. Then, if the mam tries to manipulate & via anyP’(m) €
£(m) such thatmP’'(m)w;, P/P’(m) is still in £3, and he would stay single by Direction 3.
On the other hand, if the mam tries to manipulate alP via any P’(m) € £(m) such that
w;P”(m)m, thenP/P”(m) is in $1 or $,, and he would be matched with the womanto
whom he prefers staying single by Directichand?2.

Next assume that there does not existe W for whom (i) and (ii) hold. Then, even if
the manm manipulates via ani?”’(m) € £(m) at P, P/P’(m) is still in £3, and he would stay
single.

Therefore, the mam cannot manipulate at any profiles#ty. Sincem is picked up arbi-
trarily from M, any man cannot manipulate at any profileAfn Similarly, any woman cannot
manipulate at any profile if*;. O



Proposition 1 appears a positive result. However, it has one negative aspect in that the min-
imum unanimous rule is unreasonable in the sense that it does not respect pairwise unanimity
and leaves all agents single for most preference profiles. Therefore, we explore the possibil-
ity of better strategy-proof rules that are individual rational and respect pairwise unanimity on
#. However, we prove that there exists no strategy-proof matching rule that respects pairwise
unanimity on® as below.

Proposition 2. There exists no strategy-proof matching rule that respects pairwise unanimity
on®.

Proof. First we prove the statement for the case with | = 2. Later we will explain how to
extend the proof to the cases whare 3orl > 3.

We assume that the ruferespects pairwise unanimity, and prove that it must be manipula-
ble. Note that for the case with= | = 2, the set of all possible matchingsis the following:

Ao [ T e e
Wi Wp Wy W _ W Wy _ W W
L0/ 11 L0/ 11 A LLL 11-
as'{wl _ WZ}’aG'{Wz _ wl}’a7'{_ oW WZ}}'
(1) Let P! € # be such that

pl - {Pl(ml) = WiWomy  PH(wy) = m2m1W1}
T PHMp) = wowimp PH(w) = mympws |

The set of all matchings satisfying respect for pairwise unanimityPtds equal toA.
(2) Let P> = PY/PY (w,) wherePY (w1) = mpw;my. That is,

p2 - {Pz(ml) = Wiwomy  P?(wy) = sz1m1}
T P2(mp) = wowimp  PP(Wp) = mympws [

The set of all matchings satisfying respect for pairwise unanimityfds equal toA.

(3) Let P (wy) = wympmy. Then, f(P?/P? (wy))(wy) = w; by respect for pairwise unanimity.
(4) Let P? (my) = wowymy. Then, f(P?/P? (my))(my) = w, by respect for pairwise unanimity.
(5) Let P? (my) = wawomy. Then, f(P?/P? (my))(my) = wy by respect for pairwise unanimity.
(6) Let P® = Pt/PY(m,) whereP! (m;) = wymyw,. That is,

ps - {Pe(ml) =wimWw,  P8(wy) = m2m1W1}
T\ P8(mp) = wowimy  PO(Wp) = mympws [

The set of all matchings satisfying respect for pairwise unanimityfds equal toA.

(7) Let P¥ (my) = mywaw,. Then, f(P8/P% (my))(my) = my by respect for pairwise unanimity.
(8) Let P¥ (W,) = mpmyw,. Then, f(P8/P% (w,))(W,) = m, by respect for pairwise unanimity.
(9) Let P% (w1) = mumpw,. Then, f(P%/P?% (wy))(wy) = my by respect for pairwise unanimity.
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(10) LetPY (my) = wowymy. Then, f(PY/PY'(my))(my) = w, by respect for pairwise unanimity.
(11) LetPY (mp) = wywom,. Then, f(PL/PY (my))(my) = wy by respect for pairwise unanimity.

Now
Note

we prove thaff is manipulable using the above preferences and matchings.
that Cases 1, 2, 3 and 4 below cover all the possible matchingfof!. We show

that f is manipulable for each case.

Case l:

Case 2:

Case 3:

Case 4:

Next

f(PY) = ay.

If f(P?) = a, or ag, that is, if f (P?)(w1) = mp, wy can manipulate &®* via P (wy) by
mPY(w)my. If f(P?) = a; or as, that is, if f (P?)(w1) = my, wy can manipulate a®?
via P? (wy) by (3) andw; P2(w;)my. If f(P?) = a,, m; can manipulate &2 via P? (my)
by (4) andw,P2(my)my. If f(P?) = ag or az;, m, can manipulate a®? via P? (mp) by
(5) andw, P*(mp)mp.

f(PY) = ay.

If f(P%) = a, or as, that is, if f(P®)(my) = wy, my can manipulate a®? via P* (my,)
by wiPY(my)ws,. If f(P%) = a, or ag, that is, if f(P®)(my) = w,, my can manipulate at
P® via P% (my) by (7) andm, P8(my)ws. If f(P®) = as or ay, that is, if f (P®)(W,) = Wy,
W, can manipulate aP® via P% (w,) by (8) andm,PS(wo)w,. If f(P®) = a4, wy can
manipulate aP® via P% (wy) by (9) andmy P8(w;)w;.

f(P') = a3, a or ay.

Becausd (P*)(my) = my, m; can manipulate & via P*’ (my) by (10) andw,P(my)m.

f(P!) = ag or as.
Becausd (PY)(my) = mp, m, can manipulate &* via P* (mp) by (11) andw; P (mp)m,.

we explain how to prove the statement for the cases where3 or | > 3. Let

the preferences of agenygse (M U W) \ {my, mp, wy, W,} be such thab(P(y)) = y for all

(MuWw)

in matchings satisfying respect for pairwise unanimity. Therefore, the proof for these cases is

identical

Remark.

showing

3. Many

In Section 2, we considered the matching problems on the one-to-one matching model. How-
ever, in terms of economic phenomena, many-to-one matchings in two-sided markets are typi-
cal, where one side of the market consists of institutions and the other side of individuals: for
example, colleges and students, firms and workers, hospitals and interns. Accordingly, in this

\ {m, mp, Wy, W}, Then, all agenty € (M U W) \ {my, my, wy, W,} would stay single

to the above proofi

Since stability implies respect for pairwise unanimity, our result implies Roth (1982)

that all stable matching rules must be manipul2ble.

-to-One Matchings

SAlcalde and Barbera (1994) also extend Roth’s result by relaxing stabilifficdemcy and individual rational-
ity. However, note that our arguments considered several matchings that satisfy our conditions, fiidiemntye
and individual rationality.



section we extend the negative result in Section 2 to the many-to-one matching model, com-
monly known as the college admissions problem.

3.1. Many-to-one matching model

LetC = {C4,C,,...,C,} be the set of colleges al®l= {s;, S, ..., S5} be the set of students. We
assume that bot@ andS are finite and disjoint sets. We also assume that2 and| > 2.

Each collegeC; has a quotac;, which indicates the maximum number of positions it may
fill. We assume that eaal; is a positive integer. Hence, a matching of this model assigns each
student to at most one college and each college to at most its quota of students.

Each studens; € S has a preference relatid?(s;) on M(s;) = {Cy,...,Cy, sj}. LetP(s))
denote the set of all possible preferencesdoe S. Each collegeC; € C has a preference
relationP(C;) onM(C)) ={G < S: |G| < q¢}.

Definition. (Roth and Sotomayor 1990): A prefererfef€;) is responsivef
(1) forall G € Swith |G| < g¢, and alls; € S\ G,
(G U {sH)P(C)G & {sj}P(Ci)0, and
(2) forall G ¢ Swith |G| < gc, and allsj, sc€ S\ G,
(GU{sHPC)G U {sd)  {s}P(Ci){sc-

We assume that preferences of all colleges are responsive® (gt denote the set of all
possible responsive preferences @re C. We assume that preferences are strict. We denote
preference profiles bip. LetP = []L, P(Ci) x H'jzlsD(sj) be the set of all possible preference
profiles.

Definition. A matchingais a functiona: CuU S — 2°“S such that:
(1) forall s; € S, a(s;) € Cu {sj},

(2) forall C; € C, a(C;) c S and|a(Cj)| < q¢,, and

(3) forall (Ci,s5)) € C xS, a(s)) =Ci & s; € aCy).

Let A be the set of all possible matchings.

Definition. The bestb(P(C;), G) is the most preferred subset@f That is,b(P(C;), G) is the
subset ofs such thab(P(C;), G)P(C;)G’ for all G’ € G such thatz’ e M(C)) \ {b(P(C)), G)}.

Definition. A matchingais blocked by a studerg; € S atP € P if s;P(sj)a(s;). A matchinga
is blocked by a colleg€; € C atP € P if a(C;) # b(P(Ci), a(Cy)).

Note that since colleges’ preferences are responsive, a malénglocked by a college
Ci e C atP e P if there exists a studers € a(C;) such tha®P(C)){s;}.



Definition. A matchinga is individually rationalat P € # if it is not blocked by any agent
ye(CuS)atPeP.

Definition. A matchinga is blocked by a pairCi,s;) € C x S atP € P if CiP(sj)a(s;) and
a(Cy) # b(P(Ci), a(Ci) U {s;}). Amatchingais stableat P € # if it is not blocked by any student
sj € S, any collegeC; € C, or any pair(C;, s;) € C x S.

Remark. (S6nmez 1996): The set of stable matchings is a singleton for each g afil@ on
the many-to-one matching model with, > |S| for all C; € C. Here after, we call the matching
rule f assigning the associated stable matching to each preference profdehtiteerule The
stable rulef can be described as below: for Rlk # and alls; € S,

(1) if there exists a colleg€; € C such that{sj}P(C;)0, C;iP(s;j)s; andC;P(sj)C: forallC; €
C \ {Ci} such thats;}P(C))0, thenf (P)(s;) = Ci, and

(2) otherwise,f(P)(s)) = s;.

Definition. A matchinga € A is blocked by a coalitiol C (C U S), if there exists another
matchinga’ # a such that for all students € | and all college€; € I,

(1) a(sj) € | anda'(s;)P(sj)a(s;), and

(2) [sj € @(C) = sj € (1 Ua(Cy))] and [ (C))P(C)a(C)].

Definition. A matching isgroup stableatP € % if it is not blocked by any coalitioh € (CUS)
atP e P.

Remark. (Lemma 5.5. in Roth and Sotomayor, 1990): A matching is group stable if and only
if it is stable onP.

Definition. A matchingais (Pareto) gficientat P € # if there is no other matching # a such
thatforallye CU S,

a(y) # afy) = a(y)P(y)ay).
Definition. A matching ruleis a functionf from # to A. A matching rulef is individually
rational if for all profiles P € #, f(P) is individually rational atP € . A matching rulef is
stableif for all profiles P € P, f(P) is stable aP € . A matching rulef is efficientif for all
profilesP € P, f(P) is eficient atP € P.

Definition. A matching rulef is manipulableby an ageny e CU S atP € P via P'(y) € P(y)
if £(P/P'(y))(Y)P(y)f(P)(y). A matching rulef is strategy-proofon® if it is not manipulable at
anyP € £ by anyy € CU Svia anyP’(y) € P(y).

For ally e Cu S and allP(y) € P(y), let b(P(y)) be the best element, that &P(y))P(y)G
for all G € M(y) \ {b(P(y))}.

Remark. Notice thatb(P(C;), S) = b(P(C;)) for all C; € C.
Definition. A matching rulef respects unanimitgn # if for all P € # such that

10



(1) forall G € C, [b(P(Ci)) = 0] or [ for all s; € b(P(Cy)), b(P(sj)) = Ci], and
(2) forall s; € S, b(P(s))) = sj or sj € b(P(b(P(s))))),
forallye CUS, f(P)(y) = b(P(y)).

Remark. Efficiency implies respect for unanimity.

Definition. A matching rulef respects pairwise unanimign  if for all P € P,

(1) forall C; € Csuchthab(P(C;)) # 0 and alls; € S such thab(P(s;)) = C; ands; € b(P(C;)),
f(P)(s) = Ci,

(2) for all s; € S such thab(P(s))) = s;, f(P)(sj) = sj, and

(3) for all C; € C such thab(P(C))) = 0, f(P)(C) = 0.

Remark. Respect for pairwise unanimity implies respect for unanimity.
Remark. Stability implies respect for pairwise unanimity.

Proof. Suppose that there exists a matching rutbat is stable, yet it does not respect pairwise
unanimity on®. Then,

(1) there exists some profile € £ and a pairC;, s;) € C x S such thato(P(s;)) = C; and
sj € b(P(Cy)), andf(P)(s;) # Ci,

(2) there exists some profilé € £ and a studens; € S such thab(P(s;)) = s;, andf(P)(s;) #
sj, or

(3) there exists some profile € £ and a colleg€; € C such thab(P(C;)) = 0, andf (P)(C;) #
0.

Suppose thaff satisfies (1). Sincd satisfies (1) and?(C;) is responsive,f(P)(C;) #
b(P(Ci), f(P)(Ci) U {s;}) andC; P(s;) f(P)(s;). Then,f(P) is blocked by the paifC;, s;) e Cx S
at the profileP € . Next, suppose thdt satisfies (2). Thenf(P) is blocked by the studers;
at the profileP € #. Similarly, suppose thdt satisfies (3). Thenf(P) is blocked by the college
C; at the profileP € #. This is contradicting stability of the matching ruleo

Remark. As Example 4 illustrates, respect for pairwise unanimity does not imply stability.

Example 4. Letn = | = 2andqc, = gc, = 2. Consider a preference profi € # defined
below:

P'(Co) = {2} 0 s, o} {s1) P'(s2) =CoCi s
Let f be a matching rule that assigns a matching to each pP&e \ {P’} subject to the stable
rule, and assigns ' the following matchinga:®

N . Cl CZ
f(P)_a.{(b {SQ}}.

5We use the notation used by Sénmez (1996): a(@iiS’) € C x 25 on the same vertical are matched to each
other and each student who is matched to herself or himself is omitted for ease of notation .

P - {P’(Cl) = {s, s} 0 P(s1) =C,Cy Sl}

11



It is easy to see thdt respects pairwise unanimity, yet it is not stable.

Remark. Both dficiency and respect for pairwise unanimity are necessary conditions for sta-
bility. However, as Example 5 illustratesftieiency and respect for pairwise unanimity are
mathematically independent éh

Example 5.Letn = | = 2 andqc, = qc, = 2. Consider the preference profi € £ presented
in Example 4. Letf; be such that, for alP € P, for allC; € C, for all s; € S,

(1) if there exists a pai(Ci,s;) € C x S such thatb(P(sj)) = C; ands; € b(P(C;)), then
f(P)(s;) = Ci, and

(2) otherwise,f;(P)(Ci) = 0 or f1(P)(s)) = s;.
Then, f; assigns td® the following matching;:

f.(P) = a : {C(Dl {222}} .

It is easy to see thdt respects pairwise unanimity, yet it is ndfieient.
Meanwhile, consider a preference profié € ¥ defined below:

o - {P”(Cl) = (s} 0{s1. 2} {2} P"(s1) =C1Co Sl}
PG = s} 0fs1, soHse) PU(8) =CiCosf

Let f, be a matching rule that assigns a matching to each pi@fde? \ {P”} subject to the
stable rule and assigns By the following matchingg,:

f,(P") = ay: {C@l {(;2}} .

It is easy to see thdt is efficient, yet it does not respect pairwise unanimity.

Remark. Both individual rationality and respect for pairwise unanimity are necessary con-
ditions for stability. However, as Example 6 illustrates, individual rationality and respect for
pairwise unanimity are mathematically independenfon

Example 6. Letn = | = 2andqc, = gc, = 2. Consider a preference profi® € # defined
below:

P(Co) ={s1, 2 {1} {20 P()=CC1 s

Let f; be a matching rule that assigns a matching to each prefde® \ {P’} subject to the
stable rule and assigns B the following matchingy:

C C
fP) =2 {{sil} {s;}}'

It is easy to see thdt respects pairwise unanimity, yet it is not individually rational.

- {P'(Cl) = {2} 0{s1, 2} {s1} P'(s1) =C1C; 31}
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Meanwhile, letf, be a matching rule that assigns a matching to each piefdeP \ {P’}
subject to the stable rule and assign®tehe following matchingg,:

C, Cz}
{2} {si}]”

It is easy to see thdt is individually rational, yet it does not respect pairwise unanimity.

fz(P/) =ap. {

3.2. Results in many-to-one matchings

We show that in the context of one-to-one matching problems, there is no strategy-proof
rule that respects pairwise unanimity. However, there is a significant change in this result when
colleges can admit as many students as they wish. Since respect for pairwise unanimity is a
necessary condition for stability, the stable rule respects pairwise unanimity. On the other hand,
strategy-proofness of the stable rule follows from S6nmez’s (1996) finding that the stable rule
is strategy-proof on the many-to-one matching model \wgh> |S]| for all C; € C. Therefore,
we obtain a positive result as below.

Proposition 3. If qc, > [S| for all C; € C, then the stable rule is strategy-proof and respects
pairwise unanimity orP.

In the next proposition, we show that our negative result in the one-to-one matching model
extends to the many-to-one matching model where a college exists that cannot admit as many
students as it would like.

Proposition 4. If qc, < |S| for someC; € C, then there is no strategy-proof rule that respects
pairwise unanimity orP.

Proof. First, we prove the result for the case with= | = 2. Later, we will explain how

to extend the proof to the cases where- 3orl| > 3. Letqe, = 1 < |S| = 2 without loss

of generality. Assume that the rulerespects pairwise unanimity, and prove that it must be
manipulable. Since the case wigh, = 1 is covered by Proposition 2, it fiices to prove it for
cases withye, > 2.

(1) Let P! € P be such that

pL. {Pl(Cl) = {S} {51} 0 P(s) = C.C; 51}
" PHC2) = {51, S} {2} 0 PYs) =CoCr %

The set of all matchings satisfying respect for pairwise unanimityrtds the following:
C G 1. JC G 1.{C1 C, }
, & &ay: :
{{sl} {SQ}} % {0 {SZ}} %0 (suw)
(2) Let P> = PY/PY(C,) whereP* (C,) = {s}0{s1, S;}{S:}. That is,

P2 . {Pz(Cl) = {2} {1} 0 P%(s;) = C, C; Sl}
"\ PACo) = {s1} 0 s, 2} {2} PX(s) =CoCr s

ar:
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The set of all matchings satisfying respect for pairwise unanimitypfds the following:
C, C C, C C, C C, C
2. 1 2 2. 1 2 2. 1 2 2. 1 2
% {{sl} {SQ}}’ %: {{SQ} {sl}}’ % {@ {sl}}’ % '{@ {Sz}}’
C, C C, C C, C C C
2: 1 2’2: 1 2’2:12&2:{1 2}'
% {{sl} 0} % {{sg @} & {0 @} %10 (sus)
(3) Let P?(Cy) = 0{s1}{s:}{s1, &}. Then, f(P?/P?(C,))(C,) = 0 by respect for pairwise una-
nimity.
(4) LetP?(s;) = C1 Cy 5. Then, f(P?/P?(s2))(s2) = C4 by respect for pairwise unanimity.

(5) LetP?(sy) = C,Cy 5. Then, f(P?/P? (s1))(s1) = C, by respect for pairwise unanimity.
(6) Let PY(Cy) = {s1}{s}0. Then, f(P!/P¥(C1))(Cy) = {s1} by respect for pairwise unanimity.

Now we prove thaff is manipulable using the above preferences and matchings. Note that
Cases 1 and 2 below cover all the possible matchindfof P*. We show thaf is manipulable
for each case.

Case 1:f(P') = al.

If f(P?) = a3, a3 or a3, C, can manipulate &' via P (Cy) by (2) and{s;}P*(C;){s2}
and {s;, SIPHCo){s,}. If f(P?) = a2 or &, that is, if f(P?)(C,) = {s2}, C; can
manipulate afP? via P?(C;) by (3) and0P?(C,){s,}. If f(P?) = a2 or a3, that is,
if f(P?)(s) = s, S can manipulate aP? via P?(s,) by (4) andC,P(sy)s,. If
f(P?) = a2, s; can manipulate &2 via P? (s;) by (5) andC,P?(sy)s.

Case 2 :f(P') = aj or aj.
Becausef (PY)(C,) = 0, C; can manipulate &' via PY(C,) by (6) and{s,}P*(C,)0.

Next we explain how to prove the result for the cases whmeee 3 or | > 3. Just like
the above proof, letc, < |S| without loss of generality. LeB; € S\ {s;, S} be such that
IS1] = gc, — 1. Let the preferences of all studergise S; be such thab(P(s;)) = C,, those of
collegesC; € C\ {C,, C;} be such thab(P(C;)) = 0 and those of studentg € S\ ({s1, S} U S;)
be such thab(P(s;)) = s;. Let the preferenceB!(C,) andP* (C,) of C; € C be such that

Pl’(Cl) =(S1U{s)) (S1U{s}) GO forallGe M(Cy) \ {(S1U {s1}), (S1U {s}),0}, and
PY(Cy) = (S1U{s})) (S1U{}) GO forall G e M(Cy) \ {(S1 U {s1}), (S1 U {s2}), 0}.

Then, in matchings satisfying respect for pairwise unanimity, each stsgdens; would
be matched t&€; € C, each colleg€; € C \ {Cy, C,} would be matched t@ and each student
sj € S\ ({s1, S} U S1) would be matched to the studesit Therefore, the proof for these cases
is identical to the above proofi

By Propositions 3 and 4, we have the following characterization of the class of matching
problems that admit strategy-proof rules that respect pairwise unanimity.

Theorem. Consider the matching problems with responsive preferences. There exists a strategy-
proof rule that respects pairwise unanimity if and only if each college’s quota is unlimited.

14



4. Concluding Remarks

In this paper, we explore the possibility of designing satisfactory matching rules. First, in
the one-to-one matching model, we establish thalhére exists a strategy-proof rule that is
individually rational and respects unanimjtand ii) there exists no strategy-proof rule that
respects pairwise unanimitysecond, we extended the result ii) to the many-to-one matching
model. Our results, together with Roth (1982) and Alcalde and Barbera (1994), suggest the
difficulty of designing strategy-proof rules satisfying better than respect for unanimity.
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