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ABSTRACT

This paper reviews methods for summarizing and comparing wealth distributions. We show
that many of the tools commonly used to summarize income distributions can also be applied
to wealth distributions, albeit adapted in order to account for the distinctive features of wealth
distributions: zero and negative wealth values; spikes in density at or around zero; right-
skewness with long and sparse tails combined with non-trivial prevaence of extreme values.
[llustrations are provided using data for Finland.
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1. Introduction

Given data on one or more distributions of wealth, what methods should anaysts use to
describe and compare them? Perhaps a prior question is whether or not one needs any special
methods since there is, after al, a huge literature on summarizing income distributions,
measuring inequality, and so on. (Cowell (2000) is a recent survey.) In this paper, we argue
that many standard tools can be used, but there are particular features of wealth distributions
that make empirical andysis non-standard in severa ways.

Our target reader is an empirical researcher who is interested not only in describing
distributions in a relatively smple way, but also in making distributional comparisons that
have some normative interpretation. To put things another way, for the purposes of some
analysts, simple descriptions of distributions in terms of, say, average wealth and the shares of
total wealth held by the richest 1%, the richest 5%, and the richest 10%, are sufficient. Other
analysts may wish to make more sophisticated comparisons of wealth inequality based on the
complete distribution in the same way that is routine now in income inequality anaysis, and
wonder whether one can undertake comparisons of wealth data using standard tools such as
Lorenz curves, Gini coefficients, and so on.

We review issues and methods for the second type of analyst, beginning in Section 2
with a review of what is distinctive about wealth distributions in contrast to income
distributions. The next four sections consider methods per se. Estimation of distribution,
guantile, and density functions, is discussed in Section 3. Section 4 considers Lorenz curves,
not only the conventiona relative Lorenz and generalized Lorenz curves, but aso the absolute
Lorenz curve (Moyes 1987) which has some advantages in this context. In Section 5, we
discuss summary indices of inequality, including the Gini coefficient. Section 6 considers how
to summarize wealth distributions using parametric functiona forms, moving beyond the
commonly-used Pareto distribution to more general finite mixture models. Section 7 contains
concluding remarks. To maximize dissemination of the methods described, we illustrate them
using wedth data for Finland and provide the Stata scripts (‘do’ files) used to derive the
estimates and draw the graphs. The data are described in Appendix 1 and the scripts are set
out in Appendix 2.

We assume throughout that the wealth data to hand are unit record (* micro’) data— as
with dl the data included in the Luxembourg Wealth Study — and so do not consider methods
for summarizing wealth data in grouped (banded) form, as presented in publications such as



Inland Revenue (2003) for Britain, for example. We aso assume that any definitional issues
have been resolved, for example the appropriate unit of assessment, whether weath should be
equivalized, the precise definition of wealth itself and its components, the appropriate
deflators for cross-time and cross-national comparisons, and so on. Sierminska and Smeeding
(2005) review severa of these issues.

We focus on summaries of cross-sectional distributions, and do not consider methods
for analysis of the longitudinal dynamics of wealth distributions. (See Klevmarken (2004) for
a recent study of wealth dynamics) Nor do we examine other types of multivariate
distributions such as the joint distribution of income and wealth (cf. Mosler 2002). We give

no attention to issues of statistical inference.

2. What isdifferent about wealth distributions?

For our purposes, it shall be sufficient to distinguish between three dimensions of financial
wealth. They characterize the aspects of wedlth that are most interesting from a normative
perspective and that have been studied most:
1. grosswedth, G;, which isthe aggregate for each uniti = 1,..., N of itsfinancial assets (for
example cash, money in bank accounts, stocks, bonds, property, and so on);

2. debt, D;, which isthe (negative of the) aggregate debt held by each unit; and
3. net wedlth, W = G; — D;, which is gross wealth minus debt for each unit.

What are the distinctive features of these variables that analysis must take account of?
First, there is their support. Gross wealth may have a value of zero, and positive values above
that. Debt is negative wedth, and ranges from zero to large negative values. However it may
be summarized in the same manner as gross wedlth if we examine the distribution of the
negative of debt values. (The analogy is with the approach to the measurement of poverty that
analyzes the distribution of individual deprivation — typically assumed to be some function of
an income shortfall from the poverty line (cf. Atkinson 1987) — and less deprivation
corresponds to an improvement in social welfare.) Net wealth may legitimately take on
negétive, zero, and positive values, and the prevalence of negatives and zerosis relatively high
(see the illustrations below). Indeed, mean net wealth may be negative.

This situation is quite different from that for income. It is assumed in the formal
literature on income inequality and measurement that incomes can only take on positive

values. And although zero and negative values for income are found in survey data, they are



usualy treated as nuisance observations. The convention is to either omit them from the
analyss or to include them but censor them at zero (or a very small postive vaue). The
prevalence of such observations is low, so the choice between the alternatives is unlikely to
subgtantially affect a comparison of two distributions. Their exclusion alows one to use
standard inequality measurement tools. So, can one apply these tools to analyze digtributions
of wealth?

Amid et a. (1996) answer persuasively in the affirmative. They argue that it is
appropriate to continue to make the assumption of monotonicity when there are negative
values for the economic variable of interest. Suppose that aggregate socid welfare is a
function of the weath of each wealth-holding unit within the population. Then it is
appropriate to suppose that social welfare is increased by a increase in the wealth of any one
unit, ceteris paribus, regardless of whether the unit’'s wealth is initidly negative (or zero or
positive). In addition, there appears to be no strong reason why the principle of transfers
should not hold when there are negative vaues for the variable of intereq, i.e. that a mean-
preserving spread in wealth may be supposed to reduce socia welfare, even if the mean of the
wealth distribution is negative. The upshot is that non-crossing Lorenz curves may be given
their standard interpretations even if, as discussed below, the shapes and positions of the
curves are not always the ones that conventionally arise in the analysis of incomes.

A second digtinctive feature of weelth distributions concerns the concentration of
density mass. There is often a marked spike at zero because a relatively large fraction of the
population has no financial wealth or debt. (Similar spikes do not occur with income
distributions except, perhaps, in countries in which arelatively large fraction of the population
receives the same social assistance benefit.) Spikes such as these complicate the estimation of
frequency dendty functions (see below). In addition, it is often the case that there are many
units with very small positive wealth holdings (for example some cash, or alittle money in the
bank), or with a small amount of negative net wealth. Thus, in addition to there being a spike
exactly a zero, a substantial fraction of the density mass lies close to zero.

A third feature of wealth distributions is that they are right skewed with long and
sparse right-hand tails, as are income distributions. A related feature, also shared with income
distributions, is that there is a non-trivial prevalence of extreme values. These observations
may be ‘dirt’ — error-ridden values that contaminate the data in the sense of Cowell and
Victoria-Feser (1996) — or they may be genuine observations with high ‘leverage’, in the

sense of providing vauable information. In either case, estimates of distributional summary



statistics may be unduly sensitive to the inclusion of these observations. The precise impact
depends on both the measure used and the shape of the particular distribution in question. We
draw attention to the prevalence of such observations in our data, and explore the sensitivity
of some estimates to their exclusion.

Let us now turn to our data for Finland to illustrate the points made. The data are
derived from surveys of wealth in 1994 and 1998. The unit of assessment is the household
and dl wealth variables are expressed in ‘2000 international dollars (and are not equivalized
for differences in household size or composition). There are 5,210 households in the 1994
survey, and 3,893 in the 1998 survey. All calculations use the sampling weights produced by
the data provider. Appendix 1 describes the data in more detail. For a more detailed analysis
of them, see Jantti (2004). We consider the disgtributions of gross wedlth, debt, and net
wealth, as defined earlier, focusing for the most part on net wealth as it is that which raises the
mMOost new issues.

Table 1 provides a number of summary statistics. Consider first the prevaence of zero
and negative vaues. In both 1994 and 1998, just under 1¥% of households had no gross
wealth and fewer than 1% had no net wealth, but more than one third had no debt (35% in
1994, 39% in 1998). More than one in ten Finnish households had negative net wealth:
12.7% in 1994; 10.5% in 1998. The picture for income is quite different. Virtually none of
the same Finnish households had zero disposable income — just 0.1% in 1994 and 0% in
1998 (Jantti 2004). Over the four-year period, average (mean) debt rose dightly, but this was
offset a relatively large increase in mean gross wedlth; as a result, mean net wealth rose by
some 29%, from $65,066 to $83,046. By contrast, average disposable income increased by
15%.

Table 1 aso provides some information about the extreme values, reporting the four
highest values for each wealth variable, and also the four lowest values for net wealth. It is at
the top of range that there appears the most scope for extreme observations to influence
calculations: note the large differences between each of the four richest gross wealth and four
richest net wealth values.



Tablel
Wealth in Finland, 1994 and 1998: summary gatistics

1994 1998
Gross wealth (G)
% withG=0 14 13
% withG>0 98.6 98.7
Four largest values 732,380 1,573,263
786,716 1,646,121
1,217,829 1,270,825
1,873,044 2,476,660
Mean 82,408 101,720
Meanif G>0 83,614 103,064
Debt (D)
%withD =0 34.9 39.3
% withD >0 65.1 60.7
Four largest values 189,403 283,434
192,339 313,153
205,088 415,940
210,446 442,866
Mean 17,342 18,673
Meanif D>0 26,625 30,758
Net wealth (W)
% withW< 0 12.7 10.5
% withW=0 0.9 0.8
% with W> 0 86.4 88.8
Four smallest values -182,839 —385,016
-132,234 —219,123
—127,487 -176,739
-125,596 176,346
Four largest values 729,948 1,573,263
786,716 1,646,121
1,217,829 1,700,825
1,869,533 2,476,660
Mean 65,066 83,046
Mean if W> 0 77,177 95,422
Meanif W< 0 -12,684 -16,010

Note. All money values are expressed in * 2000 international dollars'.

Additional information about the long tails of the distribution of net wealth, and the
extreme values in particular, is provided by the boxplots shown in Figure 1. The top and
bottom of each dark rectangular area (the ‘box’) mark the upper and lower quartiles for a

given year; the median is marked by the horizontal line through the box. The ‘T’ above the



box and the ‘1" below it (the ‘whiskers’) show the ‘adjacent values', i.e. the upper quartile
plus 1.5 times the inter-quartile range and lower quartile minus 1.5 times the inter-quartile
range, respectively. There are additional extreme observations outsde the wide range spanned
by the adjacent vaues, shown by the circles above and below the whiskers, with apparently
greater prevalence and range in 1998 compared to 1994. One might suspect that these
changes were partly responsible for the increase in mean net wealth. Indeed if one trims the
richest 1% and poorest 1% of net wealth vaues, the estimated increase in the mean is 24%
rather than 29%. In Section 4, we examine how sensitive estimates of inequality indices are to
the exclusion of extreme values.

Figurel
Boxplotsfor net wealth in Finland, 1994 and 1998
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3. Digtribution and density functions

Jan Pen's (1972) Parade of Dwarfs and a few Giants is a famously evocative description of
the distribution function for income: the parade’s silhouette is the shape of the graph of p =
F(W) against W). The parade concept can be applied to wealth as well as income: the
cumulative distribution function for wealth and its inverse (the quantile function) is well-

defined, regardless of whether there are negative values for wealth or not.



Pen’s Parades for net wealth in Finland are shown in Figure 2. The pictures for 1994
and 1998 are similar in shape, except that the tall and the rea giants (those in the richest
tenth) became somewhat taller over the four year period. It is striking how tall the giants are
in both years, relative to the majority of other households. Observe too that is not until
between one tenth and one one fifth of the parade has passed by that we see a household with
revealing any height above ground (i.e. with positive net weelth). Asin Pen’'s own parade for
incomes, there are households in the net wealth parade that are upside down, but there are
more of them here.

Figure2
Pen’s Parades (CDFs) for net wealth in Finland, 1994 and 1998
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The quantiles of the gross wesalth, debt, and net wealth distributions are summarized
numerically in Table 2. The estimates reveal a similar trend for all three wealth variables, viz
distinct growth in real terms for the top percentiles combined with little change or even some
faling back for the smallest percentile. In other words, there was an anti-clockwise twist to
the shape of the wealth parade over the four year period. This suggedts that inequality grew, a

hypothesis that we examine in more detail below.



Table2
Wealth in Finland, 1994 and 1998: quantiles

1994 1998
Quantile (as % of median) Quantile (as % of median)
Gross wealth (G)
1 0 0) 0 0)
5 333 (0.5) 301 (0.4)
10 1,526 (2.1) 1,166 (1.4)
20 8,776 (12.2) 9,034 (10.9)
30 36,990 (51.2) 37,024 (44.7)
40 57,369 (79.5) 64,659 (78.1)
50 (median) 72,206 (100.0) 82,783 (100.0)
60 87,504 (121.2) 102,568 (123.9)
70 104,826 (145.2) 126,306 (152.6)
80 127,751 (176.9) 156,558 (189.1)
90 171,531 (237.6) 208,238 (251.5)
95 215,250 (298.1) 265,366 (320.6)
99 343,929 (476.3) 513,194 (620.0)
Debt (D)
1 0 0) 0 0)
5 0 0) 0 0)
10 0 0) 0 0)
20 0 0) 0 0)
30 0 0) 0 0)
40 579 (13.1) 266 (6.7)
50 (median) 4,416 (100.0) 3,986 (100.0)
60 9,977 (225.9) 9,920 (248.9)
70 18,606 (421.3) 20,939 (525.3)
80 34,357 (778.0) 35,429 (888.9)
90 54,838 (1,241.8) 56.687 (1,422.2)
95 72,705 (1,646.4) 79,716 (2000.0)
99 111,043 (2,514.6) 125,774 (3,155.6)
Net wealth (N)
1 -30,381 (-60.5) —44,287 (-71.3)
5 -8,998 (-17.9) —-6,430 (-10.4)
10 -1,857 (-3.7) —404 (-0.6)
20 2,069 (4.1 3,011 (4.9
30 13,857 (27.6) 18,600 (30.0
40 32,326 (64.3) 40,929 (65.9)
50 (median) 50,239 (100.0) 62,081 (100.0)
60 67,845 (135.0) 79,158 (127.5)
70 85,730 (170.6) 104,274 (167.96)
80 112,189 (223.3) 134,853 (217.22)
90 152,154 (302.9) 186,745 (300.8)
95 201,051 (400.2) 246,765 (397.5)
99 321,809 (640.6) 476,259 (767.2)

Note. All money values are expressed in * 2000 international dollars'.



The parade draws attention to the extremes of the distribution, but provides little
detail about the wedth of the dwarf households who comprise the vast mgority of the
population. The same may be said of the boxplots for net wealth shown in Figure 1. The
whiskers and the extreme observations beyond them dominate the picture, obscuring the
relatively large changes that occurred over much of the wealth range, and that are summarized
by the changes in percentiles shown in Table 2. The frequency density function is a device
which reverses this emphasis.

The smplest approach to density estimation is to use histograms: Figure 3 shows them
for Finnish net wealth in 1994 and 1998. The distinctive features of wealth distributions that
were cited earlier are clearly apparent, including the large spike at zero. There also appears to
be an additional mode close to zero in both years.! However, it is not obvious whether this is
an artefact of the histogram construction or whether, more generally, the nature of the picture

derived is sensitive to the number of bins used and their positioning along the support of the

distribution.
Figure3
Histogramsfor net wealth in Finland, 1994 and 1998
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! The economic explanation for the second mode is not clear. It might be accounted for by small amounts of cash
and money in the bank, such as the remainder of that month’s pay. The mode is also gpparent in the density for
gross wedlth, but not in the density for debt.



Kernel density estimation methods are designed to address these and other issues.” To
account for right skewness in digtributions combined with sparse tails, analysts typically either
(i) transform the variable of interest (for example taking logarithms), estimate the density of
the transformed variable, and then reverse the transformation to derive the density estimatesin
the original metric, or (ii) use an adaptive kernel density estimator, which uses wider
bandwidths in sparse regions of the support and narrower bandwidths in less sparse regions of
the support, or (iii) both of these methods. Application of method (i) is problematic with
wealth data because the prevaence of zero and negative values means that the standard
transformations are not defined for all observations. Basing estimation on the subset of
observations with positive values may omit a significant part of the story to be told.
Application of method (ii) may address issues associated with having negative values, but it
also does not solve the concomitant issue of the spike at zero. By their very nature, kernel
density estimators smooth data within a window of observation, and hence inevitably transfer
some density mass from a (genuine) spike to neighbouring values.

The statistical literature suggests some transformations that can be applied to variables
that can take values along the whole rea line. For instance, Burbidge et a. (1988) use the
inverse hyperbolic sne and generalized Box-Cox transformations.® Although these
transformations were developed for use in a regression context in order to render residuals
more normally distributed, they could also be applied in a density estimation framework. We
leave this as atopic for future research, and rely here on method (ii).

It turns out that kernel density estimates for the Finnish net wealth distribution convey
a smilar picture to the corresponding histograms (Figure 3). Figure 4 shows estimates
derived using an adaptive kernd density estimator; similar pictures arose for kernd density
estimates based on a fixed-bandwidth (the conventional ‘optimal’ bandwidth). The estimates
point to a large concentration of density mass at zero and a very sharp falling away in mass at
values below that. There is a second mode relatively close to zero, but again concentration
declines fairly rapidly at values above this. The main change between 1994 and 1998 was a
reduction in mass a each of the modes, shifted rightwards to the range between about
$200,000 and $500,000.

2 See Cowell et al. (1996), for example, for anon-technical review of kernel density estimation, and applications
to UK income datafor the 1980s.
® We are grateful to Arthur Kennickell for pointing us to the inverse hyperbolic sine transformation.
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Figure4
Density estimatesfor net wealth in Finland, 1994 and 1998
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Note. Adaptive kernel density estimator, Epanechnikov kernel, 1000 data points.

4. Lorenz curves

The most common method of summarizing wealth distributions is in terms of the shares in
total wealth of the richest X% where x equals 1, 5, or 10, for example. This is equivalent to
reporting selected ordinates of the Lorenz curve (in this case, the shares of the poorest 99%,
95% and 90% respectively). What if we wish summarize the Lorenz curve as a whole,
including the wealth shares of the poorest households whose wealth may be zero or negative?

To examine the nature of the Lorenz curve in this case, it is instructive to note that its
dope at each p = F(W) is equal to Wiy where uy is mean wealth.* Consider first the case
when mean wealth is postive. Then, starting from the poorest unit, the Lorenz curve has a
negative slope, lying below the horizontal axis, over the range of negative weelth values. Then
the curve is horizontal, corresponding to the population subgroup that has zero wealth, and

has the conventional positive slope over the remaining units (with positive wealth values). The

11



Lorenz curve takes on an even more non-standard shape in the case when u < 0. Starting
from the poorest unit, the curve has a positive dope, and may lie above the 45° line
representing perfect equality. The Lorenz curve is horizontal where wealth is zero and then
has a negative slope over the remaining wealth units. As Amid et a. (1996, p. S65) put it,
relative to the conventional picture of a Lorenz curve, the curve in this case appears to be
‘flipped verticaly'.

Lorenz curves for Finnish net wealth are shown in Figure 5 (thisis a case in which uw
> 0). The curve hangs beneath the horizontal axis up to aimost the poorest 40% of the
population in both years: in fact, the share in total net wedth of the least wealthy 40% was
only 2.2% in 1994 and 2.9% in 1999. In contrast, the wealthiest tenth received more than one
third of total wealthin 1994 (35.5%) and almost four-tenthsin 1998 (38.2%).

Taking the Lorenz curves as a whole, we see that the 1998 curve lies dightly above
the 1994 curve up until a population share of about 65% and lies below the 1994 curve
thereafter. What conclusions can be drawn from this configuration (issues of statistical
inference aside)? Here we recall the discussion of Section 2, in particular the arguments of
Amidl et a. (1996). The important and practica conclusion is that, as long as oneis prepared
to accept the assumptions of monotonicity and the principle of transfers in situations when
there are negative wedth vaues, the conventional interpretations aso apply. In particular, if
two Lorenz curves do not cross, then the curve further away from the line of perfect equality
represents a distribution with greater inequality according to all standard relative inequality
measures (Atkinson 1970; Foster 1985).° In addition, with a single-crossing configuration as
in Figure 5, then the 1998 distribution is more unequal than the 1994 distribution according
to all standard transfer-sensitive relative inequality measures if and only if the coefficient of
variation for the 1998 distribution is greater than that for the 1994 distribution (Shorrocks
and Foster 1987). This was in fact the case (see below). A comparison of the Lorenz curves
for disposable income suggests that income inequality increased unambiguoudy between
1994 and 1998: the two curves do not intersect (Jantti 2004).

4 The next two sections draw heavily on Amiel et a. (1996, p. S65).

® By standard inequality measures, we mean measures satisfying the strong principle of transfers, anonymity, and
population replication. Relative inequality measures are those that are invariant to equi-proporti onate changesin
al wealth values. Absolute inequaity measures (consi dered bel ow) are invariant to equal absolute increments (or
decrements) in all wealth values.

12



Figure5
Lorenz curvesfor net wealth in Finland, 1994 and 1998
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In the case when uw = 0, then the Lorenz curve is not well-defined, and if 4w = O,
estimates may be numerically unstable. Alternative representationa devices are required. One
approach is to consider socid welfare rather than (relative) inequality, i.e. one summarizes
distributions using Generalized Lorenz curves (Shorrocks 1983). The Generdized Lorenz
curve — the Lorenz curve scaded up by mean wedlth at each point — is well-defined for al
values of wealth along the real line. Its slope a each wealth value W is equa to Witself. The
curve is therefore negatively sloped as long as wedlth is negative, horizontal where wedlth is
zero, and positively sloped over the units with positive wealth. The right-hand intercept of the
curveis uw, and so lies below the horizontal axisif uw < 0.

Generdized Lorenz curves for Finnish net wealth are shown in Figure 6. The 1998
curve lies just below the 1994 curve initially — when both lie below the horizontal axis — but
then crosses it and lies distinctly above it thereafter, reflecting the rise in wealth in the upper
regions of the distribution. Because the curves cross, there is no unambiguous socia welfare

ordering.® The Figure emphasizes how reaching a conclusion about welfare change requires

® Because the 1998 curve crosses the 1994 curve from below rather than above, transfer-sensitivity
considerations are not applicable.
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the trading-off of the substantial gains for the wealthiest against the lower wealth for the
lowest percentiles.

Figure6
Generalized Lorenz curves for net wealth in Finland, 1994 and 1998
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An alternative graphica device is the Absolute Lorenz curve (Moyes 1987),
configurations of which are closely related to orderings of distributions according to absolute
inequality measures. The abscissa of the Absolute Lorenz curve is the cumulative population
share p multiplied by average wealth among the poorest p of the population minus population
average wealth.” The dope of the curve a each p = F(W) is W — uw. Aslong as uy > 0, then
the curve has the shape of atear drop hanging below the horizontal axis defined by p (the line
of perfect absolute inequality), connected to the axisat p = 0 and p = 1. Non-standard shapes
arise if mean wedth is sufficiently negative, in which case the curve is ‘flipped vertically’
relative to the case when wy, > 0, lying above the horizontal axis.

Absolute Lorenz curves for Finnish net wealth are shown in Figure 7. The 1998 curve

clearly lies below the 1994 curve over the complete range of wealth values, in which case we

" Cf. the abscissa of the standard Lorenz curve which equals p times average wealth among the poorest p divided
by population average wedth.
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may conclude that the 1998 distribution was more unequa than the 1994 distribution

according to all standard absolute inequality measures (Moyes 1987).

Absolute Lorenz curves for net wealth in Finland, 1994 and 1998
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One cautionary note is in order concerning the use of Absolute and Generalized
Lorenz curves for comparisons of wesalth distributions. Their ordinates are not unit-free (as
for the standard Lorenz curve), but in the units of wealth. Comparisons may therefore be

sengitive to the choice of the price deflator and exchange rate.

5. Inequality indices

AsAmidl et d. (1996) have pointed out,
many standard aggregative inequality measures are undefined for negative
incomes, and a substantial class of these measures will not work even for zero
incomes, in the sense that they are either undefined, or are unbounded, or
atain their maximum value a any income distribution that has one or more
zero incomes. (1996, p. S65.)
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Most measures are built up from evaluations of individua wealth values, W,.. For Generalized
Entropy inequality measures, the individual evauation is based on a power function, W,
where ¢ may take any real vaue; for Atkinson (1970) inequality measures, the evauation
function is W, where ¢ > 0. If wedlth is negative, then the evaluation functions and hence
measures are well-defined only if > 1 and ¢ > 1.

The good news, therefore, is that various standard inequality measures can be
calculated; the bad news, as Amid et al. (1996) remind us, is that these measures are ones
that are particularly sensitive to extreme values. For example, inequality comparisons based
on even the coefficient of variation — ordinally equivalent to the Generalized Entropy measure
with 6 = 2 — may be subgtantially affected by the inclusion or exclusion of just one very high
value. Descriptive indices such as the ratio of the 90" percentile to the 10" percentile
(p90/p10) may be problematic. They are undefined if the percentile in the numerator of the
calculation is equa to zero, and problems of interpretation arise in cases where the percentile
in numerator is negative and that in the numerator is positive. Both situations are possible for
net wealth variables.

The Gini coefficient is a measure that is well-defined when wedalth values are
negative.® Because the Gini is a function of absolute differences between al possible pairs of
wealth values (suitably normalized), it does not matter that some values may be negative or
zero. Observe, however, that when there are negative values, estimates of the Gini may be
greater than one (cf. the upper bound of one in the standard case). The reason is that the
Lorenz curve lies below the horizonta axis in this case (see above), and so twice the area
between the curve and the ray of perfect equality (equal to the Gini) may be greater than one.
For this situation, Chen et a. (1982) proposed arenormalization of the usud Gini formulato
ensure that the index value was bounded between zero and one.

The discussion in this section so far has assumed that mean wealth is postive. If the
mean is negative, then estimates of indices such as the coefficient of variation and Gini will
also be negative (cf. the lower bound of zero in the standard case). A mean-preserving spread
of wedth in this case leads to smdler values of the inequality index, as in the standard case,

except that here smaller means more negative rather than less positive.

8 In fact, s0 too are al members of the generalized Gini class of indices (Donaldson and Weymark 1980,
Yitzhaki 1983). Other less commonly used indices that are also well-defined are the relative mean deviation and
the Pietraratio (the former isequd to half the | atter).
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If mean wealth equals zero, then relative inequality measures such as the coefficient of
variation and the Gini are not well-defined and, if the mean is close to zero, they are well-
defined but estimates may be numerical unstable. Absolute inequality indices may be used in
this case: for example, the absolute Gini (the sandard Gini times the mean) or the Kolm
(1976) class of indices. Each measure in the latter family is built up from evauations of
individual wealth values using evaluation functions of form exp(—xW), and these are well-
defined for negative, zero, or positive values of W.

The utility of the absolute indices is limited by two factors. First, as with Absolute and
Generdized Lorenz curves, the measures are not unit-free. It becomes particularly important
to have an appropriate price deflator and exchange rate when making comparisons across
time or countries. Second, the Kolm measures are relatively unfamiliar, which means that
gaining afeel for the implications of differencesin key sensitivity parameters is more difficult.
In this regard, Atkinson and Brandolini (2004) helpfully pointed out that

the marginal value of income accruing to person i is equal to xy;, which
provides a guide to interpreting the value of x in the context of a specific
choice of units for income. If x were to equal the reciprocal of mean income,
then the elagticity of the marginal vauation of income would be equal to 1 at
the mean (and equal to 0.5 at haf the mean income). (2004, pp. 6-7.)
If the mean is used to benchmark the x parameter in this way, there remains the issue that the
mean changes over time or differs between countries, so a choice has to be made about which
mean.’

Estimates of the degree of inequality in gross wealth, debt, and net wedlth in Finland
are shown in Table 3. We report estimates for both relative and absolute inequality measures.
Of the former, we report the p90/p10 percentile ratio, the relative mean deviation, haf the
coefficient of variation (CV) squared, and the Gini index. The absolute indices are the
absolute Gini index and three Kolm absolute indices. For the latter, we use three values of «:
the reciprocal of the 1994 mean, the reciproca of the 1998 mean, and a smple average of
those two parameter vaues. The Gini and half the CV squared are standard relative measures
(cf footnote 6) and the absolute Gini and Kolm indices are each standard absolute inequality

measures.
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Table3
Wealth inequality in Finland, 1994 and 1998:
relative and absolute indices

1994 1998
Gross wealth (G)
Percentile ratio, p90/p10 1124 178.6
Relative mean deviation 0.336 0.360
Half of CV squared 0.466 0.678
Gini 0.476 0.511
Absolute Gini 39,227 51,990
Kolm (a) 23,932 37,461
Kolm (b) 20,535 32,891
Kolm (c) 22,275 35,248
Debt (D)
Percentile ratio, p90/p10 - -
Relative mean deviation 0.563 0.574
Half of CV squared 1.141 1.306
Gini 0.705 0.717
Absolute Gini 12,219 13,396
Kolm (a) 9,350 10,648
Kolm (b) 9,031 10,314
Kolm (c) 9,194 10,485
Net wealth (W)
Percentile ratio, p90/p10 -81.9 -462.4
Relative mean deviation 0.424 0.424
Half of CV squared 0.736 0.971
Gini 0.591 0.599
Absolute Gini 38,439 49,714
Kolm (a) 28,037 45,574
Kolm (b) 23,461 37,064
Kolm (c) 25,794 41,096

Notes. For the Kolm indices, parameter « isthe reciproca of the 1994
mean in case (@), the reciprocal of the 1998 mean in case (b), and a
simple average of these two parameter valuesin case (c). The p90/p10
indices are undefined for Debt (p10 = 0). All money values are
expressed in ‘2000 international dollars .

The Lorenz curve configurations shown in Figures 5 and 7 showed that household net
wealth inequality increased between 1994 and 1998 in Finland according to all standard

® Cf. the Atkinson (1970) indices of relative inequality for which the marginal elasticity of income is a constant,
equal to the inequality aversion parameter ¢.
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inequality measures, and the estimates confirm this, while also showing how much inequality
increased by. For example, the Gini coefficient for net wealth increased from 0.591 to 0.599,
a relatively small change of just over 1 percent. This can be compared to an increase of
around 19% in the Gini for disposable income, from 0.212 to 0.252 (Jantti 2004). The
increase registered by half the CV squared was much larger, ailmost one third, from 0.736 to
0.971.

Observe that the relative mean deviation was unchanged (to 4 d.p.), which highlights
the fact that the Lorenz ordering result referred to standard inequality measures. (These
measures do not include the relative mean deviation: it is insengitive to transfers on the same
side of the mean.) All the absolute inequality indices for net wedth increased substantially
between 1994 and 1998, by 59% according to Kolm index (c), for example. The top two
panels of Table 3 show that there was also an increase in the inequality of gross wealth and of
debt according to all the indices calculated.

Are the inequality estimates sensitive to the inclusion of extreme observations? To
explore this we recalculated estimates first excluding the largest observation in each of the net
wealth digtributions and, second, excluding the top and bottom percentile groups: see Table
4.

Table4
Sensitivity of inequality indicesto different treatments of
extreme values. Finland, 1994 and 1998

Y5 CV? Gini
All obs (asin Table 3)
1994 0.736 0.591
1998 0.971 0.599
% increase 31.9 14
Drop richest one
1994 0.701 0.590
1998 0.920 0.597
% increase 31.2 1.2
Trimtop and bottom 1%
1994 0.526 0.553
1998 0.548 0.549
% increase 4.3 -0.7

In the first case, the net wealth Gini coefficient for 1994 was 0.590 and haf the CV
squared was 0.701; for 1998 the estimates were 0.597 and 0.920, respectively. Thus removal
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of the largest observation had little effect on the Gini, or on its change over time. For half the
CV sguared, the impact was larger (as expected): the new estimates for each year were about
5% smaller than their counterparts in Table 4, and the change between 1994 and 1998 was
24% (compared to 32%). Trimming had a much more substantial impact on the estimates. In
this case, the estimated Ginis were 0.553 for 1994 and 0.549 for 1998, and the estimates of
half the CV sguared were 0.526 and 0.548, implying a decline in the former index of —0.7%
and an increase in the latter one of only 4.3%. It seems that the robustness of the inequality
indices in the sense analyzed by Cowell and Victoria-Feser (1996) may be an even more

important issue for wealth distributions than for the income distributions that they studied.

6. Fitting parametric size distributions

In the analysis of income distributions, analysts have found it useful to complement the non-
parametric methods discussed so far with distributional summaries based on estimates of
specific parametric functional forms. ‘some standard functiona forms claim attention, not
only for their suitability in modelling some features of many empirica income distributions,
but also because of their role as equilibrium distributions in economic processes (Cowell
2000, p. 145). Fitting of parametric functional forms has also been common for wedlth
distributions. The most commonly-used has been the single-parameter Pareto distribution,
which provides a description of the density for wealth values above some lower bound, W >
0. See, for example, Atkinson and Harrison (1978, especialy Appendices IV and 1X) and
Kleiber and Kotz (2003, chapter 3).

If one focuses on the distribution amongst those with wesalth greater than W, there are
simple expressions for the moments which depend only on the Pareto parameter « and W.
Moreover, the expressions for most common inequality measures depend only on «, so that
the (inverse of) « may also be consdered as an inequality measure. However, the apparent
atractions of the Pareto digtribution evaporate somewhat when one considers its implications
for the distribution of wedth amongst the population as a whole, i.e. including units with
wedlth less than W,. Atkinson and Harrison (1978, Appendix 1V) show how expressions for
the Gini and the relative mean deviation depend on assumptions about the size of ‘excluded
population’ (the proportion of the population with wedth below W) and their average

wealth. In particular & no longer has such a straightforward interpretation. For example, an
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increase in oo may be associated with an increase in inequality according to the Gini, but a
decrease according to the coefficient of variation.

This suggests fitting of parametric models for the distribution of weelth as a whole.
The income distribution literature suggests a large number of candidates, including two-
parameter models such as the log-normal and gamma, three-parameter distributions such as
the Singh-Maddala and Dagum |, and four-parameter distributions such as the generalized
beta distributions of the first and second kind. See the comprehensive survey by Kleiber and
Kotz (2003). The problem for the wealth researcher is that virtually al of these digtributions
are defined for variables taking only strictly positive values. If the functional forms are
defined also for values of zero, the densty typically has zero mass at that point, and so cannot
capture any spike at that point. One could of course fit a model to the positive observations
only, but that may omit a significant part of the story.

The number of models for wealth with the real line as support appears to be small.
One is the three-parameter l1og-normal. Compared to the usua log-normal distribution, there
is an additional and estimable parameter characterizing a threshold below which the
probability of observing wedlth is zero. However, there are problems in fitting the model by
maximum likelihood methods — the likelihood may be unbounded (Kleiber and Kotz, 2003,
p. 122). In any case, the log-normal shape may not be suitable for wealth distributions.

More promising aternatives are provided by finite mixture models, in which the
overall distribution function is a population-share-weighted sum of distribution functions
characterising wealth over different regions of the support, including negative and zero values
as well as positive ones.® The four-parameter Dagum Type |1 distribution (Kleiber and Kotz,
2003, pp. 219-220) has a parameter that characterizes a (discrete mass) probability that a
unit has a wesalth value equal to zero. Positive wealth values in this model are described by
the three-parameter Dagum | (Burr Type 3) distribution, which has a CDF given by F(W) = [1
+ (b/W)?™, where parameters a, b, p > 0. The b is a scale parameter; a and p are shape
parameters. Dagum (1990) extended his mode to incorporate a third mixture component: an
exponential distribution to describe negative values (F(W) = exp(6W), W< 0, 8 > 0).

We provide estimates for Finland of this ‘Dagum I1I’ model, partly motivated by the
fact that there are no applications other than Dagum’s (1990) one to Italian wealth data for
1977, 1980, and 1984, that we are aware of. Maximum likelihood estimates for the 1994 and
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1998 Finnish net wealth distributions are shown in Table 5. All the parameters were very
precisaly estimated. The mixture proportions (the 1) correspond exactly to the sample
estimates shown in Table 1, and the increase in the scale parameter (b) between 1994 and
1998 reflects the increase in average net weath over the period. However, the other
parameters (a, p, ¢), characterizing distributional shape, are intrinsicaly difficult to interpret,

as the effect of changing one of them is contingent on the values of the other parameters.

Table5
Estimates of ‘Dagum I11” finite mixture model
for net wealth in Finland, 1994 and 1998
1994 1998
Estimate (th Estimate (ItD

a 3.916 (30.0) 3.428 (32.8)
b 159,355 (52.4) 189,723 (43.9)
p 0.168 (23.9) 0.182 (26.2)
0 (x10% 0.788  (25.7) 0.625 (54.2)
21 (fraction with W< 0) 0.127 (27.5) 0.105 (28.1)
12 (fraction with W = 0) 0.009 (7.0) 0.008 (6.6)
13 (fraction with W > 0) 0.864 (181.9) 0.888 (229.4)
Log-likelihood —48,616 —64,045
Mean (predicted) 62,843 78,230
Mean (sample) 65,066 83,046
Median (predicted) 43,050 50,575
Median (sample) 50,239 62,081
Gini (predicted) 0.560 0.572
Gini (sample) 0.591 0.599

Notes. Maximum likelihood estimates of finite mixture model described
in text. [t| is the absolute value of the asymptotic t-ratio. All money
vaues are expressed in * 2000 international dollars' .

It is easiest to interpret parameter estimates, and to assess overal goodness of fit, by
comparing predicted values for key distributional summary measures with their sample
counterparts. Figure 8 compares the fitted and sample estimates of the CDF for net wealth in
1998 (the picture for 1994 was similar), and suggests that the model fits well. However, what
one sees partly depends on the lens used. Figure 9 shows the fitted probability density
function and, athough it captures the shape at zero and negative values relatively well

10 Finite mixture models have also been fitted to income distributions: see for example Paap and van Dijk (1998).
The models assume that incomes take on positive values only.
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(compared to Figures 3 or 4), it is too convex to the origin over positive wedth values. This
pattern is reflected in the other summary statistics shown in the bottom pane of Table 5. For
example, the 1998 sample mean is under-estimated by between 5% and 6% and the 1998
Gini coefficient is under-estimated by 3% to 4%." Interestingly, the differences between
predicted and sample values are much the same in proportionate terms as the corresponding
ones reported by Dagum (1990), who referred to the ‘exceptiondly good’ fit of his model
(1990, p. 55).

Figure8
CDFsfor net wealth in Finland, 1998: empirical ver susfitted

= F(W)
N »
\

Y

T T T T
0 500000 1000000 1500000 2000000
1994 Net wealth, W

—— CDF (empirical)
——— CDF (fitted)

Note. Fitted CDF derived from estimates of ‘Dagum |11’ finite mixture model: see

text.

™ The predicted mean conditional on net wealth being negative was almost exactly the same as the sample
conditiona mean. On the other hand, the predicted mean conditional on wealth being positive under-estimated
its sample counterpart.
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Figure9
Fitted PDF for net wealth in Finland, 1998
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Finite mixture models such as the Dagum 111 one deserve further attention in future,
combined with explorations of aternative distributions to characterize positive wealth values
(e.g. Singh-Maddala or generalized Beta distributions). A feature of these models is that each
of the parameters may be made a function of covariates summarizing household
characteristics.”” For example, we have estimated versions of the Dagum Il model in which
parameters were specified as functions of the age of the household head (see Appendix 2).
Estimation of ‘conditiona’ wedth distributions such as these provides a route to
decomposition analysis of the sources of trends in wealth distributions over time or

differences between countries, complementary to that based on kernel density estimates that

2 The generalized linear regression model of Burbidge et a. (1988), applied to Canadian net wedlth data, in
effect dlowed only the distribution mean to depend on covariates. |.e. there was heterogeneity in scale but not in
shape.
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was popularized by DiNardo et a. (1996). For an application of parametric models in this

manner, but to income, see Biewen and Jenkins (2005).

7. Concluding remarks

This review has argued that many of the tools developed for summarizing income
distributions can also be straightforwardly applied to wedth distributions, albeit with some
care because of the distinctive features of wealth data. These features are the relatively high
prevalence of zero values and aso, for net wealth variables, the relatively high prevalence of
negative values. With our empirical illustrations based on Finnish data, we hope to have
shown how standard methods may be applied or adapted to summarize and compare
distributions of wedalth. There are a number of issues that we have not addressed, including
the treatment of extreme values and satistical inference — issues that are of relevance to

analyss of income as well as wealth.
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Appendix 1. Wealth survey data for Finland

Statistics Finland collected broadly comparable wealth data using surveys in 1987, 1988,
1994 and 1998. The first two surveys were a panedl, but used a somewhat different definition
of wedth than the two later surveys, which is why we use data for 1994 and 1998 in this
paper. The wedalth surveys were administered in conjunction with the Income Distribution
Surveys of the relevant year, so they contain high-quality data on income and other variables
as well. The net sample sizes were 5210 and 3893 in 1994 and 1998, reflecting response
rates of 75.2% and 65.6%. The public use file that Statistics Finland provides for researchers
contains sampling weights that have been calibrated to correct for non-response with respect
to a few margina distributions, including that of taxable income. We use these calibrated
weightsin all our empirical illustrations.

The wealth data were collected by interviewing the household head and asking
detailed questions about the holding of different categories wealth and debts. For instance, for
publicly listed companies, respondents were asked to provide alist with the number of shares,
rather then the value of their portfolios on the day of the interview. This list was then
evaluated using the stock exchange prices at the end of the year. Similarly, respondents were
asked to list the automobiles and other vehicles that they owned, rather than estimate their
value. Market prices for used vehicles of the type and age owned were used to vaue the
vehicles.

The definition of wealth used by Statistics Finland is fairly standard, but lacks one
subgtantial component, namely pension wealth (except for voluntary pension insurance). This
is explained, in part, by the fact that Finland has a defined benefit, rather than a defined
contribution pension system, which means that pension income becomes known only at
retirement. In their survey of weath inequality, Davies and Shorrocks (2000) defined pension
wealth to belong to ‘augmented weath'. While inclusion of some estimate of future pension
wealth would lead to higher estimated average wedth and lower wealth inequality, this
omission is unimportant for the purposes of this paper.

For ease of comparison with other sources, we have converted survey values
expressed in 1994 and 1998 Finnish Markkas to Euros using the cost-of-living index
(http://www.stat.fi) and the official Markka-Euro conversion rate of 5.946. To convert Euros
to ‘internationa dollars’, we then used the OECD’ s PPP exchange rate for Finland in 2000,
i.e. 0.979 (http://www.oecd.org/dataoecd/61/54/18598754.pdf).
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Appendix 2. Practicing what we preach: Stata codeto derive the estimates and draw
thefigures

The scripts that follow were used to derive the estimates and graphs that are reported in the
paper. We circulate the files in order to maximize the dissemination of the methods that we
have discussed, observing that Stata (http://www.stata.com) is widely used by socid scientists

of many disciplines a both introductory and advanced levels. In other words, much
distributional analysis can be undertaken using readily-available statistical software.

The scripts consist of five Stata do files (an0l1.do, an02.do, an03.do, an03.do,
an04.do, an05.do) paralleling the sections of the paper. An up-to-date verson of Stata 8.2 is
required to run the scripts without modification. All programs used are either built in to Stata
or are in the public domain. Use the Stata findit command to find and ingtall the public
domain programs (with the exception of dagumfit which is available from SPJ).

an0l.do (means; proportionsof negative, zero, positive; extreme values, ec.)

version 8

clear

set more off

capture log close

cd d:/home/stephenj/myprojects/lws/finland

log using anOl.log, replace

EE R R RS EEEEEEEEEEES anolvdo RS RS R SR RS RS SRS SRR R SRR EEEEEEEEEEEESE]
*

* Analysis for paper: Finland, 1994, 1998
*

* Section 1: means, proportions of negative, zero, positive, strange obs etc
*

LR R R RS R R R R R R R R R R R R R R R R R R SRS R RS E R E R R R R RS R RS

use finland
**k%kxkkx gummary stats for each wealth vble, by year ****&&kkkddkxdktdhhshshrdx
* mean and extreme values

bysort year: su gross debt net [aw=wgt], de

* proportions with neg, zero, positive etc

bysort year: tab gcat [aw = wgt]
bysort year: tab dcat [aw = wgt]
bysort year: tab ncat [aw = wgt]

* conditional means

=3
3

bysort year: su gross [aw = wgt] if gcat
bysort year: su debt [aw = wgt] if dcat
bysort year: su net [aw wgt] 1if ncat
bysort year: su net [aw wgt] 1if ncat

= == 3
= == 1

* more about extreme values from boxplots

graph box gross, over (year) saving(boxplot gross, replace)
graph export boxplot_gross.eps, replace

graph box debt, over (year) saving(boxplot_debt, replace)
graph export boxplot_debt.eps, replace

graph box net, over(year) saving(boxplot_ net, replace)
graph export boxplot_net.eps, replace

* Means if trim bottom and top 1% of observations
_pctile gross [aw

local gpl94 = r(rl)
local gp9994 = r(r2)

wgt] 1if year == 1, p(1 99)
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_pctile debt [aw = wgt] if year == 1, p(1 99)
local dpl94 = r(rl)
local dp9994 = r(r2)

_pctile net [aw = wgt] if year == 1, p(1 99)
local npl9%4 = r(rl)
local np9994 = r(r2)

_pctile gross [aw = wgt] if year == 2, p(1 99)
local gpl2 = r(rl)
local gp992 = r(r2)

_pctile debt [aw = wgt] if year == 2, p(1 99)
local dpl2 = r(rl)
local dp992 = r(r2)
_pctile net [aw = wgt] if year == 2, p(1 99)

local npl2 = r(rl)
local np992 = r(r2)

su gross [aw = wgt] 1if gross >= “gpl94' & gross <= ~gp9994' & year =

[}
NIl

su gross [aw = wgt] if gross >= “gpl2' & gross <= ~gp992' & year =

su debt [aw = wgt] if debt >= “dpl94' & debt <= ~dp9994' & year == 1
su debt [aw = wgt] if debt >= “dpl94' & debt <= ~dp992' & year == 2
su net [aw = wgt] if net >= "npl94' & gross <= "np9994' & year 1

su net [aw = wgt] if net >= "npl2' & gross <= "np992' & year == 2

log close

an02.do (CDF/parades, quantiles, density estimation)

version 8

clear

set more off

capture log close

cd d:/home/stephenj/myprojects/lws/finland

log using an02.log, replace

EE R R R RS EEE RS EEEEEES anoz .dO RS RS R SR RS RS SRS RS R R SRR EEEEEEEEEEEESE]
*

* Analysis for paper, Finland 1994, 1998
*

* Section 2: CDF/parades, tables of quantiles, density estimations
*
AhkA A A Ak Ak A A Ak A A Ak kA Ak Ak kkkkhkkkkhk ok kkkhhk ok hkkhkhkhkkkhkhkhkhkhkhkhhkhkhkhkhhkhkhkhkhkhkhkhkhkhhhhhkkkhdkdk

use finland

kkkkkk quantiles *kkkkkkkkkkkkk

bys year: su gross debt net [aw=wgt], de

sumdist gross [aw=wgt] if year == 1, n(10)
sumdist gross [aw=wgt] if year == 2, n(10)
sumdist debt [aw=wgt] if year == 1, n(10)
sumdist debt [aw=wgt] if year 2, n(10)

sumdist net [aw=wgt] if year == 1, n(10)
sumdist net [aw=wgt] if year == 2

*kkkkkkkkkx (CDFg **dkdkkdhkkdkhkhk

bys year: cumul gross [aw = wgt], gen(cdf gross)
lab var cdf_gross “Cumulative population share, p”
sort year cdf_gross

graph twoway (line gross cdf gross if year ==1) /17
(line gross cdf gross if year ==2) /17
, legend(label (1 "1994") label(2 "1998") /17
region(lstyle(none)) ) saving(cdf_gross, replace)

graph export cdf gross.eps, replace

bys year: cumul debt [aw = wgt], gen(cdf_debt)
lab var cdf_debt “Cumulative population share, p”
sort year cdf_ debt

graph twoway (line debt cdf debt if year ==1) /17
(line debt cdf_debt if year ==2) /17
, legend(label (1 "1994") label(2 "1998") /17
region(lstyle(none)) ) saving(cdf_debt, replace)

graph export cdf_debt.eps, replace

bys year: cumul net [aw = wgt], gen(cdf_ net)
lab var cdf _net “Cumulative population share, p”
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sort year cdf_ net

graph twoway (line net cdf net if year ==1) /17
(line net cdf net if year ==2) /17
, legend(label (1 "1994") label(2 "1998") ///
region(lstyle(none)) ) saving(cdf net, replace)

graph export cdf net.eps, replace
bys year: su cdf* [aw=wgt]

*kxkkkkkkk*x higtograms, 100 bing ***kkkkkkkkkkkkkkkkkk

hist gross, by(year) bin(100) saving(hist_gross, replace)
graph export hist_gross.eps, replace

hist debt, by(year) bin(100) saving(hist_debt, replace)
graph export hist_debt.eps, replace

hist net, by(year) bin(100) saving(hist_net, replace)
graph export hist _net.eps, replace

*kxkkkkkx*x kernel density estimates *****kkxkxxx*
*

* all use Epanechnikov kernel,

* bandwidth = 0.9*m/ (nobs)”.2 where m = min( sqrt(var), (interquartile range)/1.349
*
graph twoway (kdensity gross [aw=wgt] if year == 1, n(1000) ) ///

(kdensity gross [aw=wgt] if year == 2, n(1000)) ///

, ytitle(Density) xtitle("Gross wealth") ///

legend (label (1 "1994") label(2 "1998") ///

region(lstyle(none)) ) saving(kdensity gross, replace)

graph export kdensity gross.eps, replace

graph twoway (kdensity debt [aw=wgt] if year == 1, n(1000)) ///
(kdensity debt [aw=wgt] if year == 2, n(1000)) ///
, ytitle(Density) xtitle("Debt") ///
legend(label (1 "1994") label(2 "1998") /17
region(lstyle(none)) ) saving(kdensity debt, replace)

graph export kdensity debt.eps, replace

graph twoway (kdensity net [aw=wgt] if year == 1, n(1000)) ///
(kdensity net [aw=wgt] if year == 2, n(1000)) ///
, ytitle(Density) xtitle("Net wealth") ///
legend (label (1 "1994") label(2 "1998") ///
region(lstyle(none)) ) saving(kdensity net, replace)

graph export kdensity net.eps, replace

**kkkxkkk*k*x gdaptive kernel density estimates ****kxkkkxkkx
*

* all use Epanechnikov kernel
*

akdensity gross [aw=wgt] if year == 1, n(1000) gen(gl fgl) nograph
akdensity gross [aw=wgt] if year == 2, n(1000) gen(g2 fg2) nograph
graph twoway (line fgl gl) (line fg2 g2) ///
, legend(label (1 "1994") label(2 "1998") /17
region(lstyle(none)) ) saving(akdensity gross, replace)

graph export akdensity gross.eps, replace

akdensity debt [aw=wgt] if year == 1, n(1000) gen(dl f£dl) nograph
akdensity debt [aw=wgt] if year == 2, n(1000) gen(d2 f£d2) nograph
graph twoway (line fdl d1) (line fd2 d2) ///
, legend(label (1 "1994") label(2 "1998") ///
region(lstyle(none)) ) saving(akdensity debt, replace)

graph export akdensity debt.eps, replace

akdensity net [aw=wgt] 1f year == 1, n(1000) gen(nl fnl) nograph
akdensity net [aw=wgt] 1f year == 2, n(1000) gen(n2 fn2) nograph
graph twoway (line fnl nl) (line fn2 n2) ///
, legend(label (1 "1994") label(2 "1998") /17
region(lstyle(none)) ) saving(akdensity net, replace)

graph export akdensity net.eps, replace

log close

an03.do (Lorenz curves of varioustypes)

version 8

clear

set more off

capture log close

cd d:/home/stephenj/myprojects/lws/finland

log using an03.log, replace

EE R R R RS R EEEEEEEE S an03 _do RS RS SR RS RS SRS RS SRS R EEEEEEEEEEEESE]
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Analysis for paper, Finland 1994, 1998

L I

Section 3: Lorenz curves of various types
*

AhkA A A Ak Ak Ak Ak A Ak kA Ak Ak kkkkhkh ok kkkhkhkkkkhkhkk ko hkhkhkhkkhhkhkhkhkhkhhkhkhkhkhhkhkhkhkhkhkdkhkhhkhhhhkhkhkdkdkx
use finland

A xkkkkkkkx** Relative LOTYENZ CUIVES **kxkkkkkkhkhhkkxhhhhhk*

glcurve gross [aw=wgt] , by(year) split pvar(pgross) glvar(rlcg) lorenz nograph
lab var rlcg_ 1 "1994"

lab var rlcg_2 "1998"

lab var pgross “Cumulative population share, p”

sort pgross

graph twoway (line rlcg_1 pgross, yaxis(1l 2) ) ///
(line rlcg_2 pgross, yaxis(l 2) ) ///
(function y = x, range(0 1) yaxis(1 2) ) ///
, aspect (1) xtitle(“Cumulative population share, p”) ///
ytitle ("Lorenz ordinate (gross wealth)", axis (1)) ytitle(" ", axis(2)) ///
legend (label (1 "1994") label(2 "1998") label (3 "Equality") ///
region(lstyle(none)) ) saving(rlc_gross, replace)

graph export rlc_gross.eps, replace
su rlcg* [aw=wgt], de

glcurve debt [aw=wgt] , by(year) split pvar (pdebt) glvar(rlcd) lorenz nograph
lab var rlcd 1 "1994"

lab var rlcd 2 "1998"

lab var pdebt "Cumulative population share"

sort pdebt

graph twoway (line rlcd_1 pdebt, yaxis(1l 2) ) ///
(line rlcd_2 pdebt, yaxis(1l 2) ) ///
(function y = x, range(0 1) yaxis(1l 2) ) ///
, aspect (1) xtitle(“Cumulative population share, p”)
ytitle("Lorenz ordinate (debt)", axis(1l)) ytitle(" ", axis(2)) ///
legend (label (1 "1994") label(2 "1998") label(3 "Equality") /17
region(lstyle(none)) ) saving(rlc_debt, replace)

graph export rlc_debt.eps, replace
su rlcd* [aw=wgt], de

glcurve net [aw=wgt] , by(year) split pvar(pnet) glvar(rlcn) lorenz nograph
lab var rlcn 1 "1994"

lab var rlcn 2 "1998"

lab var pnet "Cumulative population share"

sort pnet

graph twoway (line rlcn_ 1 pnet, yaxis(l 2) ) /17
(line rlcn_ 2 pnet, yaxis(1l 2) ) ///
(function y = x, range(0 1) yaxis(1l 2) ) ///
, aspect (1) xtitle(“Cumulative population share, p”) ///
ylabel (-.2(.2)1, axis (1)) ylabel(-.2(.2)1, axis(2)) ///
ytitle ("Lorenz ordinate (net wealth)", axis (1)) ytitle(" ", axis(2)) ///
legend(label (1 "1994") label(2 "1998") label(3 "Equality") /17
region(lstyle(none)) ) saving(rlc_net, replace)

graph export rlc_net.eps, replace
su rlcn* [aw=wgt], de

capture drop pgross pdebt pnet
*xkkkxkkkx** Generalized LOrenz CUrvVES **xxkkxkkkkxkkkkxkkkkkkkkk

glcurve gross [aw=wgt] , by(year) split pvar(pgross) glvar(glcg) nograph
lab var glcg_ 1 "1994"

lab var glcg_2 "1998"

lab var pgross "Cumulative population share"

sort pgross

graph twoway (line glcg_1 pgross, yaxis(1l 2) ) ///
(line glcg_2 pgross, yaxis(l 2) ) ///
, aspect (1) xtitle(“Cumulative population share, p”) ///
ytitle ("Generalized Lorenz ordinate (gross wealth)", axis(1l)) ytitle(" ", axis(2)) ///
legend(label (1 "1994") label(2 "1998") /17
region(lstyle(none)) ) saving(glc_gross, replace)

graph export glc_gross.eps, replace
su glcg* [aw=wgt], de

glcurve debt [aw=wgt] , by(year) split pvar (pdebt) glvar(glcd) nograph
lab var glcd 1 "1994"

lab var glcd 2 "1998"

lab var pdebt "Cumulative population share"

sort pdebt

graph twoway (line glcd_1 pdebt, yaxis(1l 2) ) ///
(line glcd_2 pdebt, yaxis(1l 2) ) /17
, aspect (1) xtitle(“Cumulative population share, p”) ///
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ytitle("Generalized Lorenz ordinate (debt)", axis (1)) ytitle(" ",
legend (label (1 "1994") label(2 "1998") ///
region(lstyle(none)) ) saving(glc_debt, replace)

graph export glc_debt.eps, replace

su gled* [aw=wgt], de

glcurve net [aw=wgt] , by(year) split pvar(pnet) glvar(glcn) nograph

lab var glcn 1 "1994"

lab var glcn_2 "1998"

lab var pnet "Cumulative population share"

sort pnet

graph twoway (line glcn_1 pnet, yaxis(1l 2) ) ///
(line glcn_2 pnet, yaxis(1l 2) ) /17
, aspect (1) xtitle(“Cumulative population share, p”) ///

ytitle ("Generalized Lorenz ordinate (net wealth)", axis (1)) ytitle(" ", axis(2))

legend (label (1 "1994") label(2 "1998") ///
region(lstyle(none)) ) saving(glc_net, replace)
graph export glc_net.eps, replace
su glcn* [aw=wgt], de

capture drop pgross pdebt pnet

*xkkkkkkkx** Abgsolute LOTYENz CUIVES ***kxkkkkkkkkhhkkxkhkkhh*

glcurve gross [aw=wgt] , by(year) split pvar(pgross) glvar(alcg) nograph
su gross [aw=wgt] if year == 1, meanonly

replace alcg 1 = alcg_ 1 - pgross*r(mean)

su gross [aw=wgt] if year == 2, meanonly

replace alcg 2 = alcg_ 2 - pgross*r(mean)

lab var alcg_1 "1994"

lab var alcg_2 "1998"

lab var pgross "Cumulative population share"

sort pgross

graph twoway (line alcg 1 pgross, yaxis(l 2) ) /17
(line alcg_2 pgross, yaxis(l 2) ) ///
, aspect (1) xtitle(“Cumulative population share, p”) ///

axis(2)

/17

ytitle ("Absolute Lorenz ordinate (gross wealth)", axis(1l)) ytitle(" ", axis(2)

legend (label (1 "1994") label(2 "1998") ///
region(lstyle(none)) ) saving(alc_gross, replace)
graph export alc_gross.eps, replace
su alcg* [aw=wgt], de

glcurve debt [aw=wgt] , by(year) split pvar (pdebt) glvar(alcd) nograph

su debt [aw=wgt] if year == 1, meanonly

replace alcd 1 = alcd 1 - pdebt*r(mean)

su debt [aw=wgt] if year == 2, meanonly

replace alcd 2 = alcd 2 - pdebt*r(mean)

lab var alcd 1 "1994"

lab var alcd 2 "1998"

lab var pdebt "Cumulative population share"

sort pdebt

graph twoway (line alcd_1 pdebt, yaxis(1l 2) ) ///
(line alcd_2 pdebt, yaxis(1l 2) ) ///
, aspect(l) xtitle(“Cumulative population share, p”) ///

ytitle ("Absolute Lorenz ordinate (debt)", axis(1l)) ytitle(" ", axis(2))

legend(label (1 "1994") label(2 "1998") ///
region(lstyle(none)) ) saving(alc_debt, replace)
graph export alc_debt.eps, replace
su aled* [aw=wgt], de

glcurve net [aw=wgt] , by (year) split pvar(pnet) glvar (alcn) nograph

su net [aw=wgt] if year == 1, meanonly

replace alcn 1 = alcn_1 - pnet*r(mean)

su net [aw=wgt] if year == 2, meanonly

replace alcn 2 = alcn_2 - pnet*r(mean)

lab var alcn 1 "1994"

lab var alcn_2 "1998"

lab var pnet "Cumulative population share"

sort pnet

graph twoway (line alcn_1 pnet, yaxis(1l 2) ) ///
(line alcn_2 pnet, yaxis(1l 2) ) ///
, aspect(l) xtitle(“Cumulative population share, p”) ///
ytitle ("Absolute Lorenz ordinate (net wealth)", axis(1l)) ytitle("
legend (label (1 "1994") label(2 "1998") ///
region(lstyle(none)) ) saving(alc_net, replace)

graph export alc_net.eps, replace

su alcn* [aw=wgt], de

* What if trim bottom and top 1% of observations of net wealth

capture drop pgross pdebt pnet alcn*
_pctile net [aw = wgt] if year == 1, p(1 99)

/17

", axis(2))



replace net = . if year == 1 & ( net < r(rl) | net > r(r2) )

_pctile net [aw = wgt] if year == 2, p(1 99)

replace net = . if year == 2 & ( net < r(rl) | net > r(r2) )

glcurve net [aw=wgt] , by(year) split pvar(pnet) glvar (alcn) nograph
su net [aw=wgt] if year == 1, meanonly

replace alcn 1 = alcn_1 - pnet*r(mean)

su net [aw=wgt] if year == 2, meanonly

replace alcn 2 = alcn_2 - pnet*r(mean)

lab var alcn_ 1 "1994"

lab var alcn_2 "1998"

lab var pnet "Cumulative population share"
sort pnet

graph twoway (line alcn_1 pnet, yaxis(1l 2) ) ///
(line alcn_2 pnet, yaxis(1l 2) ) ///
, aspect (1) xtitle(“Cumulative population share, p”) ///
ytitle ("Absolute Lorenz ordinate (net wealth)", axis(1l)) ytitle(" ", axis(2)) ///
legend(label (1 "1994") label(2 "1998") /17
region(lstyle(none)) ) saving(alc_net_trimmed, replace)

graph export alc_net trimmed.eps, replace
su alcn* [aw=wgt], de

log close

an04.do (Inequality indices, relative and absolute)

version 8

clear

set more off

capture log close

cd d:/home/stephenj/myprojects/lws/finland

log using an04.log, replace

khkkkhkhkkkkhkhkhkhkkkkkk*x an04'do IR E RS R SR RS RS SRS SRS R E R EEEEEEEEEEEESE]
*

* Analysis for paper, Finland, 1994, 1998
*

* Section 4: Summary indices (allowing for zeros and negatives!)
*
AhkA A A Ak Ak Ak Ak A Ak Ak kA Ak khhkkkhkh ok kkkhkhkkk ko hk ok ok hkhkhkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkhhhkkhkdkkx

use finland

* relative mean deviation = .5*mean* SUM f i * abs(w_i - mean)
cap program drop rmd
program define rmd

quietly {
tempvar fi
su ~1' [aw=wgt] if year == "2!

local sumw = r(sum_w)
local mean = r(mean)

ge “fi' = wgt/r(sum_w) if year == "2

egen rmd_"1'"2' = sum("fi'*abs( 1'-"mean')) if year == "2
replace rmd_"1'"2' = .5*rmd_"1'"2'/“mean' if year == "2
sum rmd_"1'"2', meanonly

local rmd = r (max)

noi di "RMD for " "“1'" " in year " “2' " = " “rmd'

end

* Kolm indices: (1/k)*1ln[ SUM fi * exp(k*(mean - w_i)) 1, k > 0
* Three values of k:

* kl: inverse of 1994 mean
* k2: inverse of 1998 mean
* k3: simple average of k1l and k2
quietly {
su gross [aw=wgt] if year == 1
global mgl = r(mean)
su gross [aw=wgt] if year == 2

global mg2 = r(mean)

global grosskl = 1/$mgl
global grossk2 = 1/$mg2

global grossk3 = .5*($grosskl + $grossk2)
su debt [aw=wgt] if year == 1

global mdl = r(mean)

su debt [aw=wgt] if year == 2

global md2 = r(mean)

global debtkl = 1/$mdl
global debtk2 = 1/$md2
global debtk3 .5* (Sdebtkl + $debtk2



su net [aw=wgt] if year == 1
global mnl = r(mean)
su net [aw=wgt] if year == 2
global mn2 = r(mean)

global netkl = 1/$mnl

global netk2 = 1/$mn2

global netk3 = .5*($netkl + $netk2)
1
cap program drop kolm
program define kolm

quietly {
tempvar fi
su "1' [aw=wgt] if year == "2!

local sumw = r(sum_w)
local mean = r(mean)

ge “fi' = wgt/r(sum w) if year == "2
egen kolml ~1'°2' = sum(“fi'*exp(${ 1'kl}* ("mean'-"1'))) if year == 2!
replace kolml_~1'"2' = (1/${ 1'k1})*1n(kolml_~1'"2') if year == ~2°'

sum kolml_ ~1'"2', meanonly
local kolm = r(max)

noi di "Kolml for "™ " 1'"™ " in year " “2' " = " “kolm' " ; kl = " ${ 1'k1'}
egen kolm2 ~1'°2' = sum( fi'*exp(${ 1'k2'}*("mean'-"1'))) if year == "2
replace kolm2_~1'"2' = (1/${ 1'k2'})*1ln(kolm2_"1'"2') if year == 2

sum kolm2_ ~1'"2', meanonly
local kolm = r(max)

noi di "Kolm2 for " " 1'" " in year " “2' " = " “kolm' " ; k2 = " ${ 1'k2'}
egen kolm3_~1'"2' = sum(“fi'*exp(${ 1'k3'}*("mean'-"1'))) if year == 2!
replace kolm3_~1'"2' = (1/${ 1'k3'})*1ln(kolm3_"1'"2') if year == 2

sum kolm3_"1'"2', meanonly
local kolm = r(max)

noi di "Kolm3 for " "“1'" " in year " “2' " = " “kolm' " ; k3 = " ${ 1'k3'}
end }
*hkkkkkkkk*k Relative indices: Glnl, GE(z), RMD **%%x*xkkxkkkkkkxxk*
inegdec0 gross [aw=wgt] if year == 1

local gini gl = $S_gini
local i2_gl = $S_i2
rmd gross 1

inegdec0 gross [aw=wgt] if year == 2
local gini_g2 = $S_gini

local i2_g2 = $S_i2

rmd gross 2

inegdecO debt [aw=wgt] if year == 1
local gini_dl = $S_gini

local i2_dl = $S_i2

rmd debt 1

inegdec0O debt [aw=wgt] if year == 2
local gini_d2 = $S_gini

local i2_d2 = $S_i2

rmd debt 2

inegdecO0 net [aw=wgt] if year == 1
local gini nl = $S_gini

local i2 nl = $S_i2

rmd net 1

inegdecO net [aw=wgt] if year ==
local gini n2 = $S_gini

local i2_n2 = $S_i2

rmd net 2

* % change in inequality indices

di "% change in Gini (gross) = " 100*(°gini_g2' - “gini _gl1')/“gini gil'
di "% change in GE(2) (gross) = " 100*(°i2 g2' - “i2 gl')/ gini_gl'

di "% change in Gini (debt) = " 100*(“gini_d2' - “gini_di1')/“gini_di‘
di "% change in GE(2) (debt) = " 100*(°i2_d2' - ~i2_di')/"i2_d1'

di "% change in Gini (net) = " 100*("gini n2' - “gini nl')/“gini nl'
di "% change in GE(2) (net) = " 100*(i2_n2' - “i2 nl')/ i2_nl'

*kkkxkkkkx* Abpsolute indices: absolute Gini, Kolm X 3 ***xxkkxsk+



di "Absolute Gini for gross in year 1 = " “gini gl'*$mgl
di " (mean for gross in year 1 = " $Smgl ")"
kolm gross 1

di "Absolute Gini for gross in year 2 = " “gini g2'*3$Smg2
di " (mean for gross in year 2 = " $mg2 ")"
kolm gross 2

di "Absolute Gini for debt in year 1 = " “gini_dl'*s$mdl
di " (mean for debt in year 1 = " $Smdl ")"
kolm debt 1

di "Absolute Gini for debt in year 2 = " “gini_d2'*$md2
di " (mean for debt in year 2 = " $md2 ")"
kolm debt 2

di "Absolute Gini for net in year 1 = " “gini_nl'*$mnl
di " (mean for net in year 1 = " $mnl ")"
kolm net 1

di "Absolute Gini for net in year 2 = " “gini_n2'*$mn2
di " (mean for net in year 2 = " $mn2 ")"
kolm net 2

***%xx*% Effect of extreme values on Gini, GE(2) for net **x*kkkkkkkkkxkk

qui sum net [aw=wgt] 1if year == 1, de
local max = r(max)

local pl = r(pl)

local p99 = r(p99)

* drop max

inegdec0 net [aw=wgt] if year
local i2_1m = $S_i2

local gini_1m = $S_gini

* trim top and bottom 1%
inegdec0 net [aw=wgt] if year
local i2_1t = $S_i2

local gini_1t = $S_gini

I
[
[

& net < “max'

I
[
[y

& net >= “pl' & net <= “p99’

qui sum net [aw=wgt] 1if year == 2, de
local max = r(max)

local pl = r(pl)

local p99 = r(p99)

* drop max

inegdecO net [aw=wgt] if year == & net < “max'

local i2_2m = $S_i2

local gini_2m = $S_gini

* trim top and bottom 1%

inegdecO0 net [aw=wgt] if year == 2 & net >= “pl' & net <= "p99’'
local i2_2t = $S_i2

local gini_2t = $S_gini

di "% change in Gini (excluding max obs) = " 100* (“gini_2m' - “gini 1m')/“gini_1m'

di "% change in Gini (trimming top and bottom 1%) = " 100*(“gini_2t' - “gini 1t')/“gini_ 1t
di "% change in GE(2) (excluding max obs) = " 100*(“i2_2m' - “i2_1m')/ i2_2m'

di "% change in GE(2) (trimming top and bottom 1%) = " 100*(~i2_2t' - ~i2_1t')/~i2_1t'

log close

an05.do (Dagum I11 finite mixture model)

version 8

clear

set more off

capture log close

cd d:/home/stephenj/myprojects/lws/finland

log using an05.log, replace

EE R R R RS EEEESEEEEEES anOS_dO IR E RS R SR RS RS SRS SRR R SRR EEEEEEEEEEEESE]
* Dagum3 model fitting for net wealth only

* Finland 1994, 1998

use finland, clear

LR EEEEEEEEEEEEEEEE RS NI EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE RS
keep if year == 1

// net wealth variable into global macro
global w "net"

* gummarize net wealth vble
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su Sw [aw=wgt], de

ineqgdecO Sw [aw=wgt]

sumdist $w [aw=wgt]

cumul Sw [aw=wgt], gen(ecdf)

**%k*kx*** preliminary fitting of separate models to get starting values ****x**kx**

* Proportions with neg, zero, pos (trickier to get since need weighted proportion)
sum net [aw=wgt], meanonly

local sumw = r(sum_w)

sum $w [aw=wgt] if $w <0, meanonly

local bl = r(sum_w)/ sumw'

di "Proportion with value < 0 = " “bl'
sum $w [aw=wgt] if Sw == 0, meanonly
local b2 = r(sum_w)/ sumw'

di "Proportion with value = 0 = " “b2'
local b3 =1 - “bl' - “b2!'

di "Proportion with value > 0 = " “Db3'

* fit Dagum model to positive values
dagumfit $w [aw=wgt] , stats

* e(ba) e(bb) e(bp) contain the estimates
local a = e(ba)

di n \a| n

local b = e(bb)

di n \b| n

local p = e (bp)

di n \p| n

di "Predicted mean among positives: " “e(mean)'

su sw [aw=wgt] if Sw > O

* fit exponential model to negative values
cap program drop dagumm_ 11
program define dagumm_ 11
version 8.2
args 1nf t
quietly replace “1nf' = In("t') + ("t' * Sw) if Sw < O
end
ml model 1f dagumm_ 11 (t: “tvar') [aw=wgt] 1f $w < 0O
* ml check
ml search
ml maximize
mat b = e(b)
local t = bl[1,1]
di l|\t|l|
di "Predicted mean among negatives: " -1/7t!'
su sSw [aw=wgt] if $Sw < O

*kxkkkkkkkk*x fit general (mixture) model ****kkkkkkkkkkkkkkkkkkk

capture program drop dagum3_11
program define dagum3_11
version 8.2
args 1Inf a b p bl b2 t

quietly
replace “1Inf' = 1In( bl') + 1In(t') + (Tt' * Sw) if Sw < O
replace “1lnf' = 1In("b2') if Sw == 0
replace “1nf' = 1In( 1 - “bl' - “b2' ) ///
+ In(Ta') + 1In("p') + “a'*1In("b") ///
- (Ta'+1)*1n(Sw) /17
- (Cp'+1) *1n(1+("b'/$w) “(Ta')) ///
if Sw > 0
1
end
ml model 1f dagum3_11 (a: “avar') (b: “bvar') (p: “pvar') ///
(bl: “blvar') (b2: “b2var') (t: “tvar') [aw=wgt]

ml init a: _cons = “a' b: _cons = “b' p:_cons = "p' bl: cons = “bl' ///
b2: cons = "b2' t:_cons = "t'

ml search

ml maximize

mat list e(b)

mat b = e(b)

local a = b[1,1]
local b = b[1,2]
local p = bl1,3]

local bl = bl[1,4]
local b2 = bl[1,5]
local t = bl1,6]
nlcom b3: 1 - [bl]_cons - [b2] cons, post
mat ¢ =

local b3 = c[1,1]
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ge cdf = “bl' * exp(~t'*Sw) if Sw <=0

replace cdf = “bl' + “b2' if Sw == 0
replace cdf = “bl' + “b2! ///
+ "b3' * ( (1 + (Cb'/sw)*ta')"-("p') ) if Sw > 0

su cdf ecdf, de

su $w [aw=wgt]
su Sw [aw=wgt] if $Sw < O
su sSw [aw=wgt] if $Sw > 0

local m = -"b1l'/ t' + “b3'*( “b'*exp(lngamma (1-
1/7a'))*exp(lngamma ("p'+1l/"a')) /exp (lngamma ("p')) )

di "Mean = " “m!'
di "Mean among negatives: " -1/7t!'

di "Mean among positives: " “b'*exp(lngamma (1-
1/7a'))*exp(lngamma ("p'+1/~a')) /exp (lngamma (“p'))

local gini = 1 + 3*(“bl')%*2/(2* t'* m') /17

- (2% (b3') " 2% p'* b ///

*exp (lngamma(1l-1/"a') ) *exp (lngamma ("p'+1l/ a')) /exp (lngamma (1+°p'))) ///

* (1 - .5%( exp(lngamma (“p')) ///

* exp (lngamma (2*"p'+1/"a'))/ (exp(lngamma (2*“p')) *exp (lngamma ("p'+1/~a'))) ))/ m'
di "Gini = " “gini'

ge pdfl = “bl'*exp( t'*Sw)*(Sw < 0)

ge pdf2 = “b2' * (Sw == 0)

ge pdf3 = “b3' * (Ta'*"p' * (b'/$w)""a'/$w) * (1 + ("b'/$w)"Ta')” -("p'+1l) if $w > O
replace pdf3 = 0 if $Sw <= 0

ge pdf = pdfl + pdf2 + pdf3

su pdf* [aw=wgt]

* predicted and sample median

list $w ecdf if abs(ecdf - .5) < 0.001
list $w cdf if abs(cdf - .5) < 0.001

lab var cdf "CDF (fitted)"
lab var ecdf "CDF (empirical)"
lab var pdf "PDF (fitted)"

graph twoway (line ecdf $w) (line cdf $w) ///
, xtitle("1994 Net wealth, W") ytitle("p = F(W)") /17
legend( region(lstyle(none)) ) saving(cdf net_ fitted 94, replace)

graph export cdf net fitted 94.eps, replace

graph twoway (line pdf S$w) /17
, xtitle("1994 Net wealth, W") ytitle("Density, £ (W)") ///
legend( region(lstyle(none)) ) saving(pdf net fitted 94, replace)

graph export pdf net fitted 94.eps, replace
* example of general (mixture) model with covariates *

ml model 1f dagum3_11 (a: age agesq) (b: age agesq) (p: age agesq) ///
(bl: age agesq) (b2: age agesq) (t: age agesq) [aw=wgt] , tech(bhhh nr)
ml init a: cons = "a' b:_cons = "b' p: cons = "p' bl: cons = "bl' b2: cons = “b2' t:_cons =
o
ml search
ml maximize, difficult

Ihhkkkkhkhkhkkhdkhdxdkhkkhkhhkddx 19098 *hkkkhkhkdkhkdhhhhhhhhhhdhhhhhhddhrdhhkdkrk

use finland, clear
keep if year ==

// net wealth variable into global macro
global w "net"

* gummarize net wealth vble
su Sw [aw=wgt], de

inegdec0 $w [aw=wgt]

sumdist $w [aw=wgt]

cumul Sw [aw=wgt], gen (ecdf)

**%k*kx*%** preliminary fitting of separate models to get starting values ****x*kkx**

* Proportions with neg, zero, pos (trickier to get since need weighted proportion)
sum net [aw=wgt], meanonly

local sumw = r(sum_w)

sum $w [aw=wgt] if $w <0, meanonly

local bl = r(sum_w)/ sumw'

di "Proportion with value < 0 = " “bl'



sum $w [aw=wgt] if $Sw == 0, meanonly

local b2 = r(sum_w)/ sumw'
di "Proportion with value = 0 = " “b2'
local b3 = 1 - “bl' - “b2'
di "Proportion with value > 0 = " “Db3'

* fit Dagum model to positive values
dagumfit $w [aw=wgt], stats

* e(ba) e(bb) e(bp) contain the estimates
local a = e(ba)

di n \a| n

local b = e(bb)

di n \b| n

local p = e(bp)

di n \p| n

di "Predicted mean among positives: " “e(mean)'

su Sw [aw=wgt] if $Sw > 0

* fit exponential model to negative values
cap program drop dagumm_ 11
program define dagumm_ 11
version 8.2
args 1lnf t
quietly replace “1nf' = In("t') + ("t' * Sw) if Sw < O
end
ml model 1f dagumm_11 (t: “tvar') [aw=wgt] if $Sw < O
ml search
ml maximize
mat b = e(b)
local t = bl[1,1]
di l|\t|l|

di "Predicted mean among negatives: " -1/7t!'
su sw [aw=wgt] if Sw < O

*kxkkkkkkkk*x fit general (mixture) model ****kkkkkkkkkkkkkkkkkkkx

capture program drop dagum3_11
program define dagum3_11
version 8.2
args 1Inf a b p bl b2 t

quietly
replace “1Inf' = 1In("b1l') + In("t') + ("t' * sw) if Sw < O
replace “1lnf' = 1In("b2') if Sw == 0
replace “1lnf' = 1In( 1 - “bl' - “b2' ) ///
+ In(Ta') + 1In("p') + Ta'*1In("b") ///
- (Ta'+l) *1n($w) /17
- (Cp'+1) *1n(1+("b'/$w) “(Ta')) /17
if Sw > 0
}
end
ml model 1f dagum3_11 (a: “avar') (b: “bvar') (p: “pvar') (bl: “blvar') ///
(b2: “b2var') (t: “tvar') [aw=wgt], tech(bhhh)
ml init a: cons = “a' b:_cons = “b' p: cons = "p' bl: cons = "bl' b2: cons = “b2' t:_cons =
o
ml search
ml maximize
mat list e(b)
mat b = e(b)
local a = bl[1,1]
local b = bl[1,2]
local p = b[1,3]
local bl = b[1,4]
local b2 = b[1,5]
local t = bl[1,6]
nlcom b3: 1 - [bl]_cons - [b2] cons, post
mat ¢ = e(b)
local b3 = c[1,1]

ge cdf = “bl' * exp(~t'*Sw) if Sw <=0

replace cdf = “bl' + “b2' if Sw == 0
replace cdf = “bl' + “b2! ///
+ "b3' * ( (1 + (Cb'/sw)*Ta")*-("p') ) if Sw > 0

su cdf ecdf, de

su Sw [aw=wgt]

su sw [aw=wgt] if Sw < O
su sw [aw=wgt] 1if Sw > O

local m = -"b1l'/“t' + “b3'*( “b'*exp(lngamma (1-
1/7a'))*exp(lngamma ("p'+1l/"a')) /exp (lngamma ("p')) )
di "Mean = " “m'

di "Mean among negatives: " -1/7t!'
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di "Mean among positives: " “b'*exp(lngamma (1-
1/7a'))*exp(lngamma ("p'+1/~a')) /exp (lngamma ("p'))

local gini = 1 + 3*("bl')%2/(2* t'* m') - (2*("b3')"2* p'* b! ///

*exp (lngamma (1-1/"a') ) *exp (lngamma ("p'+1/a')) /exp (lngamma (1+°p'))) ///

* (1 - .5*%( exp(lngamma( p'))* ///

exp (lngamma (2* "p'+1/~a')) / (exp (lngamma (2* “p') ) *exp (lngamma ("p'+1/~a'))) ))/ m'
di "Gini = " “gini'

ge pdfl = “bl'*exp( t'*Sw)*(Sw < 0)

ge pdf2 = “b2' * (Sw == 0)

ge pdf3 = “b3' * (Ta'* p' * ("b'/$w)*Ta'/sw) * (1 + (Cb'/sw)*Ta')” -("p'+1) if Sw > 0
replace pdf3 = 0 if Sw <= 0

ge pdf = pdfl + pdf2 + pdf3

su pdf* [aw=wgt]

* predicted and sample median
list $w ecdf if abs(ecdf - .5) < 0.001
list $w cdf if abs(cdf - .5) < 0.001

lab var cdf "CDF (fitted)"
lab var ecdf "CDF (empirical)"
lab var pdf "PDF (fitted)"

graph twoway (line ecdf $w) (line cdf $w) ///
, xtitle("1998 Net wealth, W") ytitle("p = F(W)") /17
legend( region(lstyle(none)) ) saving(cdf net_fitted 98, replace)

graph export cdf net fitted 98.eps, replace

graph twoway (line pdf S$w) /17
, xtitle("1998 Net wealth, W") ytitle("Density, £ (W)") ///
legend( region(lstyle(none)) ) saving(pdf net_ fitted 98, replace)

graph export pdf net fitted 98.eps, replace
* example of general (mixture) model with covariates *

ml model 1f dagum3_11 (a: age agesq) (b: age agesq) (p: age agesq) ///
(bl: age agesq) (b2: age agesq) (t: age agesq) [aw=wgt], tech(bhhh nr)
ml init a: cons = “a' b:_cons = "b' p: cons = "p' bl: cons = “bl' b2: cons = “b2' t:_cons =
o
ml search
ml maximize, difficult

log close



