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Abstract

In this paper we examine the asymptotic properties of the estima-
tor of the long-run coefficient (LRC) in a dynamic regression model
with integrated regressors and serially correlated errors. We show that
the OLS estimators of the regression coefficients are inconsistent but
the OLS-based estimator of the LRC is superconsistent. Furthermore,
we propose an alternative consistent estimator of the LRC, compare
the two estimators through a Monte Carlo experiment, and Þnd that
the proposed estimator is MSE-superior to the OLS-based estimator.
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1 Introduction
An autoregressive distributed lag model with serially correlated distur-

bances represents an important class of dynamic regression model in econo-
metrics. Such a model containing lagged dependent and lagged independent
variables with lag-orders p and q, respectively, is called an autoregressive
distributed lag model (henceforth, denoted by ADL(p, q)). An ADL model
can be written as

yt = c+A(L)yt +B(L)zt + ut (1)

where A(L) and B(L) are the polynomials of the lag operator L deÞned by

A(L) = α1L+ · · ·+ αpLp, (2)

B(L) = β0 + β1L+ · · ·+ βqLq. (3)

The long-run effect of z on y is given by the long-run coefficient, deÞned as

δ =
B(1)

1− A(1)
=
β0 + β1 + · · ·+ βq
1− α1 − · · ·− αp . (4)

If (1) is regarded as a consumption function with consumption y and in-
come z, δ is the long-run marginal propensity to consume (abbreviated as
LRMPC).
Since many economic time series are nonstationary processes such as in-

tegrated or cointegrated processes, we need to develop the asymptotic theory
for nonstationary ADL(p, q) models. Furthermore, such models with serially
correlated disturbances are important in both theory and practice.
Recently Maekawa, Yamamoto, Takeuchi and Hatanaka (1996, abbrevi-

ated as MYTH) dealt with the ADL(1, 0) model with an integrated regressor
and serially correlated disturbances: namely, yt = αyt−1 + βzt + ut, where
zt is integrated of order 1. When ut is assumed to be a stationary AR(1)
process, MYTH showed that α̂ and β̂ are

√
T−inconsistent and asymptoti-

cally normally distributed (see Corollary 3 below).
He, Maekawa, and McAleer (1998) (henceforth HMM) dealt with a sim-

ilar model, yt = c + αyt−1 + βzt + ut, and analysed a non-linear estimator
δ̂ = β̂/(1− α̂) for the LRMPC in this model, that is, δ = β/ (1− α) , where
α̂ and β̂ are OLS estimators. Their model is a special case of a regres-
sion model with cointegrated regressors, as examined in Park and Phillips
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(1989, Section 5.2, p.116). However, HMM extended the Park and Phillips
model and derived the long-run implications of the estimated coefficients,
as well as the asymptotic distribution of the nonlinear estimator δ̂. Park
and Phillips did not deal with a nonlinear estimator such as δ̂. As α̂ and β̂
are

√
T−inconsistent when ut is serially correlated, it might be anticipated

that δ̂ is also inconsistent. Somewhat strikingly, HMM showed that δ̂ is
superconsistent.

This paper extends HMM to a general ADL(p, q) model and proceeds
as follows. Section 2 presents the model and the assumptions. Section 3
derives the asymptotic distributions of the OLS estimators of the regression
coefficients and the long-run coefficient. Section 4 investigates the asymptotic
properties of an alternative estimator of the long-run coefficient. Section
5 compares the small sample distributional properties of two estimators of
the long-run coefficient by performing Monte Carlo experiments for the most
simple case of the model. Section 6 summarizes the main results of the paper
and provides some concluding comments. Detailed derivations and proofs are
given in the Appendices to this paper and are available from the authors upon
request, and can be downloaded from the web site http://home.hiroshima-
u.ac.jp/maekawa/index.html.

2 ADL (p,q) Model
First we specify the model (1) as follows:

yt = c+A(L)yt +B(L)zt + ut, (5)

ut = C∗ (L)ut + vt,

zt = D∗ (L) zt + εt, t = 1, 2, · · · , T,
where vt ∼ i.i.d.N(0, σ2

1), εt ∼ i.i.d.N(0,σ2
2), vt and εt are independent, and

C∗(L) = c∗1L+ c∗2L
2 + · · ·+ c∗lLl,

D∗ (L) = d∗1L+ d∗2L
2 + · · ·+ d∗sLs.

Rewrite ut as an inÞnite moving average process as

ut = C(L)vt with C (L) ≡ 1

1− C∗ (L)
=

∞X
i=1

ciL
i, (6)
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and make the following assumptions:

A1. All the roots of the characteristic equations 1 − A(x) = 0 and 1 −
C∗(x) = 0 lie outside the unit circle.

A2. 1−D∗ (L) = 0 has a single unit root and all the other roots lie outside
the unit circle, that is, 1 − D∗ (L) = (1 − L)D1(L), where all the roots of
D1(L) = 0 lie outside the unit circle.

DeÞning D(L) ≡ 1
(1−L)D1(L)

, we can rewrite zt as

zt =
εt

1−D∗(L)
=

εt
(1− L)D1 (L)

= D(L)εt. (7)

Using the inÞnite moving average process, we can rewrite model (5) as

yt = c+A(L)yt +B(L)zt + ut, (8)

ut = C (L) vt,

zt = D (L) εt,

t = 1, 2, · · · , T.

Note that we can further rewrite model (8) as

yt−1 = c̃ + δ(L)zt−1 + φ(L)vt−1, (9)

where

δ(L) =
B(L)

1− A(L)
=

∞X
i=0

δiL
i,

φ(L) =
C(L)

1− A(L)
=

∞X
i=0

φiL
i, (10)

c̃ =
c

1− A(1)
. (11)

From assumptions A1 and A2, we have the following lemma:
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Lemma 1

(i)

∞X
i=0

| φi |<∞,

(ii)

∞X
i=0

i | δi |<∞,

(iii)
∞X
i=0

| ci |<∞,

(iv)

∞X
i=0

| di |<∞.

where di is deÞned by 1
D1(L)

=
∞P
i=1

diL
i = d (L) .

P roof. ilable on request, as an extension of HMM.

3 Asymptotic Distributions of α̂, β̂, ĉ and δ̂

In this section we investigate the asymptotic properties of ĉ, α̂, and β̂.
Equation (9) can be rewritten as

yt−1 = c̃+ δzt + at, (12)

where at is expressed as an inÞnite moving average of vt and εt as follows:

at =
∞X
i=0

∞X
j=0

γ∗i djεt−i−j +
∞X
i=0

φivt−i−1,

where γ∗0 = −δ, γ∗i = − (δi + δi+1 + · · · ) , i = 1, 2, · · · .
This formula is useful for obtaining the asymptotic distributions below.

Note that Equation (12) suggests that yt−1 and zt are cointegrated, so that
our model has cointegrated regressors. This could be called “stochastic
multicollinearity”, which yields the asymptotic normality of ĉ, α̂ and β̂,
in spite of the presence of integrated variables in the model.
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To derive the asymptotic distributions of ĉ, α̂ and β̂, we introduce the
Brownian motions B1 and B2, deÞned by

1√
T

[Tr]X
t=1

vt ⇒ B1(r),
1√
T

[Tr]X
t=1

εt ⇒ B2(r), r ∈ [0, 1],

where ⇒ signiÞes weak convergence and [x] denotes the integer part of x.
Following the algebra of non-standard asymptotics in Phillips (1987), we
obtain the following results:

Theorem 2 (
√
T − inconsistency of ĉ, α̂ and β̂) Under Assumptions A1

and A2, we have:
(a)

√
T (α̂i − αi − α∗i ) ⇒ N

¡
0, σ2

αi

¢
, i = 1, 2, · · · , p,

(b)
√
T

³
β̂j − βj − β∗j

´
⇒ N

³
0, σ2

βj

´
, j = 0, 1, 2, · · · , q,

(c)
√
T (ĉ− c− c∗) ⇒ −c̃N(0, σ2

c ) + f(B1, B2),

(d) δ
√
T

µ
pP
i=1

α̂i −
pP
i=1

αi

¶
+
√
T

µ
qP
i=0

β̂i −
qP
i=0

βi

¶
p→ 0,

where α∗i and β
∗
j are some constants comprising the coefficient ci for i =

1, 2, · · · in the lag polynomial C(L) in (8), and vanish when all ci are zeros
or there is no serial correlation in ut. On the other hand, σ2

αi
and σ2

βj
are the

asymptotic variances and f(B1, B2) is a functional of the Brownian motion
B1(r) and B2(r). The precise expressions for these constants and function
are obtained as extensions of HMM and given in the Appendix to the paper.

P roof. Available on request as Section C in the Appendix to the paper.

Remark 1 We note from (a), (b) and (c) that ĉ, α̂ and β̂ are
√
T−consistent

only if ut is not serially correlated. From (d), we note that the asymptotic

distribution of δ
√
T

µ
pP
i=1

α̂i −
pP
i=1

αi

¶
+
√
T

µ
qP
i=0

β̂i −
qP
i=0

βi

¶
degenerates as

T approaches inÞnity. The asymptotic normality arises from the “stochastic
multicollinearity”, as noted above.
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HMM examined how the serial correlation in ut affects the asymptotic
properties of α̂, β̂, ĉ and δ̂ in the simplest case of ADL(1, 0), i.e.,

yt = c + αyt−1 + βzt + ut, | α |< 1
ut = ρut−1 + vt, | ρ |< 1

zt = zt−1 + εt,
t = 1, 2, · · ·, T,

(13)

where vt ∼ i.i.d.N(0, σ2
1) and εt ∼ i.i.d.N(0, σ2

2) are assumed to be indepen-
dent. In this case, the asymptotic distributions of ĉ, α̂ and β̂ are given as
follows:

Corollary 3 In the simplest case (13), we have
(a) plim(α̂− α) = α∗;
(b) plim(β̂ − β) = β∗;
(c) plim(ĉ− c) = c∗;
(d)
√
T (α̂− α− α∗) ⇒ N(0, σ̃2

1);

(e)
√
T (β̂ − β − β∗) ⇒ β

1−αN(0, σ̃2
1);

(f)
√
T (ĉ−c−c∗) ⇒ N(0, σ̃2

2)+
1

1−ρ
B1(1)

R
B2

2(r)dr−R
B2(r)dr[

R
B2(r)dB1(r)−(1−ρ)γ∗Q2]R

B2
2(r)dr−[

R
B2(r)dr]2

,

in which
γ∗ = P

Q3
, δ∗ = − β

1−αγ
∗, c∗ = − c

1−αγ
∗,

σ̃2
1 = λ2

1σ
2
1σ

2
2 + λ2

2σ
4
1,

λ1 = − β
(1−α)2(1−ρ)Q3

,λ2 = [ 1
(1−α)(1−ρ)2 − ρ

(1−αρ)(1−ρ2)
] 1
Q3
,

σ̃2
2 = µ2

1σ
2
1σ

2
2 + µ2

2σ
4
1 + µ2

3σ
2
1,

µ1 = − c
1−αλ1, µ2 = − c

1−αλ2, µ3 = ( c
1−α)2 1

(1−ρ)Q3
,

P =
ρσ2

1

(1−αρ)(1−ρ2)
,

Q2 = ( 1
1−α)( 1

1−ρ)
R
B2(r)dB1(r)− 1

2
( β

1−α)( 1
1−α)[B2

2(1) + σ2
2],

Q3 = ( 1
1−α2 )( β

1−α)2σ2
2 +

(1+αρ)σ2
1

(1−α2)(1−αρ)(1−ρ2)
.

P roof. lable on request, as an extension of HMM.

Remark 2 Note that ĉ, α̂ and β̂ are
√
T−consistent only if there is no serial

correlation in ut, or ρ = 0 in model (13).
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Now consider the OLS-based estimator,

δ̂ =
B̂ (1)

1− Â (1)
=

qP
j=0

β̂j

1−
pP
i=1

α̂i

, (14)

which can be rewritten as

√
T

³
δ̂ − δ

´
=

δ
√
T

µ
pP
i=1

α̂i −
pP
i=1

αi

¶
+
√
T

Ã
qP
j=0

β̂j −
qP
j=0

βj

!
1−

pP
i=1

α̂i

.

We cannot use
√
T as the normalizer as the denominator degenerates to

obtain the asymptotic distribution of δ̂ − δ as T → ∞, as shown in Theo-
rem 2(d) . Instead, we normalize

³
δ̂ − δ

´
by T to calculate the asymptotic

distribution of δ̂ directly as

T
³
δ̂ − δ

´
=

δT

µ
pP
i=1

α̂i −
pP
i=1

αi

¶
+ T

Ã
qP
j=0

β̂j −
qP
j=0

βj

!
1−

pP
i=1

α̂i

. (15)

Theorem 4 In model (5), the asymptotic distribution of T
³
δ̂ − δ

´
is given

by

T
³
δ̂ − δ

´
⇒ fa
fb
,

where

fa = C (1) d (1)

·Z
B2(r)dB1(r)−B1(1)

Z
B2(r)dr

¸
−

·
−d (1)

Z
B2(r)dr

·
φ (1)B1 (1)−

(δ + γ (1)) d (1)B2 (1)

¸
I 0p + f 0WZ

¸
A11Pwu

7



−
·
−d (1)2

Z
B2(r)drB2 (1) I 0q + f 0²Z

¸
A21Pwu,

fb = d (1)2

Ã
1−

pX
i=1

αi −
pX
i=1

α∗i

!(Z
B2

2(r)dr −
·Z

B2(r)dr

¸2
)
,

where A11and A21 are matrices of non-random elements, and Pwu, fWZ , and
f²Z are matrices of functionals of the Brownian motions B1 and B2; I

0
k =

(1, 1 · · · 1)1×k , k = p, q. The precise formulae are omitted, but are given as
extensions of HMM.

P roof. Available on request, as an extension of HMM.

Remark 3 From Theorems 2 and 4, the asymptotic distributions of
√
T (α̂i−

αi − α∗i ) and
√
T (β̂j − βj − β∗j ) are normal, but the asymptotic distributions

of
√
T (ĉ− c− c∗) and T (δ̂ − δ) are non-standard. Furthermore, although

the OLS estimators ĉ, α̂i and β̂j in our model are
√
T−inconsistent, the

OLS-based estimator δ̂ is T−consistent, or superconsistent.

Corollary 5 In model (13), the asymptotic distribution of δ̂ collapses to

T (δ̂ − δ) ⇒

1
1−ρ

R
B2(r)dB1(r)− { 1

1−ρB1(1) + β
1−αµB2(1)} R

B2(r)dr + 1
2

β
1−αµ{B2

2(1) + σ2
2}

(1− α){R B2
2(r)dr − (

R
B2(r)dr)2}

(16)

where µ =
(1+α)ρσ2

1

(1−αρ)(1−ρ2)( β
1−α )2σ2

2+(1−ρ)σ2
1

.

P roof. See HMM.

As HMM showed that
R
B2(r)dr occurs only if c 6= 0, that is, when there

is a constant term, we have the following:

Corollary 6 When the constant term c = 0 in model (13), we have
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T (δ̂ − δ) ⇒
1

1−ρ
R
B2(r)dB1(r) + 1

2
β

1−αµ{B2
2(1) + σ2

2}
(1− α)

R
B2

2(r)dr
. (17)

Remark 4 Comparing (16) and (17), the asymptotic distributions depend
on the existence of the constant term c but not on its value.

Remark 5 Since the long-run relationship in model (13) is given by

yt−1 =
β

1− αzt +
c

1− α + at+ M , (18)

it is possible to estimate δ = β
1−α by simply regressing yt−1 on zt. It is

straightforward to show that the resulting OLS estimator, say δ̂
0
, has an

asymptotic distribution given by:

T (δ̂
0 − δ)

⇒
1

1−ρ
R
B2(r)dB1(r)− [ 1

1−ρB1(1)− β
1−αB2(1)]

R
B2(r)dr − 1

2
β

1−α [B2
2(1) + σ2

2]

(1− α)[
R
B2

2(r)dr − (
R
B2(r)dr)2]

.

(19)

The asymptotic distributions given in (16) and (19) are slightly different (note
that µ in (16) is not included in (19)).

4 Alternative Estimator of the Long-run Co-
efficient

In this section, we introduce an alternative estimator of δ, but for simplicity
we deal with ADL (p, q) , such as:

yt = c+A(L)yt +B(L)zt + ut,

zt = zt−1 + εt, ut = C∗ (L) ut + vt, (20)

t = 1, 2, · · · , T.

9



We have seen that the serial correlation in ut causes the inconsistency of
the OLS estimators ĉ, α̂ and β̂ in the previous section. To obtain a con-
sistent estimator, we transform the model to eliminate the serial correlation
before applying OLS. This can be done by multiplying both sides of (20) by
C∗∗(L) ≡ (1− C∗(L)) and rearranging terms to obtain

yt = µ∗ +A∗(L)yt +B∗(L)zt + vt,

zt = zt−1 + εt, (21)

t = 1, 2, · · · , T,
where

A∗(L) = 1− C∗∗ (L) + C∗∗ (L)A (L) = α∗1L+ α∗2L
2 + · · ·+ α∗p∗Lp

∗
,

B∗(L) = C∗∗ (L)B (L) = β∗0 + β∗1L+ · · ·+ β∗q∗Lq
∗
,

µ∗ = cC∗∗ (1) , p∗ = p+ l, q∗ = q + l.

In this model, the long-run effect of z on y is deÞned as before, namely

δ =
B∗(1)

1− A∗(1)
. (22)

It is straightforward to see that

B∗ (1)

1−A∗ (1)
=

C∗∗ (1)B (1)

1− [1− C∗∗ (1) + C∗∗ (1)A (1)]
=

B (1)

1−A (1)
= δ.

We propose an alternative estimator deÞned by

δ̌ =
B̌∗ (1)

1− Ǎ∗ (1)
=

q+lP
j=0

β̌
∗
j

1−
p+lP
i=1

α̌∗i

, (23)

where α̌∗i , i = 1, · · · , p+ l, and β̌
∗
j , j = 0, 1, · · · , q+ l, are the OLS estimators

for model (21). As this transformation makes vt i.i.d.N(0, σ2
v), it is indepen-

dent of yt−1 and zt, so that the OLS estimators α̌∗i and β̌
∗
j , i = 1, 2, · · · , p+ l,

j = 0, 1, · · · , q+ l, are consistent. Therefore, δ̌ is also a consistent estimator.
We would expect δ̌ to have better distributional properties than δ̂ in small
samples because the OLS estimators, α̂i and β̂i, are inconsistent.
Using a similar method to that employed in Section 3, we present the

following Theorem.
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Theorem 7 For model (21), the asymptotic distribution of the estimator δ̌
defined in (23) is given as:

T
¡
δ̌ − δ¢ ⇒ C(1)

1− A(1)

R
B2(r)dB1(r)−B1(1)

R
B2(r)dr³R

B2
2(r)dr − £R

B2(r)dr
¤2

´ .

P roof. Available on request, as an extension of HMM.

5 Simulation Experiments

Although we have shown that δ̂ and δ̌ are T -consistent, and both T (δ̌− δ)
and T (δ̂− δ) converge to non-standard distributions, we do not yet know the
small sample properties of δ̂ and δ̌.
To investigate the Þnite sample performance, we conducted some Monte

Carlo experiments by using the ADL(2,1) model, which can be transformed
as:

yt = a0 + a1yt−1 + a2yt−2 + a3zt + a4zt−1 + vt, (24)

zt = zt−1 + εt, t = 1, 2, · · · , T.
In the experiments, we Þx the parameters as follows:

a0 = c(1− ρ), a1 = α+ ρ, a2 = −αρ, a3 = β, a4 = −βρ,
and

σ2
2 = 1.0, σ2

1 = 0.25, c = 1,α = 0.38, β = 0.4, δ = 0.645.

We specify the other parameters as ρ = 0.0, 0.5, 0.8; T = 50, 100, 500; and
calculate ď = (δ̌ − δ)/sδ̌ and d̂ = (δ̂ − δ)/sδ̂ 5000 times for each parameter
combination, where sδ̌ and sδ̂ represent the estimated standard errors.
Figures 1 through 9 in Appendix are the empirical distributions obtained

from the experiments. From these Þgures we observe that δ̌ is almost unbi-
ased, but δ̂ is slightly biased in small samples. The bias does not vary greatly
as the sample size increases, but increases with ρ.
To compare the performance of δ̌ and δ̂, we calculated the sample mean

squared errors (MSE):

ě =
1

5000

5000X
i=1

(δ̌i − δ)2, ê =
1

5000

5000X
i=1

(δ̂i − δ)2.

11



The calculated values of ě and ê are given in Table 1.

Table 1. Comparison of δ̌ and δ̂ by the MSE criterion

ρ MSE T=50 T=100 T=500
0.0 ê 0.003146 0.000772 0.000003

ě 0.003593 0.000813 0.000003
0.5 ê 0.013747 0.003642 0.000150

ě 0.013722 0.003041 0.000115
0.8 ê 0.101997 0.027711 0.001292

ě 0.116559 0.018894 0.000689

It can be seen that the difference between ě and ê becomes large as ρ
increases. Moreover, the values of ê are generally larger than those of ě if
ρ 6= 0, the difference becoming small as the sample size increases. Judging by
the MSE criterion, we can say that δ̌ is better than δ̂. HMM also compared
the two estimators in the simplest case, such as the ADL(1, 0) model, and
obtained similar results.

6 Concluding Remarks
In this paper, we developed an asymptotic theory for the estimators in a
general ADL(p, q) model with integrated regressors and serially correlated
disturbances, found that the OLS estimators ĉ, α̂ and β̂ for the regres-
sion coefficients are

√
T − inconsistent but have asymptotic normal distri-

butions, and that the OLS-based estimator δ̂ for the long-run coefficient
is T−consistent, i.e., superconsistent, but with a nonstandard asymptotic
distribution. Therefore, standard statistical inference which relies on asymp-
totic normality for the regression coefficients and the long-run coefficient are
misleading. Furthermore, we proposed an alternative estimator δ̌ for the
long-run coefficient obtained by transforming the original model to elimi-
nate the serial correlation in the disturbances, and examined the asymptotic
properties of the proposed estimator. Monte Carlo experiments show that
the proposed estimator δ̌ is MSE − superior to the OLS−based estimator.
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