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Non-technical summary 
 

Rising administration costs and falling response rates mean that many surveys that would 

previously have been carried out in one preferred mode of data collection are having to 

consider the use of mixed modes. For example, increasing numbers of surveys use a mix of 

modes, starting with a cheaper mode (such as telephone interviewing) which typically 

produces lower response rates, and following up non-respondents with face-to-face 

interviews.  In order to decide about suitable data collection designs, survey practitioners 

must assess the trade-off between the potential advantages (for example in terms of financial 

costs and response rates) and disadvantages (for example in terms of data comparability) of 

mixing modes.  

We discuss some of the challenges in evaluating the effects of using mixed modes on 

measurement and hence data comparability. The main argument is that it is very difficult to 

provide the information survey practitioners would need, about whether and to what extent 

using mixed modes would affect substantive conclusions. We briefly review theories about 

why different modes can lead to differences in survey responses. We then discuss the 

methods typically used to assess mode effects on measurement and then focus on some of the 

challenges. These include 1) the need to avoid confounding effects and what kinds of mode 

effects are actually identified, 2) the sensitivity of conclusions about the existence of mode 

effects to statistical methods used for the analysis of experimental mode comparison data, 3) 

the difficulty of assessing whether measurement differences matter in practice, and 4) the 

assessment of which mode provides better measurement. The main focus of the paper is on 

analysis methods. The points raised for discussion here arose in the context of the European 

Social Survey (ESS), which is conducting a programme of experimental research to inform 

the decision about whether to allow telephone interviewing in addition to face-to-face in its 

future rounds. We use some examples from the ESS experiments to illustrate how we tried to 

deal with these issues and to stimulate discussion. The paper concludes with an outlook of 

how the findings from the experimental studies are informing the decision process about 

whether or not to mix modes of data collection on the ESS and with general implications for 

mixed modes research. 
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ABSTRACT 
 
We review the methods typically used to assess the effects of mode on measurement and data 

comparability and then discuss some of the challenges, including 1) the need to avoid 

confounding effects, 2) the sensitivity of conclusions to methods of analysing experimental 

mode comparison data, 3) the difficulty of assessing whether measurement differences matter 

in practice, and 4) the assessment of which mode provides better measurement. We illustrate 

the challenges and implications of mixed modes research for survey design with examples 

from experiments conducted in the context of the European Social Survey (ESS). The paper 

concludes with implications for mixed modes research. 
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1 Introduction 

Ever rising administration costs and falling response rates mean that many surveys are 

having to consider the use of mixed modes of data collection. Mixing modes offers the 

possibility of offsetting the disadvantages of one mode with the advantages offered by 

another, for example, combining cheaper modes with modes that lead to smaller survey errors 

(Dillman, 2000; de Leeuw, 2005). Mixing modes may however reduce data comparability, 

since different modes 1) provide access to different types of people, 2) attract different types 

of respondents, and 3) elicit different responses. As a result, the nature and magnitude of 

coverage, non-response and measurement errors may differ across modes, reducing the 

comparability of data collected with mixed modes.1 The decision to mix modes therefore 

entails “an explicit trade off of errors and costs” (de Leeuw, 2005, p.235).  

In order to make informed decisions, survey practitioners need to be able to evaluate and 

quantify the impact of mode on data quality. They also need to understand the causes of 

mode effects, if they are to design mixed modes studies that minimise the potential negative 

impact of mode on data comparability. These information needs are addressed by mode 

comparison studies, which typically assess the effect of mode on measurement either by 

testing the comparability of data collected in different modes (e.g. Hawkins, Albaum and 

Best, 1974; Groves and Kahn, 1979; Greenfield, Midanik and Rogers, 2000), or by testing 

specific hypotheses about the potential causes of differences between modes (e.g. Jordan, 

Marcus and Reeder, 1980; Holbrook et al, 2003; Fricker et al., 2005). 

This paper is concerned with the first type of mode study and discusses some of the 

difficulties in evaluating whether mixing modes affects measurement and hence data 

comparability. In particular, we discuss the challenges in deriving information about whether 

mode effects would matter in practice that could feed into the decisions about suitable data 

collection designs.  

The points raised for discussion here arose in the context of the European Social Survey 

(ESS), a biennial cross-sectional survey, that currently only allows face-to-face interviewing, 

but is considering the demands from several countries to allow alternative or complementary 

modes. To inform decisions about introducing mixed mode data collection on the ESS, the 

survey’s coordinating team is carrying out a programme of experimental research designed to 

                                                 
1 In their discussions of mixed modes designs, de Leeuw (2005) and Dillman (2000) 
distinguish between different stages of the survey, including the recruitment, presentation of 
questions and response and follow-up of non-respondents. In this paper we focus on the 
modes in which survey questions are presented. 



 

assess the likely impact a move to other modes would have on data quality (see Jäckle, 

Roberts and Lynn, 2006 for details). When trying to interpret our results, we felt that it was 

not clear how findings about differences in responses translate into answers to the question 

“what would be the likely impact of a move to telephone interviewing?” It seemed hard to 

bridge the gap between 1) the kind of research that is feasible and typically done to evaluate 

mode effects, and 2) the information survey designers would actually need, about whether 

and to what extent mode effects would matter in practice. This paper discusses some of the 

difficulties in bridging this gap.  

As a background to the discussion, we first summarise the theoretical literature describing 

how differences between modes of data collection can lead to differences in responses 

(Section 2) and describe the methods typically used to assess the impact of mixing modes on 

data quality (Section 3). We then briefly describe the ESS mixed modes experiments (Section 

4), before discussing some of the challenges involved in attempting to evaluate the effects of 

mode.  The first challenge we discuss is the need to avoid confounding factors in order to 

identify any effects of mode (Section 5.1). The main focus is then on analysis methods – how 

to analyse experimental mode comparison data in order to detect and evaluate mode effects 

(Section 5.2) and how to assess the magnitude of mode effects and their impact on data 

comparability (Section 5.3). The final challenge we discuss is how to assess the direction of 

mode effects and which mode provides better quality responses (Section 5.4). To illustrate, 

and stimulate discussion, we provide some examples of how we tried to deal with these 

various issues in our analysis of the ESS data. We then describe how the information from 

the experiments is informing decisions about whether and how to mix modes in the ESS 

(Section 6) and conclude with implications for the field of mixed modes research generally 

(Section 7). 

 

2  How does mode affect measurement? 

Cognitive models of the survey response process (e.g. Cannell, Miller and Oksenberg, 

1981; Tourangeau, Rips and Rasinski, 2000) provide a useful framework for understanding 

how mode affects measurement. Differences in responses may arise if the process by which 

respondents come up with an answer is different in different modes. Characteristics of the 

mode may affect how the respondent understands the response task, retrieves relevant 

information, makes a judgement about the adequate response (which involves assessing the 

retrieved information and computing a response) and chooses the answer to report (see 

Roberts, 2007 for a discussion). As a result, differences between modes can lead to 
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differences in response biases, including a range of ‘satisficing effects’ and social desirability 

bias.  

The theory of satisficing (Krosnick, 1991) posits that whether or not the respondent 

executes the response process optimally, or shortcuts instead, depends on the interaction 

between the difficulty of the task, the respondent’s ability and motivation. Satisficing can, for 

example, be visible in the form of acquiescence (the indiscriminate use of ‘yes’ or ‘agree’ 

responses), non-differentiation (the indiscriminate use of one point on a response scale for a 

range of different items) or incomplete responses. Differences between modes may affect the 

amount of effort needed to answer the survey question or the respondent’s motivation to 

make the required effort, leading to differences in the extent of satisficing between modes.  

Social desirability bias (see DeMaio, 1984 for an overview) arises where respondents – 

either deliberately or unconsciously – select the more socially desirable response in order to 

portray themselves in a more favourable light than revealing the true answer would achieve. 

The respondent’s willingness to report their answers accurately and honestly have been 

shown to be influenced by the perceived privacy of the survey setting, the perceived 

legitimacy of the survey and rapport between the interviewer and respondent (see Holbrook, 

Green and Krosnick, 2003). Differences between modes in these aspects are likely to lead to 

differences in the extent of social desirability bias between modes. In practice, the precise 

predictions as to how mode will affect respondents’ reports, depends on the type of question, 

as well as on the type of mode (Biemer, 1988; Roberts, 2007).  

 

3 Methods used to assess mode effects 

Previous studies have typically compared the characteristics of data collected with 

different modes by testing for differences in a number of quality indicators and in response 

distributions (see, for example, Hawkins, Albaum and Best, 1974; Groves and Kahn, 1979; 

Greenfield, Midanik and Rogers, 2000). The quality indicators examined (see de Leeuw and 

van der Zouwen, 1988) include indicators of completeness, such as the mean item non-

response rate across respondents in each sample, the mean length of responses to open-ended 

questions and the mean number of responses in ‘tick all that apply’ questions; indicators of 

response accuracy, such as comparisons with external data; and indicators of reliability, such 

as psychometric scaling properties. The next step is then typically to test for differences in the 

response distributions of the items under study. Conclusions about mode effects are then 

often drawn based on the proportion of indicators or items displaying significant differences 

across modes.  
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As Deming (1944, p.362) argued, however, “The problem is not whether differences 

[between modes] exist but how great are the differences, and why do they exist, and what 

effect will they have on the uses that are made of the data?”. Similarly, Biemer pointed out 

that “statistical significance of a comparison alone is not necessarily indicative of a data 

quality differential between two surveys” (1988, p.276). He suggests three other factors that 

must also be considered: the effect size, the direction of the difference and potential 

confounding factors which could explain the mode differences. Starting from this framework 

we discuss some of the difficulties in assessing the impact of modes, using examples from the 

ESS mode comparison study for illustration.  

 

4 The ESS mode experiments 

The Central Co-Ordinating Team of the ESS is carrying out a programme of research 

investigating the feasibility of changing the current ESS policy of single-mode data collection 

using face-to-face interviews to a mixed mode data collection strategy in its future rounds.  

Part of this research has been conducted in collaboration with the Gallup Organisation, 

Europe. The two phases of the research described here formed part of this joint project (see 

Jäckle, Roberts and Lynn, 2006 for details). 

Data collection for Phase I took place in May and June 2003 in Hungary. The study 

consisted of a ‘hall test’, in which participants, selected by quota sample to be representative 

of the Hungarian urban population by age, gender and education, were randomly assigned to 

one of four interview conditions: face-to-face interview, telephone interview, self-completion 

paper and pencil questionnaire and web-based questionnaire. Participants were then re-

interviewed in a different mode2. All participants received the same questions in each of the 

four interviewing modes, making it possible to compare responses to different types of survey 

question across pairs of modes, and to examine differences in responses both between and 

within participants. Analysis of the phase I experiment (Peytcheva et al. 2004) indicated a 

number of areas that merited closer attention and the design for the second phase was drawn 

up in light of its conclusions. 

Phase II involved a direct comparison between the current face-to-face methods 

employed on the ESS and telephone alternatives. Two experiments with the same design 

were conducted in Hungary and Portugal starting in July 2005. The experiments consisted of 

interviews conducted face-to-face in respondents’ homes and telephone interviews conducted 
                                                 
2 The experimental design was not fully balanced, however, and those interviewed by web in 
the first wave of data collection were not re-interviewed. 
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by fixed-line telephone (also in respondents’ homes) or by mobile phone. The interviews 

consisted of a subset of questions from the core questionnaire of the ESS.  In order to reduce 

costs, the fieldwork was concentrated in the countries’ capital cities (Budapest and Lisbon), 

which also offered the advantage of suitable sampling frames in both locations, including 

telephone numbers and addresses. Each sampled address was randomly allocated to one of 

three treatment groups. At each contacted household, one person aged 15 or over was 

randomly selected for interview using the last birthday method. The examples used here are 

from the experiment carried out in Hungary (but excluding the mobile phone group), where 

515 respondents were interviewed face-to-face using showcards, 518 respondents were 

interviewed face-to-face without showcards and 887 were interviewed over a fixed-line 

telephone using the same questionnaire administered to the face-to-face-without-showcards 

group. 

 

5 Challenges in assessing mode effects 

5.1 Confounding factors in studies of mode effects 

Mode comparison research has mainly consisted of two types of studies: those comparing 

systems of data collection (Biemer, 1988; de Leeuw, 2005) - where an optimal design in one 

mode is compared with an optimal design in another mode - and studies attempting to 

identify a so-called ‘pure’ mode effect. System comparisons provide realistic information 

about the effects of different modes on data comparability. Since each system will differ in 

many respects, for example, in terms of coverage, sampling frame, non-response bias and 

questionnaire (see Holbrook et al., 2003), results from such studies cannot be generalised, 

even to other comparisons of the same modes, and cannot be used (on their own) to predict 

mode effects in other settings. In contrast, the second type of study has used experimental 

designs to attempt to isolate the effect of mode on measurement, controlling for other 

characteristics of the survey (though in practice few are successful; see Holbrook et al., 

2003). Such studies may further attempt to isolate the effects of different characteristics of 

modes, such as the effects of using showcards, or of the presence of the interviewer in face-

to-face interviews (see Example 3).  

The first challenge is that identifying the net effect of mode on measurement requires 

careful experimental designs, such that the only difference between samples is the mode they 

are assigned to. Only under such circumstances can differences in responses be attributed to 

the mode; if any other aspect differs between the samples, the effect of mode is confounded 

with these other differences.  
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Example 1: To hold any error from sampling and coverage consistent across the 

experimental groups, the Phase II ESS experiment used telephone listings containing address 

information as frames for both the face-to-face and telephone samples. An equal-probability 

sample of fixed residential phone numbers within the defined area (the Greater Budapest 

region of Hungary) was selected and each sample unit was then randomly allocated to one of 

the mode treatments. 

Example 2: The problem of differential nonresponse across treatment groups can be 

avoided by randomly allocating respondents to mode after the recruitment. The Phase I ESS 

experiment, for example, involved a hall test, in which respondents were randomly allocated 

to face-to-face, telephone, web and self-completion once they had agreed to participate. With 

such a design any differences in responses can clearly be attributed to the mode. This 

however comes at the cost of some realism, since ‘real-world’ survey interviews are typically 

conducted under quite different settings, in respondents’ homes, with family members 

present, etc. 

Differences in the questionnaire can further confound the effect of mode. According to 

Dillman (2000) one of the biggest causes of apparent mode effects is the tendency for 

questions to be constructed differently for different types of questionnaires. In the case of 

telephone and face-to-face interviewing, a further potential confounding difference is the use 

of showcards: any observed differences in responses could be attributed either to differences 

in the use of visual aids – or to other differences between the modes, such as the social 

distance when the interviewer is separated from the respondent by telephone. To avoid this 

pitfall, Dillman advocates the ‘unimode’ construction approach to questionnaire design for 

multimode surveys, in which questions are designed from the outset to be suitable for 

administration in all modes. However, in practice, many survey designers considering mixing 

modes of data collection are doing so in the context of an existing survey and questionnaire 

design for the survey is constrained by the design of questions in the primary mode. 

Example 3: In the Phase II ESS experiment, the differences in responses due to the use of 

showcards and differences due to other mode differences were isolated by including three 

treatment groups: 1) face-to-face with showcards, 2) face-to-face without showcards, and 3) 

telephone using the same questionnaire as group 2). This design allows the identification of 

different types of mode effects: the net mode effect between the current ESS system of data 

collection (using showcards) and telephone can be identified by comparison of groups 1) and 

3); the showcard effect can be identified by comparison of groups 1) and 2) and the effect of 
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residual mode differences, including the physical presence of the interviewer, can be 

identified by comparison of groups 2) and 3).  

Differences due to potential differential non-response however remained a problem. The 

response rates were comparable in both samples, but low (32% in telephone and 33% in face-

to- face). The telephone sample had a significantly lower proportion of men, manual workers 

and respondents with low education levels. There were however no differences across modes 

in mean age and the proportion in work. This is consistent with the findings of other studies 

(see Holbrook et al., 2003). 

 

5.2 Methods of assessing mode effects 

The second challenge in mode research stems from the problem that if the sample 

composition differs between modes because of differential non-response, then any tests for 

mode effects need to control for respondent characteristics. One option is to use weighting 

methods, whereby observations in one sample are weighted such that they reflect the 

characteristics of the ‘reference’ sample (see for example Fricker et al., 2005). The weighted 

samples can then be used to calculate significance tests, such as t-tests of the equality of 

sample means or Chi-square tests of whether response distributions are independent of mode. 

An alternative is to use different regression approaches, depending on the level of 

measurement of the item. As the examples below show, for ordinal items the choice of 

regression model can affect conclusions about the existence of mode effects.  

For continuous dependent variables OLS regressions can be used, including the sample 

characteristics and a mode dummy as explanatory variables. A t-test can then be performed to 

test the null hypothesis that the mode coefficient is not significantly different from zero. In 

the case of nominal categorical variables multinomial models can be used, which fit a 

different model for each of the response categories. For ordinal categorical variables, such as 

the attitudinal indicators carried in the ESS, OLS estimation might provide misleading 

results, since the intervals between adjacent response categories cannot be assumed to be 

equal. Compared to the multinomial model, the additional information contained in the 

ordering can, however, be used to estimate more parsimonious models. In general, models for 

ordinal variables assume that higher values of the dependent variable correspond to higher 

outcomes, but the actual values are irrelevant.  

The proportional odds modelling technique (also referred to as cumulative odds model 

(O’Connell, 2006), parallel regression model, or grouped continuous model (Long, 1997) is, 

according to Billiet and Welkenhuysen-Gybels (2004) currently the best method available for 
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assessing measurement equivalence of ordinal data. The proportional odds model is 

equivalent to a sequential series of binary logistic regressions of P(Y>j) over cumulative splits 

of the data, where the coefficients are constrained to be equal in each equation:  
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where M is the number of response categories of the ordinal dependent variable Y. For a 

variable with 4 response categories there are 3 cumulative dichotomisations j = 1, 2, 3. In this 

case, the proportional odds model is equivalent to estimating the sequence of binary logistic 

regressions of P(Yi>1), P(Yi>2) and P(Yi>3), for the different cumulative dichotomisations of 

the response categories (see O’Connell (2006) for ordinal models representing alternative 

dichotomisations. Compared to separate estimations of each cumulative dichotomisation, the 

results differ slightly when all equations are estimated simultaneously (Williams 2006)). The 

proportional odds model constrains the coefficients to be equal in each of the cumulative 

splits, assuming that the odds(j) = P(Y≤j) / P(Y>j) have the same ratio for all combinations of 

explanatory variables for any dichotomisation j. That is, the model assumes that covariates 

‘shift’ the distribution of responses proportionately across all categories. In the case of mode 

effects, the model would assume that if telephone respondents say they are more interested in 

politics than face-to-face respondents, then this shift should be visible in all response 

categories. This assumption of proportional odds may however not hold. In fact, most 

theories of the causes of mode effects posit that responses differ because some categories (for 

example ‘agree’ in a scale from ‘strongly agree’ to ‘strongly disagree’) are disproportionately 

selected, implying that mode effects are not necessarily proportional across response 

categories.  

The assumption that mode has a proportional effect on all response categories can be 

tested using partial proportional odds models. In this case explanatory variables for which the 

proportional odds assumption holds are constrained to be equal, while variables for which the 

assumption is violated are allowed to vary across the cumulative dichotomisations. This 

model has been implemented in Stata by Williams (2006). The estimation uses a backwards 

stepwise selection procedure, starting with a model corresponding to the full set of 

cumulative logistic models, where a different set of coefficients is estimated for each model, 

and gradually imposing constraints for variables for which the assumption of proportional 

odds holds, based on Wald tests of the equivalence of coefficients across equations. For items 

where the proportional odds assumption holds, the standard error of the single mode 
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coefficient can be used to test for mode effects on the response distribution. For items where 

the proportional odds assumption does not hold, one can test for the overall effect of mode 

using Wald tests of the joint hypothesis that all mode coefficients from the series of 

cumulative logistic dichotomisations equal zero, as well as reporting the significance of mode 

coefficients from each dichotomisation.  

Example 4: In the Phase II ESS experiment, we tested all ordinal variables for mode 

effects using 1) partial proportional odds models, 2) proportional odds models (ologit) and 3) 

ordinary linear models (OLS). For each ordinal question, the response was predicted by the 

mode indicator and controls for the socio-demographic composition of the samples, including 

age, age squared, sex, educational qualification and occupation. The results suggest that the 

analysis method may well affect conclusions about the existence of mode effects. The 

examples presented here tested for differences between the face-to-face showcard and the 

telephone groups, identifying the ‘system effect’ discussed above. The results are only shown 

for those variables with a significant mode effect. For information about the 12 ordinal 

variables, which did not show any mode effects, and the results of the other two treatment 

comparisons, identifying the ‘showcard effect’ and the ‘interviewer effect’, see Jäckle et al. 

(2006).  

For each question, Tables 1 and 2 present the predicted response distributions in the 

face-to-face mode. The predictions are reported for both the partial proportional odds and the 

ologit estimations. The tables then present the percentage point differences in predicted 

response probabilities due to mode. The P-values indicate the significance level of the mode 

coefficient. In Table 2, two types of P-values are presented for the proportional odds model: 

for each item the first row is the P-value from a joint Wald test that the mode coefficients for 

all dichotomisations are zero. The remainder rows show the P-values of the mode coefficient 

for each dichotomisation. For example, the P-value corresponding to the third response 

category corresponds to the mode coefficient of the model P(Yi>3). The results show that the 

proportional odds assumption holds for some items (Table 1), but not for all (Table 2).  

For the items where the proportional odds assumption holds, similar conclusions about 

the mode effect would have been drawn based on the ologit and OLS models: the 

significance levels of the mode indicator are similar in all three models (except for Q6) and 

the differences between modes in response distributions are similar in the partial proportional 

odds and ologit models. Telephone respondents were:  

- more likely to be ‘very’ or ‘quite’ interested in politics (Q5) and less likely to find 

politics too complicated (Q6); 
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- more likely to support allowing ‘a few’, ‘some’ or ‘many’ immigrants from poor 

countries outside Europe to live in the country (Q13); 

- more likely to say immigration enriches cultural life (Q15) and less likely to say it 

makes their country a worse place to live (Q16); 

- less likely to (strongly) agree that mothers should cut down on paid work (Q17a) and 

that men have more right to jobs than women when jobs are scarce (Q17c); 

- more likely to strongly agree that men should share responsibilities for their home and 

family (Q17b) and that the law should be obeyed whatever the circumstances (Q18b). 

For three of the seven items for which the proportional odds assumption did not hold, the 

ologit and OLS models would have lead to the conclusion that there was no significant mode 

effect. For these variables the predicted response distributions based on the partial 

proportional odds model illustrate the non-linearity of the mode effect. Telephone 

respondents were: 

- more likely to choose 0, 5 or 8 on an 11 point scale of their level of trust in the EU 

parliament (Q8f);  

- less likely to choose 1 or 2 and more likely to choose 5 or 6 on an 11 point scale of 

how good immigration is for the economy (Q14);  

- less likely to strongly agree or strongly disagree that parents should stay together even 

if they do not get along (Q17d). 

The differences in response probabilities predicted by the ologit model do not capture these 

non-linearities. Imposing the proportional odds smoothness assumption produces predicted 

response distributions that hardly differ between the two modes. That is, using the ologit 

model analysts would falsely conclude that mode does not affect measurement, when in fact 

there are mode effects.  

For the remaining four items the ologit and OLS models did capture the mode effect, 

estimating similar significance levels for the mode coefficient as for the joint Wald test from 

the partial proportional odds model. Nonetheless, the predicted probabilities again show that 

imposing the ologit smoothness assumption masks the non-linearities of the mode effects, 

producing different signs and magnitudes of differences between modes for some of the 

response categories. For example, telephone respondent were: 

- much more likely to report watching TV for anywhere between ½ an hour and 1½ 

hours and much less likely to report watching for more than 2½ hours (Q1). The 
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ologit model predicted much smaller differences between modes for these two 

intervals; 

- much less likely to report watching news on TV for less than ½ hour and much more 

likely to report watching for anywhere between ½ an hour and 1 hour (Q2); the ologit 

model predicted less difference between modes for the first of these intervals, and 

hardly any difference for the second; 

- less likely to be against allowing any immigrants of the same ethnicity (Q11) or of a 

different ethnicity (Q12), but in both cases more likely to want to allow ‘a few’, 

‘some’ or ‘many’. For these items the ologit model estimated that telephone 

respondents were also less likely to choose ‘a few’. 

An alternative method of testing for mode effects while controlling for sample 

composition would be to use structural equation modelling to assess equivalence of 

measurement. Billiet and Welkenhuysen-Gybels (2004) compared this approach with the 

proportional odds models discussed above and used both to assess equivalence of six 

immigration items (three of which were also carried in the present experiment) across 21 

countries in the first wave of the ESS. The authors concluded that structural models lacked 

power and that the proportionate odds model was the currently best available method of 

testing for equivalence of Likert scale items.   

Regardless of the analysis method used, testing for mode effects is typically a ‘fishing’ 

exercise, where all items carried in the questionnaire are tested for differences. (This may be 

different for studies testing hypotheses about the causes of mode effects, which only test 

specific indicators. For the Phase II ESS study, for example, we first tested for differences in 

the measurement of all items between modes (the focus of this paper), before testing specific 

hypotheses about the causes of mode effects (see, Roberts et al. 2006)). The researcher 

decides on the level of significance, say 0.05, implying that they are willing to accept a 5% 

chance of falsely accepting a rare occurrence, by chance or due to sampling error, as evidence 

of a mode effect, when in reality there is none. However, with multiple tests from a single 

experiment such as here, where we tested all 28 ordinal items carried in the questionnaire, the 

risk of accepting false positives as significant mode effects increases with every additional 

item tested. In the worst case, if we were testing 28 independent hypotheses, the risk of false 

positive inference would increase 28 times.  

Example 5: To adjust for multiple comparisons, we used the Bonferroni-Holm method (as 

described in Ludbrook 1998) to adjust the P-values from the partial proportional odds 
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models.3 With this method, the P-values are sorted and starting with the smallest, the adjusted 

value is calculated as , where m is the number of hypotheses (in this case items) 

tested. For the next smallest P-value the adjusted value is calculated as  and so 

forth until Pb>0.05. The raw P-values from the partial proportional odds models in Tables 1 

and 2 suggested significant mode effects at the 0.05 level for 16 of the 28 items tested. After 

applying the Bonferroni-Holm adjustment, the adjusted P-Values for Q6, Q8f, Q13, Q17b 

and Q17c were larger than 0.05. That is, without the adjustment we might have concluded 

that mode affected more than half (57%) of ordinal items studied. After excluding what are 

likely to be false positives, we conclude that the responses to 39% of items were affected by 

mode. 

PmPb ×=

( ) PmPb ×−= 1

 

5.3 Assessing the size of mode effects  

Most studies assess the extent to which the mode of data collection affects measurement 

using tests of statistical significance to evaluate the size of differences in responses across 

modes. Few studies have, however, attempted to assess the significance of any observed 

effects in terms of whether and how they might affect the substantive conclusions drawn by 

data analysts. We would argue that in order to evaluate whether mode affects data 

comparability it is necessary to move away from an assessment of means and marginal 

distributions toward an assessment of the effect of mode on relevant estimates.  

The third challenge is that differences in responses across modes may impact on certain 

types of estimates, but not on others. Conclusions about the effect of mode therefore depend 

on the application to which the data are put. De Leeuw (1992) similarly argued that the 

prevalent focus on effects on univariate estimates is not enough to fully evaluate the effects 

of mode on estimates. As well as testing for univariate mode effects in response styles (such 

as acquiescence or extremeness), she also tested for psychometric mode effects (that is the 

reliability and scalability of items collected with different modes) and multivariate mode 

effects (by replicating substantive applications of structural equation models).  

Example 6: In the ESS data, the mean summed score on a set of items measuring attitudes 

toward immigration was 0.46 for face-to-face and 0.51 for telephone (P=0.001). (The attitude 

                                                 
3 The reason for choosing the Bonferroni-Holm method over other methods was that it is less 
conservative than Bonferroni, especially when the multiple hypotheses are not independent, 
very simple to compute, and very versatile in that it can be used for continuous, ordinal and 
categorical data. Methods of adjusting for multiple comparisons are usually described for 
tests of means, but can also be used for regression coefficients (see, James 1964). 
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scores were calculated by summing up the responses to three 4-category items and three 11-

category items and normalising the summed score to lie between 0 and 1. Higher values 

represent being in favour of immigration.) If different subgroups, or countries, are surveyed 

with different modes, then a mode effect of this kind may lead analysts to falsely conclude 

that there are differences between these groups. The primary usage of these data may, 

however, not be to test for differences in levels between countries, but for differences in the 

determinants of immigration attitudes. We therefore tested whether mode affected the 

relationship with other variables, using OLS models to regress the summed immigration 

score on mode, a predictor variable, its interaction with mode and controls for socio-

demographic sample composition (Table 3). The predictor variables included a series of 

binary indicators (whether in work, whether voted in last elections, whether voted for a 

centre/right or socialist/liberal party and whether had access to internet), some 11-point scale 

items (trust in people, life satisfaction and religiosity) and the summed attitude scores for 

political interest and gender-role attitudes, both of which had different distributions across the 

modes. Respondents who had voted, had internet access, were more likely to trust other 

people or were more satisfied with their life tended to have higher (more liberal) immigration 

scores; respondents who had less of an interest in and understanding of politics had lower 

scores on the immigration scale. Mode did not affect the relationships with any of the nine 

predictors, except for voting, where the difference between voters and non-voters disappeared 

in telephone mode. This suggests that even if analysts were to reach different conclusions 

about the levels of immigration attitude scores for sample members surveyed with different 

modes, conclusions about differences between subgroups need not be affected.  

A further challenge is that survey methodologists can really only uncover statistical 

differences between estimates. Whether these matter in practice, that is, whether differences 

affect conclusions, depends on the substantive interpretation of results by data users. 

Differences in estimates from different modes may be significant, but they need not be 

substantively important. In De Leeuw’s (1992) analysis, for example, the estimated 

determinants of loneliness in a structural equation model were comparable across modes; 

their relative importance however differed. Conclusions about the impact of mode on data 

comparability will therefore differ depending on which aspect is the principal objective of the 

analysis.  
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5.4 Direction of mode effects 

A further step in evaluating the effect of mode on data quality according to Biemer (1988) 

is to judge which mode provides better quality data. This can be done by comparing 

responses with a ‘gold standard’ such as external records, assessing internal validity of 

responses, or based on prior knowledge about the direction of errors, where for example 

higher reporting of sensitive behaviours is judged as better. This approach presumes a 

situation where the survey agency is free to choose the mode which performs best. In many 

situations, in which decisions about mixing modes are made, however, there is a pre-specified 

primary mode, which in the case of a panel or repeated cross-sectional study may already 

have been implemented in prior surveys. The question then is not which mode produces least 

response errors, but whether the errors in different modes are comparable (Braun, 2003). If 

errors are not comparable, then introducing mixed modes could not only lead to misleading 

conclusions about differences between sample members within a cross-section, but also about 

differences over time.  

 

6 Implications of mixed modes research for survey design – the example of the ESS 

The findings from the experimental studies encouraged the ESS team to consider the 

possibility of allowing telephone interviewing under certain conditions. To summarize the 

findings of the mode experiment, we found significant differences in responses between 

modes for 11 of the 28 ordinal items tested.4 For 5 of these items the mode effect was linear, 

such that telephone respondents consistently reported higher or lower response categories; for 

6 items the effects were non-linear, where mode affected the extremes or middle response 

categories disproportionately. At the same time, however, mode did not affect bivariate 

relationships between variables. The results therefore suggested that allowing telephone 

interviewing in addition to the current face-to-face interviewing could affect estimates of 

means and prevalences, but would not necessarily affect estimates of relationships between 

variables. We could however not resolve the issue of how to decide whether a significant 

difference in responses or estimates would matter in practice, since this would depend on the 

specific substantive interpretation. In addition, there is an indefinite number of applications 

for which these data may be used, which we did not, and cannot, assess. Any conclusions 

about whether allowing telephone mode effects in a mixed mode ESS would matter in 

                                                 
4 The items included in the experiment were a subset of the ESS core questionnaire, that were 
expected to be most susceptible to mode effects. We would, therefore, expect the overall 
proportion of items in the full ESS questionnaire susceptible to mode effects to be smaller. 
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practice and affect substantive conclusions drawn by analysts are therefore not generalisable 

across estimates.  

Many questions also remain about how to develop equivalent questions for use in 

alternative modes that will preserve the continuity of estimates in the time series. In order to 

develop ways of reducing mode effects on measurement, the experiment was also designed to 

test some hypotheses about the causes of mode effects. The findings suggested that 

differences were mainly due to the presence of the interviewer; showcards did not appear to 

affect responses. The main difference appeared to be more social desirability bias in the 

telephone mode than face-to-face; however, there was no evidence that telephone respondents 

were more likely to satisfice. A major limitation of the experimental study was, however, that 

it used a considerably abridged version of the ESS questionnaire, which is unlikely to have 

provided an adequate test of our hypotheses concerning the increased likelihood of satisficing 

in telephone interviews. Only by conducting long interviews by telephone can we establish 

whether or not satisficing effects are likely to be detrimental to data quality. Partly for this 

reason – and partly to explore the difficulty in itself of administering by telephone a long 

survey questionnaire like that used in the ESS – the most recent phase of the ESS mixed 

mode research has conducted precisely such a test. 

Finally, there are other elements that would need to go into the cost-benefit analysis of 

allowing telephone interviewing, which are still unknown. The ESS experiments so far have 

focused on the effects of mixed modes on measurement. The effects on coverage and non-

response errors would also need to be evaluated, since these also impact on data 

comparability. Regarding benefits, comparatively little research has empirically established 

whether the apparent advantages of a multi-mode data collection strategy – in terms of cost-

savings or a possible increase in response rates - would be proven in reality (exceptions 

include Dillman et al. 2001; Hochstim, 1967; Mooney, Giesbrecht and Shettle, 1993; and 

Voogt and Saris, 2005). Similarly, while there is much anecdotal evidence about the apparent 

need to tailor data collection designs to the different survey climates of the countries 

participating in the ESS, until recently, relatively little was known about the actual demand 

for alternatives to face-to-face interviewing and the capacity for adopting different 

approaches. For these reasons, the ESS team has also carried out a ‘mapping exercise’ to 

build up a portrait of current survey practice across Europe and to establish a basis for 

thinking about how to design the most suitable multi-mode data collection strategy for a 

cross-national time-series (see Roberts, Eva and Widdop, 2008). 
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7 Implications for mixed modes research 

Although there are literally hundreds of studies that have tested the comparability of data 

collected with different modes, we are still faced with large uncertainties when making 

decisions about survey designs. In this paper, we discussed some of the difficulties in 

assessing the effect of mode on measurement and producing information that could inform 

decisions about the trade-offs in using mixed modes.  

It is extremely difficult to devise mode comparisons such that any differences in 

responses can clearly be attributed to the effect of mode on measurement. In particular, mode 

effects are often confounded with differences in sample composition due to differences in 

coverage, sampling error or non-response bias associated with different modes. As a result, 

even experimental comparisons need to be analysed with sophisticated statistical methods to 

take into account, at least some of, the differences in sample composition. As the examples in 

this paper have highlighted, choosing appropriate statistical methods is important and can 

affect conclusions about the existence of mode effects. This is in particular complicated by 

the non-linear nature of many mode effects, which implies that mode does not simply cause a 

shift in the distribution of responses, but can lead to more complicated differences between 

modes. A further implication of such non-linear mode effects, which in our view is not 

sufficiently recognised, is that it is not enough for analysts to simply ‘control for mode’, for 

example, by including a dummy variable for mode in a regression. The question what would 

be appropriate adjustment methods for non-linear mode effects is however still unresolved. In 

any case, a prerequisite for choosing an appropriate adjustment would be the ability to predict 

the likely nature of the mode effect for any given item. At present, we still lack underlying 

theories that would allow us to do so. In the findings presented here it is, for example, not 

obvious why some items had linear and other related items had non-linear mode effects. 

Even if appropriate methods are used to test for differences in responses which might 

be attributed to mode, this does not answer the question whether these differences would 

matter in practice. The difficulty is that a given difference in responses to survey questions 

may cause biases in some types of estimates, but not in others. In our view, to answer the 

question that ultimately motivates all research in this field, which is whether mixing modes 

would affect substantive conclusions, we need to rethink the types of tests we perform in 

order to draw conclusions about data comparability. More informative tests would be 

motivated by the applications to which the data are put, for example replicating existing 

research using data collected in each mode. This may require (more) collaboration between 

survey methodologists and substantive researchers and may help us identify conditions under 
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which mode effects on measurement matter or do not matter. We would note that such tests 

are likely to be more difficult to identify in the case of multi-purpose public-use datasets, 

compared to surveys with a specific focus. 

Finally, the effects of mode on measurement need to be evaluated in the context of the 

effect of mode on other survey errors. Janssen and Schouten (2007) have suggested that such 

a total survey error perspective could, for example, be created by developing quality 

indicators of the effects of mode on different error types. 
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Table 1: Mode effects for which proportional odds assumption holds 
Question Response categories  Partial Proportional Odds Proportional Odds (Ologit) OLS 

  
F2F    

(Col %) 
Tel-F2F 
(% Pts) P-Value1 

F2F         
(Col %) 

Tel-F2F 
(% Pts) P-Value P-Value 

Q5 Very interested 12.60 5.87 0.000 12.40 6.30 0.000 0.000 
Political Quite interested 39.63 4.99  39.19 5.24   
interest? Hardly interested 29.34 -4.78  29.76 -5.32   
  Not at all interested 18.42 -6.06  18.65 -6.22   
Q6 Never 19.42 4.36 (0.033) 18.99 4.68 ns ns 
Politics too  Seldom 21.30 2.27  21.28 2.47   
complicated? Occasionally 32.44 -1.34  32.20 -1.31   
 Regularly 11.35 -1.75  11.52 -1.88   
  Frequently 15.49 -3.54  16.01 -3.96   
Q13 Allow many 6.07 1.90 (0.046) 6.13 2.05 0.012 0.017 
Immigration: Allow some 16.21 3.52  16.38 3.63   
poor outside Allow a few 46.05 0.85  46.54 0.29   
Europe? Allow none 31.68 -6.29  30.96 -5.97   
Q15 0 Cultural life undermined  7.10 -2.56 0.001 6.86 -2.24 0.000 0.000 
Immigration: 1 3.15 -0.99  3.10 -0.95   
impact on  2 4.69 -1.15  4.81 -1.38   
culture? 3 6.72 -1.70  6.60 -1.71   
 4 6.05 -1.26  6.33 -1.42   
 5 23.99 -2.96  23.94 -3.01   
 6 9.00 0.25  9.20 0.01   
 7 10.11 0.86  10.09 0.92   
 8 15.21 3.66  15.33 3.60   
 9 3.95 1.41  3.97 1.45   
  10 Cultural life enriched 10.03 4.44  9.78 4.72   
Q16 0 Worse place to live  12.71 -4.89 0.000 12.64 -5.17 0.000 0.000 
Immigration: 1 3.52 -1.16  3.49 -1.21   
impact on living 2 7.94 -2.29  7.89 -2.38   
standards? 3 12.05 -2.57  11.98 -2.64   
 4 7.28 -0.99  7.36 -1.03   
 5 35.58 2.44  35.53 2.52   
 6 6.87 2.23  7.12 2.39   
 7 5.17 2.20  5.18 2.29   
 8 5.75 3.05  5.79 3.22   
 9 0.79 0.47  0.76 0.48   
  10 Better place to live 2.34 1.50  2.26 1.53   
Q17a Agree strongly 23.14 -6.63 0.001 23.07 -6.47 0.000 0.000 
Gender role: Agree  29.77 -3.74  29.98 -3.79   
mothers should Neither 20.21 1.46  20.41 1.42   
not work? Disagree 20.42 5.89  20.23 5.85   
  Disagree strongly 6.46 3.03  6.32 3.00   
Q17b Agree strongly 74.10 6.67 (0.006) 74.01 7.03 0.009 0.001 
Gender role: Agree  20.51 -5.00  20.53 -5.26   
Men responsible Neither 3.03 -0.92  2.85 -0.90   
for family? Disagree 1.92 -0.60  2.18 -0.72   
  Disagree strongly 0.44 -0.14  0.44 -0.15   
Q17c Agree strongly 27.14 -5.98 (0.014) 27.63 -6.58 0.021 0.016 
Gender role: Agree  17.25 -1.65  17.32 -1.60   
Men more right Neither 22.29 0.40  21.99 0.56   
to jobs? Disagree 23.96 4.16  23.82 4.35   
  Disagree strongly 9.36 3.07  9.25 3.27   
Q18b Agree strongly 61.24 12.17 0.000 61.06 11.79 0.000 0.000 
Law should  Agree  23.04 -6.06  23.21 -5.94   
always Neither 11.46 -4.30  11.11 -3.98   
be obeyed? Disagree 3.39 -1.44  3.67 -1.47   
  Disagree strongly  0.88 -0.39  0.95 -0.40   

1 P-Values in brackets were larger than 0.05 after adjusting for multiple comparisons using the Holm-Bonferroni 
procedure. 

 



 
Table 2: Mode effects for which proportional odds assumption does not hold 

Question Response categories  Partial Proportional Odds Proportional Odds (Ologit) OLS 

  
F2F       

(Col %) 
Tel-F2F 
(% Pts) P-Value1 

F2F    
(Col %) 

Tel-F2F 
(% Pts) P-Value P-Value 

Ql    0.0000   0.004 0.002 
Time  0 hrs 2.59 0.22 ns 1.99 1.03   
watching 0 - 1/2 hr 5.43 -3.52 0.016 2.35 1.07   
TV? 1/2 - 1 hr 12.73 13.14 0.000 18.28 5.03   
 1 - 1 1/2 hrs 7.42 1.24 0.000 7.74 1.02   
 1 1/2 - 2 hrs 21.04 -0.11 0.001 20.78 0.65   
 2 - 2 1/2 hrs 6.81 -0.43 0.001 6.78 -0.35   
 2 1/2 - 3 hrs 18.80 -6.78 ns 15.23 -1.75   
  > 3 hrs 25.17 -3.75 – 26.85 -6.70   
Q2    0.0000   0.000 0.001 
Time  0 hrs 4.62 -0.10 ns 6.74 -2.87   
watching 0 - 1/2 hr 32.98 -22.69 0.000 23.89 -8.26   
TV news? 1/2 - 1 hr 36.99 21.50 ns 51.83 -0.61   
 1 - 1 1/2 hrs 11.19 -2.03 ns 7.13 3.46   
 1 1/2 - 2 hrs 7.26 3.98 ns 6.52 4.63   
 2 - 2 1/2 hrs 1.53 0.13 ns 0.99 0.86   
 2 1/2 - 3 hrs 2.61 0.38 ns 1.72 1.60   
  > 3 hrs 2.82 -1.18 – 1.18 1.19   
Q8f    (0.0058)   ns ns 
Trust 0 No trust at all  4.86 4.11 0.017 7.49 0.07   
institutions: 1 4.60 -3.43 ns 2.28 0.02   
EU  2 7.96 -2.24 ns 6.41 0.04   
parliament? 3 8.74 -0.07 ns 8.65 0.04   
 4 9.98 -2.11 ns 8.39 0.02   
 5 19.06 6.63 ns 23.33 -0.01   
 6 12.79 -0.83 ns 12.37 -0.04   
 7 11.63 -2.49 ns 10.47 -0.05   
 8 11.88 3.07 ns 13.88 -0.07   
 9 4.99 -2.83 ns 3.07 -0.02   
  10 Complete trust 3.51 0.18 – 3.66 -0.02   
Q11    0.0000   0.000 0.000 
Immigration: Allow many 19.81 8.36 0.004 19.41 9.38   
same  Allow some 30.64 0.85 0.007 29.01 3.12   
ethnicity? Allow a few 33.61 0.22 0.000 38.92 -7.73   
 Allow none 15.93 -9.41 – 12.66 -4.77   
Q12    0.0000   0.000 0.000 
Immigration: Allow many 9.16 2.85 ns 7.86 5.22   
different  Allow some 22.37 3.92 0.047 20.16 7.02   
ethnicity? Allow a few 43.66 7.50 0.000 51.87 -4.71   
 Allow none 24.81 -14.28 – 20.11 -7.53   
Q14    0.0003   ns ns 
Immigration: 0 Bad for economy  10.86 1.53 ns 13.27 -2.36   
impact on 1 7.89 -6.22 ns 4.06 -0.60   
economy? 2 7.15 -3.14 0.012 5.56 -0.73   
 3 9.14 1.14 ns 10.49 -1.06   
 4 9.65 -0.88 ns 9.40 -0.58   
 5 28.96 3.34 ns 31.01 0.72   
 6 5.05 4.34 ns 7.40 0.86   
 7 7.27 0.73 ns 6.90 1.09   
 8 6.85 1.47 ns 7.15 1.47   
 9 2.22 -0.60 ns 1.53 0.36   
  10 Good for economy 4.96 -1.72 – 3.23 0.84   
    0.0000   ns ns 
Q17d Agree strongly 10.42 -4.42 0.017 7.29 0.29   
Gender role: Agree  12.01 -1.07 0.046 10.76 0.56   
parents  Neither 19.15 5.08 ns 22.12 1.09   
should not Disagree 28.78 10.94 0.000 36.17 0.07   
divorce? Disagree strongly 29.65 -10.54 – 23.66 -2.01   

1 For each item the first row indicates the P-Value from a Wald test of the joint hypothesis that the mode coefficients for all 
dichotomisations are zero. P-Values in brackets were larger than 0.05 after adjusting for multiple comparisons using the Holm-
Bonferroni procedure. Rows two and following indicate the P-Values of the mode coefficients for each dichotomisation. 
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Table 3: Effect of mode on relationship between summed immigration score and predictors 
 
Predictor of  Telephone  Predictor Variable Predictor*Telephone 
immigration score Coefficient  P-Value Coefficient  P-Value Coefficient  P-Value 
In work 0.044  0.013 -0.020 ns 0.020 ns 
Voted 0.124  0.001 0.076  0.015 -0.081  0.036 
Centre right party  0.060  0.003 0.001 ns -0.033 ns 
Internet  0.045  0.010 0.051  0.016 0.020 ns 
Trust people 0.051 ns 0.018  0.000 0.000 ns 
Life satisfaction 0.090  0.008 0.025  0.000 -0.006 ns 
Religiosity  0.065  0.002 0.000 ns -0.002 ns 
Political interest 0.042 ns -0.130  0.040 0.020 ns 
Gender roles 0.042 ns 0.104 ns 0.015 ns 

Notes: Coefficients from separate OLS models of summed attitude score on mode (face-to-face omitted), 
predictor variable, interaction of mode and predictor variable and socio-demographic variables.  
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