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1 Introduction

The global financial and economic crisis that began in 2007 has led to an increased

interest in the mechanisms that cause asset prices to undergo persistent swings

away and towards long-run equilibrium values. One important implication of the

recent theory of Imperfect Knowledge Economics (IKE) by Frydman and Gold-

berg (2007, 2011) is that fully rational behavior under imperfect knowledge will

show such tendencies. While these wide swings are typical of most prices subject

to speculation, such as nominal exchange rates and stock prices, they also char-

acterize many variables in the real economy, for example unemployment rates,

suggesting a close two-way interrelationship between the financial market and the

real economy.

The purpose of this paper is to discuss different econometric characterizations

of these persistent swings, in particular focussing on nominal and real exchange

rates in periods of currency float. Figure 1, upper panel, illustrates how the Ger-

man mark/US dollar nominal exchange rate has shown a tendency to move in

long persistent swings around its long-run purchasing power parity (PPP) value as

given by the prices differential between the two countries. The graphs illustrate

that the longest swing took place from approximately 1976 to 1988, followed by

shorter swings. Figure 1, lower panel, shows the real exchange rate (measured

as p− p∗− s) together with the long bond rate differential. It appears that the

long swings in the real exchange rates (inherited from the nominal exchange rate)

move almost in parallel with the swings in the bond rate differential.

Given the assumption that purchasing power parity holds as a stationary condi-

tion one would a priori expect relative prices and nominal exchange rates to be I(1)

and the real exchange rate to be I(0). However, econometric tests often find many

real and nominal exchange rates to be I(1) or even more persistent. For example,

Engel and Hamilton (1990) found that the random walk model is strongly rejec-

ted in favor of a segmented-trends model for nominal exchange rates.1 Shocks

to a segmented-trends process display a high degree of persistence because the

segmented trends have a long-lasting impact on both the level and the first differ-

ence of the variable. This is in contrast to shocks to a random walk series which

are persistent only in the level. Also an I(2) process has a tendency to generate

longer-lasting swings similar to a segmented-trends process, because the shocks

have a persistent impact both on the levels and the first differences (Johansen,

1997, 2006a, Paruolo and Rahbek, 1999).

1 Other studies that reject the random walk in favor of a segmented-trends model include Engel

(1994) and Cheung and Erlandsson (2005).
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Figure 1: The graphs of the (mean and range adjusted) German-US price differential, pp, and

the nominal exchange rate, s12 (upper panel), and the ppp = pp− s12 and the real bond rate

differential(lower panel).

In line with this, nominal and real exchange rates have frequently been well

approximated by an I(2) process (Juselius, 1995, 2006, Johansen et al. 2011) but

only when using multivariate unit root tests. Based on univariate Dickey-Fuller

tests they are mostly found to be at most I(1). To explore why this is the case,

we have simulated data designed to replicate typical features of relative prices and

nominal exchange rates relying on results in Frydman and Goldberg (2007). Given

an assumption that economic actors make forecasts under imperfect information

they show that real exchange rates are likely to have a small signal-to-noise ratio.

When testing the order of integration of the simulated series the results show that

the univariate DF test tends to reject the second (near) unit root in almost all cases,

whereas the multivariate test almost always finds it. The former result can be

explained by the low power of the univariate DF tests to detect a second unit root

when the shocks to the drift term of the differenced process are small compared

to the shocks to the differenced process itself, i.e. when the signal-to-noise ratio

is small.

We apply the above results to a data set consisting of the German Mark/US

dollar exchange rate, German and US prices and interest rates (1975-1999). Based

on the multivariate tests we could not reject the I(2) type characterization of the
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nominal and real exchange rate at high significance levels against the null of an

I(1) characterization. Based on the univariate Dickey-Fuller tests the double unit

root was rejected.

2 Testing for a double unit root when the signal-to noise ratio

is small

We first introduce the baseline autoregressive model of order k and discuss the

augmented D-F model, the Engle-Hamilton segmented trends model and the Im-

perfect Knowledge model. We then simulate time series with double (near) unit

roots and a small signal-to-noise ratio using parameter values that closely replic-

ate the characteristic features of actual prices and exchange rates. To start with,

just one single case is used to illustrate in detail why it is often difficult to dis-

cover a second unit root when the signal-to-noise ratio is small. We also illustrate

the difference between a random walk, a near I(2) and an I(2) process and then

proceed to test the series using univariate versus multivariate test procedures.

2.1 Univariate models

The pronounced persistence of many real exchange rates is often associated with

a unit root in the data and mostly tested based on univariate Dickey-Fuller type

models such as:

∆qt = µ−ρ1qt−1+ρ11∆qt−1+ ...+ρ1k∆qt−k+ εqt
(1)

where ∆ is the first difference operator, qt stands for the log of the real exchange

rate in a period of currency float, and εqt
is an error term. The null of a unit root

in qt is formulated as the composite null hypothesis (ρ1 = 0 and µ = 0) where the

second condition reflects the fact that one would not consider deterministic linear

trends in real exchange rates to be economically plausible. When the null cannot

be rejected we conclude that there is at least one unit root in the real exchange

rates. To test whether there is a double unit root, (1) is respecified as:

∆
2qt =−ρ2∆qt−1+ρ21∆

2qt−1+ ...+ρ2,k−1∆
2qt−k+1+ εqt

(2)

where ρ2 = 0 is the null. In this case, the real exchange rate would exhibit a very

pronounced persistence as its change is a unit root process and the real exchange

rates would be likely to drift off from it its long-run value for extended periods

of time. If, instead, ρ2 deviates from zero with a very small amount, then ∆qt

would be mean-reverting, but the mean-reversion would be very slow. In this
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case, moderately sized realizations of qt could easily exhibit a similar persistence

as an I(2) process and, for practical purposes, would be difficult to distinguish

from an I(2) process.

Another possibility is to model the long swings in real exchange rate as a

combination of unit roots and piecewise linear trends as in Engle and Hamilton

(1990) implying the following change in the specification of (1):

∆qt = µ t+ρ11∆qt−1+ ...+ρ1k∆qt−k+ εqt
, εqt

∼ N(0,σ2
εq
) (3)

where µ t = γ i i= 1,2,3, .... In this case, the real exchange rate would be described

by piecewise linear trends with shifting slope parameters γ i. If the shifts in the

secular trends take place at ever smaller intervals, µ t could instead be modelled

as a random walk

µ t = µ t−1+ εµt
εµt
∼ N(0,σ2

εµ
) (4)

where εµt
would describe the change in slope parameter from time t to t+1 and

the piece-wise linear trend specification (3) would converge to a double unit root

process.

The Imperfect Knowledge Economics (IKE) model described in Frydman and

Goldberg (2007, 2011) resembles the secular trends model but differs with respect

to the specification of µ t :

µ t = ρ t µ t−1+ εµt
εµt
∼ N(0,σ2

εµ
) (5)

where µ t is a drift term measuring the change in the real exchange rate due to

a change in individuals’ forecasting strategies and in the underlying fundament-

als. When qt is in the neighborhood of the long-run benchmark value individuals

change their forecasts conservatively and we would expect ρ t ' 1, whereas when

qt is far away from the benchmark, we would expect ρ t < 1. Since the far-from

equilibrium period is likely to be much shorter than the "close-to-neighborhood"

period, the average value, ρ̄, of ρ t for t = 1, ...,T is likely to be close to unity.

This is in particular so when T is sufficiently large to cover several long swings in

the real exchange rate.2

Another important feature of the IKE model to be subsequently discussed is

that the signal-to-noise ratio σ2
εµ
/σ2

εq
can be very small implying that the second

near unit root associated with (5) may not be easily detectable.

2.2 Illustrating different degrees of persistence

Because the drift term (5) is unobservable in actual time-series, it is useful to sim-

ulate the persistency properties of processes described by (3) - (5) under different

2 For varying sub-sample periods, the average value of ρ t may of course vary to some extent.
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Figure 2: The graph of a near-I(2) variable together with a random walk (upper panel) and the

same near-I(2) variable together with an I(2) variable

assumptions of the drift term. For this purpose, we have generated time-series

according to:

∆qt = µ t+ εqt
εqt
∼ N(0,1) (6)

and

µ t = ρ̄µ t−1+ εµt
, εµt

∼ N(0,0.152) (7)

where ρ̄ is {0.0, 0.95, 1.0} and lagged differences have been set to zero without

loss of generality. The length of the simulated sample is set to 500 corresponding

to roughly 40 years of monthly observations.

Figure 2, upper panel, illustrates swings that have been generated by a random

walk (ρ = 0) and a near-I(2) process (ρ = 0.95). The lower panel compares the

same near-I(2) process (ρ = 0.95) with an I(2) process (ρ = 1.00). The range

of variation of the near-I(2) process is 50 compared to 220 for the I(2) process,

which explains the difference in appearance of the identical near I(2) variables

in the two panels. To isolate the effect of the persistency parameter ρ , all three

series have been generated from an identical realization of the random shocks εqt

and εµt
and the signal-to-noise ratio is 0.15 for the near I(2) and the I(2) series.
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Figure 3: The graphs of ∆qt together with a 12 months MA when ρ̄ = 0.95 (upper panel), ρ̄ = 0

(middle panel) and ρ̄ = 1 (lower panel)

While both series in the upper panel exhibit persistent swings, they are much more

pronounced for the near-I(2) series compared to the random walk. The two series

in the lower panel exhibit persistent swings, but the swings of the I(2) series are

less bounded, signifying the absence of significant mean reversion in the changes

of an I(2) process. This becomes even more apparent at the end of the sample

illustrating that we often need a long sample period to distinguish a near I(2) from

an I(2) process.

A small, but persistent, drift term can be almost hidden for the eye when vari-

ance of the first differences is large and may not be easily detectable in a time

graph. A (sufficiently long) MA of the original series will smoothen out the highly

volatile short-term movements and, therefore, can provide a first rough indication
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of a persistent drift term in the data. To illustrate this, Figure 3 upper panel, shows

the graph of µ t together with a 12 period MA of ∆qt for the simulated process

(6) with ρ̄ = 0.95. While not identical, the moving average component seems to

provide a fairly good description of the near I(2) drift term µ t . But, as success-

ive moving average values share 2k-2 identical observations, a moving average

component is inherently a time dependent process. It is, therefore, likely to ex-

hibit swings also when there are no swings in the data. For example, when qt

is a random walk process, i.e. when µ t = 0 and ∆qt is temporally independent,

its k length moving average, ∆qt = f (∆qt−k,...,∆qt+k), is not independent. This is

illustrated in Figure 3, middle panel, showing the differenced random walk of Fig-

ure 2 together with its 12 period moving average. As expected, the latter exhibits

persistent fluctuations but compared to the moving average of the differenced near

I(2) series they stay bounded within much more narrow bands around the mean.

To illustrate the difference between a small and a large signal-to-noise ratio,

the lower panel shows a differenced near-I(2) series that was generated with a

large ratio of σ εµ
/σ εq

. The persistence of the drift term of this series is identical

to that of the near-I(2) series in the upper panel, i.e. both are generated with

ρ = 0.95. Hence the series in the upper panel and the lowest panel differ only in

terms of the signal to noise ratio, i.e. by the relative magnitude of the shocks εµt

and εqt
. When the shocks to µ t and ∆qt are of similar magnitude the difference is

striking: no moving average is needed to see the persistent drift in the data.

Finally, Figure 4 illustrate how different realizations of εµ t and εqt
can pro-

duce series that look widely different. Both panels show a near I(2) (ρ = 0.95)
and an I(2) (ρ = 1.00) series with a signal-to-noise ratio of 0.15, so the difference

between the panels is only due to different stochastic realizations of the process.

The two series in the upper panel exhibit long swings around the zero line whereas

in the lower panel they show a much more pronounced tendency to move away

from the zero line. As expected, the I(2) series tend to drift away from the zero

line more persistently than the near I(2) series. Also, the divergence of the near

I(2) and the I(2) series tend to be much stronger at the end of the sample. As will

be demonstrated in Section 3 based on a simulation study of 5000 replications,

a long sample is often needed to be able to statistically discriminate between the

two. The "true" underlying process that have generated an observed economic

variable is of course much more complex than all the models discussed in Section

2.1. The graphs of the simulated series suggest that a near I(2) process (with a

small signal-to-noise ratio) can reproduce the long swings behavior we often see

in actual real exchange rate data and that similar behavior also can be generated

by an I(2) process for moderately sized samples. Whether these models are suffi-

ciently close approximations to allow us to make inference on the broad features

of the underlying data generating process will be studied by simulation in Section

3.

www.economics-ejournal.org 8
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Figure 4: Two different realization of a near I(2) and an I(2) process

Another issue to discuss is how the asymptotic I(2) inference is affected when

data are near I(2) rather than exactly I(2). It is useful to distinguish between the

case when a near unit root is treated as (1) stationary or (2) nonstationary. In the

first case Johansen (2006b) showed by simulation that some inference (on steady-

state values) became very fragile when a near unit root was treated as stationary.

For example, up to 5000 observations were needed for the empirical distribution

to converge to Students t when the near unit root was 0.998.

In the second case, Elliot (1998) showed both analytically and by simulations

that the asymptotic distribution is no longer mixed Gaussian and that standard

asymptotic inference can be misleading. However, Corollary 1 in Johansen (1997)

can be used to show that inference on β and α in the I(2) model is efficient and

unbiased also in the near I(2) case3. Since all results discussed in the subsequent

sections have been obtained by cointegration analysis in the I(2)model, the corol-

lary result allows us to attach a fair degree of confidence to our empirical findings.

Nonetheless, robustness is an important issue which needs to be further studied.

3 This is because the second reduced rank condition (which is associated with the I(2) model

property) does not affect the asymptotic efficiency of the ML estimator of β and α.
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Table 1: Testing the order of integration with a Dickey-Fuller test

DF tests of qt ∼ I(2), ρ̄ = 1.0 qt ∼ nearI(2), ρ̄ = 0.95 qt ∼ I(1), ρ̄ = 0.0
ρ̂ i τ− ratio ρ̂ i τ− ratio ρ̂ i τ− ratio

σ v/σ ε 0.15 0.15 -

I(1) : ρ1 = 0 0.007 5.57 -0.004 -0.93 -0.0008 -0.23

I(2) : ρ2 = 0 -0.31 -6.48 -0.72 -12.8 -0.96 -21.3

σ v/σ ε 1.0 1.0

I(1) : ρ1 = 0 0.0006 1.96 0.0006 1.94

I(2) : ρ2 = 0 -0.021 -1.90 -0.031 -2.74

2.3 Univariate Dickey-Fuller Tests

The near I(2) and the I(2) series were all simulated for a fairly small signal-to-

noise ratio (0.15) and the drift term was not easily detectable as it was well hidden

in the very volatile first differences. Both processes contain two large character-

istic roots, one associated with a high error variance, σ2
εq
, the other with a small

error variance, σ2
εµ

. In this case, the power of univariate unit root tests to detect

the second (near) unit root is likely to be low because the estimated residual is

a function of εqt
and εµt

. With a small signal-to-noise ratio, εqt
will completely

dominate εµt
and the small but persistent drift that is associated with the second

large root becomes hard to detect. To illustrate, we test the null of a unit root

with the augmented Dickey-Fuller test based on (1) for the three series depicted

in Figure 2.

Table 1 presents the results of testing the null of a unit root in the levels

(γ1 = 0) and first differences (γ2 = 0) of the simulated series using Dickey-Fuller

regressions.4 The results in the upper part of the table are for the simulated I(2),
near I(2) with ρ = 0.95, both with a signal-to-noise ratio of 0.15, and for the I(1)
series. The lower part of the table, compare the results for similarly simulated

I(2) and near I(2) series but with a signal-to-noise ratio of 1.0. The results show

that the null of a second unit root is strongly rejected for both the I(2) and near-

I(2) cases when σ εµ
/σ εq

is small, whereas it cannot be rejected when σ εµ
/σ εq

is large.

The results indicate that the univariate Dickey-Fuller test has great difficulty

detecting the large root associated with the persistent drift term, µ t when the

signal-to-noise ratio is small. The null of a double unit root was strongly rejected

both when qt ∼ I(2) and when it was a near I(2) series with ρ̄ = 0.95. When

qt was a random walk it was also rejected but now correctly so. In all cases the

4 The regressions for levels and first differences were ∆qt = ρ1qt−1+ρ11∆qt−1+ρ0+ ε t and

∆2qt = ρ2∆qt−1+ ε t , respectively.
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(correct) null of (at least) one unit root could not be rejected. Section 3 reports a

more comprehensive simulation study.

2.4 Multivariate I(2) trace tests

In a univariate model, it is straightforward to determine whether a variable has two

large roots (with a modulus that is large but less than one) whereas in a multivari-

ate model we can only determine the number of common stochastic trends in the

system and whether they are of first order or second order. The classification of

variables according to their order of integration is, therefore, more involved in the

latter case which might suggest the use of univariate tests.5 But, as demonstrated

in Section 3, univariate Dickey-Fuller type of tests have low power to detect a

second unit root, in particular when the signal to noise ratio is small. Since the

multivariate model accounts for all information in the data a multivariate model is

more powerful in this respect. Besides,the order of integration of individual series

can also be determined within this model as shown in Section 4.3.

To give the intuition for the main issues we first use one set of simulations to

analyze a three-dimensional VAR model in detail and then improve the generality

of our findings based on a much larger simulation study. The VAR model has two

lags and is conveniently expressed in acceleration rates, changes and levels:

∆
2xt = Γ∆xt−1+Πxt−1+µ0+µ1t+ ε t (8)

where Γ,Π are p× p matrices, µ0,µ1 are p×1 vectors and ε t is NID(0,σ2
ε). The

matrices Γ and Π are variation free but µ0 and µ1 are restricted to exclude the

possibility of quadratic trends.

The hypothesis that xt ∼ I(2) is formulated as two reduced rank hypothesis:

Π= αβ
′

(9)

where α,β are p× r, with r the cointegration rank, and

α
′
⊥Γβ⊥ = ξ η

′ (10)

where β⊥,α⊥ are p× p−r orthogonal complements to β ,α, and ξ ,η are p−r×
p− r− s2. The number of common stochastic trends is p− r= s1+ s2 of which s1

are integrated of order one and s2 of order two. If s2 = 0, (10) is a full rank matrix

and xt ∼ I(1). Thus testing whether xt ∼ I(2) amounts to testing s2 > 0.
Paruolo and Rahbek (1999) suggested the following parameterization of (8):

5 For an extensive discussion and analysis of CVAR models, see Juselius (2006, 2013).
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∆
2xt = α(β ′xt−1+δ

′
∆xt−1)+ζ τ

′
∆xt−1+µ0+µ1t+ ε t

where τ = [β ,β⊥1] , δ is a p×s2 matrix of polynomially cointegrating parameters,

such that (β
′
xt−1+ δ

′
∆xt−1) ∼ I(0), and ζ is a p× p− s2 matrix of medium run

adjustment coefficients.

The three variables have been simulated to reflect typical time series properties

of the real exchange rate, qt , the interest rate differential between the two coun-

tries, bt , and the long-term drift term, µ t (measured for example by the change

in nominal exchange rate, ∆st). They are simulated in accordance with the IKE

models (3) and (5):

qt = qt−1+µ t+ εq,t =
t

∑
i=1

i

∑
s=1

ρ̄
i−s

εµ,s+
t

∑
i=1

εq,i+ ρ̄µ0

t

∑
i=1

ρ̄
i+q0

bt = bt−1+µ t+ εb,t =
t

∑
i=1

i

∑
s=1

ρ̄
i−s

εµ,s+
t

∑
i=1

εb,i+ ρ̄µ0

t

∑
i=1

ρ̄
i+b0

µ t = ρ̄µ t−1+ εµ,t =
t

∑
i=1

ρ̄
t−i

εµ,i+ ρ̄
t
µ0

where σ εq
= 1.0,σ εb

= 0.2,qt , σ εµ
= 0.15, and ρ̄ = 0.95. Thus, the variables qt

and bt share the same realization of µ t . For an application to a problem with

similar characteristics, see Johansen et al. (2010). As in the univariate case, we

have generated 500 observations.

Provided the near unit root ρ̄ = 0.95 is approximated with a unit root in an

empirical CVAR application, then the results would be consistent with r = 1,
s1 = 1, and s2 = 1. In this case, qt and bt would share one common stochastic

near I(2) trend and

qt−bt =
t

∑
i=1

εq,i−
t

∑
i=1

εb,i+q0−b0 (11)

would be CI(2,1). Since the two I(1) trends in (11) cannot cancel by any linear

combination δ
′
∆xt , (11) corresponds to the β

′
⊥1xt relation (s1= 1)which can only

become stationary by differencing. The polynomially cointegrated relation (r= 1)

corresponds to µ t−δ 1∆qt−δ 2∆bt where δ 1+δ 2 = 1.
Table 2 reports the multivariate rank test results where the first row shows

the trace test for s2 = 3,2,1,0, given r = 0 and the second row for s2 = 2,1,0,
given r= 1. The hypothesis {r = 1,s2 = 1} cannot be rejected based on a p-value

of 0.23. It implies three unit roots in the characteristic polynomial. The lower

part of Table 2 reports the modulus of the four largest roots in the characteristic
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Table 2: Determination of the two rank indices in the bivariate model

Rank Test Statistics

p− r r s2 = 3 s2 = 2 s2 = 1 s2 = 0

3 0 1169.66
[0.00]

727.76
[0.00]

375.24
[0.00]

334.49
[0.00]

2 1 366.12
[0.00]

28.42
[0.23]

17.33
[0.40]

3 2 7.92
[0.84]

3.69
[0.78]

The characteristic roots:

Unrestricted VAR 0.99 0.99 0.96 0.07

r = 1,s1 = 2,s2 = 0 1.0 1.0 0.96 0.07

r = 1,s1 = 1,s2 = 1 1.0 1.0 1.0 0.07

Table 3: The estimated values of β ,β⊥1,β⊥2 for the simulated I(2) process

qt bt µ t t ∆qt ∆bt ∆µ t 1

The polynomially cointegrated relation β
′
xt+δ

′
∆xt

β
′ −0.00

[−0.21]
−0.00
[−0.28]

1.00
[NA]

0.00
[1.69]

δ
′ −0.49 −0.46 −0.00 0.00

The medium run cointegrated relation β
′
⊥1xt

β
′
⊥1 −0.93 1.00 0.00 0.02

The non-cointegrating relation β
′
⊥2xt

β
′
⊥2 1.00 0.93 0.00

polynomial. The unrestricted VAR contains two roots almost exactly equal to

one and a third root, 0.96, which is very close to the simulated value of 0.95.

If we approximate the latter with a unit root then the highest unrestricted root is

0.07 for the choice of {r = 1,s1 = 1,s2 = 1} . But if we ignore the possibility of

I(2) then the model would contain an unrestricted root of 0.96 for the choice of

{r = 1,s1 = 2,s2 = 0} . Such a large root is likely to jeopardize standard inference

on stationarity at least for some hypotheses (Johansen, 2006b).

Table 3 report the estimates of β ,β⊥1,β⊥2.The test of the proportionality of

qt and bt , formulated as the hypothesis:

Hτ =

 1 0

−1 0

0 1

[ β
′
xt

β
′
⊥1xt

]
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could not be rejected based on χ2(2) = 1.60[0.45] consistent with the true data

generating process.

To conclude the main difference between testing the order of integration based

on a univariate versus a multivariate model is that the former is generally unable

to detect a large root in µ t when the signal to noise ratio is small, whereas the mul-

tivariate trace test is able to do so. Also, approximating a root of 0.95 with a unit

root allows us to structure the data in terms of polynomial cointegration and com-

mon trends of different order, thereby exploiting the different persistency profiles

of the data. Evidence of the second large root can also be found by checking the

characteristic roots of the multivariate model whereas such evidence is usually not

present in the roots of a univariate model, in particular when the signal-to-noise

ratio is small.

3 A simulation study

We consider now the IKE model (6) - (7)

x1,t = x1,t−1+µ t+ ε1,t (12)

x2,t = x2,t−1+µ t+0.2ε2,t (13)

µ t = 0.95µ t−1+0.15εu,t . (14)

where x1,t represents the real exchange rate and x2,t the real bond rate differential.

They share the same drift term but differs in terms of the short-term volatility with

x1,t fluctuating much more than x2,t reflecting typical behavior of real exchange

rates versus real interest rate differentials. The drift term µ t is highly persistent

and the signal-to-noise ratio between ε1,t and εu,t is 1.0/0.15. The model (12)-(14)

represents the baseline model. Since µ t is generally not directly observable we

have simulated three versions of the three-dimensional process x′t = [x1,t ,x2,t ,x3,t ]
which differs with respect to the choice of x3,t :

Case 1 : x
(1)
3,t = µ t

Case 2 : x
(2)
3,t = µ t+0.2ε4,t

Case 3 : x
(3)
3,t = µ t+ ε5,t

where ε i,t ∼ NID(0,σ2
i ), i= 1, ...,5.

Table 4 reports the simulated results of testing the hypotheses (r,s2) for r =
0,1,2,3 and s2 = p− r, p− r− 1, ...,0 based on the multivariate rank test in a

CVAR model. The latter is estimated for the three cases S1 = (x1,t ,x2,t ,x
(1)
3,t ), S2 =

(x1,t ,x2,t ,x
(2)
3,t ), S3 = (x1,t ,x2,t ,x

(3)
3,t ) using two lags. S1 represents the case when
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the drift term, µ t , is known, S2 when it can be measured with a small error, S3

when it is very imprecisely measured.

The results show generally that the multivariate I(2) test:

• rarely rejects cointegration, except when µ t is imprecisely measured (S3),

• seldom accepts two or three cointegration relations and no I(2) trends,

• rarely rejects I(2) when T = 50 or 100 provided µ t is either known (S1) or

measured with a small error (S2),

• rarely rejects the preferred hypothesis H(1,1) unless T is large(500) and µ t

is imprecisely measured (S3),

• frequently fails to reject the hypothesis H(1,0)when T is large and µ t is im-

precisely measured (S3), i.e. ρ̄ = 0.95 is found to be significantly different

from a unit root, and

• seldom accepts that the process can be stationary.

In general, the larger the sample the smaller the standard errors and the higher

the power of the test to discriminate between a root of 0.95 and 1.00. Thus, with

a sufficiently large sample size even a tiny deviation from unity will be found

significant even though the drift term µ t is highly persistent. Also, the more im-

precisely µ t is measured, the more difficult it is to detect the large near I(2) root

in the model.

Table 5 reports simulated univariate augmented Dickey-Fuller tests of the

hypothesis x1,t ∼ I(2), I(1), I(0) based on two respective three lags for T =
50,100,250 and 500. Each case has been replicated 5.000 times. The simula-

tions of x1,t are identical to the ones being analyzed in Table 3 above. The upper

part of the table reports the results for ρ = 1.0 and the lower part for ρ = 0.95.
The results show that the ADF test

• rejects I(2) in essentially all cases whether ρ = 1 or 0.95,

• fails to reject I(1) in the absolute majority of cases

Thus, the results suggest that the univariate Dickey-Fuller test will essentially

never detect a double unit root when the signal-to-noise ratio is small.
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Table 4: Simulated frequences of testing the cases (r = i and s2 = 3− i− j), i = 0,1,2,3 and

j = 3− i, ...,0

T = 50 T = 100 T = 250 T = 500

H(r,s2) S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

An I(2) process ρ = 1.0
H(0,3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

H(0,2) 0.1 0.3 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

H(0,1) 9.0 16.4 24.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0

H(0,0) 2.6 3.4 4.2 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0

H(1,2) 7.9 8.1 5.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0

H(1,1) 72.1 62.8 48.6 93.4 89.6 61.4 94.4 90.0 48.7 94.8 89.2 45.1

H(1,0) 0.9 1.5 4.0 0.6 1.6 9.3 0.7 1.5 11.8 0.4 1.6 12.3

H(2,1) 5.0 5.3 9.0 4.1 5.5 17.6 3.2 5.2 23.1 3.0 5.4 24.0

H(2,0) 1.6 1.4 3.3 1.2 2.4 8.7 1.2 2.7 13.7 1.3 2.8 15.4

H(3,0) 0.6 0.8 1.4 0.7 0.9 2.5 0.5 0.7 2.6 0.5 1.1 3.2

A near I(2) process ρ = 0.95

H(0,3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

H(0,2) 0.1 0.3 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

H(0,1) 9.5 17.2 26.2 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0

H(0,0) 5.1 6.2 6.5 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0

H(1,2) 7.7 7.6 4.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

H(1,1) 70.1 60.6 46.0 94.2 89.8 55.7 89.6 73.4 14.5 69.6 28.7 0.2

H(1,0) 1.0 2.2 7.0 0.7 3.9 26.7 4.0 18.6 67.3 22.5 63.5 82.8

H(2,1) 5.2 4.7 6.9 4.0 5.4 14.6 3.8 6.0 14.7 3.7 5.1 13.6

H(2,0) 0.8 0.8 1.5 0.8 0.6 2.1 2.1 1.6 2.9 3.8 2.4 2.9

H(3,0) 0.5 0.4 0.6 0.2 0.3 0.5 0.5 0.4 0.6 0.5 0.3 0.5
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Table 5: Simulated frequences for testing the order of integration based on the ADF

T = 50 T = 100 T = 250 T = 500

Lags 2 3 2 3 2 3 2 3

x1,t is an I(2) process

I(2) 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00

I(1) 0.94 0.83 0.95 0.95 0.91 0.91 0.76 0.76

I(0) 0.06 0.06 0.05 0.05 0.09 0.09 0.24 0.24

x1,t is an I(2) process (ρ = 0.95)
I(2) 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00

I(1) 0.94 0.83 0.95 0.95 0.95 0.95 0.95 0.95

I(0) 0.06 0.06 0.05 0.05 0.06 0.05 0.05 0.05

4 Empirical illustration: the dollar Dmk rate

This section illustrates the test procedures based on actual real exchange data for

USA and Germany for a sample from May 1975 to December 1998 comprising the

post Bretton Woods period of currency float. Section 4.1 first reports the univariate

Dickey-Fuller test to determine the order of integration of the real and nominal

exchange rate, US and German prices and long-term interest rates. Section 4.2

then reports the order of integration and cointegration based on the multivariate

trace test in a five-dimensional VAR model of x′t = [p1,t , p2,t ,s12,t ,b1,t ,b2,t ] where

p stands for prices, s for the nominal dollar-Dmk rate, b for long-term bond rates

and the subscript 1 stands for USA and 2 for Germany. Finally Section 4.3 reports

tests of the order of integration of the individual series within the multivariate

model.

4.1 Univariate Dickey-Fuller tests

Table 6 report the Dickey-Fuller univariate tests of I(1) based on (1), and of I(2)

based on (2) for the five variables as well as for the following transformations:

real exchange, p1,t− p2,t−s12,t , the interest rate differential, b1,t−b2,t and relative

prices, p1,t− p2,t . The I(1) test failed to reject the null of one unit root in all cases

except for the relative price for which ρ̂1 = −0.005 was found to be significant

due to a very small standard error. The I(2) version of the Dickey-Fuller test failed

to detect a second (near) unit root in almost all cases except for US long-term

bond rate and US prices (borderline). For both the nominal and real exchange

rate a double unit root was strongly rejected with almost identical test statistics

signifying the fact that the two variables have moved almost in parallel. That a

second large root was detected in the US bond rate is interesting and suggests that
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Table 6: Testing the order of integration with a Dickey-Fuller test

D-F tests of p1,t p2,t s12,t p1,t− p2,t

ρ̂ i τ-ratio ρ̂ i τ-ratio ρ̂ i τ-ratio ρ̂ i τ-ratio

I(1): ρ1 = 0 -0.002 -1.76 -0.01 -1.63 -0.01 -1.47 -0.005 -4.18

I(2): ρ2 = 0 -0.21 -3.95 -0.67 -13.1 -0.90 -11.9 -0.62 -12.2

qt = p1− p2− s12 b1,t b2,t b1,t−b2,t

ρ̂ i τ-ratio ρ̂ i τ-ratio ρ̂ i τ-ratio ρ̂ i τ-ratio

I(1): ρ1 = 0 -0.02 -1.85 -0.01 -0.43 -0.01 -1.75 -0.03 -2.75

I(2): ρ2 = 0 -0.91 -11.9 0.11 2.70 -0.66 -11.2 -1.03 -13.9

it has exhibited similar long swings as the real exchange rates while not exhibiting

the same short-term volatility. That the test borderline failed to reject a double unit

root in the US CPI is also interesting as consumer prices are not likely to be subject

to speculation in any significant manner and, hence, should not be affected by the

long swings drift term µ t . Therefore, a double root in US CPI prices suggests

that CPI shocks, while not necessary large, have been persistent over this period

and that the signal-to-noise ratio is rather high. This suggests that the power of

Dickey-Fuller test to detect a double unit root is reasonable provided the signal-

to-noise ratio is not too small.

4.2 Multivariate VAR based unit root tests

We estimate the VAR model (8) for x′t = [p1,t , p2,t ,s12,t ,b1,t ,b2,t ] augmented with

a few dummy variables, primarily to account for the German reunification as ex-

plained in Johansen et al. (2010) and in Juselius (2012).

Table 7 reports the I(2) trace tests as well as the characteristic roots of the

model. Since all versions for r = 0 were strongly rejected, they are not reported

in the table. The estimated characteristic roots in Table 7 suggest a total num-

ber of five large roots in the unrestricted VAR, four of which are almost exactly

on the unit circle, while the fifth, while large (0.88), is not equally close to one.

Juselius (2012) shows that the case (r= 2,s1= 1,s2= 2) is theoretically consistent

with an IKE-based model. The first acceptable choice is {r = 1,s1 = 3,s2 = 1}.
Both the preferred and the first acceptable case are consistent with five unit roots

in the characteristic polynomial. Jensen (2013) derives a Likelihood ratio test

for the choice between two non-nested models with equal number of unit roots,

LR{H (r−1,s1+2) |H (r,s1)} . The test of H (1,3) against H (2,1) gives a

test statistic of 13.6 > Q(.95) = 13.3. Since H (2,1) is consistent with our the-

oretical prior we continue with the case {r = 2,s1 = 1,s2 = 2} . The given this

www.economics-ejournal.org 18



conomics Discussion Paper

Table 7: Determination of the two rank indices

Rank Test Statistics

p− r r s2 = 5 s2 = 4 s2 = 3 s2 = 2 s2 = 1 s2 = 0

4 1 489.2
[0.00]

291.6
[0.00]

149.5
[0.00]

84.1
[0.328]

77.19
[0.137]

3 2 140.4
[0.00]

56.96
[0.93]

42.85
[0.93]

37.22
[0.77]

2 3 36.7
[0.94]

17.4
[1.00]

15.3
[0.96]

Six largest characteristic roots:

Unrestricted VAR 0.99 0.99 0.98 0.98 0.82 0.50

r = 2, p− r = 3 1.0 1.0 1.0 0.96 0.96 0.50

r = 2,s1 = 2,s2 = 1 1.0 1.0 1.0 1.0 0.96 0.51

r = 2,s1 = 1,s2 = 2 1.0 1.0 1.0 1.0 1.00 0.51

choice is 0.51. If, instead, we had chosen s2 = 0 (and treated the variables in the

model as I(1)), our model would contain two large roots with a modulus of 0.96

and any inference on stationarity would have been jeopardized.

To summarize: the case {r = 2,s1 = 1,s2 = 2} is supported by the data, is able

to account for all five large roots in the unrestricted VAR, and is consistent with

the economic prior.

4.3 Testing the order of integration of individual variables

As discussed above, the multivariate trace tests are informative about the order

of integration of the vector process but are generally uninformative about the

individual variables. It is, however, straightforward to formulate and test hypo-

theses of the order of integration of these variables given the choice of r,s1 and s2.

We first define τ =
{

β ,β⊥,1
}
. The hypothesis that a variable is I(1) in the I(2)

CVAR model can be formulated as a known vector b1 in τ = (b1,b1⊥ϕ) where

b1⊥ϕ defines the other vectors to be restricted to lie in the orthogonal space of

b1. For example b1 = [0,0,1,0,0,0,0] is a test of the hypothesis that the nominal

exchange rate, s12,t , is a unit vector in τ. If not rejected, it can be considered I(1),
otherwise I(2). See Johansen et al. (2006) for further details.

As prices generally are subject to linear deterministic (as well as stochastic)

trends we need to test the hypothesis that the price as well as the trend-adjusted

price is I(1). As discussed in Johansen et al. (2010) this can be formulated as a

test on β = (H1ϕ1,H2ϕ2) . For example, H ′1 =

[
1 0 0 0 0 0 0

0 0 0 0 0 0 1

]
would

be a test of trend-adjusted US price being I(1). As the VAR model was specified to
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Table 8: Testing hypotheses of I(1) versus I(2)

p1,t p2,t s12,t b1,t b2,t t91 t χ2(v) p− val

Is the price differential I(1)?
H1 β

′
1 1.0 -1.0 - - - - - 64.09 (4) 0.00

Is the nominal exchange rate I(1)?
H2 β

′
1 - - 1.0 - - - - 23.6 (4) 0.00

Is the US trend-adjusted price I(1)?
H3 β

′
1 1.0 - - - - * * 39.1 (3) 0.00

Is the German trend-adjusted price I(1)?
H4 β

′
1 - 1.0 - - - * * 48.02 (3) 0.00

Is the bond rate differential I(1)?
H8 β

′
1 - - - 1.0 -1.0 - - 11.2 (4) 0.02

Is the US bond rate I(1)?
H9 β

′
1 - - - 1.0 - - - 12.4 (4) 0.01

Is the German bond rate I(1)?
H10 β

′
1 - - - - 1.0 - - 5.5(4) 0.24

Is the real exchange rate I(1)?
H11 β

′
1 1.0 -1.0 -1.0 - - - - 10.4 (4) 0.03

allow for a change in the slope of the linear trend at the time of the reunification we

formulate the test to allow also for this possibility. Table 8 reports the Likelihood

Ratio test results. Except for the German bond rate, all hypotheses were strongly

rejected, indicating that the differenced processes are persistent enough to reject

the I(1) hypothesis in favor of an I(2)-type characterization. 6

5 Conclusions

Macro-financial data (nominal exchange rates, stock prices, etc.) are typically

characterized by very volatile short-run changes around smooth persistent trends.

In this case, the drift term in the changes of the process is a very persistent process

with a small variance compared to the large variance of the short-run changes, i.e.

the process is (near) I(2) with a small signal-to-noise ratio. A priori we expect

near-I(2) trends to be prevalent in asset prices strongly affected by financial spec-

ulation, such as exchange rates, stock prices, and commodity prices. However,

univariate Dickey-Fuller tests seldom find evidence of a double unit root in such

6 The inability to reject the I(1) hypothesis for the German bond rate with a p-value of 0.20

indicates that the German bond rate has moved in a slightly less persistent manner than the other

variables.
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data whereas multivariate trace tests frequently do. Our paper demonstrates by

simulations that this is often the case when the signal-to-noise-ratio is small.
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