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Non-technical Summary

Researchers often wish to compare and explain differences in socio-economic outcomes
across countries. They aim to uncover ‘country effects’, i.e. to identify how different policy
environments and institutions affect these outcomes and to inform the policy debate about
how to improve outcomes. The outcomes considered vary widely, ranging from labour force
participation and wages to political and civic participation rates, and social and political
attitudes. The most popular quantitative approach to analysis is multivariate regression
analysis of data from surveys or registers in multiple countries in which individual outcomes
are modelled as a function of both individual-level and country-level characteristics.

The popularity of this approach is illustrated by the European Sociological Review
between 2005 and 2012. Of the 340 articles published, some 75 exploit multilevel datasets
with individual respondents within countries. The statistical method that is most often applied
to these data is multilevel (hierarchical) regression modelling, used in nearly 60% of the 75
articles.

We argue that, for the multilevel country data case, there are problems when the
number of countries is small – the usual situation. The intuition is straightforward: in general,
derivation of parameter estimates with good properties is contingent on sample sizes being
‘large’. In particular, a large number of countries is needed in order to estimate country
effects reliably. Although software produces estimates of individual- and country-level
effects and estimates of their statistical significance, the issue is: which of these estimates can
be trusted and in what circumstances? We provide answers to this question, aiming to provide
a unified treatment for quantitative social science researchers as the issues that we discuss
appear to be not widely appreciated among this audience.

We review four regression modelling approaches to modelling individual and country
effects from multilevel country data, including multilevel modelling. We explain the issues
associated with estimation of country effects with reference to models of varying degree of
complexity in specification. Because existing literature does not cover the data structure of
interest here, we present our own Monte-Carlo simulation analysis of the properties of
multilevel model estimators. Moreover, we go beyond the linear models that have
predominated in the multilevel simulation literature, and evaluate the performance of non-
linear models (logit) models that are common in applied research, and we also draw out some
rules of thumb regarding sample size. Informed by these Monte Carlo results, we compare the
various estimation approaches outlined earlier using linear and non-linear models estimated
on multilevel country data from EU-SILC.

Our results lead us to suggest that, in order to derive reliable estimates, users require
at least 25 countries for linear models and at least 30 countries for logit models. Since these
numbers are larger than is available in many existing datasets, what can analysts do? We
recommend three approaches:
(1) Supplement regression-based modelling with more descriptive analysis of measured

country differences.
(2) Explore methods (discussed in the paper) that are more robust when there are small

numbers of countries, although we note that some of these require specialised knowledge
and are available in only a few software packages.

(3) Move beyond classical (frequentist) statistics and make greater use of Bayesian methods
of estimation and inference, as they appear to perform better when there are few
countries. The problem is that these methods also require statistical expertise beyond that
of most applied social science researchers, as well as specialist software.

With any of these approaches, the need for detailed consideration of the workings of national
institutions and policies remains.
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Abstract 
Cross-national differences in outcomes are often analysed using regression analysis of 
multilevel country datasets, examples of which include the ECHP, ESS, EU-SILC, EVS, 
ISSP, and SHARE. We review the regression methods applicable to this data structure, 
pointing out problems with the assessment of country-level factors that appear not to be 
widely appreciated, and illustrate our arguments using Monte-Carlo simulations and analysis 
of women’s employment probabilities and work hours using EU SILC data. With large 
sample sizes of individuals within each country but a small number of countries, analysts can 
reliably estimate individual-level effects within each country but estimates of parameters 
summarising country effects are likely to be unreliable. Multilevel (hierarchical) modelling 
methods are commonly used in this context but they are no panacea. 
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1. Introduction 

 

Researchers often wish to compare and explain differences in socio-economic outcomes 

across countries. They aim to discover how different policy environments and institutions 

affect outcomes and to inform the policy debate about how to improve outcomes. Many types 

of empirical approach are used in cross-national comparative work. On the one hand, 

qualitative methods include analysis of interviews with key informants and examination of 

documents summarising national laws and institutions. On the other hand, quantitative 

methods are based on survey or register data or other administrative sources (e.g. official 

statistics). The most popular quantitative approach is multivariate regression analysis of data 

from surveys or registers in multiple countries in which individual outcomes are modelled as 

a function of both individual-level and country-level characteristics. The properties of 

estimates from this approach are the subject of this paper.1 We argue that the small number of 

countries in most multi-country datasets severely constrains the ability of regression models, 

including multilevel (hierarchical) models, to provide robust conclusions about the effects of 

country-level characteristics on outcomes.  

Multi-country datasets that are commonly-used in contemporary social science 

research are summarised in Table 1. Common to them is their multilevel structure: there are 

observations at the individual level nested within a higher level (countries), so there is a 

natural hierarchy within the data. (When repeated waves of the same survey are available, the 

second level may be the country-year, with the country itself as a third level.) The datasets 

listed typically contain thousands of observation at the individual level, but the number of 

countries is relatively small and typically around 30: see the right-hand column of Table 1. 

The number of countries with data useable in regression analysis is often fewer still, e.g. 

because of missing data for some variables.  

 Multi-country datasets are attractive to researchers because they offer a means of 

quantifying the way in which countries matter for outcomes – the extent to which differences 

in outcomes reflect differences in the effects of country-specific features of demographic 

structure, labour markets and other socio-economic institutions such as tax-benefit systems 

that are distinct from the differences in outcomes associated with variations in the 

characteristics of the individuals themselves. In other words, multi-country datasets 

                                                 
1 Not all quantitative cross-national comparative research uses multivariate regression of multilevel data. Other 
methods include decomposition of measures of inequality and poverty. There is another stream of literature 
which uses countries as the level of observation, often using country-level panels (cf. Beck and Katz 1995). 
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potentially provide information about ‘country effects’ as well as ‘individual effects’, and 

also about interactions between them (‘cross-level effects’). 

 The popularity among quantitative sociologists of regression analysis of multilevel 

country data is illustrated by the articles published in the European Sociological Review 

between 2005 and 2012. Of the 340 articles published, we identify approximately 75 that 

exploit multilevel datasets with individual respondents within countries. Of course there are 

articles based on regression analysis of multilevel country data in other social science 

journals as well. (For example, there are 14 out of the 111 articles in the Journal of European 

Social Policy between 2005 and 2009, and 10 articles in a special issue of Political Analysis 

in 2005.) The various types of regression analysis that are employed in these studies are 

reviewed later in the paper.2 The topics addressed vary widely, reflecting survey content, 

ranging for example from labour force participation and wages to political and civic 

participation rates, and social and political attitudes. 

Multilevel data sets are examples of what statisticians refer to as cluster samples: 

there are individual units sampled within groups or clusters. The key issue for estimation and 

subsequent substantive interpretation is how to model differences in outcomes within and 

between the clusters. There are several different approaches, but the most popular in the 

multilevel country case is multilevel (hierarchical) regression modelling using specialist 

software such as HLM or MLwiN or modules within general statistical software such as Stata 

or SAS. Multilevel modelling is used in 43 of the 75 articles in the European Sociological 

Review cited earlier (i.e. 57 per cent; or 13 per cent of all 340 articles). 

In this paper, we argue that, for the multilevel country data case, there are problems 

when the number of countries is small – which is the usual situation (Table 1). The intuition 

is straightforward: in general, desirable properties of regression model parameter estimates 

such as consistency and efficiency are contingent on sample sizes being ‘large’. In particular, 

a large number of groups (countries) is needed in order to estimate country effects reliably. 

The caveat applies both to the ‘fixed’ parameters associated with country-level explanatory 

variables (and individual-country level interactions) and to the variances of random country-

specific parameters (intercepts and slopes). It is a generic problem that affects all regression 

modelling approaches; using multilevel regression models is no panacea. Although software 

                                                 
2 Between 2005 and 2012, the European Sociological Review also published 8 articles that exploit multilevel 
data but where the structure refers to pupils nested within schools or to respondents within geographical areas. 
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produces estimates of individual- and country-level effects and estimates of their statistical 

significance, the issue is: which of these estimates can be trusted and in what circumstances?  

We provide answers to this question. Drawing on literature from several social 

science disciplines, we aim to provide a unified treatment for quantitative social science 

researchers as the issues that we discuss appear to be not widely appreciated among this 

audience. Our exposition is intended to be accessible to applied researchers who do not have 

specialist statistical knowledge and so, wherever possible, we have relegated technical 

explanations and details to footnotes. In the next section, we review four regression 

modelling approaches to modelling individual and country effects from multilevel country 

data. We explain in more detail the issues associated with estimation of country effects in the 

following three sections. We begin the discussion with reference to the simplest case, a linear 

model in which country effects are characterised as random differences in model intercepts 

(section 3), and then extend the discussion to more complex models with country differences 

in slopes as well as intercepts (section 4) , and also to non-linear models for binary outcomes 

(section 6). We argue that viewing estimation of individual and country effects in terms of a 

two-step procedure can help to clarify the sources of the problems with small sample sizes. 

Throughout, we refer to cross-sectional data sets; the case of multi-country panels or other 

forms of longitudinal dataset are not considered explicitly.  

We review the literature on the performance of multilevel estimators in section 5. 

Because most existing literature does not cover the data structure of interest here, we present 

our own Monte-Carlo simulation analysis of the properties of multilevel estimators (section 

7). Unlike previous studies, we focus on data structures that are typical of cross-country 

research, examining estimator performance with as few as 5 groups, while maintaining a 

large group size (1,000 observations per group). Moreover, we go beyond the linear models 

that have predominated in the multilevel simulation literature, and evaluate the performance 

of non-linear models (logit) models that are common in applied research, and we draw out 

some rules of thumb. Informed by these Monte Carlo results, we compare the various 

estimation approaches outlined earlier using linear and non-linear models estimated on 

multilevel country data from EU-SILC (section 8). In the final section, we summarise our 

conclusions and offer advice about regression modelling of multilevel country data. 
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2. Regression analysis of multilevel country data: four approaches  

 

Before considering estimation issues in detail, we review four regression approaches that an 

analyst might use with multilevel country data.3 The discussion begins with reference to a 

linear model for a metric outcome variable: 

yic = Xicβ + Zcγ + uc + εic,   with i = 1, …, Nc; c = 1, …, C. (1) 

Outcome yic for each person i in country c is assumed to depend on both observed predictors 

and unobserved factors. Xic contains variables that summarise individual-level characteristics 

such as age, education or marital status; Zc contains variables summarising country-level 

features such as socio-economic institutions or labour markets. There are also unobserved 

individual effects (εic) and country effects (uc) that are each assumed to be normally 

distributed  and uncorrelated with Xic and Zc. Unless stated otherwise, we have in mind a 

dataset with a large number of individuals for each country (Nc is typically in the thousands) 

sampled from each of a small number of countries (C is around 30 or fewer). The parameters 

associated with the observed predictors β and γ are sometimes called ‘fixed’ regression 

parameters in order to distinguish them from the parameters characterising the joint 

distribution of the ‘random’ terms εic and uc, such as var(εic) and var(uc) although note that, in 

two of the approaches below, uc is also treated as a fixed parameter.  

 

Pooling the data for all countries (and using cluster-robust standard errors) 

 

A first approach is to simply pool the data from all of the country surveys. If one disregards 

the nesting of observations within countries, this approach ignores the fact that individuals 

within a country share unobserved characteristics (uc is an omitted variable). This leads to 

underestimation of the standard errors of β because the within-group (intra-class) correlation 

across individual units is not accounted for (Moulton 1986). Fortunately, it is straightforward 

to apply a ‘Moulton correction’ or, more commonly, to allow for more general correlation 

structure among individuals within countries using estimates of cluster-robust standard errors 

where the clusters are the countries (Angrist and Pischke 2009: 312–3).4 Another possibility 

                                                 
3 Our discussion is limited to the classical statistical framework favoured by most applied researchers. Bayesian 
methods offer a potential way to address the small numbers issues, contingent on making assumptions about 
‘prior distributions’ of parameters including regarding country effects. See inter alia Browne and Draper (2006 
and Gelman (2006). Bayesian methods are not yet widely used by social science researchers. One exception is 
the application by Kedar (2005) in which the number of second level units is 14. 
4 In Stata, one would use the regression command option cluster(country_identifier). 
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is to derive standard errors with block-bootstrap techniques (Angrist and Pischke 2009: 315; 

Cameron, Gelbach, and Miller 2008). Although cluster-robust standard errors are easy to 

derive nowadays, reliance on them is a conservative strategy because the within-country 

correlation is controlled for but not explicitly modelled. There are no estimates of parameters 

describing the distributions of the unobserved factors. 

The other three approaches account for the hierarchical nature of the data explicitly.  

 

Separate models for each country 

 

Researchers can fit a separate model to each country’s dataset. In this case, any country effect 

(uc) is absorbed into, and cannot be identified separately from, the intercept term in each 

country’s regression model (and so is a fixed parameter included as an element of β). This 

approach has the advantage of allowing the estimates of the coefficients on individual-level 

characteristics (the elements of β other than the intercept) to differ across countries. In 

addition, no restrictions are placed on the variance of the individual-specific error terms for 

each country. 

 

Country fixed effects (FE) models  

 

In a fixed effects (FE) approach, the data from the country surveys are pooled but the model 

specification includes distinct country intercepts (estimated as the coefficients on country 

binary indicator variables). Again, the country effects are treated as fixed parameters rather 

than random terms, with each country intercept representing the effects of unobserved factors 

that are shared within each country. In the simplest case, the individual effects (the non-

intercept elements of β) are constrained to be equal across countries, but they can be allowed 

to differ between countries by interacting subsets of individual-level characteristics with the 

country indicator variables. Estimates from a model that includes a full set of interactions 

between individual characteristics and the country dummies are not equivalent to the 

estimates derived from distinct country regressions because the residual error variance is 

constrained to be the same across countries in the former case but not in the latter.    
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Country random effects (RE) models  

 

The random effects (RE) approach also pools the data and allows for country effects. 

However, rather than treating these as distinct values each of which can be estimated, they 

are modelled as random draws from a distribution (usually normal) with mean zero and 

variance which is estimated. Although this approach is termed ‘random effects’, the 

parameters β and γ remain fixed in the simple case; in a more complicated RE model they 

may also be allowed to vary randomly (see section 4). One of the attractions of the RE 

approach is that country-level regressors can also be used as model predictors (see below). 

By contrast, in the FE approach, country differences are fully characterised by the country 

indicator variables. 

The RE model is the prototypical multilevel (hierarchical) model with random 

intercepts. A key parameter is the intra-class correlation ρ = σu
2/ (σε2 + σu

2), where σε2 and σu
2 

are the variances of the individual and country random effects respectively. (Individual 

random effects (εic) and country random effects (uc) are assumed to be uncorrelated with Xic 

and Zc and with each other.) The intra-class correlation summarises the extent to which 

unobserved factors within each country are shared by individuals. It tends to zero as σu
2 → 0.  

Assuming that the correlation structure of the random effects has a particular form leads to 

more efficient estimates of the individual-level effects represented by β, i.e. estimates with 

standard errors smaller than the cluster-robust ones. (Of course, the efficiency gain is 

conditional on the model being correct.) Estimation methods for this type of model include 

generalised least squares (GLS), full maximum likelihood (FML) and restricted maximum 

likelihood (REML): see Hox (2010) for a comparative discussion. All three types of estimator 

deliver consistent parameter estimates, i.e. they converge to their true values in sufficiently 

large samples (many countries and many individual units per country). The estimate of every 

parameter is asymptotically normally distributed, so standard methods can be used for 

hypothesis testing and confidence intervals, again conditional on the large sample condition 

being satisfied. As discussed in more detail below, some methods may also be available for 

inference in small samples (Kenward and Roger 1997) or if the random effects are not 

normally distributed (Carpenter et al. 2003). 
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Which approach should an analyst use? 

 

Because the four approaches differ in fundamental ways, one cannot straightforwardly 

recommend one approach over another. Nevertheless, one can distinguish some broad 

considerations. First, there are distinctions between the FE and RE approaches that go beyond 

questions of statistical specification. The two models are conceptually different and this has 

implications for the inferences that can be drawn from them, especially when using multilevel 

country data for only a few countries. In the FE approach, the emphasis is on the uniqueness 

of each country: the country effect (e.g. national culture or institutions) is treated as a 

characteristic that cannot be transferred to another national context. It is an effect that needs 

to be included as a control in the model, but each country’s estimate has no particular 

meaning regarding another country. That is, estimates from an FE approach (intercepts and 

coefficients) relate specifically to the set of countries included in the sample and cannot be 

generalised out of sample. As an example, FE estimates from a dataset including respondents 

from the original 15 European Union member states could not be applied to describe 

outcomes for the 12 new member states with their very different institutions and history. (The 

post-war experience of Slovenia is very different to that of France, for instance.)  

Another consequence of the FE approach is that country-level variables cannot be 

included as additional predictors (e.g. parental leave laws affecting couples’ division of 

childcare time) because the country intercepts already fully encapsulate cross-country 

differences (Snijders and Bosker 1999). The limited conclusions in this case are a 

consequence of the agnostic view about the nature of country effects. To say more, additional 

assumptions have to be made. 

The emphasis in RE models is very different: the set of countries included in the 

analysis is modelled as a sample from a larger population of countries defined in terms of 

observed country characteristics. Any remaining unobserved country effects are treated as 

being generated by some common mechanism and so are ‘exchangeable’ between countries 

(Snijders and Bosker 1999). The regression intercept is a population average (a common 

European intercept in the EU example) and deviations from this average are assumed to be 

uncorrelated with country-level variables included in the model. With these assumptions, the 

RE results can be generalised to other countries with different policies and institutions. For 

example, estimate of the effects of parental leave legislation on childcare time based on the 

old EU countries may be applied to possible legislative changes in the new member states.  
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The second consideration relates to statistical performance. Provided there is no 

correlation between the unobserved group-specific effect and the regressors, FE and RE both 

deliver consistent estimates of β  but the RE approach is more efficient because it ‘borrows 

strength’ from between-group variation (FE uses only within-group variation). However, in 

practice, the difference between the RE and FE estimates is likely to be negligible when using 

cross-country data that contain many more observations within countries than there are 

countries (large NC, small C). This is because, with large NC, almost all the variation used in 

RE estimation is from within, rather than between, countries.5 Thus the efficiency loss from 

using FE rather than RE (to estimate β) may be negligible: with only a few countries there is 

little potential to ‘borrow strength’ across them.  

Because the differences between the FE and RE estimates of β  are likely to be minor 

when using cross-county data, the choice between the two approaches (and the other 

methods) may largely depend on which parameters are the substantive focus of interest. 

Analysts primarily interested in the individual effects associated with observed predictors (β) 

may favour the FE approach or separate equations. On the other hand the RE approach is the 

natural choice if the focus is on the effects (γ) of country-level predictors or the variance 

component structure. To some extent this aspect is related to disciplinary conventions. 

Economists have conventionally avoided RE approaches, preferring to use one of the other 

three approaches. Other social scientists, including quantitative sociologists, have tended to 

favour the multilevel or hierarchical RE modelling approach. Henceforth we also focus the 

discussion on a RE framework, given our interest in the effects of both individual- and 

country-level predictors (and random country-specific parameters). 

 

 

3. Regression analysis of multilevel country data: a two-step approach 

 

It is instructive to consider a fifth approach in which estimation of the model specified in (1) 

is undertaken in two steps. This perspective has several advantages: first, it highlights the 

sources of variation in the data and illustrates why a small number of countries affects the 

reliability of estimates; second, the estimates are unbiased (with correct standard errors) and 

so can be used as a benchmark for the other methods; and third, the two-step method leads 
                                                 

5 For example GLS estimation of (1) weights between- and within-country variation as a function of σε2/ (σε2 + 
NC σu

2). As NC becomes large, the fraction of between-country variation used tends to zero and GLS converges 
to the within-country (FE) estimator. 
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naturally to an alternative (or complementary) graphical approach that provides a non-

statistical view of country-level variation. 

The two-step approach consists of one regression at the individual level and another 

regression at the country level. Two-step estimation of hierarchical structures dates back to at 

least Hanushek (1974) and Saxonhouse (1976) among economists, but the method appears to 

have been periodically rediscovered. Borjas and Sueyoshi (1994) presented a two-step 

estimator for the probit model, and other proponents include Card (1995), and Jusko and 

Shively (2005) and other papers in a special issue of Political Analysis (Kedar and Shively 

2005). Donald and Lang (2007) discuss the statistical properties of the two-step estimator 

(compared to GLS) in detail. For textbook discussion, see Wooldridge (2010: chapter 20). 

In the first (within country) step, we estimate 

yic = Xicβ + vc + εic,    with i = 1, …, Nc; c = 1, …, C (2) 

where vc is a fixed effect for country c that combines both observed and unobserved country 

characteristics, i.e. vc = Zcγ + uc. In practice, this is fitted either by letting vc be a country-

specific binary indicator variable in an OLS regression (cf. approach 2 above) or by using the 

within-group estimator with the country as the group (for textbook discussion of both 

estimation approaches, and their equivalence, see Hsiao 2003: section 3.2). In the second step 

we estimate 

ccc Zv ηα ++= γˆ  ,   with c = 1, …, C. (3) 

where cv̂  is an estimate of the country-specific fixed effect and ηc is a residual error term. 

Depending on the first-step estimation method, cv̂  is either the coefficient on the country 

indicator variable or is derived from the estimates as β̂ˆ ccc Xyv −= , where the bars over 

variables denote means taken over all individuals within a country. With large Nc, the second 

step can be estimated by applying OLS to the C country-level observations (Donald and Lang 

2007, Wooldridge 2010: 891–892).6 

                                                 
6 The country-level error, ηc, in (3) can be written )ˆ( ββεη −++= cccc Xu . With large Nc, cε  can be ignored 
because its variance (=σε2/Nc) will be negligible compared to that of uc, the unobserved country-specific effect. 
The term )ˆ( ββ −cX , the sampling error of the estimated country effects, is heteroscedastistic, but with large Nc 
it is also small. As NC → ∞ the equation error then converges to uc, which by assumption is homoscedastistic 
and normal (Donald and Lang 2007: 225; Wooldridge 2010: 892). Therefore step 2 can be estimated efficiently 
using OLS, with hypothesis testing of γ based on the t-distribution (with C-k-1 degrees of freedom, where k is 
the number of Zc variables). In the more general case of a heteroscedastistic error ηc at step 2, GLS would be the 
efficient estimator. Borjas and Sueyoshi (1994), Hanushek (1974) and Donald and Lang (2007) provide 
alternative calculations of the weighting matrix for feasible GLS. However, feasible GLS estimates are only 
consistent (and distributed normally) for large C (because estimates of the weighting matrix are ‘unreliable’ with 
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Under the assumptions of the basic model (Section 2) and with large Nc, the estimates 

of both γ and β are unbiased and have the correct standard errors. In addition the t statistics 

and p-values reported as standard by software packages will lead to reliable hypothesis tests. 

Moreover, OLS at step 2 provides an unbiased estimate of the variance of the country effects, 

σu
2. These properties apply even if there are few countries (small C), and so the two-step 

method can be seen as a useful benchmark for comparison with the other approaches. Closer 

consideration of the two-step method also highlights a number of issues that apply more 

generally to estimation using clustered data with few groups. 

First, step 1 uses only within-country variation to estimate the individual-level 

parameters, β, in contrast to the RE (and pooled) approach, which also uses between-country 

variation. The ability to ‘borrow strength’ from across groups (countries) is often cited as an 

advantage (increasing efficiency) of the RE approach in estimating β. But, as noted by 

Aachen (2005), with only a small number of groups but large numbers of individual units 

within groups, there is much less need (and less potential) to borrow strength across groups. 

In this case the RE approach uses mainly within-country variation and the resulting β 

estimates will in practice be close to the two-step (or equivalently FE) estimates (as 

illustrated in Section 8). 

Second, the second-step regression makes clear that estimation of the γ parameters 

associated with country-level predictors is based on only C observations, because estimation 

uses either the coefficients on country-level indicator variables or country means (the 

dependent variable in (3)). No matter how many individual-level observations (Nc) underlie 

the calculation of these means, we are effectively using only C observations at the country 

level (Donald and Lang 2007; Wooldridge 2010, chapter 20).  

The small number of countries has several implications. First, the country-level 

parameters, γ, are estimated much less precisely than would be suggested by OLS estimation 

of (1) using all individual-level observations. Ignoring the group-level error results in 

standard errors that are too small (Moulton 1986).  

Second, even if cluster-robust standard errors are used, the assumption that uc is 

normally distributed is crucial for hypothesis testing because we cannot rely on large sample 

sizes to provide an asymptotically normal distribution of the parameter estimates. If uc is not 

normally distributed, tests of statistical significance will not in general be accurate. 

                                                                                                                                                        
small C) . Given the large Nc, small C structure of most cross-country survey data, OLS (relying on a large Nc 
approximation) appears preferable to GLS (relying on large C approximation).   
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Furthermore, even if uc is normal, hypothesis tests and confidence intervals should be based 

on the t distribution and not the standard normal (z) distribution.7 For small C, the t critical 

values are considerably larger than the corresponding z values, implying that standard z tests 

will find statistically significant results too often. Similar issues arise in the RE approach, as 

we discuss below.  

Third, a small C places a practical limit on the number of variables that can be 

included in Z. With only a small number of countries, it is impossible to disentangle 

institutional effects in detail. Even calculating the variance of the country effects is 

problematic when the number of countries is small. Thus formal statistical inference is 

difficult. Nonetheless one can always compare the country effects cv̂  derived from the first 

step of estimation using less formal descriptive methods such as exploratory data analysis 

including graphs. See Bowers and Drake (2005) and the empirical illustration in Section 8 for 

examples. 

The bottom line is that, even with a simple specification of country effects, we need to 

exercise considerable caution about country-level estimates and hence differences across 

countries. The two-step approach indicates that the parameters on individual-level predictors 

(β) and their standard errors can be estimated reliably. But the regression parameters on 

country-level predictors (γ) and the variance of the country-specific effect (σu
2) are likely to 

be estimated imprecisely, and so too will their standard errors unless a specific adjustment is 

made (such as that implicit in the second-step regression). Hypothesis test of the country-

level parameters is also reliant on the assumption that country effects are normally 

distributed, which is questionable. 

 

 

4. What if the model is complicated further? Country-specific intercepts and slopes 

 

If there are problems with estimation and inference for a basic model, one would expect 

problems also to arise if the model specification is made more complicated. We show that 

this is the case when the basic model specification shown in equation (1) is extended to the 

more plausible case in which the effects of individual-level predictors differ across countries, 

                                                 
7 As noted above, if the second step is estimated by OLS, standard software will produce t-statistics that are 
correctly referred to the t-distribution with C–k–1 degrees of freedom (where k is the number of country-level 
variables). 
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i.e. there is country-specific variation in the β. This specification can also be accommodated 

within the two-step approach. The revised model specification is 

yic = Xicβc + Zcγ + uc + εic,  with i = 1, …, Nc; c = 1, …, C. (4) 

Observe that βc now has a c subscript. 

As in the earlier discussion of the interpretation of country-specific random 

component uc, we can either conceptualise the parameters βc as being unique and ‘non-

transferable’ (and so fixed), or as being a random draw from a population of possible effects. 

For the purposes of explaining the two-step method, we assume that both uc and βc are 

random and are uncorrelated with Xic and Zc. (We deal with possible dependence of βc on Zc 

below.) Typically βc contains multiple scalar parameters βjc, where j indexes the variables in 

Xic.  

The first step of estimation now consists of a separate OLS regression for each 

country:  

yic = vc + Xicβc + εic ,   i = 1, …, Nc. (5) 

where the regression intercept vc combines both observed and unobserved country 

characteristics (vc = Zcγ + uc). A second-step OLS regression  then yields estimates of γ: 

ccc nZv ++= γαˆ ,  c = 1, …, C. (6) 

where cv̂  are the intercept estimates from the first-stage separate country regression. As with 

the common-slope model, the effects of country-level characteristics are estimated from only 

C observations, so their standard errors will typically be relatively large and inference has to 

rely on the assumption of country effects uc being normally distributed.  

By contrast, the βc estimates from step 1 are based on a large number (Nc) of 

observations, so we can expect them to be precise, with the correct standard errors and 

distributed normally. We can easily test for differences across countries in the effects of 

individual characteristics (e.g. the impact of couples’ relative income on the division of 

housework). Researchers often want to go further and to investigate whether these impacts 

vary according to country-level factors (e.g. does the impact of relative income on housework 

depend on the level of gender empowerment in a country?). We can express the dependence 

of βc on Zc as a set of equations, one for each element of βc: 

βjc = βj0 + Zcδ + υjc (7) 

where βjc is the jth element of βc, βj0 is a constant and υjc is the random component of the 

parameter. This type of formulation is common in the multilevel literature (DiPrete and 
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Forristal 1994), and is equivalent to adding interactions between Xic and Zc to the individual-

level equation, as is seen by substituting equation (7) into (5). Using the parameter estimates 

from the separate country equations in the first step, we can estimate a set of second-step set 

of OLS regressions based on (7): 

ccc 1101
ˆ υββ ++= δZ ,  c = 1, …, C. (8) 

The two-step set up is again instructive in making explicit the sources of variation in 

the data that underlie the estimates. Since estimates of δ are based on only C observations, the 

same issues which arose in estimating γ are also relevant here. Therefore, while we can 

reliably compare the size of the impacts of individual-level characteristics across countries 

(because βc estimates are based on Nc observations), we cannot accurately quantify how these 

impacts vary with country characteristics (since comparisons are based on C observations).8 

Models with group-specific intercepts and slopes are usually estimated by REML or 

FML using multilevel modelling software. As argued earlier, these estimators may have 

serious limitations when the number of groups is small. Alternative estimation methods such 

as OLS applied to equation (4) with the predictors supplemented by interactions between Xic 

and Zc plus correction of the standard errors, are less applicable to the country-varying slopes 

case, because the error term now contains a heteroscedastic component in addition to the 

country-specific effect. The Moulton correction is also inappropriate, although Cameron, 

Gelbach, and Miller (2008) report that the wild cluster bootstrap-t still performs well when 

there is heteroscedasticity.  

Thus, once again, the two-step method may be a safe and practical alternative. That is, 

researchers interested in country effects can (i) estimate separate equations for each country, 

and then (ii) analyse the country-specific components cv̂  and cβ̂  in second step regressions. 

If one is not confident in the suitability of assuming normality at the second stage for 

inference, one can summarise these differences using less formal and non-inferential 

descriptive methods. 

 

 

                                                 
8 The issue stems from the presence of a country-level random effect. If there were no country-level random 
variation (no υc in (7) and no uc in (4)), a model described by equation (4) supplemented with interactions of X 
and Z could be estimated by OLS. 
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5. How many countries are required for reliable estimates of country effects? 

 

In general the statistical properties of standard multilevel estimators are well-defined only 

when both the number and size of the groups are large. Then, as noted in Section 2, the 

parameter estimates are consistent and asymptotically normally distributed. If the number of 

groups is small then, even if the group sizes are large, estimates of the random parameter 

variances will be imprecise (mirroring what was seen in the two-step approach) and likely to 

be biased downwards (Hox 2010: 233, Raudenbush and Bryk 2002: 283). The estimates of 

the fixed parameters will also be affected by the uncertainty in the variance estimates, such 

that their standard errors are biased downwards and the distribution of test statistics is 

unknown (Raudenbush and Bryk 2002: 282).9  

Concrete guidance about the number of groups required to avoid these problems is 

difficult to find. Most multilevel modelling textbooks mention the issue and sometimes cite 

rules of thumb (recommending anywhere between 10 and 50 groups as a minimum). 

However they stress that the minimum number depends on application-specific factors like 

the number of group-level predictors (Raudenbush and Bryk 2002: 267) and whether interest 

is focussed on the coefficients on the fixed regression predictors or the parameters describing 

the distribution of the random effects (Hox 2010: 235). Moreover, advice about sample size is 

often bound up with considerations of the cost of primary data collection: see Snijders and 

Bosker (1999: chapter 10). However, these cost issues are not relevant for secondary analysis 

of the many multilevel country datasets already in existence.  

Most analysis of the small group size issue is based on Monte Carlo analysis of 

simulated data because theoretical analysis cannot provide specific guidance. See for instance 

the review by Hox (2010: chapter 12). One caveat regarding the Monte Carlo studies is that 

conclusions are potentially sensitive to model specification, including parameter values and 

numbers and types of predictors. Previous studies have typically been based on a relatively 

simple, and mostly linear, models. For example Maas and Hox (2004) specify a linear model 

for a continuous outcome with a random intercept, a single individual-level regressor (with 

random slope), a single group-level regressor, and an interaction of the two (both regressors 

                                                 
9 In the special case of balanced data – meaning in the context of equation (1) that Nc is the same for all 
countries and the values of Xic are the same in each country – the fixed parameter estimates are unbiased and 
standard inference methods, based on the t distribution, can be used even with small samples. However, 
consistency and inference for the random effects variances still requires large samples. Moreover, the balance 
conditions (in particular identical values of Xic across countries) are highly unlikely to be met in typical cross-
country applications. 
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are normally distributed). Austin (2010) specifies a non-linear (logit) model, but with an even 

simpler specification, consisting of a random intercept and two (joint normally distributed) 

individual-level regressors. In contrast the Monte-Carlo simulations presented in Section 7 

are based on more realistic models including multiple continuous and dichotomous variables 

constructed to reflect empirical distributions (observed in EU-SILC data). Furthermore, few 

studies investigate estimator performance with fewer than 30 groups and they typically focus 

on data with only moderate groups sizes (typically a maximum of 50). 

The evidence to date for linear models indicates that OLS, GLS and FML estimates of 

the parameters associated with fixed predictors (β and γ) are unbiased even if the number of 

groups is as small as 10 (Hox 2010; Maas and Hox 2004). However, estimates of group-level 

variances increasingly under-estimate their true values as the number of groups declines. 

Recommendations regarding the minimum acceptable number of groups range from about 10 

to 100, depending on the estimator and software used (Hox 2010: 234), with REML preferred 

to FML (or GLS). The standard errors of both the coefficients on fixed predictors and 

especially the variance parameters are biased downwards when the number of groups is 

small. Based on their simulation evidence, Maas and Hox’s (2004) rules of thumb are: 10 

groups are sufficient for unbiased estimates of the β and γ, at least 30 groups are needed for 

good variance estimates; and at least 50 groups are required for accurate standard error 

estimates especially for those associated with the random component (co)variance 

parameters. 

There is little evidence for non-linear multilevel models, but the few existing studies  

suggest similar considerations as for linear models: with a small number of groups, estimates 

of the fixed parameters remain unbiased but estimates of the random component variances 

are biased downwards, and the standard errors associated with both fixed and variance 

parameters are too small. Stegmueller (2013) urges caution in using classical maximum 

likelihood methods with fewer than 10 or 15 groups, especially when the model includes 

cross-level interactions and random coefficients, while Moineddin et al. (2007) recommend 

using at least 50 groups.10  

                                                 
10 Moineddin et al. (2007) consider only moderate group sizes (5, 30, 50), so their findings may not be fully 
applicable to cross-country survey data. For the binary logit model with 30 groups they find little bias of the 
fixed parameter estimates, except that the estimate of the cross-level interaction parameter is biased upwards (by 
5% ). The variance estimates of the random intercept and random coefficient are biased downwards (by up to 
8%) and non-coverage rates for all parameter estimates, and especially the random components, are too high. 
Austin (2010), also using logit models with relatively small groups, NC = 5(5)50, finds that the fixed parameter 
estimates are unbiased with as few as 5 groups, but that estimates of the random intercept variance are 
substantially biased with fewer than 10-15 groups (depending on the estimation method used). Non-coverage 
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Recent econometrics literature has examined how well corrections to OLS standard 

errors perform when the number of groups is small. Both cluster-robust and block-bootstrap 

standard error estimates are valid only asymptotically and tend to be too small when there are 

few groups (Cameron, Gelbach, and Miller 2008). The Moulton (1986) correction may not 

work well either, since the within-group correlation tends to be underestimated when there 

are few groups (Angrist and Pischke 2009). Cameron, Gelbach, and Miller (2008) report 

Monte Carlo simulations showing that all three types of standard error estimate are much too 

small when the number of groups fall below 25. They also show that for cluster-robust and 

Moulton-corrected standard errors, the bias is worse for group-level parameters than those 

associated with individual-level variables (specifically, the bias is larger for variables with 

larger intra-group correlations). 

It is clear that the number of countries in the multilevel country datasets typically 

available falls within the risky range identified by these Monte Carlo studies. Can anything 

be done to increase the reliability of the estimates?  

There does not appear to be an easy solution using the multilevel model estimation 

commands in standard software. Most software, including Stata (personal communication 

from R. Gutierrez, StataCorp, 17 December 2009), does not routinely make small-sample 

adjustments to estimates of confidence intervals or test statistics. An exception is HLM 

(Raudenbush et al. 2004, cited in Hox 2010), which uses the t distribution with degrees of 

freedom based on the number of groups (similar to the second-step estimation outlined 

above) and should give better inference for the fixed parameters. More specialist corrections 

(for linear models only) have also been developed but only implemented in a few software 

packages. A small-sample correction to the REML estimator is available to improve the 

inference for the fixed parameters (Kenward and Roger 1997, 2009), and has been 

implemented in SAS. Bootstrapping methods may reduce bias and improve inference for the 

random effect variances as well when there are few groups or the random effects are not 

normally distributed.11  

                                                                                                                                                        
rates for the parameters on individual-level regressors are within expected bounds even with 5 groups. Austin 
does not report non-coverage rates for the random intercept variance and there is no group-level regressor. 
Stegmueller (2013) explicitly considers a cross-country data structure but focuses on the fixed parameters. 
Using a probit model, he finds that the estimates are subject to little bias even with only 5 groups, except (as in 
Moineddin et al. 2007) for a model including a cross-level interaction with a random coefficient: in this case the 
estimate of the fixed cross-level interaction parameter is biased upwards by 15% with 5 or 10 groups. However, 
the non-coverage rates are too large (by at least 5 percentage points) for most fixed parameter estimates with 10 
groups or less. 
11  For example, see the option in MLwiN based on Carpenter et al. (2003), with SAS macros provided by Wang 
et al. (2006). However, the method may yield coverage rates that are far from satisfactory. E.g. there are 
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If pooled OLS is the estimation method, with a focus on estimating the fixed 

parameters, there are potential improvements but at the cost of complexity. For example, 

cluster-robust standard errors can be further corrected using so-called bias-reduced 

linearization (Bell and McCaffrey 2002; Angrist and Pischke 2009: 320). An alternative 

bootstrap technique, the ‘wild cluster bootstrap-t’, also seems to perform well in small 

samples (Cameron, Gelbach, and Millar 2008), although it produces only t-statistics and not 

standard errors. Recent studies have indicated that a simple rescaling of the cluster-robust 

standard errors, and the use of critical values from the t-distribution, may deliver reliable test 

results (Bester et al 2011, Brewer et al 2013). Finally, the two-step approach we have 

presented is also a viable estimation method that will offer improved inference at the country 

level (Donald and Lang, 2007).   

For most of these methods, the fact remains that in the small-C case, one has to 

assume that country-level effects (uc) are normally distributed in order to derive good 

estimates of the standard errors of country-level regression parameters (γ) and the variance 

parameters (σu
2) and hence to do statistical inference. If the normality assumption cannot be 

justified, bootstrapping methods may provide acceptable inference. Alternatively, and 

especially if the country effects are considered to be fixed rather than random,  then, as we 

discuss below, the option that remains is to use less formal descriptive methods to describe 

step-1 estimates of cross-country differences (Bowers and Drake, 2005).  

 

 

6. Further complications: non-linear models  

 

In many applications the outcome variable is binary rather than metric. To allow for this we 

reinterpret the outcome variable in equation (4) as a latent index, yic*, and the observed 

outcome yic is a binary variable equal to one if the index is non-negative, and equal to zero if 

negative:  

yic* = Xicβc + Zcγ + uc + εic,  with i = 1, …, Nc; c = 1, …, C. 

(9) yic  = 1 if yic* > 0 

 = 0 if yic* ≤ 0 

                                                                                                                                                        
instances in Carpenter et al. (2003: Table 1) with 20 groups in which the coverage rate is 66% rather than a 
nominal rate of 90%. 
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As with any random effects binary dependent variable model, parameters are 

identified up to a scale factor only and, for identification, it is conventional to normalise σε2 to 

equal π2/3 in a logit model and one in a probit model. The choice between the two models is 

not usually important and to some extent depends on disciplinary traditions (the probit model 

is common in economics while researchers in other disciplines, especially sociology, tend to 

prefer the logit). Our examples focus on the logit model. 

 All four methods presented in Section 2 are available for non-linear models. Thus we 

could estimate a pooled logit (with clustered standard errors), separate logits for each 

country, a FE logit (including indicator variables for the country intercepts), or a RE logit. 

Unlike linear models, estimation typically involve types of maximum likelihood techniques 

(relying on large sample sizes for desirable properties of estimators), and so it is possible that 

non-linear models are more sensitive to small sample sizes.  

The two-step approach can also be applied to binary response models as long as the 

number of individual units per country is large: see Borjas and Sueyoshi (1994) and the 

application of Huber et al (2005). See also Wooldridge (2010: chapter 20) who argues that 

the approach is applicable to any nonlinear model with a linear index structure. The first step 

consists of logit (or probit) regression using separate logit regressions to the data for each 

country. (Alternatively, one could pool the data from all the countries and fit a model with 

country-specific intercepts.) Because there are many observations per country, the estimated 

parameters on the individual-level predictors, βc, are consistent. The linear index structure 

implies that the country-level intercepts and coefficients can be expressed as a linear function 

of the country variables Zc exactly as in a fully linear model (equation (7) for example). The 

second stage estimation is therefore identical to the linear model: the estimated country 

intercepts and coefficients are regressed on country-level variables using OLS. 

As with the linear model, the two-step approach underlines the importance of the 

number of countries for reliable estimates of the parameters describing country effects, γ, and 

their standard errors. Using Monte Carlo analysis, Borjas and Sueyoshi (1994) explore the 

consequences of different values of C and Nc. In so far as one can generalise from the 

particular specification used in their analysis, it appears that having only 10 groups is 

definitely problematic for estimation and inference but, as long as C is 25 or more (and Nc is 

large), country effect estimates are less problematic (they have reduced bias and better 

coverage probabilities): see Borjas and Sueyoshi (1994: Table 4). 
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7. How many countries are needed for good estimates? Monte-Carlo simulation results 

 

We use Monte-Carlo simulations to assess how large the number of countries needs to be in 

order to derive accurate estimates of model parameters and their standard errors from the 

standard multilevel model estimators. Simulation methods have also been used by other 

authors to assess multilevel model estimates, but for several reasons their results do not 

necessarily translate to typical cross-country applications.12 First, these previous studies have 

mainly been concerned with applications to education and health research that involve 

moderate numbers (a few tens) both of groups and numbers of observations within groups. 

Thus they do not usually consider the sample sizes of most relevance to cross-country 

researchers, i.e. a number of groups below about 30 and group sizes in the hundreds (at least). 

Second, there has tended to be a focus on linear models, while many socio-economic 

outcomes of interest call for non-linear (e.g. logit) methods. Third, to our knowledge, all 

previous studies use very simple, rather unrealistic, model specifications, typically including 

only two or three ‘well-behaved’ (normally distributed) regressors. We include binary, 

categorical, and continuous variables, and do not impose normality. 

Our work addresses these issues to provide a more comprehensive treatment of the 

performance of multilevel methods using cross-country survey data. We consider both linear 

and non-linear models using data structures that are similar to those found in multi-country 

data sets, we employ a greater range in the number of countries, and we also give greater 

attention to simulation variability than previous research – this turns out to be relevant when 

assessing the properties of estimates of some individual-level and country-level effects (see 

below).We conclude that with 10 or fewer countries, researchers are likely to under-estimate 

the sizes of the country random effect variances to an unacceptable degree. Estimates of the 

fixed parameters are generally unbiased but they may be imprecise, particularly if associated 

with country-level factors. Moreover, researchers are likely to find significant results too 

                                                 
12 Maas and Hox (2005) consider a linear model with a random intercept, a country-level regressor with random 
slope, and a cross-level interaction term. They consider designs with combinations of C = 30, 50, 100; NC = 5, 
30, 50; ICC = 0.1, 0.2, 0.3. Moineddin et al. (2007) consider a very similar design and regressors, but for a 
binary logit model. Austin (2010) considered a mulitlevel logit model with random intercept, and designs with 
combinations of C = 5(1)20; NC = 5(5)50. Simulations by Browne and Draper (2000) and Pinheiro and Chao 
(2006) re-used the three-level data structure employed by Rodriguez and Goldman (1995) with relatively small 
NC. The simulation design of Stegmueller (2013) is the closest to ours in that he uses combinations with C = 
5(5)30; NC = 500; ICC = 0.05, 0.10, 0.15, and he considers multilevel linear and non-linear binary models (but 
probit rather than logit ones). Unlike us, Stegmuller highlights the contrast between Bayesian and frequentist 
methods and his data generating process is less like those found in typical multi-country country data sets.  
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often when conducting hypothesis tests of either the random effect variances or the fixed 

parameters (especially those associated with country-level factors). We conclude that to have 

full confidence in the results, researchers will probably want to use at least 25 countries for 

linear models and 30 countries for non-linear models.  

Our simulation results are based on linear and non-linear two-level models, with two 

versions of each: a basic specification with random intercepts (Basic) and an extended 

specification with random intercepts and slopes (Extended). The model specifications are 

chosen to represent those that analysts have fitted to multi-country data, and are inspired by 

the EU-SILC data used in our numerical illustration in Section 8. Given this link, we refer to 

the outcome variables for the linear and non-linear models as ‘hours’ (of work) and 

‘participation’, respectively. For each of the four models, our simulations hold the number of 

individuals per country, NC, fixed at 1000, and vary the number of countries, C, from 5 to 50 

in intervals of 5, and also consider C = 100 in order to have a reference point for a case in 

which researchers would agree that C is large. 

In the Basic Model, the regressors include a constant (intercept), individual-level 

predictors with fixed slopes, a country-level predictor, and a random country intercept. (The 

model also includes an individual-specific error term.) To maintain the link with our EU-

SILC application, we refer to the individual-level predictors as age (continuous), age-

squared, cohab (whether married or cohabiting; binary), nownch (number of own children; 

integer), isced (educational level; four categories with the lowest excluded from the 

regressions). The country-level fixed is chexp (country spending on childcare and pre-

primary spending as a % of GDP, continuous). The Extended Model includes the same 

regressors but adds two cross-level interactions (between chexp and cohab, and chexp and 

nownch), and two random slopes (on cohab and nownch). In common with most social 

science applications, we assume that the random effects are uncorrelated with each other. The 

models are summarized in Table 2.  

Compared to previous Monte-Carlo simulations of multilevel models, our 

specifications include a greater number of regressors and different types of variables. For 

example, the model used in the oft-cited Maas and Hox (2005) study included only one 

individual-level regressor and one country-level regressor (both of which were continuous, 

normally distributed, variables). By including a more realistic set of regressors, we can be 

more confident that the performance of the estimators will hold up in practical applications 

and does not depend on the simplicity of the experimental specification. Furthermore we 

chose the parameters to correspond with parameters estimated by fitting the Basic and 
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Extended models for hours and participation probabilities to EU-SILC data for 2007 on 

women aged 18−64 years from 26 countries: see Table 2 for the values used. The value of the 

intra-class correlation (ICC) is relatively small in each of the four cases, which is common 

finding in the multi-country data context.13 We specified the joint distribution of the 

regressors by exploiting the fact that each combination of regressor values defines a cell with 

an associated probability of occurrence. We derived the cell probabilities from the empirical 

frequency distributions in the 2007 EU-SILC estimation samples cited earlier (separately for 

the hours and participation models), and then generated data sets reflecting these distributions 

for each value of C (and for each model) using a random number generator.14 In common 

with other simulation studies of multilevel models, the joint distribution of the regressors is 

the same across replications. 

All estimation and simulation was undertaken using Stata (StataCorp 2011).15 The 

models for hours were estimated by maximum likelihood using the xtmixed command’s 

REML estimator. The models for participation were estimated by maximum likelihood using 

the xtmelogit command’s adaptive Gaussian quadrature procedure (with seven integration 

points). The number of replications for each model, R, was chosen to be as large as possible 

in order to reduce simulation variability while also taking into account estimation time – 

which is longer for non-linear models than linear models, and the more complex the model 

that is estimated. Our choices for R were 10,000 for the Basic hours model, 5,000 for both the 

Extended hours model and the Basic participation model, and 1,000 for the Extended 

participation. A very small number of replicate estimations did not converge within the 

maximum of 250 iterations that we specified (at most approximately 0.02% per model) and, 

as is usually done, we exclude these estimates from our simulation summaries. 

The simulations were designed to examine the accuracy of the estimates of model 

parameters (fixed effect coefficients and random effect variances), and also of their standard 

errors and hence inference regarding the statistical significance of the various effects. We 

report three summary measures: 

                                                 
13 We did not vary the values of the ICC across simulations as previous research suggests that this has little 
effect on results (see e.g. Maas and Hox 2005). 
14 To construct the cells, age was grouped into five categories derived as follows. In EU-SILC data, we first 
fitted either a Singh-Maddala distribution (hours models) or a uniform distribution (participation models). The 
fitted parameters were used to generate values of age between 18 and 64 in the simulated data (values used in 
the regressions). They were grouped into five categories in order to incorporate age into the cell-based approach. 
15 Stata do files are available from the authors on request. We used Stata version 11 (on a desktop PC and a 
network server running Windows) for most of the simulations; version 12 was used for the simulation 
summaries. 
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Relative parameter bias: defined as the percentage difference between estimated parameter 

and the true parameter at each replication, averaged over R replications. Ideally, relative bias 

equals 0% for each parameter.  

Relative standard error bias: we compare the standard error reported by the software to the 

standard error that we calculate from the variation observed in the parameter point estimate 

during the simulation. More formally, the ‘analytical’ standard error is the reported standard 

error averaged over R replications, and the ‘empirical’ standard error is the standard deviation 

of the estimated parameter that we calculate based on the same R replications (Greene 2004). 

We define the relative standard error bias as the percentage difference between the analytical 

and empirical standard errors, assuming the empirical standard error is an accurate estimate 

of the true standard error.16 Ideally, the relative bias equals 0% for each standard error.  

Non-coverage rate: to assess overall inference, we calculate a 95% confidence interval (CI) 

for each estimated parameter, assuming normality (Maas and Hox 2005: 89). A non-coverage 

indicator variable was set equal to zero if this CI included the true parameter and one if it did 

not. The average over R replications of this variable is the non-coverage rate. Ideally, the 

non-coverage rate for a 95% CI is 0.05. Rates larger than 0.05 indicate that the estimated CI 

is too narrow.  

Most simulation studies of multilevel models report parameter bias and non-coverage 

rates only, and often interpret non-coverage rates as indicating the accuracy of the standard 

errors. However, non-coverage depends on a combination of parameter bias, the distribution 

of the parameter estimates (usually assumed normal) and the accuracy of the SEs. For 

example, even with accurate SEs, non-coverage will tend to exceed 0.05 if the parameter 

estimate is biased. To give a fuller picture of the potential sources of unreliability, we report 

estimates of SE bias in addition to non-coverage rates. 

Since the relative bias measures and the non-coverage rates are themselves estimates 

(they are both means over replications), they are subject to simulation variability – as 

                                                 

16 For parameter θ, the empirical SE is 𝑠𝑒(𝜃�) = �1/(𝑅 − 1)∑ (𝜃�𝑗𝑅
𝑗=1 − 𝜃�)2 and the analytical SE is 𝑠𝑎(𝜃�) = 

1/𝑅∑ 𝑠𝑒(𝜃�𝑗)𝑅
𝑗=1 , where j indexes replications and 𝑠𝑒(𝜃�𝑗) is the reported standard error for parameter estimate 

𝜃�𝑗. A caveat is that if the square of the empirical SE, 𝑠𝑒2�𝜃��, is an unbiased estimate of the true variance of the 
parameter estimate, 𝜎2 �𝜃��, it does not follow that, after taking square roots, 𝑠𝑒�𝜃�� is also an unbiased estimate 
of the true standard error 𝜎�𝜃��: 𝑠𝑒�𝜃�� will tend to underestimate 𝜎�𝜃�� (by Jensen’s inequality). Since we find 
that the 𝑠𝑎(𝜃�) tends to be smaller than 𝑠𝑒(𝜃�) (for small numbers of countries), our estimates of the (negative) 
relative standard error bias may be understated.  
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emphasized by Cameron and Trivedi (2010: section 4.6).17 We summarize this variability by 

presenting the 95% CI for estimated relative parameter bias and non-coverage rates.18 

Although this is not commonly done, it highlights some interesting features of estimates, 

especially of country effects: see below. 

The simulation results are summarised in Figures 1–10. For the Basic models, we 

present the relative bias of the parameter estimates and of the standard errors, as well as the 

non coverage rate, in Figures 1–3 (hours) and Figures 6–8 (participation). For the Extended 

models, we present the relative parameter bias and non coverage in Figures 4 and 5 (hours), 

and Figures 9 and 10 (participation). All results are provided in tabular form, with additional 

details, in the Appendix. For brevity, the results for some of the individual-level fixed 

parameters are excluded.  

 

Simulation results: linear model 

 

For the linear model with a random intercept and a country-level regressor (Basic model for 

hours), we find that the individual-level variance component and almost all the fixed 

parameters are unbiased regardless of C. In Figure 1, relative bias for sig_e, cohab, nownch, 

and age, is close to zero, with little simulation variability. The results for country-level 

regressor (chexp) stand out, however, as there is substantial simulation variability in relative 

bias even for large values of C. To be sure, the 95% CI for relative bias includes zero for all 

values of C (except C = 20) but, even for C = 50, the CI ranges from –15% to +14%. The 

implication is that, although the country-level coefficient is unbiased in expectation, there is 

substantial uncertainty associated with the estimate of relative bias. This stems from the 

relatively small number of countries underlying the estimates. Relative bias for the country-

level coefficient is greater than reported by Stegmueller (2013: Figure 2) for most values of 

C. We presume that the differences arise because we use a more complicated (and more 

realistic) data generating process than he uses. The country-level variance (sig_u) is under-

estimated but the bias falls rapidly with the number of countries, from 8% for C = 5 to around 

                                                 
17 The CIs are closely related to the empirical standard error, 𝑠𝑒�𝜃��, e.g. the standard error of the relative 
parameter bias is (100/𝜃)𝑠𝑒�𝜃��. Another measure of estimator inaccuracy is the mean squared error (MSE), 
defined as E[(𝜃� – θ)2]. It can be shown that MSE = 𝜎2 �𝜃�� + [bias(𝜃�)]2, thus it reflects inaccuracy stemming 
from both imprecision and bias. We do not report MSE because in our simulations the variance component 
dominates the (squared) bias, and so parameter inaccuracy, as would be measured by MSE, is almost fully 
captured in our CIs.  
18 For clarity in Figures 2 and 7, we do not present the CIs around the estimates of relative standard error bias. 
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1% or less for C ≥ 20. This is consistent with Maas and Hox (2004: 135) who report a bias of 

25% with 10 groups but negligible bias for 30 or more groups.  

The relative bias of the standard errors for the Basic linear model for hours is shown 

in Figure 2. For chexp, the standard error is underestimated by 8% for C = 5 but the bias 

declines to under 2% for C ≥ 15. For the country-level variance, there appears to be 

negligible bias in the standard errors for almost all values of C. Even for C = 5, the standard 

errors are downward biased by only 3%. The corresponding non-coverage rates are shown in 

Figure 3. Rates are estimated to be close to the nominal rate of 0.05 at all values of C, for the 

individual-level variance and for all the fixed parameters except chexp. For chexp, as 

expected from the under-estimated standard errors, non-coverage rates are markedly greater 

than 0.05 when C is very small, but they reach around 0.06 for C ≥ 20. Rates diverge to a 

greater extent for the country-level variance. It is only for C > 35 that the non-coverage rate is 

within one percentage point of 0.05. Since the standard errors are unbiased for sig_u, the high 

non-coverage rates at small C stem from parameter bias (Figure 1) or from a non-normal 

distribution of parameter estimates. 

Figures 4 and 5 summarize the results for the Extended model for hours, now 

including a cross-level interaction and two random slopes. Compared to the results about bias 

for the simpler model, the main change compared to Figure 3 is the greater prevalence of 

simulation variability in estimates of bias for the fixed parameters with the exception of that 

for age. (Having a relatively small number of countries now has implications for estimates of 

cross-level interaction effects, as well as for the country-level effect itself; it is not simply 

that the number of replications is smaller.) Nonetheless, relative bias is less than 2% for 

values of C > 10, and the 95% CI is –2% to +2% for all but one of the cross-level interaction 

effects (chexpXnownch) for C > 30.19 The random slope and country-level variances are all 

under-estimated, but the downward bias is less than 2% as long as C ≥ 25.  

Figure 5 shows that non-coverage rates are generally too large for all parameters 

except the age effect. Compared to the simpler linear model, this is apparent for more of the 

fixed parameters. As before, the explanation is that having a relatively small number of 

countries has implications for the standard error estimates of effects in addition to those for 

                                                 
19 This bias is greater than reported by Maas and Hox (2005: 89) who cite a maximum bias in effect coefficients 
of less than 0.05% for C ≥ 30 in a model with country- and cross-level interaction effects. In contrast the relative 
bias at small C is less than reported by Stegmueller (2013: Figure 5): e.g. about –10% for C = 10. 
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the country-level intercept, transmitted via the cross-level interactions or random slopes.20 

Non-coverage rates generally decrease as the number of countries increases, dropping sharply 

between C = 5 and C = 20, for both fixed parameters and random effect variances. What 

counts as the appropriate number of countries depends on how accurate one wishes one’s 

standard errors to be. Insisting on a non-coverage rate within one percentage point of 0.05 

would imply having 35 or more countries. With C = 20, the non-coverage rate is around 0.07 

to 0.08 depending on parameter (with some variability around those values). 

 

Simulation results: non-linear (binary logit) model 

 

In Figures 6–8, we summarise results for the Basic logit model for participation. The small-

sample properties of this model are less well-known than for the linear model, and so the 

simulations are of particular relevance. As it happens, there are some similarities with the 

results for the corresponding linear model. Figure 6 shows that the relative bias in the fixed 

parameters is near zero for almost all values of C. The main difference from Figure 1 is that 

there is now relatively little simulation variability in the country-level effect; instead there is 

now relatively substantial variability in the estimate of bias in the effect of cohab. For this 

particular effect, there is marked downward bias in the estimated effect at values of C < 20, 

though also observe that the CIs for relative bias include zero at all C values. The country 

variance (sig_u) is downwardly-biased, also as before, but now to a greater extent than in the 

Basic linear model. It is only for C ≥ 30 that the bias is less than 5%.  

The estimated bias of the standard errors is summarized in Figure 7. There is little 

standard error bias for the fixed parameters associated with individual-level predictors. 

However the standard errors of the fixed parameter at country level, chexp, and of the 

country-level random intercept variance, sig_u, are substantially under estimated for small 

values of C. These biases exceed those of the linear model (Figure 2). Only for C ≥ 25 does 

the bias fall below 5% for chexp (C ≥ 20 for sig_u).  

Non-coverage rates for the Basic logit model are shown in Figure 8. As for the Basic 

linear model (Figure 3) and, mirroring the negligible bias of the standard errors, non-

coverage rates are close to 0.05 for the fixed parameters of individual-level predictors. Again, 

                                                 
20 We also simulated a model with cross-level interactions but without random slopes. The non-coverage rates 
for the fixed effects associated with the cross-level interactions and their corresponding individual-level 
predictors (chexpXnownch, nownch, chexpXcohab, cohab) were all close to 0.05, suggesting that excessive non-
coverage at small C stems from the presence of random components.  
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the exceptions are the fixed country-level effect and the country-level intercept variance. For 

chexp, non-coverage rates are higher than in the linear model case. Only for C = 40 does the 

non-coverage rate for chexp get to within one percentage point of 0.05. But if one were 

prepared to tolerate a non-coverage rate of 0.08, then having C > 20 would suffice. Similarly, 

the non-coverage rate for the country-level variance also much too high for most C values 

and by a greater amount than in the corresponding linear model case (note the vertical axis 

scale in this case). For C = 30, the non-coverage rate is around 0.10, i.e. twice the nominal 

rate of 0.05. Even when C = 100, the non-coverage rate is around 0.07. 

The results for the Extended logit specification also parallel those for the 

corresponding linear model and, again, the accuracy of corresponding estimates is less, for 

both parameters and standard errors. The patterns of relative bias shown in Figure 9 are 

similar to those shown in Figure 4, in the sense that simulation variability is relatively large 

for all of the estimates of bias in the fixed parameters .21 Again, however, virtually every CI 

for the relative bias estimates includes zero, and for all C. And, for all fixed parameters 

except that for cohab, the relative bias estimate itself is no more than 2% as long as C ≥ 20. 

(By contrast, the estimated relative bias for cohab is around –7% when C = 100.) The random 

slope and intercept variances are substantially under-estimated when the number of countries 

is small. For example, the random slope variances are around half the true value for C = 5, 

though ‘only’ 90% of their true value for C = 20. Relative bias falls to –5% or less only if C 

is around 40. For the country variance, this degree of bias is achieved if C ≥ 30. 

The picture for non-coverage rates shown in Figure 10 is also broadly similar to that 

for the corresponding linear model (Figure 5). Simulation variability is larger (partly 

reflecting the smaller number of replications), but non-coverage rates are also larger, 

especially at small values of C. Even with C ≥ 35, the non-coverage rate is greater than 0.06 

for several fixed parameters. On the other hand, if one is prepared to tolerate a non-coverage 

rate up to 0.08, the simulations suggest that having at least 25 countries would suffice. To 

generate the same non-coverage rate for the random coefficient variances appears to require 

around 30 countries or more, whereas for the country variance, more than 35 are required. 

The results suggest that to lower the rate further would require a very large number of 

countries,: even when C = 100, the non-coverage rate is greater than 0.06, for all three 

variances.  

                                                 
21 Observe the different vertical axis scales in Figure 9. In part, the greater simulation variability for the logit 
model also reflects the smaller number of replications: 1,000 rather than 5,000. 
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Lessons of the Monte-Carlo simulation analysis 

 

Our simulation analysis endeavours to provide practical answers to the question of how large 

the number of countries needs to be for multilevel model analysis of multi-country data. We 

have demonstrated that, with 10 or fewer countries, estimates of parameters and their 

standard errors are inaccurate to what is surely an unacceptable degree, with substantial 

under-estimates of country random effect variances and excessive non-coverage rates for 

both fixed and random effects. But how many countries are required? Our own practical rule-

of-thumb would be: at least 25 countries for linear models and 30 countries for non-linear 

models. However, we would also stress that there is no single ‘magic’ number of countries – 

the number depends on a number of factors. We have highlighted, for instance, that the 

number consistent with derivation of accurate estimates depends on a researcher’s definition 

of acceptable accuracy. We have used a relative bias of 0% and a non-coverage rate of 0.05 

as reference points, but have shown how fewer countries are sufficient if one is content to be 

merely fairly ‘close’ to these ideals.  

We have also demonstrated that the appropriate number of countries depends on what 

model is being estimated and which effects that the researcher is primarily interested in. At 

one extreme, it is well-known that for a linear model REML produces unbiased estimates of 

the effects of fixed individual-level covariates and our simulations confirm this. But our 

simulations have also shown that unbiasedness may coincide with a substantial degree of 

estimate variability particularly for effects associated with country-level factors (country 

effects and cross-level interaction effects), reflecting the small number of countries relative to 

the number of individuals per country. What is true on average across repeated estimation 

need not be true in a single estimation instance using a particular data set (the situation faced 

by the practising researcher). 

More positively, we have shown that non-coverage rates for fixed parameters in linear 

models are relatively good, as long as the number of countries is greater than around 25. With 

this number of countries, linear model estimates of random effect variances and their standard 

errors also appear to be accurate to an extent that may satisfy many practising researchers.  

Our simulation results for the binary logit mixed models regarding relative bias and 

non-coverage have many parallels with those for the corresponding linear models. The 

primary difference between models is that a greater number of countries appears to be 

necessary to generate the same degree of accuracy in parameter estimates and standard errors, 



28 

other things being equal. In particular for random coefficient variances (if specified) and 

especially the country-level variance, at least 30 to 35 countries may be required to derive 

sufficiently accurate estimates – which is more than is usually available (see Table 1).  

An additional warning concerning non-linear mixed models in general and the binary 

logit mixed model in particular is that the estimator used for maximization also matters. We 

have used adaptive Gaussian quadrature, which has been found to produce more accurate 

estimates than penalized quasi-likelihood (Rodriguez and Goldman 2001, Pinheiro and Chao 

2006, Austin 2010). Other researchers have shown that Bayesian estimation methods using 

Markov chain Monte-Carlo methods also perform well, especially with a relatively small 

number of ‘countries’ (Austin 2010; Browne and Draper 2000, 2006; Stegmueller 2013).  

 

 

8. Empirical illustration: hours worked and work participation 

 

Following the Monte Carlo analysis, and to illustrate the practical consequences of using 

multilevel data with a small number of countries, we present a simple but representative 

application based on data from a commonly-used dataset, EU-SILC.22 Since the Monte Carlo 

simulations indicated that we could expect substantial problems with around 10 countries, we 

randomly selected 10 from the available 26 countries.23 We estimate models of the form 

specified in Table 2, that is linear models of working hours and non-linear (binary logit) 

models of work participation. We focus the discussion here on the Basic specification 

containing country-specific intercepts but common slopes across countries. (Results for an 

Extended specification are available from the authors on request.)  

 

Linear model 

 

The dependent variable in the linear model is the usual number of total weekly hours worked 

in the main job of person (woman) i in country c and the explanatory variables are: ageic and 

age-squaredic; cohabic, a dummy variable indicating whether a woman is married/cohabiting; 

nownchic, number of own children; three iscedic dummy variables indicating highest 

                                                 
22 We use data from 2007, 4th release, which contains 26 countries: the 27 EU member states excluding 
Bulgaria, Malta and Romania, plus Iceland and Norway. 
23 The 10 countries are: Denmark, Estonia, Germany, Hungary, Finland, France, Netherlands, Poland, Portugal, 
United Kingdom. 
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educational level according to the International Standard Classification of Education 

(ISCED)24; and chexpc, the total childcare and pre-primary spending as a % of GDP in 

country c. The model is estimated using 45,464 observations on working women aged 18–64 

from 10 countries.  

Table 3 and Figure 11 summarise the estimates of the Basic hours model using the 

different methods.25 The table lists the fixed parameter estimates and standard errors 

associated with selected variables (cohab, nownch and chexp) as well as (when estimated) the 

standard deviations of the random country intercept (sig_u), the individual-level error (sig_e) 

and the intra-class correlation (ICC). Where appropriate we use the two-step estimates as a 

benchmark for the other multilevel methods. Figures 11 and 12 (discussed below) graph the 

estimates of the country intercepts from step 1 of the two-step method.  

Beginning with the fixed parameters, we see that all the methods indicate that 

partnered women work about one hour per week less than single women, that having an extra 

child is associated with about a one hour reduction in work time, and that more childcare 

spending in a country is associated with more hours of work (although this last effect is only 

statistically significant in one case). However, as expected from the discussion in Sections 2 

and 3, and the Monte Carlo simulations, there are some notable differences across methods. 

 The first striking difference is that the OLS coefficients (methods 1 and 2) differ 

substantially from those of the other estimators (3–7) and in particular from the two-step 

benchmark. For example, being partnered is associated with 1.7 fewer hours of work 

according to OLS but with 1.2 fewer hours according to the two-step method. Also, a one 

percentage point difference in childcare spending (as a proportion of GDP) is associated with 

1.9 hours more work according to the OLS estimates but only 0.4 hours (and not statistically 

significant) according to the other methods. The differences may reflect that, unlike the other 

methods, OLS ignores the unobserved country effect and so gives too much weight to 

between-country variation and not enough weight to within-country variation.  

A second feature of the OLS estimates is that the use of cluster-robust variances 

(method 2) leads to standard errors which are much larger (by about 5–25 times) than OLS 

standard errors (method 1). We expected the clustered standard errors to be larger, because 

                                                 
24 ISCED level 3 is upper secondary (usually post-compulsory education from 15 or 16 years), level 4 is post-
secondary but non-tertiary, and  levels 5–6 are tertiary education (first and second stage). The default category 
combines ISCED levels 0–2 (the various stages of compulsory education). 
25 We omit separate models for each country because the parameters from such unrestricted models are not 
readily comparable to models in which the parameters are restricted to be the same (or vary only parametrically) 
across countries. 



30 

they account for within-country correlation across individuals, but we also noted above that 

cluster-robust methods may not work well with only a few countries. This warning appears to 

be borne out by a comparison of the clustered standard errors with those from the other 

methods that take proper account of the multilevel data structure. In particular, the standard 

errors associated with the two individual-level variables from methods 3–7 are almost the 

same as the (uncorrected) OLS standard errors. This suggests that clustered standard errors at 

the individual level may be too large, rather than too small, when number of countries is 

small.26 In contrast, the clustered standard errors at associated with the country-level 

regressor are much closer to those from the other methods. 

Next, we compare the fixed parameters estimated by methods 3–7 which account 

explicitly for the multilevel structure of the data. We take the two-step estimates (method 7) 

as a benchmark (noting that step 1, method 7a, is identical to the country FE approach, 

method 3). The point estimates of the fixed parameters, both for individual- and country-level 

regressors, are almost identical across the methods and the same as the two-step method, 

consistent with them being unbiased. The Monte Carlo simulations of the REML estimator 

indicated that the fixed parameter estimates were unbiased even for small group sizes.  

We also see that the three random effects estimators (GLS, REML and FML) yield 

estimates of the effects of the individual-level predictors which are identical (to three decimal 

places) to the FE estimates. We expected GLS and FE to be very similar because, given the 

large number of individual observations and few countries, the GLS estimator uses almost 

entirely within-country variation. In addition, the ML estimates of the random effects model 

(methods 5–6) are very close to RE GLS. An implication is that, for estimating the fixed 

parameters associated with individual-level predictors, it does not matter whether the country 

intercept is modelled as fixed or random.  

The Monte Carlo simulations indicated that there should be little bias in the standard 

errors of the parameter estimates on the individual-level predictors, but some downward bias 

in the standard error of the parameter estimate of the country-level predictor (although only 

about 2% at C = 10, Figure 2). Consistent with expectations, the standard errors of the 

individual-level fixed parameters are identical across methods 3–7. But for the country-level 

predictor, chexpc, the standard error is 5.35 using step 2 of the two-step (method 7b) , 

compared to 4.79 using REML (method 6). This represents a difference of some 11% (rather 

                                                 
26 A caveat is that cluster-robust standard errors allow for a more general form of within-country correlation 
than implied by a country intercept common to all individuals.  
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larger than expected) and would lead to higher likelihood of finding a significant effect of 

child expenditure using REML rather than the two-step method (although in this example 

both are insignificant at conventional significance levels). Of the other estimators, FML gives 

the same standard error for the chexpc parameter as REML, but GLS gives a slightly larger 

standard error even than the two-step method. 

The final group of estimates are the variances of the random components. The Monte 

Carlo simulations and earlier research suggest that the estimate of sig_e should be unbiased 

but that sig_u should be underestimated (perhaps by some 3%, Figure 1), leading to 

underestimates of ICC. Methods 3–7 give identical estimates of sig_e. Step 2 of the two-step 

(method 7b) gives a benchmark estimate of sig_u of 4.86, while the REML and FML 

estimates are both 4.34 (11% smaller) and the GLS estimate is 4.87 (0.3% larger). Again the 

difference between the two-step results and the REML is somewhat larger than was expected 

from the Monte Carlo experiments. There is a corresponding difference between ICC, 

estimated as 0.195 by the two-step method (or the almost identical GLS) and as 0.162 by 

REML and FML. Finally, the Monte Carlos also indicated that the standard error of the sig_u 

estimate would be too small. Both REML and FML produce the same estimate, but we are 

unable to compare it with GLS or step 2 of the two-step because Stata does not report 

estimates of the standard errors of variance components in linear models.   

In view of the small number of country-level observations, an alternative to 

estimating the effects of country-level predictors statistically is to use less formal descriptive 

or visualisation techniques at the country level (Bowers and Drake 2005). This approach 

amounts to replacing step 2 of the two-step method with graphs of the estimated country 

intercepts (from step 1 or country FE) or with a verbal description of the differing country 

intercepts in terms of national institutions. In Figure 11 we plot the estimated country 

intercepts against childcare spending (these are the data points used in the step 2 regression). 

Consistent with the statistically insignificant chexp estimate of Table 3, there does not appear 

to be a systemic association between childcare spending and the country average level of 

work hours (adjusted for national differences in age, partnership rates, numbers of children 

and education). However, the advantage using visual techniques is to allow a richer (and 

perhaps more realistic) view of cross-national variation that may reveal patterns that are 

hidden by a simple ‘summary’ regression coefficient. As an illustration, the graph 

distinguishes between countries in North-West Europe, Southern European, Eastern Europe 

and Scandinavia (Nordic countries). The sample size is small but nevertheless suggestive of 

some possible clusters, for instance the NW European group tends to work relatively few 
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hours and spend relatively little on childcare (except for France) while the Nordic countries 

have high childcare spending and work relatively long hours (further evidence is provided by 

estimates based on 26 countries, available from authors on request). Patterns of this sort in 

the data, together with information about country institutions, may lead to the development of 

further hypotheses about the determinants of working hours.  

 

Non-linear (binary logit) model 

 

The estimated parameters for the logit model of work participation are presented in Table 4 

and Figure 12. The dependent variable is a binary variable equal to one if a women 

participates in employment and zero otherwise, with the same explanatory variables as in the 

linear model. Estimation is based on the previous sample of workers combined with 

additional observations on non-working women (18–64 years), giving a total sample size of 

73,169. 

 From the little evidence cited in previous studies and our Monte Carlo simulations we 

expect similar issues to those encountered with the linear model, except that the biases and 

excessive non-coverage rates may be worse for small numbers of countries. As before, we 

take the two-step results as a benchmark: the point estimates and standard errors of the 

individual-level predictor parameters at step 1 should be accurate thanks to large sample sizes 

within countries; and the step 2 OLS estimates of the country-level predictor parameter and 

country intercept variance should be unbiased (with the correct standard error on the country-

level predictor parameter).  

 As for the linear model, the fixed parameter estimates from the pooled models 

(methods 1–2) differ from multilevel estimates (methods 3–6), although by less than in the 

linear case.27 The largest proportionate difference is for the parameter on cohab, which is 

0.10 in the pooled model but only 0.07 in the multilevel models. The unclustered standard 

errors of the individual-level predictor effects are almost identical to those of the multilevel 

models, but (as in the linear case) the unclustered standard error for the country-level 

predictor effect is much smaller in the pooled estimates (0.032 compared with 0.284 in the 
                                                 

27 The estimates from the pooled and the multilevel logits are not directly comparable because: (a) the composite 
error term in the pooled logit, uc + εic, is assumed to follow the logistic distribution, while in the random effects 
logit uc is assumed to be normal and only εic has a logistic distribution; (b) the estimated fixed parameters are 
scaled by 1/sd(uc + εic) in the pooled logit, but only by 1/sd(εic) in the multilevel logit. To make the scaling 
comparable, it is easily shown that the multilevel parameters should be multiplied by √(1 – ICC). In our 
example, ICC = 0.020 and so the multiplication factor is 0.992, a trivial adjustment which, nevertheless, 
increases very slightly the difference between the two sets of estimates. 
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two-step method). The use of clustering brings the country-level predictor standard error 

almost up to those of methods 3–6, but (as in the linear model) clustering appears to overstate 

the standard errors of the individual-level predictor parameters (for example, the standard 

error of the nownch parameter is 0.045 in the pooled estimates, but only 0.01 in the multilevel 

estimates). This again suggests that clustered standard errors may lead to misleading 

conclusions with small numbers of groups. 

 Focussing on the methods that account for the multilevel data structure, we see that 

the estimated fixed parameters from the RE and MLM (FML) logits are almost identical to 

the two-step estimates, consistent with the negligible parameter bias found in the Monte 

Carlo simulations. The estimates of the FE logit are also the same as the corresponding 

estimates from the RE logit, indicating (as for the linear model) that the choice between FE 

and RE is unimportant if interest focuses on the individual-level predictors.  

Turning to the standard errors on the estimated fixed parameters, we see that they are 

identical across methods 3–6 for the individual-level predictors but not for country-level 

regressor. From the Monte Carlo simulations, we expected the standard error on the chexp 

parameter to be downward biased by about 15% (Figure 7). The ‘benchmark’ standard error 

from the two-step method is 0.284, while the RE and MLM standard errors are both 0.255, 

implying that they are understated by 10%. This is somewhat less than expected from the 

Monte Carlos, but in this example we will see that it is enough to change the conclusion 

about the effect of national childcare spending on work participation.  

The corresponding test statistics for the effect of chexp are 0.529/0.255 = 2.07 from 

the RE and MLM models, and 0.529/0.284 = 1.86 from the two-step method. If the RE/MLM 

test statistic is referred to the standard normal distribution, then the p-value, as reported by 

Stata, is 0.038. Thus the chexp estimate is significant at the 5% level. By contrast the p-value 

of the two-step test statistic, referred to the t(8)-distribution and as reported by Stata, is 

0.100.28 Therefore the estimated parameter is not significant at the 5% level and not quite 

significant even at the 10% level. We see how an underestimate of the standard error in the 

MLM leads to an overly liberal conclusion. A more conservative strategy may be to use the t-

distribution instead of the normal as a reference for the MLM estimates (Raudenbush and 

Bryk 2002: 282). Using the t(8)-distribution, the p-value of the RE/MLM test statistic is 

0.072, so the estimated effect is no longer significant at the 5% level, although it is still 

                                                 
28 Step 2 of the two-step method is an OLS regression using 10 country observations. The 8 degrees of freedom 
are equal to 10 observations minus a constant and one country-level regressor. 
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significant at 10%. However, since most statistical software reports p-values based on an 

asymptotic normal distribution (an exception is HLM), this correction needs to be done 

manually by users. 

Lastly, we compare the standard deviation of the random intercept, as estimated by 

the RE and MLM methods and the two-step method. From the Monte Carlos simulations, we 

expect sig_u to be downward biased by about 15%. The gap in the estimates is somewhat less 

but nevertheless quite substantial: the RE and MLM estimates (0.229) are 11% less than the 

two-step estimate (0.258). The difference leads to a correspondingly lower value of ICC in 

RE/MLM (0.016) than two-step (0.020).  

For a graphical view of country-level variation, the country-specific intercepts are 

plotted against national childcare expenditure in Figure 12. There is a clearer upward slope 

than for hours worked, suggesting that more childcare spending may be associated with 

greater work participation, although the data point for Denmark may be exerting undue 

influence. There is somewhat less evidence of distinct country clusters than in the working 

hours model, although Finland and Denmark have high participation rates (also high levels of 

childcare spending). 

 

 

9. Summary and conclusions  

 

When there are few countries in a multi-country data set, there is little information with 

which to estimate country effects, whether these effects refer to the fixed parameters on 

country-level predictors or the variances of random country intercepts. Multilevel model 

users need to be cautious in the claims they make about country effects.  

Our Monte-Carlo simulations suggest that users require at least 25 countries for linear 

models and at least 30 countries for logit models. With fewer countries, estimates of country-

level fixed parameters are likely to be estimated imprecisely and this will not be adequately 

reflected in test statistics reported by commonly-used software: users will conclude too often 

that a country effect exists when it does not. Country random variances will be biased 

downwards and have confidence intervals that are too narrow. The only estimates that are 

unaffected by the small number of countries are the fixed parameters on individual-level 

predictors (the number of individuals per country is typically large): provided there is not also 

a random component attached to the slope, these parameters are estimated without bias and 

with the correct standard errors (and non-coverage rate). 
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Since the critical number of countries required for reliable estimation of country effects is 

larger than is available in many existing datasets, what can analysts do in the small-C case? 

We recommend three approaches. One is to supplement regression-based modelling with 

more descriptive analysis of measured country differences. We have referred to exploratory 

data analysis, including graphical representations of country differences, which may reveal 

features of the data (including outliers and country groupings) that are hidden when fitting a 

simple regression line. A second approach is to explore methods that are more robust to small 

numbers of countries. These include the two-step method, small sample corrections to test 

statistics, and bootstrapping; although some of these techniques require specialised 

knowledge and are available in only a few software packages. A third approach would be to 

move beyond classical (frequentist) statistics and make greater use of Bayesian methods of 

estimation and inference, as they appear to perform better in the small-C case. The problem is 

that these methods also require statistical expertise beyond that of most applied social science 

researchers, as well as specialist software. With any of these approaches, the need for detailed 

consideration of the workings of national institutions and policies remains. 
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Table 1. Multi-country datasets commonly-used in social science research 

Data sources (in alphabetical order) Typical number of 
countries per wave 
of data 

Eurobarometer 27 
European Community Household Panel (ECHP) 15 
European Quality of Life Survey (EQLS) 31 
European Social Survey (ESS) 30 
European Union Statistics on Income and Living Conditions (EU-SILC) 27 
European Values Study (EVS) 45 
International Social Survey Program (ISSP) 36 
Luxembourg Income Study (LIS) 32 
Survey of Health, Ageing and Retirement in Europe (SHARE) 14 
Notes: All datasets are based on cross-sectional surveys with the exception of ECHP and SHARE which are panel 
surveys. EU-SILC has cross-sectional and panel components; and data collection is via administrative registers rather 
than household surveys for some countries.  

 

Table 2: Model specifications and parameter values for simulation analysis 

Regressors Parameter Parameter values 
 label Hours Participation 
  Basic Extended Basic Extended 
Fixed effects      
constant b0 22 22 –9.1 –9.1 
ageic  b1 0.8 0.8 0.5 0.5 
(ageic)2 b2 –0.01 –0.01 –0.006 –0.006 
cohabic b3 –1 –1 0.02 0.02 
nownchic  b4 –1.2 –1.2 –0.27 –0.27 
isced3ic b5 0.7 0.7 0.7 0.7 
isced4ic b6 1.4 1.4 0.9 0.9 
isced56ic b7 1.6 1.6 1.4 1.4 
chexpc c1 –0.23 –2.7 0.98 0.7 
chexpc  × cohabic c2  2.4  0.6 
chexpc × nownchic c3   0.7  –0.1 
Random effects      
σe sig_e 9.5 9.4 π/√3 π/√3 
σu sig_u 3.5 2.4 0.275 0.38 
σb3c sig_b3c  1.2  0.25 
σb4c sig_b4c  1.2  0.13 
ICC  0.120 0.061 0.022 0.042 
Notes. See main text for explanation of the models and regressors. The random effects are: an 
individual-specific error eic ~ N(0, σe

2); a random intercept uc  ~ N(0, σu
2); a random 

coefficient on cohabic, b3c ~ N(0, σb3c
2); and a random coefficient on nownchic,  

b4c ~N(0, σb4c
2). chexpc is the country-level regressor. 
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Table 3. Model of working hours with country-specific intercepts: alternative estimation 
methods compared  

 Parameter estimates (standard errors) 
Method cohabic nownchic chexpc sig_u sig_e ICC 
1. OLS –1.651*** –1.177*** 1.876*** 

    (0.125) (0.055) (0.184) 
   2. OLS (clust SE) –1.651* –1.177* 1.876 
    (0.836) (0.586) (4.351) 
   3. FE  –1.151*** –1.585*** 

 
 9.881 

  (0.114) (0.051) 
    4. RE (GLS  ) –1.152*** –1.585*** 0.423 4.872 9.881 0.196 

 (0.114) (0.051) (5.370) 
   5. MLM (REML) –1.152*** –1.585*** 0.424 4.341*** 9.880*** 0.162 

 (0.114) (0.051) (4.785) (0.972) (0.033) 
 6. MLM (FML) –1.152*** –1.585*** 0.424 4.341*** 9.880*** 0.162 

 (0.114) (0.051) (4.785) (0.972) (0.033) 
 7a. Step 1 (FE) –1.151*** –1.585*** 

  
9.881 

  (0.114) (0.051) 
    7b. Step 2 (OLS)   

 
0.421 4.856 

 
0.195 

   
(5.349) 

   Notes: other explanatory variables are: age, age squared, and highest education level (3 dummy variables); 
number of observations is 45,464 and number of countries is 10; * significant at 10%; ** significant at 5%; *** 
significant at 1%. 

 

Table 4. Model of work participation with country-specific intercepts: alternative estimation 
methods compared  

 Parameter estimates (standard errors) 
Method cohabic nownchic chexpc sig_u ICC 
1. Pooled logit 0.100*** -0.294*** 0.583*** 

   (0.021) (0.009) (0.032) 
  2. Pooled logit (clust SE) 0.100* -0.294*** 0.583** 
        (0.059) (0.045) (0.252) 
  3. FE logit 0.071*** -0.288*** 

 
 

  (0.021) (0.010) 
   4. RE logit 0.072*** -0.288*** 0.529** 0.229*** 0.016 

 (0.021) (0.010) (0.255) (0.052) 
 5. MLM logit (FML) 0.072*** -0.288*** 0.529** 0.229*** 0.016 

 (0.021) (0.010) (0.255) (0.052) 
 6a. Step 1 0.071*** -0.288*** 

    (0.021) (0.010) 
   6b. Step 2 (OLS) 

  
0.529 0.258 0.020 

   
(0.284) 

  Notes: other explanatory variables are: age, age squared, and highest education level (3 dummy variables); 
number of observations is 73,169 and number of countries is 10; * significant at 10%; ** significant at 5%; *** 
significant at 1%; for methods 1–6a, significance levels are as reported by Stata, and refer to critical values 
from z-distribution; for method 6b, significance levels refer to critical values from t(8)-distribution. 
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Figure 1. Relative parameter bias (%): linear model with random intercept and country-level 
regressor (Basic model for hours), selected parameters 
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Figure 2. Relative standard error bias: linear model with random intercept and country-level 
regressor (Basic model for hours), selected parameters 
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Figure 3. Non-coverage rate: linear model with random intercept and country-level regressor 
(Basic model for hours), selected parameters 
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Figure 4. Relative parameter bias (%): linear model with random intercept, two random 
slopes, country-level regressor and individual-country interaction (Extended model 
for hours), selected parameters 
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Figure 4 (continued). Relative parameter bias (%): model with random intercept, two random 
slopes, country-level regressor and individual-country interaction (Extended model 
for hours), selected parameters  
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Figure 5. Non-coverage rate: model with random intercept, two random slopes, country-level 
regressor and individual-country interaction (Extended model for hours), selected 
parameters 
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Figure 5 (continued). Non-coverage rate: linear model with random intercept, two random 
slopes, country-level regressor and individual-country interaction (Extended model 
for hours), selected parameters  
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Figure 6. Relative parameter bias (%): binary logit model with random intercept and country-
level regressor (Basic model for participation), selected parameters 
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Figure 7. Relative standard error bias: binary logit model with random intercept and country-
level regressor (Basic model for participation), selected parameters 
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Figure 8. Non-coverage rate: binary logit model with random intercept and country-level 
regressor (Basic model for participation), selected parameters 
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Figure 9. Relative parameter bias (%): binary logit model with random intercept, two random 
slopes, country-level regressor and individual-country interaction (Extended model 
for participation), selected parameters 
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Figure 9 (continued). Relative parameter bias (%):binary logit model with random intercept, 
two random slopes, country-level regressor and individual-country interaction 
(Extended model for participation), selected parameters  
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Figure 10. Non-coverage rate: binary logit model with random intercept, two random slopes, 
country-level regressor and individual-country interaction (Extended model for 
participation), selected parameters 
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Figure 10 (continued). Non-coverage rate: binary logit model with random intercept, two 
random slopes, country-level regressor and individual-country interaction (Extended 
model for participation), selected parameters  
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Figure 11. Model of working hours: country-specific intercepts and childcare/pre-primary 
spending 

 

 
Figure 12. Model of work participation: country-specific intercepts and childcare/pre-primary 
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APPENDIX: 
 
 
 
 

MONTE-CARLO SIMULATION ESTIMATES 
 
 
 
 
 
The following tables summarize the Monte Carlo simulations of the models for hours and 
participation (Basic and Extended).  
 
For each of the four models, we give its specification and summarize the results in two tables: 
(i) the estimated parameter values and their bias, and (ii) the estimated standard errors and 
their bias, and the resulting non-coverage rates. 
 
The tables provide the estimates underlying Figures 1–10 in the main body of the paper, as 
well as additional estimates. 
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Appendix: Monte Carlo simulations 
 
A.1 Hours, Basic Model (R = 10,000)  
 
Hours_ic = 22 + 0.8 * age_ic – 0.01 * age-squared_ic – 1 * cohab_ic  –1.2 * nownch_ic   
+ 0.7 * isced3_ic + 1.4 * isced4_ic + 1.6 * isced56_ic –0.23 * chexp_c  + u_c + e_ic 
 
u_c  ~ N(0, 3.5^2), e_ic ~ N(0, 9.5^2),  cov(u_c, e_ic) = 0  icc = 0.1195122 
 
Table A1. Hours, Basic Model: estimated parameters 
 
Parameter 
(true value) 

NC Mean LB UB Relative bias, % 
(mean) 

LB UB 

  (1) (2) (3) (4) (5) (6) 
cons 5 22.004 21.924 22.084 0.017 –0.347 0.381 
(22) 10 22.006 21.938 22.075 0.029 –0.281 0.339 
 15 21.997 21.954 22.040 –0.015 –0.211 0.181 
 20 22.075 22.022 22.128 0.341 0.102 0.581 
 25 21.984 21.951 22.017 –0.072 –0.221 0.078 
 30 22.004 21.970 22.038 0.019 –0.135 0.174 
 35 21.994 21.968 22.020 –0.027 –0.145 0.091 
 40 22.019 21.991 22.048 0.088 –0.042 0.218 
 45 22.004 21.976 22.032 0.018 –0.110 0.146 
 50 21.994 21.970 22.018 –0.028 –0.137 0.081 
 100 21.999 21.981 22.016 –0.005 –0.085 0.075 
age 5 0.801 0.799 0.803 0.149 –0.100 0.398 
(0.8) 10 0.800 0.799 0.802 0.037 –0.139 0.214 
 15 0.800 0.799 0.801 –0.041 –0.185 0.102 
 20 0.799 0.798 0.801 –0.064 –0.191 0.063 
 25 0.800 0.800 0.801 0.055 –0.055 0.166 
 30 0.800 0.799 0.801 0.005 –0.097 0.107 
 35 0.801 0.800 0.801 0.077 –0.018 0.171 
 40 0.800 0.799 0.801 –0.025 –0.114 0.065 
 45 0.800 0.799 0.800 –0.044 –0.127 0.039 
 50 0.800 0.800 0.801 0.033 –0.047 0.112 
 100 0.800 0.799 0.800 –0.025 –0.080 0.031 
cohab 5 –1.003 –1.009 –0.996 0.256 –0.397 0.910 
(–1) 10 –1.000 –1.005 –0.995 –0.001 –0.455 0.453 
 15 –0.999 –1.002 –0.995 –0.145 –0.512 0.223 
 20 –1.003 –1.006 –1.000 0.310 –0.008 0.628 
 25 –1.002 –1.005 –0.999 0.226 –0.057 0.510 
 30 –1.001 –1.004 –0.998 0.094 –0.168 0.357 
 35 –1.002 –1.004 –1.000 0.200 –0.039 0.440 
 40 –1.001 –1.003 –0.999 0.119 –0.109 0.347 
 45 –1.000 –1.003 –0.998 0.038 –0.178 0.254 
 50 –1.000 –1.002 –0.998 0.024 –0.176 0.224 
 100 –0.999 –1.000 –0.997 –0.146 –0.290 –0.003 

Continued overleaf  
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Table A1 (continued). Hours, Basic Model: estimated parameters 
 
Parameter 
(true value) 

NC Mean LB UB Relative bias, % 
(mean) 

LB UB 

  (1) (2) (3) (4) (5) (6) 
Nownch 5 –1.202 –1.205 –1.199 0.161 –0.085 0.407 
(–1.2) 10 –1.199 –1.201 –1.197 –0.103 –0.275 0.069 
 15 –1.198 –1.200 –1.197 –0.132 –0.270 0.007 
 20 –1.201 –1.202 –1.199 0.069 –0.053 0.190 
 25 –1.199 –1.201 –1.198 –0.046 –0.154 0.062 
 30 –1.199 –1.200 –1.198 –0.084 –0.183 0.015 
 35 –1.200 –1.201 –1.199 –0.008 –0.100 0.085 
 40 –1.200 –1.201 –1.199 –0.021 –0.106 0.063 
 45 –1.201 –1.202 –1.200 0.068 –0.011 0.146 
 50 –1.200 –1.201 –1.200 0.041 –0.036 0.118 
 100 –1.200 –1.201 –1.199 0.011 –0.043 0.066 
chexp 5 –0.311 –0.415 –0.206 35.115 –10.298 80.527 
(–0.23) 10 –0.235 –0.328 –0.141 2.098 –38.618 42.813 
 15 –0.197 –0.245 –0.149 –14.360 –35.406 6.686 
 20 –0.364 –0.460 –0.269 58.421 16.968 99.874 
 25 –0.223 –0.268 –0.178 –3.206 –22.802 16.389 
 30 –0.237 –0.284 –0.191 3.247 –17.134 23.628 
 35 –0.237 –0.268 –0.207 3.191 –10.005 16.387 
 40 –0.252 –0.286 –0.219 9.775 –4.945 24.496 
 45 –0.219 –0.261 –0.178 –4.754 –22.776 13.268 
 50 –0.228 –0.262 –0.194 –0.748 –15.440 13.945 
 100 –0.227 –0.249 –0.205 –1.261 –10.923 8.402 
sig_u 5 3.221 3.194 3.248 –7.967 –8.736 –7.199 
(3.5) 10 3.392 3.375 3.408 –3.099 –3.581 –2.616 
 15 3.447 3.434 3.460 –1.518 –1.900 –1.136 
 20 3.459 3.448 3.471 –1.165 –1.494 –0.836 
 25 3.462 3.452 3.473 –1.077 –1.369 –0.785 
 30 3.469 3.460 3.478 –0.888 –1.151 –0.625 
 35 3.481 3.472 3.489 –0.555 –0.797 –0.312 
 40 3.475 3.467 3.483 –0.724 –0.950 –0.497 
 45 3.478 3.470 3.485 –0.637 –0.846 –0.428 
 50 3.481 3.474 3.488 –0.533 –0.731 –0.334 
 100 3.492 3.488 3.497 –0.215 –0.356 –0.073 
sig_e 5 9.500 9.498 9.502 0.000 –0.019 0.020 
(9.5) 10 9.499 9.498 9.501 –0.008 –0.022 0.006 
 15 9.499 9.498 9.500 –0.008 –0.020 0.003 
 20 9.500 9.499 9.501 –0.003 –0.012 0.007 
 25 9.500 9.499 9.501 –0.003 –0.012 0.005 
 30 9.500 9.499 9.501 –0.001 –0.009 0.007 
 35 9.500 9.500 9.501 0.003 –0.005 0.010 
 40 9.500 9.500 9.501 0.002 –0.005 0.009 
 45 9.500 9.499 9.501 –0.000 –0.007 0.006 
 50 9.500 9.499 9.500 –0.001 –0.007 0.005 
 100 9.500 9.500 9.501 0.001 –0.003 0.005 

Continued overleaf 
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Table A1 (continued). Hours, Basic Model: estimated parameters 
 
Parameter 
(true value) 

NC Mean LB UB Relative bias, % 
(mean) 

LB UB 

  (1) (2) (3) (4) (5) (6) 
icc 5 0.112 0.111 0.114 –6.207 –7.481 –4.933 
(0.120) 10 0.116 0.115 0.117 –2.530 –3.358 –1.702 
 15 0.118 0.118 0.119 –0.887 –1.550 –0.225 
 20 0.119 0.118 0.119 –0.725 –1.298 –0.153 
 25 0.118 0.118 0.119 –0.850 –1.359 –0.340 
 30 0.119 0.118 0.119 –0.716 –1.175 –0.257 
 35 0.119 0.119 0.120 –0.273 –0.697 0.152 
 40 0.119 0.118 0.119 –0.655 –1.052 –0.258 
 45 0.119 0.118 0.119 –0.589 –0.955 –0.223 
 50 0.119 0.119 0.119 –0.458 –0.807 –0.110 
 100 0.119 0.119 0.120 –0.139 –0.388 0.110 
 
Notes 

(1) mean of distribution of parameter estimates from each Monte-Carlo replication 
(2), (3): lower and upper bounds of 95% CI for (1), calculated assuming normality of 
MC sampling distribution 
(4) Relative bias: percentage difference between (1) and ‘true’ parameter value 
(5), (6): lower and upper bounds of 95% CI for (4), calculated assuming normality of 
MC sampling distribution 
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Table A2. Hours, Basic Model: estimated standard errors and non-coverage rates 
 
Parameter NC Empirical 

SE 
Analytic

al SE 
LB UB Relative 

difference, 
% 

Non–
coverage 
rate, % 

LB UB 

  (1) (2) (3) (4) (5) (6) (7) (8) 
cons 5 4.088 3.884 3.861 3.907 –4.981 0.097 0.092 0.103 
 10 3.479 3.440 3.426 3.454 –1.128 0.070 0.065 0.075 
 15 2.199 2.182 2.176 2.188 –0.745 0.062 0.057 0.067 
 20 2.688 2.675 2.667 2.683 –0.472 0.060 0.055 0.065 
 25 1.678 1.670 1.667 1.674 –0.483 0.056 0.051 0.060 
 30 1.734 1.712 1.709 1.716 –1.278 0.058 0.053 0.062 
 35 1.325 1.319 1.317 1.321 –0.457 0.053 0.049 0.057 
 40 1.454 1.462 1.460 1.465 0.577 0.052 0.048 0.057 
 45 1.437 1.432 1.430 1.435 –0.283 0.052 0.048 0.057 
 50 1.221 1.208 1.206 1.210 –1.061 0.056 0.051 0.060 
 100 0.894 0.886 0.885 0.887 –0.914 0.051 0.047 0.056 
age 5 0.101 0.101 0.101 0.101 –0.396 0.051 0.047 0.055 
 10 0.072 0.072 0.072 0.072 –0.525 0.051 0.046 0.055 
 15 0.059 0.059 0.059 0.059 –0.045 0.050 0.045 0.054 
 20 0.052 0.051 0.051 0.051 –1.706 0.055 0.050 0.059 
 25 0.045 0.046 0.046 0.046 0.926 0.047 0.043 0.051 
 30 0.042 0.042 0.042 0.042 0.079 0.052 0.048 0.057 
 35 0.039 0.039 0.039 0.039 0.161 0.052 0.048 0.056 
 40 0.037 0.036 0.036 0.036 –0.765 0.049 0.045 0.054 
 45 0.034 0.034 0.034 0.034 0.471 0.048 0.043 0.052 
 50 0.032 0.032 0.032 0.032 –0.351 0.048 0.044 0.053 
 100 0.023 0.023 0.023 0.023 0.690 0.049 0.045 0.054 
cohab 5 0.333 0.330 0.330 0.330 –1.083 0.052 0.047 0.056 
 10 0.232 0.229 0.229 0.229 –1.058 0.052 0.047 0.056 
 15 0.188 0.186 0.186 0.186 –0.600 0.050 0.046 0.054 
 20 0.162 0.163 0.163 0.163 0.501 0.049 0.045 0.053 
 25 0.145 0.146 0.146 0.146 0.759 0.049 0.044 0.053 
 30 0.134 0.134 0.134 0.134 –0.257 0.051 0.047 0.055 
 35 0.122 0.124 0.124 0.124 1.053 0.048 0.044 0.052 
 40 0.116 0.116 0.116 0.116 –0.405 0.050 0.046 0.054 
 45 0.110 0.109 0.109 0.109 –1.066 0.049 0.045 0.054 
 50 0.102 0.103 0.103 0.103 1.426 0.046 0.042 0.050 
 100 0.073 0.073 0.073 0.073 –0.448 0.051 0.046 0.055 
nownch 5 0.151 0.150 0.150 0.150 –0.344 0.052 0.047 0.056 
 10 0.105 0.104 0.104 0.104 –0.890 0.055 0.050 0.059 
 15 0.085 0.085 0.085 0.085 0.586 0.048 0.044 0.052 
 20 0.074 0.074 0.074 0.074 –0.430 0.051 0.047 0.055 
 25 0.066 0.066 0.066 0.066 0.279 0.047 0.043 0.051 
 30 0.061 0.060 0.060 0.060 –0.721 0.052 0.047 0.056 
 35 0.056 0.056 0.056 0.056 –0.835 0.051 0.047 0.055 
 40 0.052 0.052 0.052 0.052 0.729 0.050 0.046 0.054 
 45 0.048 0.049 0.049 0.049 1.858 0.044 0.040 0.048 
 50 0.047 0.047 0.047 0.047 –0.146 0.051 0.047 0.056 
 100 0.033 0.033 0.033 0.033 –0.637 0.050 0.046 0.054 

Continued overleaf 
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Table A2 (contd.). Hours, Basic Model: estimated standard errors and non-coverage 
rates 
 
Parameter NC Empirical 

SE 
Analytic

al SE 
LB UB Relative 

difference, 
% 

Non–
coverage 
rate, % 

LB UB 

  (1) (2) (3) (4) (5) (6) (7) (8) 
chexp 5 5.329 4.857 4.817 4.897 –8.857 0.149 0.142 0.156 
 10 4.778 4.673 4.650 4.696 –2.195 0.080 0.075 0.085 
 15 2.470 2.425 2.416 2.435 –1.803 0.070 0.065 0.075 
 20 4.864 4.847 4.831 4.863 –0.352 0.063 0.058 0.067 
 25 2.300 2.283 2.277 2.290 –0.708 0.063 0.059 0.068 
 30 2.392 2.346 2.339 2.352 –1.923 0.063 0.058 0.068 
 35 1.549 1.542 1.538 1.546 –0.418 0.058 0.054 0.063 
 40 1.727 1.724 1.720 1.728 –0.221 0.062 0.057 0.066 
 45 2.115 2.091 2.087 2.096 –1.113 0.059 0.054 0.064 
 50 1.724 1.707 1.704 1.711 –0.982 0.055 0.051 0.060 
 100 1.134 1.121 1.120 1.123 –1.094 0.055 0.051 0.059 
sig_u 5 1.373 1.330 1.319 1.341 –3.129 0.177 0.169 0.184 
 10 0.862 0.855 0.851 0.859 –0.782 0.108 0.102 0.114 
 15 0.682 0.681 0.679 0.684 –0.026 0.084 0.079 0.090 
 20 0.587 0.581 0.579 0.583 –1.083 0.078 0.073 0.083 
 25 0.522 0.514 0.513 0.516 –1.373 0.071 0.066 0.076 
 30 0.470 0.467 0.466 0.468 –0.650 0.068 0.063 0.073 
 35 0.433 0.432 0.431 0.433 –0.296 0.064 0.059 0.068 
 40 0.405 0.402 0.401 0.402 –0.725 0.064 0.059 0.068 
 45 0.373 0.378 0.377 0.379 1.273 0.059 0.055 0.064 
 50 0.355 0.358 0.357 0.359 0.899 0.058 0.053 0.063 
 100 0.253 0.251 0.251 0.252 –0.562 0.056 0.051 0.060 
sig_e 5 0.094 0.095 0.095 0.095 0.764 0.045 0.041 0.049 
 10 0.067 0.067 0.067 0.067 0.113 0.047 0.043 0.052 
 15 0.055 0.055 0.055 0.055 –0.095 0.052 0.048 0.056 
 20 0.047 0.048 0.048 0.048 0.904 0.047 0.042 0.051 
 25 0.043 0.043 0.043 0.043 –0.290 0.052 0.048 0.056 
 30 0.039 0.039 0.039 0.039 0.513 0.051 0.046 0.055 
 35 0.036 0.036 0.036 0.036 –0.690 0.053 0.049 0.058 
 40 0.033 0.034 0.034 0.034 0.323 0.050 0.045 0.054 
 45 0.032 0.032 0.032 0.032 0.489 0.051 0.047 0.056 
 50 0.030 0.030 0.030 0.030 0.145 0.050 0.046 0.054 
 100 0.021 0.021 0.021 0.021 0.020 0.051 0.047 0.056 
 
Notes 

(1): Empirical SE: standard deviation of distribution of parameter estimates from each 
Monte-Carlo replication 
(2): Analytical SE: mean of distribution of SE estimates from each Monte-Carlo 
replication 
(3), (4): lower and upper bounds of 95% CI for (1), calculated assuming normality of 
MC sampling distribution 
(5): Relative difference: percentage difference between (2) and (1)  
(6): Non-coverage rate: proportion of MC replications for which estimated 95% CI 
did not contain the true parameter (CI calculated using fitted SEs). 
(7), (8): lower and upper bounds of 95% CI for (6), calculated assuming normality of 
MC sampling distribution 
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A.2 Hours, Extended Model (R = 5,000) 
  
Hours_ic = 22 + 0.8 * age_ic – 0.01 * age-squared_ic  
– (1+b3c) * cohab_ic – (1.2 +b4c) * nownch_ic   
+ 0.7 * isced3_ic + 1.4 * isced4_ic + 1.6 * isced56_ic  
– 2.7 * chexp_c  + 2.4 * (chexp_c X cohab_ic) + 0.7 * (chexp_c X nownch_ic)  
+ u_c + e_ic 
 
u_c  ~ N(0, 2.4^2), e_ic ~ N(0, 9.4^2),  cov(u_c, e_ic) = 0  icc = 0.06119847 
sig_b3c = 1.2, sig_b4c = 1.2 
 
Table A3. Hours, Extended Model: estimated parameters 
Parameter 
(true value) 

NC Mean LB UB Relative bias, % 
(mean) 

LB UB 

  (1) (2) (3) (4) (5) (6) 
cons 5 22.045 21.958 22.132 0.205 –0.190 0.601 
(22) 10 22.022 21.948 22.096 0.099 –0.236 0.435 
 15 22.024 21.975 22.072 0.107 –0.112 0.326 
 20 21.995 21.940 22.051 –0.020 –0.272 0.231 
 25 22.002 21.965 22.039 0.010 –0.157 0.177 
 30 21.991 21.954 22.029 –0.039 –0.208 0.131 
 35 21.994 21.964 22.023 –0.029 –0.163 0.104 
 40 21.993 21.962 22.025 –0.030 –0.172 0.112 
 45 22.018 21.987 22.049 0.082 –0.058 0.222 
 50 21.977 21.950 22.004 –0.103 –0.225 0.019 
 100 22.012 21.993 22.031 0.055 –0.033 0.142 
age 5 0.799 0.797 0.802 –0.069 –0.426 0.287 
(0.8) 10 0.799 0.797 0.801 –0.083 –0.329 0.163 
 15 0.799 0.798 0.801 –0.076 –0.278 0.126 
 20 0.800 0.798 0.801 –0.034 –0.209 0.141 
 25 0.800 0.798 0.801 –0.035 –0.192 0.123 
 30 0.799 0.798 0.800 –0.087 –0.229 0.055 
 35 0.800 0.798 0.801 –0.055 –0.188 0.078 
 40 0.800 0.799 0.801 0.001 –0.121 0.123 
 45 0.800 0.799 0.801 –0.035 –0.152 0.083 
 50 0.801 0.800 0.802 0.086 –0.026 0.198 
 100 0.799 0.799 0.800 –0.068 –0.147 0.011 
cohab 5 –1.024 –1.063 –0.985 2.390 –1.470 6.250 
(–1) 10 –0.984 –1.019 –0.948 –1.629 –5.162 1.904 
 15 –1.006 –1.027 –0.986 0.635 –1.417 2.687 
 20 –1.001 –1.028 –0.974 0.094 –2.608 2.796 
 25 –0.995 –1.011 –0.980 –0.467 –2.046 1.111 
 30 –1.010 –1.027 –0.994 1.033 –0.615 2.680 
 35 –1.005 –1.017 –0.994 0.547 –0.631 1.725 
 40 –0.999 –1.013 –0.984 –0.136 –1.551 1.278 
 45 –1.003 –1.017 –0.989 0.326 –1.070 1.722 
 50 –1.004 –1.016 –0.993 0.436 –0.694 1.565 
 100 –1.003 –1.012 –0.995 0.314 –0.538 1.167 

Continued overleaf 
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Table A3 (continued). Hours, Extended Model: estimated parameters 
 
Parameter 
(true value) 

NC Mean LB UB Relative bias, % 
(mean) 

LB UB 

  (1) (2) (3) (4) (5) (6) 
nownch 5 –1.201 –1.236 –1.166 0.051 –2.866 2.967 
(–1.2) 10 –1.182 –1.213 –1.150 –1.516 –4.129 1.096 
 15 –1.190 –1.209 –1.172 –0.802 –2.334 0.730 
 20 –1.198 –1.222 –1.173 –0.191 –2.240 1.858 
 25 –1.197 –1.211 –1.183 –0.254 –1.412 0.904 
 30 –1.194 –1.209 –1.179 –0.494 –1.756 0.769 
 35 –1.192 –1.202 –1.181 –0.674 –1.552 0.204 
 40 –1.203 –1.216 –1.191 0.271 –0.761 1.303 
 45 –1.194 –1.206 –1.182 –0.491 –1.520 0.539 
 50 –1.197 –1.207 –1.187 –0.263 –1.114 0.588 
 100 –1.194 –1.202 –1.187 –0.484 –1.113 0.146 
chexp 5 –2.734 –2.836 –2.631 1.244 –2.566 5.053 
(– 2.7) 10 –2.719 –2.813 –2.626 0.717 –2.750 4.183 
 15 –2.716 –2.764 –2.667 0.589 –1.205 2.383 
 20 –2.681 –2.776 –2.586 –0.691 –4.211 2.829 
 25 –2.693 –2.739 –2.647 –0.269 –1.981 1.444 
 30 –2.655 –2.702 –2.608 –1.651 –3.392 0.090 
 35 –2.687 –2.717 –2.658 –0.463 –1.572 0.645 
 40 –2.688 –2.722 –2.654 –0.437 –1.688 0.814 
 45 –2.722 –2.763 –2.682 0.825 –0.682 2.332 
 50 –2.691 –2.724 –2.658 –0.338 –1.568 0.892 
 100 –2.706 –2.728 –2.684 0.226 –0.575 1.028 
chexpXcohab 5 2.412 2.355 2.468 0.495 –1.863 2.853 
(2.4) 10 2.397 2.344 2.450 –0.132 –2.344 2.079 
 15 2.409 2.382 2.437 0.391 –0.745 1.526 
 20 2.416 2.363 2.470 0.677 –1.547 2.900 
 25 2.387 2.361 2.413 –0.552 –1.626 0.522 
 30 2.410 2.384 2.436 0.420 –0.666 1.505 
 35 2.412 2.395 2.429 0.504 –0.202 1.210 
 40 2.402 2.383 2.421 0.100 –0.693 0.893 
 45 2.411 2.388 2.434 0.468 –0.489 1.426 
 50 2.413 2.394 2.431 0.532 –0.243 1.307 
 100 2.409 2.397 2.422 0.380 –0.140 0.900 
chexpXnownch 5 0.703 0.650 0.755 0.362 –7.129 7.852 
(0.7) 10 0.685 0.638 0.732 –2.138 –8.845 4.568 
 15 0.688 0.664 0.713 –1.691 –5.170 1.788 
 20 0.710 0.661 0.758 1.379 –5.508 8.267 
 25 0.695 0.672 0.717 –0.746 –3.989 2.498 
 30 0.695 0.672 0.719 –0.656 –4.054 2.742 
 35 0.691 0.676 0.706 –1.241 –3.386 0.905 
 40 0.705 0.688 0.721 0.645 –1.752 3.042 
 45 0.690 0.669 0.710 –1.450 –4.375 1.475 
 50 0.697 0.680 0.714 –0.449 –2.866 1.968 
 100 0.695 0.684 0.706 –0.714 –2.303 0.875 

Continued overleaf 
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Table A3 (continued). Hours, Extended Model: estimated parameters 
 
Parameter 
(true value) 

NC Mean LB UB Relative bias, % 
(mean) 

LB UB 

  (1) (2) (3) (4) (5) (6) 
sig_u 5 2.199 2.170 2.227 –8.392 –9.583 –7.202 
(2.4) 10 2.318 2.301 2.336 –3.404 –4.125 –2.682 
 15 2.356 2.342 2.370 –1.828 –2.396 –1.260 
 20 2.366 2.355 2.378 –1.403 –1.884 –0.922 
 25 2.373 2.363 2.383 –1.124 –1.551 –0.697 
 30 2.375 2.366 2.385 –1.037 –1.431 –0.643 
 35 2.384 2.375 2.392 –0.678 –1.032 –0.324 
 40 2.388 2.380 2.396 –0.515 –0.850 –0.180 
 45 2.380 2.373 2.388 –0.815 –1.130 –0.500 
 50 2.390 2.383 2.398 –0.399 –0.697 –0.101 
 100 2.391 2.386 2.396 –0.376 –0.582 –0.171 
sig_e 5 9.401 9.398 9.404 0.010 –0.018 0.038 
(9.4) 10 9.400 9.398 9.402 0.001 –0.019 0.020 
 15 9.399 9.398 9.401 –0.005 –0.022 0.011 
 20 9.400 9.399 9.401 –0.000 –0.014 0.014 
 25 9.400 9.399 9.401 0.001 –0.012 0.013 
 30 9.400 9.399 9.401 0.001 –0.011 0.012 
 35 9.399 9.398 9.400 –0.008 –0.019 0.002 
 40 9.399 9.398 9.400 –0.008 –0.017 0.002 
 45 9.400 9.399 9.401 –0.001 –0.010 0.008 
 50 9.400 9.399 9.401 0.001 –0.008 0.009 
 100 9.399 9.399 9.400 –0.008 –0.015 –0.002 
sig_b3c 5 1.024 1.005 1.042 –14.693 –16.245 –13.142 
(1.2) 10 1.124 1.112 1.135 –6.355 –7.333 –5.378 
 15 1.157 1.148 1.166 –3.576 –4.334 –2.819 
 20 1.168 1.161 1.176 –2.645 –3.276 –2.014 
 25 1.177 1.170 1.184 –1.918 –2.473 –1.363 
 30 1.183 1.176 1.189 –1.457 –1.966 –0.947 
 35 1.182 1.177 1.188 –1.465 –1.924 –1.006 
 40 1.186 1.181 1.191 –1.152 –1.580 –0.723 
 45 1.187 1.183 1.192 –1.055 –1.458 –0.653 
 50 1.189 1.184 1.193 –0.949 –1.330 –0.568 
 100 1.197 1.194 1.200 –0.265 –0.532 0.002 
sig_b4c 5 1.093 1.078 1.107 –14.693 –16.245 –13.142 
(1.2) 10 1.156 1.147 1.164 –6.355 –7.333 –5.378 
 15 1.174 1.167 1.181 –3.576 –4.334 –2.819 
 20 1.176 1.170 1.181 –2.645 –3.276 –2.014 
 25 1.189 1.184 1.195 –1.918 –2.473 –1.363 
 30 1.191 1.187 1.196 –1.457 –1.966 –0.947 
 35 1.189 1.185 1.193 –1.465 –1.924 –1.006 
 40 1.191 1.187 1.195 –1.152 –1.580 –0.723 
 45 1.192 1.188 1.196 –1.055 –1.458 –0.653 
 50 1.193 1.190 1.197 –0.949 –1.330 –0.568 
 100 1.198 1.195 1.200 –0.265 –0.532 0.002 

Continued overleaf 
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Table A3 (continued). Hours, Extended Model: estimated parameters 
 
Icc 5 0.060 0.059 0.061 –2.085 –4.235 0.064 
(0.061) 10 0.060 0.059 0.061 –1.476 –2.809 –0.144 
 15 0.061 0.060 0.062 –0.407 –1.465 0.652 
 20 0.061 0.060 0.061 –0.475 –1.374 0.424 
 25 0.061 0.060 0.061 –0.409 –1.205 0.387 
 30 0.061 0.060 0.061 –0.501 –1.238 0.236 
 35 0.061 0.061 0.062 –0.093 –0.755 0.569 
 40 0.061 0.061 0.062 0.090 –0.537 0.717 
 45 0.061 0.060 0.061 –0.601 –1.189 –0.013 
 50 0.061 0.061 0.062 0.072 –0.486 0.631 
 100 0.061 0.061 0.061 –0.300 –0.686 0.086 
 
Notes 
(1) mean of distribution of parameter estimates from each Monte-Carlo replication 
(2), (3): lower and upper bounds of 95% CI for (1), calculated assuming normality of MC 
sampling distribution 
(4) Relative bias: percentage difference between (1) and ‘true’ parameter value 
(5), (6): lower and upper bounds of 95% CI for (4), calculated assuming normality of MC 
sampling distribution 
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Table A4. Hours, Extended Model: estimated standard errors and non-coverage rates 
 
Parameter NC Empirical 

SE 
Analytic

al SE 
LB UB Relative 

difference, 
% 

Non–
coverage 
rate, % 

LB UB 

  (1) (2) (3) (4) (5) (6) (7) (8) 
cons 5 3.123 3.081 3.060 3.102 –1.352 0.073 0.065 0.080 
 10 2.658 2.612 2.599 2.625 –1.760 0.066 0.059 0.073 
 15 1.737 1.730 1.725 1.735 –0.373 0.057 0.050 0.063 
 20 1.995 2.007 2.000 2.014 0.607 0.056 0.050 0.063 
 25 1.328 1.328 1.325 1.331 –0.017 0.053 0.047 0.059 
 30 1.342 1.330 1.327 1.334 –0.895 0.054 0.048 0.060 
 35 1.059 1.065 1.063 1.066 0.543 0.050 0.044 0.056 
 40 1.129 1.142 1.140 1.144 1.126 0.045 0.039 0.051 
 45 1.110 1.108 1.106 1.110 –0.122 0.054 0.048 0.061 
 50 0.969 0.957 0.955 0.958 –1.295 0.051 0.045 0.057 
 100 0.696 0.695 0.694 0.696 –0.141 0.050 0.044 0.056 
age 5 0.102 0.100 0.100 0.100 –2.164 0.058 0.051 0.064 
 10 0.071 0.071 0.071 0.071 0.110 0.050 0.044 0.056 
 15 0.058 0.058 0.058 0.058 –0.270 0.052 0.046 0.058 
 20 0.050 0.050 0.050 0.050 0.027 0.050 0.044 0.056 
 25 0.045 0.045 0.045 0.045 –0.450 0.052 0.046 0.058 
 30 0.041 0.041 0.041 0.041 0.812 0.046 0.040 0.052 
 35 0.038 0.038 0.038 0.038 –0.285 0.050 0.044 0.056 
 40 0.035 0.036 0.036 0.036 1.888 0.045 0.039 0.051 
 45 0.034 0.034 0.034 0.034 0.005 0.049 0.043 0.055 
 50 0.032 0.032 0.032 0.032 –0.657 0.053 0.046 0.059 
 100 0.023 0.023 0.023 0.023 –0.475 0.051 0.045 0.057 
cohab 5 1.385 1.335 1.321 1.350 –3.554 0.113 0.104 0.122 
 10 1.272 1.237 1.229 1.246 –2.713 0.088 0.080 0.095 
 15 0.740 0.730 0.726 0.733 –1.360 0.073 0.066 0.080 
 20 0.975 0.981 0.976 0.985 0.632 0.057 0.051 0.064 
 25 0.569 0.559 0.556 0.561 –1.889 0.065 0.058 0.071 
 30 0.595 0.597 0.594 0.599 0.362 0.057 0.050 0.063 
 35 0.425 0.427 0.426 0.429 0.596 0.061 0.055 0.068 
 40 0.510 0.508 0.507 0.510 –0.381 0.052 0.046 0.058 
 45 0.504 0.504 0.502 0.505 –0.025 0.056 0.049 0.062 
 50 0.407 0.408 0.407 0.409 0.052 0.056 0.050 0.063 
 100 0.307 0.304 0.303 0.305 –1.125 0.055 0.048 0.061 
nownch 5 1.255 1.163 1.149 1.176 –7.397 0.140 0.130 0.149 
 10 1.128 1.100 1.092 1.107 –2.552 0.087 0.079 0.095 
 15 0.663 0.648 0.645 0.652 –2.171 0.072 0.065 0.079 
 20 0.887 0.868 0.864 0.872 –2.073 0.066 0.059 0.073 
 25 0.501 0.498 0.496 0.500 –0.561 0.061 0.054 0.068 
 30 0.547 0.531 0.529 0.533 –2.797 0.066 0.059 0.073 
 35 0.380 0.380 0.378 0.381 –0.143 0.057 0.051 0.064 
 40 0.447 0.451 0.450 0.452 0.937 0.057 0.050 0.063 
 45 0.446 0.447 0.446 0.448 0.253 0.059 0.052 0.065 
 50 0.368 0.363 0.362 0.364 –1.454 0.056 0.049 0.062 
 100 0.273 0.270 0.270 0.271 –0.892 0.054 0.048 0.060 

Continued overleaf 
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Table A4 (contd.). Hours, Extended Model: estimated standard errors and non-
coverage rates 

 
Parameter NC Empirical 

SE 
Analytic

al SE 
LB UB Relative 

difference, 
% 

Non–
coverage 
rate, % 

LB UB 

  (1) (2) (3) (4) (5) (6) (7) (8) 
chexp 5 3.690 3.447 3.407 3.487 –6.574 0.140 0.130 0.149 
 10 3.369 3.290 3.267 3.313 –2.363 0.077 0.070 0.085 
 15 1.746 1.704 1.695 1.713 –2.404 0.076 0.068 0.083 
 20 3.428 3.410 3.394 3.425 –0.543 0.068 0.061 0.075 
 25 1.668 1.609 1.602 1.615 –3.543 0.065 0.058 0.072 
 30 1.696 1.650 1.644 1.656 –2.706 0.068 0.061 0.075 
 35 1.080 1.085 1.081 1.088 0.441 0.055 0.049 0.061 
 40 1.219 1.217 1.213 1.221 –0.133 0.053 0.047 0.059 
 45 1.468 1.470 1.465 1.474 0.127 0.056 0.049 0.062 
 50 1.198 1.203 1.200 1.206 0.387 0.054 0.048 0.060 
 100 0.781 0.788 0.787 0.790 1.007 0.047 0.042 0.053 
chexpX 5 2.030 1.982 1.961 2.003 –2.357 0.117 0.108 0.125 
cohab 10 1.911 1.848 1.835 1.860 –3.301 0.084 0.076 0.092 
 15 0.982 0.957 0.952 0.963 –2.516 0.077 0.070 0.084 
 20 1.925 1.921 1.912 1.930 –0.203 0.060 0.053 0.066 
 25 0.930 0.907 0.904 0.911 –2.426 0.065 0.059 0.072 
 30 0.940 0.933 0.929 0.936 –0.733 0.060 0.053 0.066 
 35 0.611 0.611 0.609 0.613 –0.013 0.058 0.051 0.064 
 40 0.687 0.687 0.685 0.689 –0.008 0.053 0.047 0.059 
 45 0.829 0.832 0.829 0.834 0.349 0.052 0.046 0.059 
 50 0.671 0.676 0.675 0.678 0.818 0.051 0.045 0.058 
 100 0.450 0.446 0.445 0.447 –0.995 0.055 0.049 0.062 
chexpX 5 1.881 1.730 1.709 1.750 –8.044 0.144 0.134 0.153 
nownch 10 1.690 1.646 1.634 1.657 –2.611 0.084 0.076 0.092 
 15 0.878 0.852 0.848 0.857 –2.875 0.074 0.066 0.081 
 20 1.739 1.700 1.692 1.708 –2.252 0.068 0.061 0.075 
 25 0.819 0.809 0.805 0.812 –1.272 0.066 0.059 0.073 
 30 0.858 0.830 0.827 0.833 –3.247 0.067 0.060 0.074 
 35 0.542 0.543 0.541 0.545 0.234 0.059 0.053 0.066 
 40 0.605 0.609 0.607 0.611 0.579 0.054 0.048 0.061 
 45 0.739 0.738 0.736 0.741 –0.039 0.053 0.047 0.059 
 50 0.610 0.603 0.601 0.605 –1.183 0.058 0.052 0.065 
 100 0.401 0.396 0.395 0.397 –1.307 0.057 0.050 0.063 
sig_u 5 1.025 0.967 0.957 0.978 –5.599 0.173 0.162 0.183 
 10 0.623 0.616 0.612 0.620 –1.241 0.105 0.096 0.113 
 15 0.491 0.489 0.486 0.491 –0.510 0.081 0.073 0.089 
 20 0.416 0.417 0.415 0.419 0.162 0.068 0.061 0.075 
 25 0.370 0.370 0.368 0.371 –0.067 0.071 0.064 0.078 
 30 0.341 0.335 0.334 0.336 –1.804 0.069 0.062 0.076 
 35 0.306 0.310 0.309 0.311 1.029 0.062 0.055 0.069 
 40 0.290 0.289 0.288 0.290 –0.321 0.061 0.055 0.068 
 45 0.273 0.271 0.270 0.272 –0.779 0.064 0.057 0.071 
 50 0.258 0.257 0.257 0.258 –0.305 0.058 0.052 0.064 
 100 0.178 0.180 0.180 0.180 1.112 0.051 0.045 0.058 

Continued overleaf 
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Table A4 (contd.). Hours, Extended Model: estimated standard errors and non-
coverage rates 

 
Parameter NC Empirical 

SE 
Analytic

al SE 
LB UB Relative 

difference, 
% 

Non–
coverage 
rate, % 

LB UB 

  (1) (2) (3) (4) (5) (6) (7) (8) 
sig_e 5 0.095 0.094 0.094 0.095 –1.127 0.060 0.053 0.066 
 10 0.067 0.067 0.067 0.067 –0.216 0.049 0.043 0.055 
 15 0.055 0.054 0.054 0.054 –0.875 0.052 0.046 0.058 
 20 0.047 0.047 0.047 0.047 –0.594 0.051 0.045 0.058 
 25 0.042 0.042 0.042 0.042 0.326 0.050 0.044 0.056 
 30 0.038 0.038 0.038 0.038 0.777 0.048 0.042 0.054 
 35 0.035 0.036 0.036 0.036 0.560 0.051 0.045 0.057 
 40 0.033 0.033 0.033 0.033 0.720 0.044 0.039 0.050 
 45 0.031 0.031 0.031 0.031 1.698 0.044 0.039 0.050 
 50 0.029 0.030 0.030 0.030 2.348 0.047 0.041 0.052 
 100 0.021 0.021 0.021 0.021 –1.084 0.053 0.047 0.060 
sig_b3c 5 0.668 0.609 0.601 0.618 –8.747 0.151 0.141 0.160 
 10 0.422 0.402 0.400 0.405 –4.738 0.036 0.031 0.041 
 15 0.328 0.316 0.315 0.317 –3.541 0.067 0.060 0.074 
 20 0.273 0.269 0.268 0.270 –1.513 0.065 0.058 0.071 
 25 0.240 0.237 0.237 0.238 –1.200 0.059 0.052 0.066 
 30 0.221 0.216 0.215 0.216 –2.215 0.063 0.056 0.070 
 35 0.199 0.198 0.198 0.199 –0.279 0.053 0.047 0.060 
 40 0.185 0.185 0.185 0.185 –0.218 0.057 0.051 0.064 
 45 0.174 0.174 0.173 0.174 –0.405 0.054 0.048 0.060 
 50 0.165 0.164 0.164 0.165 –0.425 0.054 0.048 0.061 
 100 0.116 0.115 0.115 0.115 –0.708 0.052 0.045 0.058 
sig_b4c 5 0.515 0.492 0.487 0.498 –4.478 0.169 0.159 0.180 
 10 0.316 0.311 0.309 0.313 –1.654 0.109 0.100 0.117 
 15 0.253 0.247 0.245 0.248 –2.314 0.091 0.083 0.099 
 20 0.209 0.210 0.209 0.211 0.553 0.076 0.068 0.083 
 25 0.190 0.187 0.187 0.188 –1.425 0.069 0.062 0.076 
 30 0.171 0.170 0.169 0.171 –0.453 0.063 0.056 0.070 
 35 0.156 0.156 0.156 0.157 0.050 0.065 0.058 0.071 
 40 0.147 0.146 0.145 0.146 –0.794 0.062 0.055 0.069 
 45 0.137 0.137 0.137 0.137 0.308 0.062 0.055 0.069 
 50 0.133 0.130 0.130 0.130 –2.425 0.069 0.062 0.076 
 100 0.093 0.091 0.091 0.091 –1.537 0.055 0.049 0.062 
 
Notes 

(1): Empirical SE: standard deviation of distribution of parameter estimates from each 
Monte-Carlo replication 
(2): Analytical SE: mean of distribution of SE estimates from each Monte-Carlo 
replication 
(3), (4): lower and upper bounds of 95% CI for (1), calculated assuming normality of 
MC sampling distribution 
(5): Relative difference: percentage difference between (2) and (1)  
(6): Non-coverage rate: proportion of MC replications for which estimated 95% CI 
did not contain the true parameter (CI calculated using fitted SEs). 
(7), (8): lower and upper bounds of 95% CI for (6), calculated assuming normality of 
MC sampling distribution 
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A.3 Participation: basic model (R = 5,000) 
 
Logit(participation) = –9.1 + 0.5 * age_ic – 0.006 * age-squared_ic +0.02 * cohab_ic   
–0. 27 * nownch_ic  + 0.7 * isced3_ic + 0.9 * isced4_ic + 1.4 * isced56_ic  
+0.98 * chexp_c  + u_c + e_ic 
 
u_c  ~ N(0, 0.275^2), e_ic ~ N(0, (_pi^2 / 3)^2),  cov(u_c, e_ic) = 0  icc = 0.0224707 
 
Table A5. Participation, Basic Model: estimated parameters 
 
Parameter 
(true value) 

NC Mean LB UB Relative bias, % 
(mean) 

LB UB 

  (1) (2) (3) (4) (5) (6) 
cons 5 –9.120 –9.133 –9.108 0.221 0.084 0.358 
(–9.1) 10 –9.108 –9.120 –9.096 0.086 –0.044 0.215 
 15 –9.103 –9.111 –9.095 0.034 –0.052 0.120 
 20 –9.106 –9.113 –9.100 0.071 –0.004 0.147 
 25 –9.100 –9.106 –9.095 0.005 –0.058 0.067 
 30 –9.101 –9.106 –9.095 0.006 –0.050 0.062 
 35 –9.099 –9.104 –9.094 –0.011 –0.067 0.046 
 40 –9.107 –9.111 –9.102 0.073 0.021 0.126 
 45 –9.103 –9.107 –9.099 0.031 –0.015 0.078 
 50 –9.100 –9.104 –9.096 –0.001 –0.045 0.043 
 100 –9.102 –9.105 –9.100 0.027 –0.005 0.059 
age 5 0.501 0.501 0.502 0.233 0.112 0.354 
(0.5) 10 0.501 0.500 0.501 0.127 0.042 0.212 
 15 0.500 0.500 0.501 0.045 –0.025 0.115 
 20 0.500 0.500 0.500 0.036 –0.024 0.095 
 25 0.500 0.500 0.500 0.019 –0.034 0.072 
 30 0.500 0.500 0.500 0.028 –0.022 0.078 
 35 0.500 0.500 0.500 –0.001 –0.048 0.045 
 40 0.500 0.500 0.500 0.050 0.008 0.092 
 45 0.500 0.500 0.500 0.034 –0.006 0.074 
 50 0.500 0.500 0.500 0.001 –0.037 0.039 
 100 0.500 0.500 0.500 0.012 –0.015 0.039 
cohab 5 0.018 0.015 0.020 –11.903 –24.547 0.741 
(0.02) 10 0.019 0.017 0.020 –7.215 –15.725 1.295 
 15 0.019 0.017 0.020 –6.394 –13.722 0.934 
 20 0.019 0.018 0.021 –2.641 –8.855 3.573 
 25 0.019 0.018 0.020 –4.031 –9.636 1.574 
 30 0.020 0.018 0.021 –2.357 –7.518 2.804 
 35 0.020 0.019 0.021 2.143 –2.562 6.848 
 40 0.020 0.019 0.020 –1.942 –6.286 2.403 
 45 0.020 0.020 0.021 1.871 –2.213 5.956 
 50 0.020 0.019 0.021 –0.952 –4.906 3.001 
 100 0.020 0.020 0.021 1.439 –1.328 4.205 
nownch 5 –0.270 –0.271 –0.269 –0.008 –0.466 0.451 
(–0.27) 10 –0.270 –0.271 –0.269 –0.099 –0.412 0.215 
 15 –0.269 –0.270 –0.269 –0.217 –0.480 0.046 
 20 –0.270 –0.271 –0.270 0.088 –0.142 0.317 
 25 –0.270 –0.270 –0.269 –0.182 –0.384 0.021 
 30 –0.270 –0.270 –0.269 –0.095 –0.283 0.093 
 35 –0.270 –0.270 –0.269 –0.116 –0.287 0.055 
 40 –0.270 –0.271 –0.270 0.077 –0.080 0.234 
 45 –0.270 –0.271 –0.270 0.076 –0.075 0.228 
 50 –0.270 –0.270 –0.270 –0.020 –0.166 0.125 
 100 –0.270 –0.270 –0.270 –0.031 –0.131 0.068 

Continued overleaf 
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Table A5 (continued). Participation, Basic Model: estimated parameters 
 
Parameter 
(true value) 

NC Mean LB UB Relative bias, % 
(mean) 

LB UB 

  (1) (2) (3) (4) (5) (6) 
chexp 5 0.980 0.971 0.988 –0.044 –0.909 0.820 
(0.98) 10 0.973 0.955 0.990 –0.746 –2.544 1.051 
 15 0.981 0.975 0.987 0.100 –0.513 0.713 
 20 0.985 0.978 0.991 0.467 –0.232 1.167 
 25 0.976 0.971 0.981 –0.432 –0.923 0.059 
 30 0.978 0.975 0.981 –0.215 –0.525 0.094 
 35 0.979 0.975 0.984 –0.067 –0.496 0.362 
 40 0.984 0.979 0.989 0.371 –0.140 0.881 
 45 0.981 0.977 0.984 0.076 –0.267 0.418 
 50 0.980 0.977 0.983 0.009 –0.279 0.297 
 100 0.982 0.979 0.984 0.192 –0.052 0.436 
sig_u 5 0.187 0.184 0.190 –31.983 –32.976 –30.989 
(0.275) 10 0.233 0.231 0.235 –15.380 –16.058 –14.703 
 15 0.249 0.247 0.250 –9.624 –10.175 –9.073 
 20 0.257 0.256 0.258 –6.523 –6.997 –6.049 
 25 0.259 0.258 0.260 –5.857 –6.284 –5.430 
 30 0.262 0.261 0.263 –4.728 –5.116 –4.341 
 35 0.264 0.263 0.265 –4.056 –4.417 –3.695 
 40 0.265 0.264 0.266 –3.506 –3.838 –3.174 
 45 0.266 0.266 0.267 –3.115 –3.433 –2.796 
 50 0.268 0.267 0.268 –2.706 –3.010 –2.402 
 100 0.272 0.271 0.272 –1.271 –1.486 –1.056 
icc 5 0.013 0.013 0.014 –41.018 –42.501 –39.535 
(0.022) 10 0.017 0.017 0.018 –22.449 –23.623 –21.275 
 15 0.019 0.019 0.019 –14.391 –15.392 –13.390 
 20 0.020 0.020 0.020 –9.735 –10.617 –8.853 
 25 0.020 0.020 0.021 –9.004 –9.801 –8.207 
 30 0.021 0.021 0.021 –7.287 –8.017 –6.556 
 35 0.021 0.021 0.021 –6.261 –6.947 –5.575 
 40 0.021 0.021 0.021 –5.461 –6.095 –4.828 
 45 0.021 0.021 0.022 –4.818 –5.426 –4.210 
 50 0.022 0.021 0.022 –4.149 –4.733 –3.566 
 100 0.022 0.022 0.022 –1.934 –2.350 –1.518 
 

Notes 
(1) mean of distribution of parameter estimates from each Monte-Carlo replication 
(2), (3): lower and upper bounds of 95% CI for (1), calculated assuming normality of 
MC sampling distribution 
(4) Relative bias: percentage difference between (1) and ‘true’ parameter value 
(5), (6): lower and upper bounds of 95% CI for (4), calculated assuming normality of 
MC sampling distribution 
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Table A6. Participation, Basic Model: estimated standard errors and non-coverage 
rates 

 
Parameter NC Empirical 

SE 
Analytic

al SE 
LB UB Relative 

difference, 
% 

Non–
coverage 
rate, % 

LB UB 

  (1) (2) (3) (4) (5) (6) (7) (8) 
cons 5 0.449 0.427 0.426 0.428 –4.968 0.064 0.057 0.071 
 10 0.425 0.387 0.386 0.388 –8.985 0.081 0.073 0.089 
 15 0.282 0.271 0.271 0.272 –3.709 0.055 0.048 0.061 
 20 0.248 0.244 0.243 0.244 –1.847 0.056 0.050 0.063 
 25 0.207 0.205 0.205 0.205 –0.841 0.053 0.047 0.059 
 30 0.184 0.183 0.183 0.183 –0.441 0.050 0.044 0.056 
 35 0.185 0.180 0.179 0.180 –3.166 0.057 0.051 0.064 
 40 0.172 0.172 0.172 0.172 –0.190 0.050 0.044 0.056 
 45 0.153 0.152 0.151 0.152 –0.794 0.052 0.045 0.058 
 50 0.145 0.144 0.144 0.145 –0.218 0.050 0.044 0.056 
 100 0.105 0.104 0.104 0.104 –1.251 0.053 0.046 0.059 
age 5 0.022 0.022 0.022 0.022 –0.706 0.051 0.045 0.057 
 10 0.015 0.015 0.015 0.015 –1.717 0.058 0.051 0.064 
 15 0.013 0.013 0.013 0.013 0.288 0.049 0.043 0.055 
 20 0.011 0.011 0.011 0.011 0.991 0.049 0.043 0.055 
 25 0.010 0.010 0.010 0.010 1.344 0.047 0.041 0.053 
 30 0.009 0.009 0.009 0.009 0.373 0.049 0.043 0.055 
 35 0.008 0.008 0.008 0.008 –1.411 0.051 0.045 0.057 
 40 0.008 0.008 0.008 0.008 0.104 0.051 0.045 0.058 
 45 0.007 0.007 0.007 0.007 –0.331 0.047 0.041 0.053 
 50 0.007 0.007 0.007 0.007 0.070 0.053 0.047 0.059 
 100 0.005 0.005 0.005 0.005 –0.691 0.052 0.046 0.058 
cohab 5 0.091 0.090 0.090 0.090 –1.085 0.056 0.049 0.062 
 10 0.061 0.062 0.062 0.062 0.868 0.045 0.039 0.051 
 15 0.053 0.052 0.052 0.052 –1.621 0.058 0.051 0.064 
 20 0.045 0.045 0.045 0.045 –0.481 0.051 0.045 0.057 
 25 0.040 0.040 0.040 0.040 –0.952 0.055 0.049 0.061 
 30 0.037 0.037 0.037 0.037 –0.359 0.046 0.040 0.051 
 35 0.034 0.034 0.034 0.034 0.045 0.050 0.044 0.056 
 40 0.031 0.031 0.031 0.031 –0.545 0.050 0.044 0.056 
 45 0.029 0.030 0.030 0.030 0.229 0.053 0.047 0.060 
 50 0.029 0.028 0.028 0.028 –0.189 0.049 0.043 0.055 
 100 0.020 0.020 0.020 0.020 –0.346 0.048 0.042 0.054 
nownch 5 0.045 0.045 0.044 0.045 –0.295 0.048 0.042 0.054 
 10 0.031 0.030 0.030 0.030 –0.500 0.049 0.043 0.055 
 15 0.026 0.026 0.026 0.026 1.219 0.048 0.042 0.054 
 20 0.022 0.022 0.022 0.022 –1.543 0.051 0.045 0.057 
 25 0.020 0.020 0.020 0.020 0.107 0.050 0.044 0.056 
 30 0.018 0.018 0.018 0.018 0.365 0.047 0.041 0.053 
 35 0.017 0.017 0.017 0.017 0.223 0.050 0.044 0.056 
 40 0.015 0.015 0.015 0.015 0.578 0.048 0.042 0.054 
 45 0.015 0.015 0.015 0.015 –1.508 0.053 0.047 0.059 
 50 0.014 0.014 0.014 0.014 –1.034 0.054 0.048 0.060 
 100 0.010 0.010 0.010 0.010 1.005 0.044 0.038 0.049 

Continued overleaf 
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Table A6 (continued). Participation, Basic Model: estimated standard errors and non-
coverage rates 

 
Parameter NC Empirical 

SE 
Analytic

al SE 
LB UB Relative 

difference, 
% 

Non–
coverage 
rate, % 

LB UB 

  (1) (2) (3) (4) (5) (6) (7) (8) 
chexp 5 0.306 0.226 0.223 0.228 –26.133 0.198 0.187 0.209 
 10 0.636 0.542 0.538 0.546 –14.745 0.124 0.114 0.133 
 15 0.217 0.197 0.196 0.198 –9.244 0.091 0.083 0.099 
 20 0.247 0.230 0.229 0.231 –6.862 0.082 0.074 0.089 
 25 0.174 0.165 0.164 0.165 –5.106 0.073 0.065 0.080 
 30 0.109 0.105 0.104 0.105 –4.437 0.071 0.064 0.078 
 35 0.152 0.145 0.145 0.146 –4.141 0.065 0.058 0.072 
 40 0.181 0.179 0.178 0.180 –0.863 0.059 0.053 0.066 
 45 0.121 0.120 0.120 0.120 –0.892 0.057 0.051 0.063 
 50 0.102 0.100 0.100 0.101 –1.541 0.061 0.054 0.068 
 100 0.086 0.086 0.085 0.086 –0.891 0.054 0.048 0.061 
sig_u 5 0.099 0.077 0.076 0.078 –21.721 0.375 0.361 0.388 
 10 0.067 0.059 0.059 0.059 –12.319 0.219 0.208 0.230 
 15 0.055 0.051 0.050 0.051 –7.307 0.159 0.149 0.169 
 20 0.047 0.045 0.045 0.045 –4.420 0.121 0.112 0.130 
 25 0.042 0.040 0.040 0.041 –4.646 0.119 0.110 0.128 
 30 0.038 0.037 0.037 0.038 –2.686 0.104 0.095 0.112 
 35 0.036 0.035 0.035 0.035 –3.073 0.096 0.088 0.104 
 40 0.033 0.033 0.032 0.033 –1.248 0.091 0.083 0.099 
 45 0.032 0.031 0.031 0.031 –2.654 0.088 0.080 0.095 
 50 0.030 0.029 0.029 0.029 –2.528 0.082 0.074 0.089 
 100 0.021 0.021 0.021 0.021 –1.571 0.068 0.061 0.075 
icc 5 0.012 0.009 0.009 0.010 –22.322 0.457 0.443 0.471 
 10 0.010 0.008 0.008 0.009 –11.065 0.284 0.272 0.297 
 15 0.008 0.008 0.008 0.008 –6.331 0.204 0.192 0.215 
 20 0.007 0.007 0.007 0.007 –3.687 0.159 0.149 0.169 
 25 0.006 0.006 0.006 0.006 –3.880 0.146 0.137 0.156 
 30 0.006 0.006 0.006 0.006 –2.134 0.133 0.124 0.143 
 35 0.006 0.005 0.005 0.005 –2.919 0.118 0.109 0.127 
 40 0.005 0.005 0.005 0.005 –1.182 0.109 0.100 0.117 
 45 0.005 0.005 0.005 0.005 –2.224 0.105 0.096 0.113 
 50 0.005 0.005 0.005 0.005 –2.375 0.098 0.090 0.106 
 100 0.003 0.003 0.003 0.003 –1.383 0.076 0.068 0.083 
 
Notes 

(1): Empirical SE: standard deviation of distribution of parameter estimates from each 
Monte-Carlo replication 
(2): Analytical SE: mean of distribution of SE estimates from each Monte-Carlo 
replication 
(3), (4): lower and upper bounds of 95% CI for (1), calculated assuming normality of 
MC sampling distribution 
(5): Relative difference: percentage difference between (2) and (1)  
(6): Non-coverage rate: proportion of MC replications for which estimated 95% CI 
did not contain the true parameter (CI calculated using fitted SEs). 
(7), (8): lower and upper bounds of 95% CI for (6), calculated assuming normality of 
MC sampling distribution 
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A.4 Participation, Extended Model (R = 1,000)  
 
Logit(participation) = –9.1 + 0.5 * age_ic – 0.006 * age-squared_ic + (0.02 + b3c)* cohab_ic   
–(0. 27+b4c) * nownch_ic  + 0.7 * isced3_ic + 0.9 * isced4_ic + 1.4 * isced56_ic  
+0.7 * chexp_c  + 0.6 * (chexp_c X cohab_ic) – 0.1 * (chexp_c X nownch_ic)+ u_c + e_ic 
 
u_c  ~ N(0, 0.38^2), e_ic ~ N(0, (_pi^2 / 3)^2),  cov(u_c, e_ic) = 0  icc = 0.0420468 
 
sig_b3c = 0.25, sig_b4c = 0.13 
 
Table A7. Participation, Extended Model: estimated parameters 
 
Parameter 
(true value) 

NC Mean LB UB Relative bias, 
% (mean) 

LB UB 

  (1) (2) (3) (4) (5) (6) 
cons 5 –9.123 –9.154 –9.092 0.251 –0.090 0.591 
(–9.1) 10 –9.121 –9.154 –9.088 0.229 –0.136 0.594 
 15 –9.095 –9.116 –9.075 –0.050 –0.271 0.172 
 20 –9.103 –9.122 –9.084 0.034 –0.171 0.239 
 25 –9.104 –9.119 –9.089 0.046 –0.118 0.210 
 30 –9.107 –9.120 –9.094 0.076 –0.063 0.215 
 35 –9.111 –9.124 –9.098 0.116 –0.027 0.259 
 40 –9.110 –9.123 –9.098 0.114 –0.025 0.253 
 45 –9.108 –9.119 –9.097 0.086 –0.035 0.207 
 50 –9.102 –9.113 –9.091 0.023 –0.096 0.142 
 100 –9.093 –9.101 –9.085 –0.078 –0.163 0.007 
age 5 0.500 0.499 0.502 0.073 –0.197 0.344 
(0.5) 10 0.501 0.500 0.502 0.123 –0.065 0.311 
 15 0.500 0.499 0.501 0.029 –0.135 0.194 
 20 0.500 0.500 0.501 0.082 –0.054 0.218 
 25 0.500 0.500 0.501 0.059 –0.062 0.179 
 30 0.501 0.500 0.501 0.119 0.010 0.228 
 35 0.500 0.500 0.501 0.008 –0.094 0.110 
 40 0.501 0.500 0.501 0.127 0.034 0.219 
 45 0.500 0.500 0.501 0.082 –0.009 0.173 
 50 0.500 0.500 0.500 –0.005 –0.092 0.082 
 100 0.500 0.500 0.500 –0.001 –0.062 0.059 
cohab 5 0.023 0.007 0.039 17.346 –62.683 97.375 
(0.02) 10 0.003 –0.019 0.024 –85.267 –192.878 22.345 
 15 0.013 0.002 0.025 –34.069 –90.803 22.665 
 20 0.017 0.007 0.028 –12.500 –65.711 40.710 
 25 0.021 0.013 0.029 6.628 –33.061 46.317 
 30 0.018 0.012 0.025 –8.579 –40.080 22.922 
 35 0.018 0.010 0.025 –12.385 –48.637 23.866 
 40 0.025 0.017 0.032 23.028 –14.476 60.533 
 45 0.017 0.011 0.023 –14.908 –45.281 15.464 
 50 0.022 0.017 0.028 12.279 –16.730 41.288 
 100 0.019 0.014 0.023 –7.037 –27.730 13.656 

Continued overleaf 
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Table A7 (continued). Participation, Extended Model: estimated parameters 
 
Parameter 
(true value) 

NC Mean LB UB Relative bias, 
% (mean) 

LB UB 

  (1) (2) (3) (4) (5) (6) 
nownch 5 –0.271 –0.279 –0.263 0.324 –2.753 3.402 
(–0. 27) 10 –0.266 –0.276 –0.255 –1.582 –5.552 2.388 
 15 –0.266 –0.272 –0.261 –1.358 –3.507 0.791 
 20 –0.273 –0.279 –0.267 1.022 –1.114 3.158 
 25 –0.270 –0.274 –0.266 0.100 –1.407 1.607 
 30 –0.271 –0.275 –0.268 0.510 –0.702 1.721 
 35 –0.269 –0.273 –0.266 –0.279 –1.646 1.088 
 40 –0.270 –0.274 –0.266 –0.061 –1.467 1.344 
 45 –0.274 –0.277 –0.270 1.297 0.185 2.408 
 50 –0.270 –0.273 –0.267 0.042 –1.063 1.147 
 100 –0.271 –0.273 –0.269 0.483 –0.309 1.276 
chexp 5 0.720 0.694 0.747 2.916 –0.895 6.728 
(0.7) 10 0.726 0.671 0.781 3.747 –4.133 11.627 
 15 0.692 0.673 0.710 –1.191 –3.872 1.489 
 20 0.701 0.679 0.722 0.076 –2.943 3.094 
 25 0.699 0.684 0.714 –0.191 –2.345 1.963 
 30 0.701 0.691 0.710 0.100 –1.277 1.476 
 35 0.711 0.698 0.724 1.563 –0.277 3.404 
 40 0.700 0.684 0.716 –0.060 –2.341 2.221 
 45 0.701 0.690 0.713 0.210 –1.439 1.859 
 50 0.697 0.685 0.708 –0.476 –2.114 1.161 
 100 0.690 0.682 0.699 –1.360 –2.533 –0.187 
chexpXcohab 5 0.599 0.578 0.621 –0.131 –3.722 3.461 
(0.6) 10 0.643 0.601 0.685 7.173 0.231 14.116 
 15 0.614 0.599 0.629 2.319 –0.235 4.873 
 20 0.602 0.585 0.619 0.337 –2.445 3.120 
 25 0.602 0.590 0.614 0.300 –1.687 2.288 
 30 0.601 0.594 0.609 0.245 –1.065 1.554 
 35 0.603 0.592 0.613 0.448 –1.279 2.175 
 40 0.594 0.581 0.606 –1.060 –3.202 1.081 
 45 0.603 0.594 0.613 0.577 –0.950 2.104 
 50 0.596 0.588 0.605 –0.597 –2.037 0.842 
 100 0.604 0.597 0.610 0.622 –0.453 1.697 
chexpXnownch 5 –0.097 –0.108 –0.086 –2.724 –13.826 8.377 
(–0.1) 10 –0.112 –0.133 –0.091 12.201 –8.852 33.255 
 15 –0.103 –0.110 –0.095 2.554 –4.947 10.054 
 20 –0.097 –0.106 –0.088 –2.983 –11.917 5.951 
 25 –0.101 –0.107 –0.095 0.693 –5.466 6.852 
 30 –0.100 –0.104 –0.096 0.003 –4.108 4.114 
 35 –0.101 –0.106 –0.095 0.527 –4.586 5.640 
 40 –0.099 –0.105 –0.093 –0.955 –7.391 5.481 
 45 –0.096 –0.100 –0.091 –4.328 –8.957 0.301 
 50 –0.099 –0.104 –0.095 –0.530 –5.053 3.994 
 100 –0.099 –0.102 –0.095 –1.296 –4.583 1.992 

Continued overleaf 
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Table A7 (continued). Participation, Extended Model: estimated parameters 
 
Parameter 
(true value) 

NC Mean LB UB Relative bias, 
% (mean) 

LB UB 

  (1) (2) (3) (4) (5) (6) 
sig_u 5 0.249 0.240 0.258 –34.412 –36.768 –32.056 
(0.38) 10 0.329 0.323 0.336 –13.291 –14.895 –11.688 
 15 0.344 0.339 0.349 –9.369 –10.667 –8.072 
 20 0.356 0.352 0.360 –6.354 –7.452 –5.256 
 25 0.357 0.354 0.361 –5.945 –6.919 –4.972 
 30 0.364 0.361 0.368 –4.206 –5.128 –3.285 
 35 0.364 0.361 0.368 –4.100 –4.931 –3.269 
 40 0.366 0.363 0.369 –3.593 –4.361 –2.826 
 45 0.369 0.366 0.372 –2.931 –3.635 –2.227 
 50 0.372 0.369 0.374 –2.165 –2.881 –1.448 
 100 0.375 0.373 0.377 –1.359 –1.848 –0.869 
sig_b3c 5 0.129 0.121 0.136 –48.589 –51.639 –45.540 
(0.25) 10 0.194 0.188 0.200 –22.291 –24.656 –19.926 
 15 0.215 0.211 0.220 –13.845 –15.728 –11.962 
 20 0.223 0.219 0.227 –10.863 –12.524 –9.203 
 25 0.228 0.225 0.232 –8.649 –10.060 –7.238 
 30 0.235 0.232 0.238 –6.100 –7.363 –4.836 
 35 0.234 0.232 0.237 –6.249 –7.391 –5.107 
 40 0.240 0.238 0.243 –3.852 –4.925 –2.778 
 45 0.239 0.236 0.241 –4.579 –5.605 –3.553 
 50 0.241 0.239 0.244 –3.519 –4.460 –2.579 
 100 0.245 0.243 0.247 –1.981 –2.650 –1.312 
sig_b4c 5 0.074 0.070 0.078 –43.315 –46.451 –40.179 
(0.13) 10 0.102 0.100 0.105 –21.195 –23.432 –18.959 
 15 0.113 0.110 0.115 –13.387 –15.162 –11.613 
 20 0.116 0.114 0.118 –10.688 –12.222 –9.153 
 25 0.119 0.118 0.121 –8.112 –9.469 –6.755 
 30 0.122 0.120 0.123 –6.440 –7.650 –5.231 
 35 0.122 0.121 0.124 –5.874 –6.926 –4.823 
 40 0.123 0.122 0.124 –5.427 –6.420 –4.435 
 45 0.126 0.124 0.127 –3.456 –4.391 –2.522 
 50 0.125 0.124 0.126 –3.898 –4.810 –2.987 
 100 0.127 0.127 0.128 –2.042 –2.681 –1.404 
icc 5 0.024 0.023 0.025 –42.905 –46.294 –39.516 
(0.042) 10 0.034 0.033 0.035 –18.394 –21.144 –15.643 
 15 0.036 0.035 0.037 –13.588 –15.868 –11.308 
 20 0.038 0.037 0.039 –9.282 –11.300 –7.264 
 25 0.038 0.037 0.039 –9.087 –10.870 –7.304 
 30 0.039 0.039 0.040 –6.127 –7.841 –4.412 
 35 0.039 0.039 0.040 –6.264 –7.814 –4.714 
 40 0.040 0.039 0.040 –5.542 –6.980 –4.104 
 45 0.040 0.040 0.041 –4.506 –5.826 –3.186 
 50 0.041 0.040 0.041 –3.037 –4.388 –1.686 
 100 0.041 0.041 0.042 –2.089 –3.020 –1.159 
 
Notes 
(1) mean of distribution of parameter estimates from each Monte-Carlo replication 
(2), (3): lower and upper bounds of 95% CI for (1), calculated assuming normality of MC 
sampling distribution 
(4) Relative bias: percentage difference between (1) and ‘true’ parameter value 
(5), (6): lower and upper bounds of 95% CI for (4), calculated assuming normality of MC 
sampling distribution 
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Table A8. Participation, Extended Model: estimated standard errors and non-coverage 
rates 

 
Parameter NC Empirical 

SE 
Analytical 

SE 
LB UB Relative 

difference, 
% 

Non–
coverage 
rate, % 

LB UB 

  (1) (2) (3) (4) (5) (6) (7) (8) 
cons 5 0.499 0.460 0.457 0.464 –7.731 0.066 0.051 0.082 
 10 0.535 0.485 0.479 0.490 –9.440 0.087 0.070 0.105 
 15 0.325 0.310 0.309 0.312 –4.393 0.062 0.047 0.077 
 20 0.300 0.286 0.284 0.287 –4.947 0.065 0.050 0.080 
 25 0.241 0.233 0.232 0.234 –3.443 0.059 0.044 0.074 
 30 0.204 0.203 0.203 0.204 –0.306 0.049 0.036 0.062 
 35 0.210 0.208 0.207 0.208 –1.028 0.056 0.042 0.070 
 40 0.204 0.202 0.201 0.203 –1.087 0.055 0.041 0.069 
 45 0.178 0.178 0.177 0.178 –0.137 0.054 0.040 0.068 
 50 0.175 0.170 0.169 0.170 –2.945 0.063 0.048 0.078 
 100 0.125 0.122 0.121 0.122 –2.495 0.059 0.044 0.074 
age 5 0.022 0.022 0.022 0.022 0.271 0.038 0.026 0.050 
 10 0.015 0.015 0.015 0.015 0.432 0.055 0.041 0.069 
 15 0.013 0.013 0.013 0.013 –3.626 0.060 0.045 0.075 
 20 0.011 0.011 0.011 0.011 –0.462 0.044 0.031 0.057 
 25 0.010 0.010 0.010 0.010 0.062 0.041 0.029 0.053 
 30 0.009 0.009 0.009 0.009 3.745 0.035 0.024 0.046 
 35 0.008 0.008 0.008 0.008 1.069 0.049 0.036 0.062 
 40 0.007 0.008 0.008 0.008 2.618 0.047 0.034 0.060 
 45 0.007 0.007 0.007 0.007 –1.278 0.053 0.039 0.067 
 50 0.007 0.007 0.007 0.007 –1.712 0.058 0.044 0.072 
 100 0.005 0.005 0.005 0.005 –0.046 0.041 0.029 0.053 
cohab 5 0.258 0.204 0.200 0.207 –20.963 0.145 0.123 0.167 
 10 0.347 0.307 0.303 0.312 –11.375 0.100 0.082 0.119 
 15 0.183 0.170 0.168 0.172 –6.997 0.078 0.061 0.095 
 20 0.172 0.161 0.159 0.162 –6.513 0.082 0.065 0.099 
 25 0.128 0.121 0.120 0.122 –5.198 0.074 0.058 0.090 
 30 0.102 0.100 0.099 0.101 –1.436 0.062 0.047 0.077 
 35 0.117 0.114 0.114 0.115 –2.264 0.062 0.047 0.077 
 40 0.121 0.116 0.115 0.116 –4.443 0.066 0.051 0.081 
 45 0.098 0.095 0.094 0.096 –2.993 0.055 0.041 0.069 
 50 0.094 0.091 0.090 0.092 –2.495 0.065 0.050 0.080 
 100 0.067 0.067 0.066 0.067 –0.083 0.064 0.049 0.079 
nownch 5 0.134 0.105 0.102 0.107 –21.825 0.166 0.143 0.189 
 10 0.173 0.155 0.153 0.157 –10.239 0.101 0.083 0.120 
 15 0.094 0.086 0.085 0.087 –8.083 0.085 0.068 0.102 
 20 0.093 0.082 0.081 0.083 –12.172 0.098 0.080 0.116 
 25 0.066 0.062 0.061 0.062 –5.679 0.074 0.058 0.090 
 30 0.053 0.051 0.051 0.052 –2.998 0.071 0.055 0.087 
 35 0.060 0.058 0.058 0.058 –2.506 0.069 0.053 0.085 
 40 0.061 0.058 0.058 0.058 –5.171 0.066 0.051 0.081 
 45 0.048 0.049 0.048 0.049 0.393 0.053 0.039 0.067 
 50 0.048 0.046 0.046 0.047 –3.824 0.059 0.044 0.074 
 100 0.035 0.034 0.034 0.034 –1.792 0.044 0.031 0.057 

Continued overleaf 
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Table A8 (continued). Participation, Extended Model: estimated standard errors and 
non-coverage rates 

 
Parameter NC Empirical 

SE 
Analytical 

SE 
LB UB Relative 

difference, 
% 

Non–
coverage 
rate, % 

LB UB 

  (1) (2) (3) (4) (5) (6) (7) (8) 
chexp 5 0.429 0.313 0.305 0.321 –27.154 0.226 0.200 0.252 
 10 0.888 0.785 0.773 0.797 –11.650 0.118 0.098 0.139 
 15 0.303 0.275 0.272 0.278 –9.152 0.092 0.074 0.110 
 20 0.341 0.325 0.321 0.328 –4.743 0.083 0.066 0.100 
 25 0.243 0.231 0.229 0.233 –5.203 0.069 0.053 0.085 
 30 0.155 0.146 0.144 0.147 –6.332 0.066 0.051 0.081 
 35 0.208 0.204 0.202 0.205 –1.978 0.070 0.054 0.086 
 40 0.258 0.252 0.250 0.253 –2.354 0.061 0.046 0.076 
 45 0.186 0.184 0.182 0.185 –1.290 0.064 0.049 0.079 
 50 0.185 0.170 0.167 0.173 –8.007 0.066 0.051 0.081 
 100 0.132 0.130 0.129 0.131 –1.912 0.066 0.051 0.081 
chexpX 5 0.347 0.277 0.272 0.282 –20.113 0.144 0.122 0.166 
Cohab 10 0.671 0.604 0.595 0.613 –9.956 0.105 0.086 0.125 
 15 0.247 0.228 0.226 0.231 –7.648 0.077 0.060 0.094 
 20 0.269 0.251 0.249 0.254 –6.639 0.086 0.069 0.103 
 25 0.192 0.184 0.182 0.185 –4.514 0.068 0.052 0.084 
 30 0.127 0.123 0.122 0.124 –2.746 0.066 0.051 0.081 
 35 0.167 0.161 0.160 0.163 –3.445 0.053 0.039 0.067 
 40 0.207 0.197 0.196 0.198 –4.945 0.070 0.054 0.086 
 45 0.148 0.145 0.144 0.146 –1.841 0.054 0.040 0.068 
 50 0.139 0.135 0.133 0.137 –2.977 0.053 0.039 0.067 
 100 0.104 0.102 0.102 0.103 –1.559 0.053 0.039 0.067 
chexpX 5 0.179 0.142 0.140 0.145 –20.298 0.156 0.133 0.178 
nownch 10 0.339 0.305 0.300 0.309 –10.078 0.104 0.085 0.123 
 15 0.121 0.115 0.113 0.116 –5.254 0.068 0.052 0.084 
 20 0.144 0.129 0.127 0.130 –10.807 0.098 0.080 0.116 
 25 0.099 0.094 0.093 0.095 –5.196 0.076 0.060 0.092 
 30 0.066 0.064 0.063 0.064 –4.159 0.074 0.058 0.090 
 35 0.082 0.082 0.082 0.083 –0.394 0.058 0.044 0.072 
 40 0.104 0.099 0.098 0.100 –4.628 0.062 0.047 0.077 
 45 0.075 0.074 0.074 0.075 –0.584 0.057 0.043 0.071 
 50 0.073 0.069 0.068 0.070 –5.970 0.065 0.050 0.080 
 100 0.053 0.052 0.052 0.053 –1.646 0.066 0.051 0.081 
sig_u 5 0.144 0.108 0.106 0.110 –24.934 0.390 0.360 0.420 
 10 0.098 0.085 0.084 0.086 –13.293 0.198 0.173 0.223 
 15 0.080 0.072 0.071 0.072 –9.849 0.154 0.132 0.176 
 20 0.067 0.063 0.063 0.064 –5.874 0.124 0.104 0.144 
 25 0.060 0.057 0.056 0.057 –4.806 0.118 0.098 0.138 
 30 0.056 0.053 0.052 0.053 –6.520 0.107 0.088 0.126 
 35 0.051 0.049 0.049 0.049 –4.099 0.089 0.071 0.107 
 40 0.047 0.046 0.046 0.046 –2.579 0.084 0.067 0.101 
 45 0.043 0.043 0.043 0.044 0.647 0.071 0.055 0.087 
 50 0.044 0.042 0.041 0.042 –5.456 0.092 0.074 0.110 
 100 0.030 0.030 0.029 0.030 –1.655 0.063 0.048 0.078 

Continued overleaf 
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Table A8 (continued). Participation, Extended Model: estimated standard errors and 
non-coverage rates 

 
Parameter NC Empirical 

SE 
Analytical 

SE 
LB UB Relative 

difference, 
% 

Non–
coverage 
rate, % 

LB UB 

  (1) (2) (3) (4) (5) (6) (7) (8) 
sig_b3c 5 0.123 0.133 0.128 0.137 8.287 0.231 0.205 0.257 
 10 0.095 0.090 0.088 0.093 –5.233 0.050 0.037 0.064 
 15 0.076 0.072 0.070 0.073 –5.656 0.049 0.036 0.062 
 20 0.067 0.060 0.060 0.061 –10.047 0.081 0.064 0.098 
 25 0.057 0.053 0.053 0.054 –6.158 0.086 0.069 0.103 
 30 0.051 0.049 0.049 0.049 –3.890 0.068 0.052 0.084 
 35 0.046 0.045 0.045 0.045 –2.778 0.083 0.066 0.100 
 40 0.043 0.042 0.041 0.042 –4.000 0.070 0.054 0.086 
 45 0.041 0.039 0.039 0.039 –5.299 0.083 0.066 0.100 
 50 0.038 0.037 0.037 0.038 –1.407 0.067 0.051 0.083 
 100 0.027 0.026 0.026 0.026 –2.364 0.064 0.049 0.079 
sig_b4c 5 0.066 0.070 0.067 0.073 6.843 0.192 0.167 0.216 
 10 0.047 0.044 0.043 0.045 –5.468 0.056 0.042 0.071 
 15 0.037 0.036 0.035 0.036 –4.441 0.079 0.062 0.096 
 20 0.032 0.030 0.029 0.031 –6.362 0.109 0.090 0.128 
 25 0.028 0.027 0.026 0.027 –6.687 0.093 0.075 0.111 
 30 0.025 0.024 0.024 0.025 –3.683 0.070 0.054 0.086 
 35 0.022 0.022 0.022 0.022 1.054 0.069 0.053 0.085 
 40 0.021 0.021 0.021 0.021 –0.760 0.072 0.056 0.088 
 45 0.020 0.020 0.020 0.020 0.129 0.062 0.047 0.077 
 50 0.019 0.019 0.019 0.019 –2.060 0.075 0.059 0.091 
 100 0.013 0.013 0.013 0.013 –1.381 0.062 0.047 0.077 
icchat 5 0.023 0.017 0.016 0.018 –26.398 0.468 0.437 0.499 
 10 0.019 0.017 0.016 0.017 –11.112 0.250 0.223 0.277 
 15 0.015 0.014 0.014 0.015 –7.591 0.202 0.177 0.227 
 20 0.014 0.013 0.013 0.013 –5.616 0.156 0.133 0.179 
 25 0.012 0.012 0.011 0.012 –4.185 0.141 0.119 0.163 
 30 0.012 0.011 0.011 0.011 –6.176 0.137 0.116 0.158 
 35 0.011 0.010 0.010 0.010 –4.038 0.107 0.088 0.126 
 40 0.010 0.009 0.009 0.010 –2.686 0.100 0.081 0.119 
 45 0.009 0.009 0.009 0.009 0.930 0.081 0.064 0.098 
 50 0.009 0.009 0.009 0.009 –5.118 0.107 0.088 0.126 
 100 0.006 0.006 0.006 0.006 –1.719 0.074 0.058 0.090 
 
Notes 

(1): Empirical SE: standard deviation of distribution of parameter estimates from each 
Monte–Carlo replication 
(2): Analytical SE: mean of distribution of SE estimates from each Monte–Carlo 
replication 
(3), (4): lower and upper bounds of 95% CI for (1), calculated assuming normality of 
MC sampling distribution 
(5): Relative difference: percentage difference between (2) and (1)  
(6): Non-coverage rate: proportion of MC replications for which estimated 95% CI 
did not contain the true parameter (CI calculated using fitted SEs). 
(7), (8): lower and upper bounds of 95% CI for (6), calculated assuming normality of 
MC sampling distribution 
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