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ABSTRACT

This paper concerns goodness-of-fit test for semiparametric copula models. Our contribution is two-fold:

we first propose a new test constructed via the comparison between "in-sample" and "out-of-sample" pseudo-

likelihoods, which avoids the use of any probability integral transformations. Under the null hypothesis

that the copula model is correctly specified, we show that the proposed test statistic converges in probabil-

ity to a constant equal to the dimension of the parameter space and establish the asymptotic normality for

the test. Second, we introduce a hybrid mechanism to combine several test statistics, so that the resulting

test will make a desirable test power among the involved tests. This hybrid method is particularly appeal-

ing when there exists no single dominant optimal test. We conduct comprehensive simulation experiments

to compare the proposed new test and hybrid approach with the best "blank test" shown in Genest et al.

(2009). For illustration, we apply the proposed tests to analyze three real datasets.
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1 Introduction

Assessing dependency among multiple variables is a primary task in business economics or

financial applications. Copula is becoming increasingly popular in such fields due to its flexibility

in seamlessly integrating sophisticated dependence structures and varying marginal distributions

of multivariate random variables. For example, in Finance, copulas are widely applied to study

dependency in asset pricing, asset allocation and risk management; see Klugman and Parsa (1999),

Cherubini et al. (2004) and Cherubini et al. (2011), among others. More examples in other fields

can be found in Frees and Valdez (1998), Wang and Wells (2000), Song (2007) and Danaher and

Smith (2011), just to name a few.

Essentially, a parametric copula is a cumulative distribution function (CDF) specified by a

certain known functional form up to some unknown dependence parameters. When a paramet-

ric copula is used in applications, misspecification on any of its parametric structure may cause

misleading statistical estimation and inference. To check for the adequacy of a copula model, spec-

ification test has been extensively investigated in the literature. Wang and Wells (2000) proposed a

rank based test in bivariate copulas. Malevergne and Sornette (2003) developed a test for the spec-

ification of Gaussian copula. Fermanian (2005) and Scaillet (2007) established goodness-of-fit tests

through kernel techniques. Other types of specification tests include Panchenko’s (2005) V-statistic

type test, Prokhorov and Schmidt’s (2009) conditional moment based test, Mesfioui et al.’s (2009)

Spearman dependence based test, and Genest et al.’s (2011) Pickands dependence based test. Very

recently, Huang and Prokhorov (2013) adopted White’s test based on information matrix (White,

1982) to derive a test for copula models specification. With the utility of either Kendall’s or Rosen-

blat’s probability integral transformations, several other versions of specification tests have been

proposed in the literature, including those proposed by Breymann et al. (2003), Dobrić and Schmid

(2007) and Genest and Favre (2007), among others.

In a recent paper, Genest et al. (2009) made a thorough comparison for most of the existing

"blank tests". A blank test refers to a test whose implementation does not require either an ar-

bitrary categorization of data or any strategic choice of smoothing parameter, weight function,

kernel or bandwidth. It is demonstrated by Genest et al. (2009) that none of these blank tests per-

forms uniformly the best. It is interesting to note that , almost all of them had illustrated nearly no

power in differentiating Gaussian copula and Student’s t copula, both of which are very important
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symmetric copulas with different tail dependence properties. Another challenge in the use of the

tests considered in Genest et al. (2009) is that they rely on certain probability integral transforma-

tions, which may be difficult to derive analytically in many popular copula dependence models,

e.g. Student’s t copula and vine copulas (e.g. Kurowicka and Joe (2011)).

To overcome the difficulties above, we propose an alternative specification test for semipara-

metric copulas in this paper. The proposed test statistic takes a form of ratio constructed via

two types of pseudo-likelihoods, one is "in-sample" pseudo-likelihood and the other is "out-of-

sample" pseudo-likelihood. The idea behind the construction of the new test is rooted in the fact

that, heuristically, a goodness-of-fit test is to examine how model fit the data. Thus, we vary data

by the means of jackknife and quantify how sensitive the pseudo likelihood is to the varying data.

Naturally, a comparison of pseudo likelihoods over different data sets are utilized to characterize

how well the model fits the data. Inspired by Presnell and Boos’s (2004) likelihood based in-and-

out-of-sample test, we term our proposed test as the pseudo in-and-out-sample (PIOS) test. In

comparison to the tests in Genest et al. (2009), which are all indeed rank-based tests, our PIOS test

is a pseudo likelihood based test, which does not require any probability integral transformation.

Thus, as demonstrated later in the paper, the PIOS test is computationally simple and numerically

stable.

Under the null hypothesis of copula model being correctly specified, we show that under some

mild regularity conditions, the PIOS test statistic converges in probability to a constant equal to

the dimension of parameter space of the null copula model. Also, we establish the asymptotic

normality for the PIOS test statistic. Compared to the fully parametric in-and-out-of-sample test

proposed by Presnell and Boos (2004), our work makes the following new contributions. First,

the PIOS test is applicable to a semiparametric copula model in which the marginal CDFs may be

fully unspecified. Second, Presnell and Boos’s (2004) test is based on a single point data in-and-

out-of-sample procedure. As a useful extension, the PIOS test is based on a data block in-sample

and out-of-sample procedure, where the size of block is allowed to increase with the sample size.

Such flexibility is critical to extend the original idea to serially dependent time series data, as well

as fast numerically calculation. Third, the development of asymptotic properties of the PIOS test

is involved in the use of the theory of empirical processes with varying block size, and therefore

such theoretical work is new and fundamentally different from that established in Presnell and
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Boos (2004).

Another primary focus of the paper is the development of a mechanism to combine several

test statistics and the resulting test is termed as the hybrid test in this paper. As demonstrated in

Genest et al. (2009), there exists no single dominant asymptotically optimal test against general

alternatives; see also Freedman (2009). The proposed hybrid test offers a compromise of several

different tests, which is particularly appealing when there is no a prior knowledge about the top

performer in the hypothesis test. We show that the proposed hybrid test can fully control type

I error, as long as each of them does, and that it will be a consistent test as long as there exists

one consistent test in the involved tests, regardless of the performance of the remaining tests. Our

simulation studies clearly illustrate that, in general, the hybrid test enjoy the best finite sample

performance.

This paper is organized as follows. Section 2 is devoted to the detail for the construction of

the PIOS test. Section 3 discusses the hybrid test. Section 4 presents the large sample properties

of the proposed PIOS test statistic. Section 5 concerns Monte Carlo simulation studies to evaluate

finite sample performances of the proposed PIOS test and hybrid test. In Section 6, the proposed

tests are applied to three real datasets. The final section provides some concluding remarks. All

technical details are included in the appendix.

2 Pseudo in-and-out-of-sample test (PIOST)

Suppose that X1 = (X11, · · · , X1d)
T, . . . , Xn = (Xn1, . . . , Xnd)

T is a random sample of size n

drawn from a multivariate distribution H(x) = H(x1, x2, . . . , xd) with continuous marginal CDF

F(x) ∆
= {F1(x1), . . . , Fd(xd)}. According to Sklar’s theorem (Sklar, 1959), we suppose that the joint

distribution H(·) can be expressed by the following representation:

H(x1, x2, · · · , xd)
M
= C0{F(x)} = C0{F1(x1), . . . , Fd(xd)},

where C0(·) is the true copula function. The corresponding joint density function of H(·), denoted

by h(·), takes the form of

h(x1, x2, · · · , xd) = c0{F1(x1), . . . , Fd(xd)}
d

∏
k=1

fk(xk),
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where, c0(u), u = (u1, . . . , ud) ∈ (0, 1)d is the resulting copula density function of copula C0(·)

and fk(·) are the corresponding marginal density functions of Fk(·), k = 1, . . . , d. Throughout this

paper, the marginal CDF F(·) is not specified by any parametric forms.

In practice, we often assume that the underlying true copula C0 belongs to a parametric class ,

say,

C ∆
= {C(·; θ), θ ∈ Θ},

where Θ is a p-dimensional parameter space. It is well known that misspecification on any of

its parametric structure of C(·; θ) may ruin likelihood based statistical estimation and inference.

Hence, checking the model specification is an important task in model diagnosis. In the following,

we are concern of with the development of a goodness-of-fit test on the hypotheses

H0 : C0 ∈ C = {C(·; θ) : θ ∈ Θ} vs. H1 : C0 6∈ C = {C(·; θ) : θ ∈ Θ} .

To begin, we first apply the so-called two-step pseudo maximum likelihood (PMLE) method

(e.g. Oakes (1994), Genest and Rivest (1995), Shih and Louis (1995) and Chen and Fan (2005)) to

estimate the dependence parameter θ. In order to avoid the estimated copula function from blow-

ing up at the boundary of 0 or 1, let F̃(x) = {F̃1(x1), . . . , F̃d(xd)} be the set of rescaled empirical

marginal distributions, where the k-th component is given by

F̃k(xk) =
1

n + 1

n

∑
t=1

I (Xtk ≤ xk) , (1)

where I (·) is the indicator function. The corresponding set of empirical marginal density func-

tions is denoted as f̃ (x) = { f̃1(x1), . . . , f̃d(xd)}. Let l{F̃(Xt); θ} = log c{F̃1(Xt1), . . . , F̃d(Xtd); θ},

and let θ̂ be the two-step PMLE of θ given by

θ̂ = arg max
θ∈Θ

n

∑
t=1

l
{

F̃(Xt); θ
}

. (2)

Genest and Rivest (1995) investigate large sample properties of the above PMLE under the

assumption of the copula function being correctly specified, and Chen and Fan (2005) established

asymptotic properties of the PLME θ̂ under a misspecified models.

To present our new test, let us randomly divide the original data {X1, . . . , Xn} into B blocks

and denote the b-th block as Xb = (Xb
1, . . . , Xb

nb
), b = 1, . . . , B. Without loss of generality, suppose

Xb
i = Xn1+···+nb−1+i and the k-th element of Xb

i is denoted by Xb
ik, k = 1, . . . , d, i = 1, . . . , nb,
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and n1 + · · · + nB = n. For the simplicity of exposition, we assume that all blocks have equal

size, say, nb ≡ m, and hence mB = n. With little technical effort, all arguments presented in

the rest of this paper can be extended to the case of unequal block size. In a similar spirit to the

"jackknife" resampling method (e.g. Efron (1982)), we can yield a set of delete-one-block PLMEs

θ̂−b, 1 ≤ b ≤ B, according to the following procedure:

θ̂−b = arg max
θ∈Θ

B

∑
b′ 6=b

m

∑
i=1

l{F̃(Xb
′

i ); θ}, b = 1, . . . , B. (3)

Note that the delete-one-block pseudo likelihood (out-of-sample) ∏m
i=1 c{F̃(Xb

i ); θ̂−b}∏d
k=1 f̃ (Xb

ik)

measures how well the hypothesized model predicts the b-th block of observations Xb = (Xb
1, . . . , Xb

m).

Obviously, if the full pseudo likelihood (in- sample) ∏m
i=1 c{F̃(Xb

i ); θ̂}∏d
k=1 f̃k(Xb

ik) appears to be

much larger than the out-of-sample counterpart, ∏m
i=1 c{F̃(Xb

i ); θ̂−b}∏d
k=1 f̃ (Xb

ik), then the fitted

model is very sensitive to the b-th block of observations, implying that the hypothesized model

may be inadequate to fit the data. Thus, we can establish a global measure for goodness-of-fit us-

ing a comparison between the "in-sample" pseudo-likelihood, ∏B
b=1 ∏m

i=1 c{F̃(Xb
i ); θ̂}∏d

k=1 f̃k(Xb
ik)

and the “out-of-sample” pseudo-likelihood, ∏B
b=1 ∏m

i=1 c{F̃(Xb
i ); θ̂−b}∏d

k=1 f̃ (Xb
ik). Precisely, we

propose a test statistic of the following form:

Tn(m)
M
=

B

∑
b=1

m

∑
i=1

[
l{F̃(Xb

i ); θ̂} − l{F̃(Xb
i ); θ̂−b}

]
. (4)

The resulting test is termed as the pseudo in-and-out-of-sample (PIOS) test. It is worth pointing

out that, when the margins are known and the block size is fixed as m ≡ 1, Tn(m) in (4) reduces to

the IOS test statistic proposed by Presnell and Boos (2004).

Under the null hypothesis of correct model specification, statistic Tn(m) in (4) is shown to con-

verge in probability to p, the dimension of the parameter vector θ. Here, we present in a heuristic

argument as to why its limiting value is p. First, we define two types of Fisher information matri-

ces (Song (2007), Chapter 3), negative sensitivity matrix and variability matrix as follows:

S(θ) ∆
= −E0 [lθθ{F(X1); θ}] ,

V(θ)
∆
= E0

[
lθ{F(X1); θ}lT

θ {F(X1); θ}
]

,

where lθ(u; θ) = ∂
∂θ log c(u; θ), lθθ(u; θ) = ∂2

∂θ∂θT log c(u; θ), and E0(·) represents the expectation

under the true copula C0. Throughout this paper, we assume there exists a θ∗ such that θ̂ → θ∗
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in probability under some regularity conditions. Refer to Chen and Fan (2005) for the regularity

conditions required to establish such consistency under mispecified model. The point of interest

is that, under suitable regularity conditions given in Theorem 2, we can show that

Tn(m)
pr→ E0

[
lT
θ {F(X1); θ∗}S(θ∗)−1lθ{F(X1); θ∗}

]
= tr

{
S(θ∗)−1V(θ∗)

}
, as n→ ∞,

where tr(A) denotes the trace of a matrix A. As a result of the Bartlett’s identity (White, 1982), a

correct model specification implies V(θ∗) = S(θ∗), so tr
{

S(θ∗)−1V(θ∗)
}
= p, the trace of the p-

dimensional identity matrix. Furthermore, Tn(m)− p, adjusted with a proper standard deviation,

is asymptotically normalized distributed, which is the theoretical basis to define the rejection rule

for the hypothesis test.

To implement the proposed test statistic Tn(m) in practice we need to estimate dependence

parameter [n/m] (the largest integer less than n/m) times, which may be computationally de-

manding. Indeed, we can approximate Tn(m) by the following test statistic, which is shown to be

asymptotically equivalent to Tn(m) in Theorem 2(ii):

Rn
∆
=

1
n

n

∑
t=1

lT
θ {F̃(Xt); θ̂}Ŝ−1(θ̂)lθ{F̃(Xt); θ̂} = tr

{
Ŝ−1(θ̂)V̂(θ̂)

}
, (5)

where Ŝ(θ̂) and V̂(θ̂) are the sample counterparts of the negative sensitivity matrix and variability

matrix, respectively, defined by

Ŝ(θ̂) = − 1
n

n

∑
t=1

lθθ{F̃(Xt); θ̂},

V̂(θ̂) =
1
n

n

∑
t=1

lθ{F̃(Xt); θ̂}lT
θ {F̃(Xt); θ̂}.

The statistic Rn given in (5) is similar to the information ratio (IR) test statistic proposed by

Zhou et al. (2012) for cross-sectional and longitudinal data in the framework of estimating equa-

tions, which was later extended to time series data using martingale estimating equations in

Zhang et al. (2012).

3 Hybrid Test

In most of scenarios for goodness-of-fit test, including the one for copula models (e.g. Genest

et al. (2009)) there exists no single dominate optimal test. It is often the case that at one occasion,
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one test is more powerful, but at other occasions, other tests were more powerful. See also Freed-

man (2009). The same phenomenon also occurs in our simulation studies. At some occasions,

PIOS outperforms others, but at other settings, other tests (such as the one proposed by Genest

et al. (2009)) perform better. Inspired by Zhou et al. (2013), here we propose the following hybrid

test that enables us to combine several different tests to achieve certain compromise in the test

power. The resulting test, although may not have the highest power, outperforms on average any

of individual tests used in the combination. This strategy is particularly appealing when there is

no a prior knowledge regarding the top performer at a given occasion.

Consider q test statistics, denoted by T(1)
n , T(2)

n , . . . , T(q)
n , where subscript n is the sample size.

Suppose that all of them have type I error controlled at a given significance level α under a com-

mon null hypothesis. A hybrid test is constructed as follows: Let p(i)n denote the corresponding

p-value obtained from the test statistic T(i)
n , i = 1, . . . , q. A hybrid test, denoted by Thybrid

n , will

make decision according to a p-value, defined as

phybrid
n = q×min{p(1)n , . . . , p(q)n }.

Consequently, the rejection rule of the hybrid test is that, if phybrid
n ≤ α, the null hypothesis is

rejected. This is equivalent to the situation where there is at least one test rejecting the null at the

level of α
q .

Under the null hypothesis H0 and a significance level α, we have the type I error for the hybrid

test:

pr(phybrid
n ≤ α|H0) = pr(p(1)n ≤ α/q or · · · or p(q)n ≤ α/q|H0)

≤
q

∑
i=1

pr(p(i)n ≤ α/q|H0)

≤ α.

The above inequality shows that, provided that all of the test T(i)
n , i = 1, . . . , q, have controlled

type I errors, the hybrid test Thybrid
n has its type I error controlled at α.

Let β
(i)
n (α) be the power function of test T(i)

n at a given significance level α and sample size n,

i = 1, . . . , q. That is, under the alternative hypothesis HA, β
(i)
n (α) = pr(p(i)n ≤ α|HA). The power
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function of the hybrid test Thybrid
n has the following lower bound:

β
hybrid
n (α) = pr

(
phybrid

n ≤ α|HA

)
= pr

(
p(1)n ≤

α

q
or · · · or p(q)n ≤

α

q
|HA

)
≥ max

{
β
(1)
n (

α

q
), . . . , β

(q)
n (

α

q
)

}
.

The above inequality implies that (i) the power of the hybrid test is better than the test given

by the strategy of Bonferroni correction for multiplicity; and (ii) more importantly, if there is at

least one test that is consistent (namely, the power tends to 1 as the sample size increases to ∞),

then the hybrid test is consistent. Our simulation studies also show that the hybrid test behave

more desirably than any of individual tests.

4 Asymptotic Properties of PIOS test

In this section, we establish several asymptotic properties of the proposed PIOS test as well as

the relationship between Tn(m) in (4) and Rn in (5). Throughout this paper, we denote ‖x‖ as the

usual Euclidean metric of any vector x = (x1, . . . , xd) ∈ Rd, namely, ‖x‖ =
√

x2
1 + · · ·+ x2

d and for

any d× d matrix A, ‖A‖ =
√

∑d
i,j=1 A2

ij, where Aij is the (i, j)-th element of A. Let N (θ∗) denote

an open neighborhood of θ∗.

Firstly, we establish the consistency of the test statistics Rn. To proceed, we need the following

regularity conditions.

A1. The first-order and second-order derivatives, lθ(u; θ) and lθθ(u; θ), are continuous with re-

spective to θ for any u ∈ [0, 1]d; and there exist integrable functions G1(u) and G2(u) such

that ‖lθ(u; θ)lT
θ (u; θ)‖ ≤ G1(u) and ‖lθθ(u; θ)‖ ≤ G2(u) for all θ ∈ N (θ∗).

A2. Matrix S(θ∗) = −E0lθθ{F(X1); θ∗} is finite and nonsingular.

Assumption (A1) is the so-called dominating condition, which is commonly imposed in order

to establish the uniform law of large number theorem (e.g. Wooldridge (1994)). Assumption (A2)

requires the sensitivity matrix S(θ∗) to be invertible, so that the test statistic Rn in (5) will be well-

defined.
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Theorem 1 Under conditions (A1)-(A2), we have

Rn
pr→ tr

{
S(θ∗)−1V(θ∗)

}
, as n→ ∞,

where θ∗ is the limiting value of PMLE θ̂.

The following regularity conditions are used to establish the central limit theorem for both Rn

and Tn(m).

B1. Denote Ji(u) = const ×∏d
k=1 {uk(1− uk)}−ξik , where ξik ≥ 0, i = 1, 2, ξik are some con-

stants. Suppose that for all θ ∈ Nθ∗ , ‖lθ(u; θ)lT
θ (u; θ)‖ ≤ J1(u), ‖lθθ(u; θ)‖ ≤ J2(u), and

E0 J2
i {F(X1)} < ∞ .

B2. Suppose that both ∂
∂uk

lθ(u; θ) and ∂
∂uk

lθθ(u; θ), k = 1, 2, . . . , d exist and are continuous. De-

note J̃k
i (u) = const × {uk(1− uk)}−ξ̃ik ∏d

j=1,j 6=k
{

uj(1− uj)
}−ξij , where ξ̃ij > ξij are some

constants, such that for all θ ∈ N (θ∗), ‖ ∂
∂uk

lθ(u; θ)‖ ≤ J̃k
1(u) and ‖ ∂

∂uk
lθθ(u; θ)‖ ≤ J̃k

2(u), and

furthermore, E0 J̃i{F(X1)} < ∞, i = 1, 2 and k = 1, 2, . . . , d.

B3. Suppose ∂lθθ(u;θ)
∂θk

, k = 1, 2, . . . , p exist and are continuous with θ ∈ N (θ∗), and there exist an

integrable function G3(u) such that ‖ ∂lθθ(u;θ)
∂θk
‖ ≤ G3(u) for all θ ∈ N (θ∗), k = 1, . . . , d.

Assumptions (B1) and (B2) are similar to the conditions in Lemma 2 of Chen and Fan (2005).

Obviously, Assumption (B1) implies assumptions (A1). Assumption (B3) is commonly required

in the literature to establish the uniform law of large number theorem .

C1. The block size m is of order o(na) with a ≤ 1
4 .

This Assumption (C1) is needed to bound the difference between Rn and Tn(m), so that these

two statistics have the same limiting distribution.

Under the above regularity conditions, we have the following results.

Theorem 2 (i) Under the null hypothesis, if (A2) and (B1)- (B3) hold, then we have

√
n {Rn − p} d→ N(0, σ2

R), as n→ ∞,

where σ2
R is the asymptotic variance given by equation (9) in the appendix, which can be consistently

estimated by equation (10) in the appendix.
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(ii) Under assumptions (A2),(B1)-B(3) and (C1), we have

Rn − Tn(m) = op(n−1/2).

Remark 1 To establish a general theory of consistency for the proposed goodness-of-fit test is challenging

due to the fact that it is difficulty to characterize proper alternatives against which the test is consistent.

However, given a restricted set of alternatives, it is possible to establish the test consistency. For example,

for the alternatives under which the sensitivity matrix S(θ∗) differs from the variability matrix V(θ∗),

following similar arguments as those given in the proof of Theorem 1, we can show that the PIOS test is

consistent.

Remark 2 One issue in the use of the above PIOS test is how to select block-size m to achieve better perfor-

mance. Our Monte Carlo simulations show that the choice of m depends on the underlying data generating

process, and in most cases the PIOS test with block-size m = 1 behaves satisfactorily for independent

cross-sectional data.

5 Simulation study

5.1 Setup

In this section, we conduct extensive Monte Carlo simulation experiments to evaluate the finite

performance of the proposed tests Tn(m) in (4) and Rn in (5). We chose m = 1 and m = 3 that

satisfy Condition (C1) for independent cross-sectional data. In the implementation of our tests, the

asymptotic variance σ2
R needs to be estimated, what is not easy to be done directly. This leads us to

the following semiparametric bootstrap procedure to numerically establish the null distribution of

Rn. A similar bootstrap approach was considered in Genest et al. (2009). This bootstrap technique

is also applied for the null distribution of test Tn(m) as well.

Let θ̂ be the PMLE and let F̃(x) be the rescaled empirical distribution in (1). The semiparamet-

ric bootstrap proceeds as follows:

Step 1. Generate a bootstrap sample
{

X(k)
1 , . . . , X(k)

n

}
from the estimated copula C(u; θ̂) under the

null hypothesis and the marginal distribution F̃(x);

Step 2. Estimate the dependence parameter θ of the copula in the null hypothesis by the two-step

PMLE method and compute the test statistic Rn, denoted by Rk
n;
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Step 3. Repeat Steps 1- 2 N times and obtain N statistics Rk
n, k = 1, . . . , N;

Step 4. Compute empirical p-value as pe =
1
N ∑N

k=1 I
(
|Rk

n| < |Rn|
)
.

For the purpose of comparison, we include a test proposed by Genest et al. (2009), termed

in short as GRB test. GRB test has been shown to have the best performance on average among

all the existing “blank tests”. In fact, GRB test statistic is a Cramér-von Mises statistic based on

Rosenblatt’s transform (Rosenblatt, 1952), defined by

Sn = n
∫
[0,1]d
{Dn(u)− C⊥(u)}2 du

= n/3d − 1/2d−1
n

∑
t=1

d

∏
k=1

(
1− E2

tk
)
+ 1/n

n

∑
t=1

n

∑
s=1

d

∏
k=1
{1−max(Etk, Esk)} ,

where Et = (Et,1, · · · , Et,d)
T, t = 1, . . . , n, are pseudo observations derived from the following

Rosenblatt’s transform:

Etk =
∂k−1C(Ut,1, · · · , Ut,k, 1, · · · , 1)/∂Ut,1 · · · ∂Ut,k−1

∂k−1C(Ut,1, · · · , Ut,k−1, 1, · · · , 1)/∂Ut,1 · · · ∂Ut,k−1
, k = 1, 2, · · · , d,

and Dn(u) = 1
n ∑n

t=1 I(Et ≤ u) is the d-dimensional empirical distribution function based on the

pseudo observations E1, . . . , En, and C⊥(u) = u1× u2× · · · × ud is the d-dimensional independent

copula.

Genest et al. (2009) compared the finite-sample performance among seven types of blanket

tests, and concluded that none of these tests was uniformly superior. However, on average the

above GRB test Sn performed the best. To be fair, in our comparison setting, GRB is also imple-

mented via the bootstrap method suggested by Genest et al. (2009), with the equal number of

bootstrap sample paths. We also consider two types of hybrid tests in the comparison. One is

a hybrid of Sn and Rn, denoted as SRn; and the other is a hybrid of Sn and Tn(m), denoted as

STn(m). In test STn(m) for the sake of brevity we took m = 1

We consider four most popular bivariate copula families, namely Gaussian, Student’s t, Clay-

ton and Gumbel. All of them have been investigated extensively in a vast literatures; see for

example, Song (2000), Chen and Fan (2005), Cossin and Schellhorn (2007), Song et al. (2009) and

Genest et al. (2009), just to name a few. The former two copulas are prominent examples of the

elliptical families and the latter two are mostly used Archimedean copulas. For the sake of self-

containedness, we present some brief descriptions of these four copula families in Appendix B.
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In the implementation, whenever it is needed to estimate a parametric copula we use the PLME

instead of the means of an inversion of the Kendall’s τ proposed by Genest et al. (2009).

To investigate the impact of dependence strength on the finite performance of tests, we set

three values of dependence parameters in terms of Kendall’s tau, τ = 0.25, 0.50 and 0.75, respec-

tively. For every possible choice of copula and a fixed dependence parameter, we also set two

values of sample size as n = 100 and 300, respectively. In each experiment, we conduct M = 1000

rounds of simulations, in which N = 1000 bootstrap sample paths are generated for each simu-

lation case to yield the null distribution. The simulation study has been undertaken on 64 Intel

Xeon CPU Cores mit 2.67 GHz of Windows 2003 Server, over a period of two months.

5.2 Results

Tables 1 and 2 report the simulation results at nominal level 5% for all four copulas being true

under H0 hypothesis. From both tables, we can see that the proposed tests Rn, Tn(m) and two

hybrid tests SRn and STn(m) perform well on type I error control. The empirical type I error rates

are marked with bold font for all cases. Regardless of the choice of sample size, the choice of

dependence strength or the choice of copula family, the type I error is satisfactorily controlled at

the level close to the nominal level. In this aspect, our new test Rn or Tn(m) is clearly comparable

to the GRB test Sn.

In regard to the power comparison, we may draw following conclusions:

1. In general, there is no significant difference between the proposed test Tn(m) and its ap-

proximation version Rn, as well as between both hybrid tests STn(m) and SRn, regardless of

choice of the dependence strength, the choice of sample size and chosen copula family.

2. The Tn(1) has overall better or equal performance to the Tn(3), because in the case of inde-

pendent cross-sectional data using m = 3 shrinks the effective sample size. Thus in the later

discussion on the comparison with other methods we only focus on Tn(1). This numerical

evidence also is the basis for our use of Tn(1) in three empirical studies

3. In the cases where Student’s t copula is given under H0, test Rn performs much better than

Tn(1) test in most of cases, except the case when τ = 0.75 and the true copula is the Clayton.

Similar is observed for SRn and STn(1) tests, where SRn performs better than STn(1) in the
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cases mentioned above.

4. The performance of the proposed Rn, Tn(1), SRn, STn(1) tests as well as GRB test is relied on

the strength of the dependence. When τ = 0.25 and sample size n = 100, with no surprise,

all of the tests have almost no power. Up to our knowledge, there exists no single test that

has desirable performance in such a setting of low correlation. Similar results are reported

by Genest et al. (2009). This is because when Kendall’s tau approximates to 0, the simulated

data are drawn from a copula close to the independent copula. In this case, it becomes very

hard to differentiate one copula from others. Obviously, in this case making a choice of the

copula function form does not really matter. It is interesting to note that even in this situation

of weak dependence all the proposed tests has demonstrated in contrary to GRB test to have

relatively high power of rejecting Gaussian copula when the underlying is the Student’s t

copula. In the situation, when Student’s t copula is under H0 and Gaussian copula is the

true one, Rn and SRn tests perform much better than GRB, Tn(1) and STn(1) tests.

5. It is interesting to observe that all the proposed tests are significantly superior to GRB test

to differentiate between Student’s t copula and Gaussian copula. When the sample size

increases to n = 300, Rn, Tn(1), SRn and STn(1) tests almost reaches 100% power as opposed

to the power of GRB test lower than 70% .

6. When Kendall’s tau is not too small (τ = 0.5 or τ = 0.75), and the sample size is large

enough (n = 300), all the proposed tests behave very well. It is worth pointing out that in

the following cases both Rn and Tn(1) tests perform poorly and are inferior to GBR, SRn and

STn(1) tests: (a) when Gaussian is true and Gumbel is under H0; (b) when Gumbel is true

and t under is H0; (c) Gaussian is true and Clayton under H0 for τ = 0.5; and (d) Clayton is

true and Student’s t copula under H0 for τ = 0.5. However, in all the remaining cases, the

proposed Rn and Tn(1) tests together with hybrid ones SRn and STn(1) perform comparably

or better than GRB test Sn.

7. As demonstrated clearly in the simulation studies both hybrid tests STn(1) and SRn showed

clear advantages by getting individual tests (Rn and Sn or Tn(1) and Sn) involved. The

hybrid tests have shown superior performances in all the cases, regardless of the choice of

copula family or choice of dependency strength, and hence they are recommended to be
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applied in practice.

6 Applications

In this section we present three empirical analyses using the proposed tests in this paper. In the

first example we examine changes of the dependence structure over time between stock returns;

the second example investigates joint behavior of residuals between high-frequency time series;

and the third example studies the dependence structure of insurance data on losses and expenses.

6.1 Detecting structural changes in the dependency

We use daily returns of Citigroup (C) and Bank of America (BAC), over the period 2004-2012

for this first empirical study. We take each pair belonging to the same industry in order to have a

strong dependence. It is known from recent studies (c.g. Hafner and Manner (2012), Patton (2012),

Härdle et al. (2013)) that during the global financial crisis over years 2008-2010 the dependency be-

tween various financial instruments has been changed, which provides a venue to examine which

of the tests would stay most stable in the calm period and be able to capture changes the depen-

dency in the turbulent periods. First, we remove some temporal dependencies by the means of

an ARMA(1,1)-GARCH(1,1) process for each year separately, and yield residuals for the analysis

at the next step. Following the discussion in the paper, we use empirical marginal distributions

to avoid influence of the margin misspecification. To visualize potential dependency changes,

in Figure 1 we display via the scatterplots of the residuals transformed to standard normal dis-

tribution for years 2004 (left) and 2009 (right). The left plot of residuals for year 2004 shows a

usual Gaussian elliptical shape, whereas in the right plot for year 2009, an asymmetric shape like

"water-drop" appears in the scatterplot. This makes us wonder if a Gumbel copula would fit the

underlying dependence. The p-values of five tests, namely, Tn(1), Rn, Sn and the two hybrid tests,

for these two particular years are listed in Table 3, where the two hybrid tests confirm our visual

inspection. In addition, we run all five tests over the period of 2004-2012 and select the copula de-

pendency with the largest p-value for each year. These results are summarized in Table 4, which

clearly indicate changes in the dependency structure before, during and after the crisis period of

2008-2009.
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6.2 Copulas in high-frequency data

In the modern financial econometrics, multiplicative error models (MEM) are standard tools

in modeling non-negative time series, e.g. Hautsch (2012), Cipollini and Gallo (2010) and Engle

(2002). In this section of empirical study we consider the Vector MEM (VMEM) proposed by

Cipollini and Gallo (2010), which is defined as follow,

xt = µt � εt = diag(µt)εt,

where innovation vector εt is a d-dimensional conditionally i.i.d. stochastic process and “�” de-

notes the Hadamard (element-by-element) product. Its density is specified over Rd
+ with a unit

vector 1 as expectation and variance-covariance matrix Σ, namely

εt|Ft−1 ∼ D(1, Σ),

where Ft = σ(εt, εt−1, · · · ) and D(1, Σ) is a multivariate distribution with mean vector 1 and

covariance matrix Σ. It follows that

E(xt|Ft−1) = µt;

Var(xt|Ft−1) = µtµ
′
t � Σ.

In order to model short-run effects and exclude low frequency patterns of the marginal time series,

the marginal mean vectors µi,t for i = 1, . . . , d have been specified through a fractional integrations

of order (1, 1), e.g. Hautsch (2012)

µi,t = [ωi + {1− βi − (αi + βi)(1− L)δi}xi,t] + βiµi,t−1, (6)

where L is the lag operator with Ljxt = xt−j; (1− L)δ = ∑∞
j=0 (

δ
j)(−1)jLj is the fractional difference

operator with different δ for each series; ωi, αi and βi with αi + βi < 1 for i = 1, . . . , d are the

parameters of the model. This model may be further extended to a case when β and α are matrices

for more precise multivariate modelling.

We apply the VMEM to analyze the high-frequency stock data for Apple as one of the most liq-

uid stocks on NYSE. We extract the raw data of executed trades for the period of December 17th,

2009 to December 31st, 2009. The data has been cleaned using a similar method to that proposed

in Hautsch (2012). The resulting cleaned data contain 10 min based numbers of trades (NT), vol-

umes (Vol) and high-low differences (HL). Thus, in this example the process is three-dimensional,
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namely NT, Vol and HL. The sample size is n = 300, consistent with that considered in the sim-

ulation study. Also we remove the U-shaped daily cyclic patterns via cubic splines. The issue

of interest concerns the specification of multivariate distribution D for these three variables. A

popular choice would be multivariate Gamma distribution, which does not necessarily describe

the data well. Alternatively, some researchers suggest to separate margins and dependency in the

VMEM (e.g. Cipollini and Gallo (2010)). To date, there is no work on specification test for cop-

ula model, and simply Gaussian copula has been used in the VMEM. As D is unknown, we first

estimate the parameters of (6) through the PMLE under assumption of independent copula, im-

plying diagonal covariance matrix Σ. Having residuals obtained from MEM (6) we analyze them

upon the needed appropriate multivariate dependence D and after specification of the copula re-

estimate fully specified model. A similar approach is used in SCOMDY models by Chen and Fan

(2006) where one first estimates univariate GARCH, then find the copula based on the residuals

and later re-estimate multivariate GARCH with correct copula specification. Figure 2 shows scat-

terplots of the residuals from univariate MEMs, which are transformed to the univariate normal

distribution. These scatterplots suggest a hypothesis of Gumbel copula. Thus we perform all 5

tests for all pairs, namely (NT, Vol), (NT, HL) and (Vol, HL) as well as for the three-dimensional

(NT, Vol, HL). The results are summarized in Tables 5. Here, we consider classical 3-dimensional

Gaussian, Gumbel and Clayton copulas, as well as recently developed hierarchical Archimedean

copulas (HAC) with Gumbel and Clayton generators (e.g. Okhrin et al. (2013a), Okhrin et al.

(2013b)) and Vine copulas (e.g. Aas et al. (2009)). As seen from Table 5, for most of the pairs, the

Gumbel copula is preferred for (NT, Vol), Gaussian copula for (HL, NT) and Clayton or Gumbel

for (HL, Vol). For the 3-dimensional case, we are unable to derive GRB Sn test statistic for the

vine copulas because of very complex forms of the copula density. So, no results on vine copulas

have been reported for Sn nor for both hybrid tests (SRn and STn(1)). In the empirical study, ei-

ther HAC Gumbel or simple Gumbel is accepted by the hybrid tests, as oppose to the conflicting

results draws by the Sn and Tn(1) tests. This analysis illustrating an approach to determining an

appropriate dependency of characteristics (e.g. Vol, HL or NT) of a stock.
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6.3 Analysis of Losses and Allocated Loss Adjustment Expenses

Now, we apply the proposed tests to a well-known insurance dataset on losses and ALAEs,

which are collected by the US Insurance Service Office. Such data has been previously analyzed

by many authors, including, Frees and Valdez (1998), Genest et al. (1998), Klugman and Parsa

(1999), Chen and Fan (2005) and Denuit et al. (2006), among others.

The dataset consists of 1500 general liability claims, among which 34 claims are censored due

to late settlement lags. Each claim consists of an indemnity payment (i.e. the loss) and an allo-

cated loss adjustment expense (ALAE). Here we determine a dependence model using the 1466

complete data. We run the proposed goodness-of-fit tests on four families of copulas, including

Gaussian copula, Student’s t copula, Gumbel copula and Clayton copula. For each copula, we

estimate the dependence parameter by the PMLE approach described in Section 2.

Table 6 reports the results of PMLE, test statistics and p-values. The estimated freedom of

degree of Student’s t copula is 11.11. From Table 6, we find that Gumbel copula appears to be the

most adequate and Gaussian copula is least suitable among the four copula models.

Our findings obtained by the hybrid tests are consistent with the model selection results re-

ported by Frees and Valdez (1998), Genest et al. (1998), Chen and Fan (2005) and Denuit et al.

(2006). Frees and Valdez (1998) and Denuit et al. (2006) point out a positive upper-tail dependence

between loss and ALAE, implying that large losses tend to be associated to large ALAEs. This

is because expensive claims usually take some time to be settled and induce extra costs for the

insurance company. Thus, it is reasonable to observe a positive upper-tail dependence. On the

other hand, no lower tail dependence is detected. Among the four copula models, Gumbel copula

exhibits a strong upper-tail dependence, which properly reflects the relationship between loss and

ALAE. The other copula models do not have similar features of upper tail dependence.

7 Conclusion

In this paper, we focus on goodness-of-fit test for specification of semiparametric copula de-

pendence models. We propose a new method based on pseudo likelihood of cross-validation

leading to the construction of a test statistics by comparing the “in-sample” pseudo-likelihood

and "out-of-sample" pseudo-likelihood. As shown in theory and numerical examples, the pro-
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posed comparison of pseudo likelihoods over different data sets has provide a highly competitive

performance to indicate how well a model fits the data. To mitigate the computational burden of

of the proposed Tn(m) test, we introduce Rn test, which shown similar performance to Tn(m) test.

We establish the large sample properties for both Tn(m) and Rn tests. In comparison to the blank

tests considered in Genest et al. (2009), all of which are rank-based tests, the proposed test enable

us to avoid using any probability integral transformations.

Another main contribution of this paper is that we propose a hybrid mechanism to combine

several different tests. In term of average performance, the hybrid test is clearly superior to any

of individual tests used in the combination. An important property is that if there is at least

one consistent test in the combination, then the hybrid test is consistent. This hybrid strategy is

particularly appealing when there is no a prior knowledge which test might be the top performer

at a given occasion.

We conduct extensive simulation experiments to investigate and compare the finite-sample

performances between our proposed tests and the GRB test. The results of Monte Carlo simula-

tions show that the proposed tests perform satisfactorily in type I error control and that they are

very comparable to the best performer (i.e. GRB test) given by Genest et al. (2009). In particular,

when the data are generated from Student’s t copula, the proposed tests are more powerful than

GRB test. Also, the proposed hybrid tests have shown a superior performance in all the cases,

regardless of the choice of copula or choice of dependency strength, and hence they are highly

recommended as a desirable method to be applied in practice. We also applied these proposed

tests to three real datasets.

It is interesting to extend the proposed tests with independent cross-sectional data to time

series data. Also, it is worth exploring the effect of block size on the test power. Finally, in this

paper, we focus only on the occasion of 2-dimensional copula families, and it is of great interest to

evaluate theses tests to multi-dimensional copulas, such as vine copulas.
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APPENDIX A

This appendix is devoted to the proofs of the theorems given in Section 4.

Proof of Theorem 1:

Define the rescaled empirical copula of X1, · · · , Xn by

C̃(u) =
1

n + 1

n

∑
t=1

I
{

F̃(Xt) ≤ u
}
=

1
n + 1

n

∑
t=1

I
{

F̃1(Xt1) ≤ u1, · · · , F̃d(Xtd) ≤ ud
}

.

For any θ ∈ Θ, we can rewrite S(θ), Ŝ(θ), V(θ) and V̂(θ) as follows:

S(θ) = −
∫

u∈[0,1]d
lθθ(u; θ)dC0(u); Ŝ(θ) = −n + 1

n

∫
u∈[0,1]d

lθθ(u; θ)dC̃(u),

and

V(θ) =
∫

u∈[0,1]d
lθ(u)lT

θ (u)dC0(u); V̂(θ) =
n + 1

n

∫
u∈[0,1]d

lθ(u)lT
θ (u)dC̃(u),

where C0(·) and C̃(·) are the true copula and the rescaled empirical copula.

By condition (A1), applying Lemma 1(c) in Chen and Fan (2005)(see also Fermanian

et al. (2004)), we have

sup
θ∈N (θ∗)

∥∥Ŝ(θ)− S(θ)
∥∥ = sup

θ∈N (θ∗)

∥∥∥∥∫u∈[0,1]d
lθθ(u; θ)d

{
n + 1

n
C̃(u)− C0(u)

}∥∥∥∥ pr→ 0, as n→ ∞.

Hence, using the two facts
∥∥Ŝ(θ̂)− S(θ∗)

∥∥ ≤ ∥∥Ŝ(θ̂)− S(θ̂)
∥∥ + ∥∥S(θ̂)− S(θ∗)

∥∥, and

θ̂
pr→ θ∗,we obtained Ŝ(θ̂)

pr→ S(θ∗).

Applying the same arguments above, we can show V̂(θ̂)
pr→ V(θ∗).

Furthermore, by condition (A2) and Slutsky’s theorem, we have

Rn = tr
{

Ŝ(θ̂)−1V̂(θ̂)
} pr→ tr

{
S(θ∗)−1V(θ∗)

}
.

Proof of Theorem 2(i):

First note that, θ̂ solves the equation ∑n
t=1 lθ{F̃(Xt); θ̂} = 0. Applying the mean-value

theorem, we have

0 =
n

∑
t=1

lθ{F̃(Xt); θ∗}+
n

∑
t=1

lθθ{F̃(Xt); θ̃}(θ̂ − θ∗),
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where θ̃ lies between θ∗ and θ̂. Thus

θ̂ − θ∗ = −
[

1
n

n

∑
t=1

lθθ{F̃(Xt); θ̃}
]−1

1
n

n

∑
t=1

lθ{F̃(Xt); θ∗}.

For any 1 ≤ i, j ≤ p, expanding lθθ{F̃(Xt); θ̂}ij around θ∗ leads to

Ŝ(θ̂)ij =
1
n

n

∑
t=1

lθθ{F̃(Xt); θ̂}ij

=
1
n

n

∑
t=1

lθθ{F̃(Xt); θ∗}ij +
1
n

n

∑
t=1

∂lθθ{F̃(Xt); θ̌}ij

∂θT (θ̂ − θ∗)

=
1
n

n

∑
t=1

lθθ{F̃(Xt); θ∗}ij −
1
n

n

∑
t=1

∂lθθ{F̃(Xt); θ̌}ij

∂θT

[
1
n

n

∑
t=1

lθθ{F̃(Xt); θ̃}
]−1

1
n

n

∑
t=1

lθ{F̃(Xt); θ∗},

where θ̌ lies between θ∗ and θ̂.

By condition (B3), applying again Lemma 1(c) in Chen and Fan (2005), we obtain

1
n

n

∑
t=1

∂lθθ{F̃(Xt); θ̌}ij

∂θT
pr→ E0

[
∂lθθ{F(X1); θ∗}ij

∂θT

]
.

Also, we know 1
n ∑n

t=1 lθθ{F̃(Xt); θ̃} pr→ S(θ∗) as n→ ∞. Therefore

Ŝ(θ̂)ij =
1
n

n

∑
t=1

[
lθθ{F̃(Xt); θ∗}ij + Mij

1 S−1(θ∗)lθ{F̃(Xt); θ∗}
]
+ op(1)

4
=

1
n

n

∑
t=1

hS{F̃(Xt); θ∗}ij + op(1), (7)

where, Mij
1
4
= E0

[
∂lθθ{F(X1);θ∗}ij

∂θT

]
is a 1 × p vector, hS is a p × p matrix with element

hS{F̃(Xt); θ∗}ij.

Employing the same arguments above, we have

V̂(θ̂)ij =
1
n

n

∑
t=1

[
lθ{F̃(Xt); θ∗}ilθ{F̃(Xt); θ∗}j + Mij

2 S−1(θ∗)lθ{F̃(Xt); θ∗}
]
+ op(1) (8)

4
=

1
n

n

∑
t=1

hV{F̃(Xt); θ∗}ij + op(1),

where Mij
2 = E0

[
∂lθ{F(X1);θ∗}i

∂θT lθ{F(X1); θ∗}j +
∂lθ{F(X1);θ∗}j

∂θT lθ{F(X1); θ∗}i

]
and hV is a p× p

matrix with element hV{F̃(Xt); θ∗}ij.
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Under the null hypothesis of the copula model being correctly specified, by Bartlett

identity, we have S(θ∗) = V(θ∗), moreover the test statistic Rn given in (5) can be repre-

sented as follows:

√
n (Rn − p) =

√
ntr
{

Ŝ−1(θ̂)V̂(θ̂)− Ip

}
=
√

ntr
{

Ŝ−1(θ̂)V̂(θ̂)− S−1(θ∗)V(θ∗)
}

= tr
[
S−1(θ∗)

√
n
{

V̂(θ̂)−V(θ∗)
}]

+tr
[
S−1(θ∗)V̂(θ̂)S−1(θ∗)

√
n
{

S(θ∗)− Ŝ(θ̂)
}]

+tr
[
Ŝ−1(θ̂)V̂(θ̂)S−2(θ∗)

√
n
{

S(θ∗)− Ŝ(θ̂)
}2
]

.

Utilizing the asymptotic expansion in (7) and (8), we have

√
n
{

Ŝ(θ̂)− S(θ∗)
}

=
1√
n

n

∑
k=1

[
hS{F̃(Xt); θ∗} − S(θ∗)

]
+ op(1)

=
√

n
∫

u∈(0,1)d
hS(u; θ∗)d

{
n + 1

n
C̃(u)− C0(u)

}
+ op(1),

and

√
n
{

V̂(θ̂)−V(θ∗)
}

=
1√
n

n

∑
k=1

[
hV{F̃(Xt); θ∗} −V(θ∗)

]
+ op(1)

=
√

n
∫

u∈(0,1)d
hV(u; θ∗)d

{
n + 1

n
C̃(u)− C0(u)

}
+ op(1).

By conditions (B1) and (B2), employing Lemma 2 in Chen and Fan (2005) (see also

Ruymgaart et al. (1972), Ruymgaart (1974) or Genest and Rivest (1995)), we have ‖Ŝ(θ̂)−
S(θ∗)‖ = Op(n−1/2) and ‖V̂(θ̂)− V(θ∗)‖ = Op(n−1/2). In addition, giving these facts:
√

n‖Ŝ(θ̂) − S(θ∗)‖2 = op(1), Ŝ(θ̂)
pr→ S(θ∗) and V̂(θ̂)

pr→ V(θ∗), we reach the following

expression:

√
n (Rn − p) =

√
n
∫

u∈[0,1]d
hR(u; θ∗)d

{
n + 1

n
C̃(u)− C0(u)

}
+ op(1),

where

hR(u; θ∗) =
p

∑
i,j=1

S−1(θ∗)ij
{

hS(u; θ∗)ji + hV(u; θ∗)ji
}

.
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Again, applying Lemma 2 in Chen and Fan (2005), we have

√
n (Rn − p) d→ N(0, σ2

R),

where

σ2
R = var0 [hR(u; θ∗) + D{F(X1); θ∗}] , (9)

and

D{F(X1); θ∗} =
d

∑
j=1

∫
u∈[0,1]d

∂hR(u; θ∗)

∂uj
I{Fj(X1j) ≤ uj}dC0(u).

Note that the additional term D{F(X1); θ∗} comes from the uncertainty of the estima-

tor for the marginal distribution function F(X1) = {F1(x1), · · · , Fd(xd)}. It vanishes when

F(X1) is known.

The asymptotic variance σ2
R may be consistently estimated by

σ̂2
R =

1
n

n

∑
t=1

[
hR{F̃(Xt); θ̂} −

p

∑
i,j=1

Ŝ(θ̂)−1
ij V̂(θ̂)ji + D[F̃(Xt); θ̂}

]2

. (10)

To prove Theorem 2(ii), we need the following lemma.

Lemma 1 : Under the conditions (A1) and (C1), we have

sup
1≤b≤B

‖θ̂ − θ̂−b‖ = op(n−
3
4 ). (11)

Proof of Lemma 1: By equation (3), θ̂−b solves the following equation

0 =
B

∑
b′=1,b′ 6=b

m

∑
i=1

lθ{F̃(Xb
′

i ); θ̂−b}.

Expanding lθ{F̃(Xb
′

i ); θ̂−b} around θ̂ leads to

0 =
B

∑
b′=1,b′ 6=b

m

∑
i=1

lθ(F̃(Xb
′

i ); θ̂−b)

= −
m

∑
i=1

lθ{F̃(Xb
i ); θ̂}+

B

∑
b′=1,b′ 6=b

m

∑
i=1

lθθ{F̃(Xb
′

i ); θ̃−b}(θ̂−b − θ̂),
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where θ̃−b lies between θ̂ and θ̂−b. It follows that

θ̂−b − θ̂ =

 1
n

B

∑
b′=1,b′ 6=b

m

∑
i=1

lθθ{F̃(Xb
′

i ); θ̃−b}

−1
1
n

m

∑
i=1

lθ{F̃(Xb
i ); θ̂}.

By conditions (A1) and (C1),

sup
1≤b≤B

1
n

∥∥∥∥∥ m

∑
i=1

lθ{F̃(Xb
i ); θ̂}

∥∥∥∥∥ ≤ m
n

sup
1≤b≤B

sup
θ∈N (θ∗)

∥∥∥lθ{F̃(Xb
i ); θ}

∥∥∥
= op(n−

3
4 )Op(1)

= op(n−
3
4 ).

In addition, by condition (A1), using the similar arguments in the proof of Theorem 1,

we can show

1
n

B

∑
b′=1,b′ 6=b

m

∑
i=1

lθθ{F̃(Xb
′

i ); θ̃−b}
pr→ S(θ∗).

Moreover,

sup
1≤b≤B

‖θ̂−b − θ̂‖ ≤ sup
1≤b≤B

∥∥∥∥∥∥∥
 1

n

B

∑
b′=1,b′ 6=b

m

∑
i=1

lθθ{F̃(Xb
′

i ); θ̃−b}

−1
∥∥∥∥∥∥∥

× sup
1≤b≤B

∥∥∥∥∥ 1
n

m

∑
i=1

lθ{F̃(Xb
i ); θ̂}

∥∥∥∥∥
= op(n−

3
4 ).

Proof of Theorem 2(ii): By definition

Tn(m) =
B

∑
b=1

m

∑
i=1

l{F̃(Xb
i ); θ̂} −

B

∑
b=1

m

∑
i=1

l{F̃(Xb
i ); θ̂−b},
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expanding l{F̃(Xb
i ); θ̂−b} around θ̂ leads to

Tn(m) = −
B

∑
b=1

m

∑
i=1

lθ{F̃(Xb
i ); θ̂}(θ̂ − θ̂−b)−

1
2

B

∑
b=1

m

∑
i=1

(θ̂ − θ̂−b)
Tlθθ{F̃(Xb

i ); θ̃−b}(θ̂ − θ̂−b)

= −
B

∑
b=1

m

∑
i=1

lθ{F̃(Xb
i ); θ̂}

[
1
n

B

∑
b′=1

m

∑
i=1

lθθ{F̃(Xb
′

i ); θ̂}+ e1b + e2b

]−1
1
n

m

∑
i=1

lθ{F̃(Xb
i ); θ̂}

−1
2

B

∑
b=1

m

∑
i=1

(θ̂ − θ̂−b)
Tlθθ{F̃(Xb

i ); θ̃−b}(θ̂ − θ̂−b)

∆
= Rn −W1 −W2,

where

W1 =
1
2

B

∑
b=1

m

∑
i=1

(θ̂ − θ̂−b)
Tlθθ{F̃(Xb

i ); θ̃−b}(θ̂ − θ̂−b),

and

W2 =
B

∑
b=1

m

∑
i=1

lθ{F̃(Xb
i ); θ̂}

 1
n

B

∑
b′=1,b′ 6=b

m

∑
i=1

lθ{F̃(Xb
′

i ); θ̃−b}

−1

(e1b + e2b)

×
[

1
n

B

∑
b′=1

m

∑
i=1

lθ{F̃(Xb
′

i ); θ̂}
]−1

1
n

m

∑
i=1

lθ{F̃(Xb
i ); θ̂},

with

e1b =
1
n

m

∑
i=1

lθ{F̃(Xb
i ); θ̃−b},

and

e2b =
1
n

B

∑
b=1

m

∑
i=1

lθθ{F̃(Xb
i ); θ̃−b} −

1
n

B

∑
b=1

m

∑
i=1

lθθ{F̃(Xb
i ); θ̂}.

Lemma 1 implies that

sup
1≤b≤B

‖W1‖ = sup
1≤b≤B

‖
B

∑
b=1

m

∑
i=1

(θ̂ − θ̂−b)
Tlθ{F̃(Xb

i ); θ̂}(θ̂ − θ̂−b)‖

= op(n−
1
2 ) sup

1≤b≤B
sup
θ∈Θ
‖lθ{F̃(Xb

i ); θ}‖

= op(n−
1
2 )Op(1)

= op(n−
1
2 ).
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We now prove that W2 = op(n−
1
2 ). By conditions (A1) and (C1),

sup
1≤b≤B

‖e1b‖ ≤
m
n

sup
1≤b≤B

sup
θ∈N (θ∗)

∥∥∥lθ{F̃(Xb
i ); θ}

∥∥∥ = op(n−
3
4 )Op(1) = op(n−

3
4 ).

Expanding lθθ(F̃(Xb
i ); θ̃−b) around θ̂ leads to, under condition (B3),

‖e2b‖ = ‖ 1
n

B

∑
b=1

m

∑
i=1

lθθ{F̃(Xb
i ); θ̃−b} −

1
n

B

∑
b=1

m

∑
i=1

lθθ{F̃(Xb
i ); θ̂}‖

≤ ‖ 1
n

B

∑
b=1

m

∑
i=1

p

∑
k,l=1

∂

∂θ
lθθ{F̃(Xb

i );
˜̃θ−b}kl‖ sup

1≤b≤B
‖θ̂ − θ̃−b‖

= op(n−
3
4 )Op(1) = op(n−

3
4 ).

where ˜̃θ−b lies between θ̂ and θ̂−b. Therefore,

sup
1≤b≤B

‖W2‖ ≤ n

∥∥∥∥∥ 1
n

B

∑
b=1

m

∑
i=1

lθ{F̃(Xb
i ); θ̂}

∥∥∥∥∥ sup
1≤b≤B

∥∥∥∥∥∥∥
 1

n

B

∑
b′=1,b′ 6=b

m

∑
i=1

lθ{F̃(Xb
′

i ); θ̃−b}

−1
∥∥∥∥∥∥∥

× sup
1≤b≤B

‖(e1b + e2b)‖

∥∥∥∥∥∥
[

1
n

B

∑
b′=1

m

∑
i=1

lθ{F̃(Xq
i ); θ̂}

]−1
∥∥∥∥∥∥ sup

1≤b≤B

∥∥∥∥∥ 1
n

m

∑
i=1

lθ{F̃(Xb
i ); θ̂}

∥∥∥∥∥
= n×Op(1)Op(1)op(n−

3
4 )Op(1)op(n−

3
4 )

= op(n−
1
2 ).

In summary, we prove that

Tn(m)− Rn = op(n−
1
2 ).
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APPENDIX B

This appendix is devoted to the copula models used in the Simulation and Empirical

Studies.

1. The bivariate Gaussian copula is defined as

C(u1, u2; θ) = Φ{Φ−1(u1), Φ−1(u2); θ},

where Φ(·) is the standard univariate Gaussian distribution, Φ(u1, u2; θ) is the bi-

variate Gaussian distribution with zeros mean and unit variance, and θ ∈ [−1, 1] is

the dependence coefficient corresponding to Kendall’s τ = 2
π arcsin(θ).

2. The Student’s t copula is given by

C(u1, u2; ν; θ) =
∫ t−1

ν (u1)

−∞

∫ t−1
ν (u2)

−∞

1√
2π(1− θ2)1/2

(
1 +

x2 − 2θxy + y2

ν(1− θ2)

)−ν/2−1

dxdy,

where ν is the number of degrees of freedom, and θ is the dependence coefficient that

correspond to Kendall’s τ = 2
π arcsin(θ). Student’s t copula has received increasing

attention in the modeling of multivariate financial time series. Many empirical stud-

ies have shown that the Student’s t copula fit better than Gaussian copula since the

former captures better the phenomenon of dependent extreme values, which is often

observed in financial asset return data. See for example Breymann et al. (2003) and

Demarta and McNeil (2005). Throughout the simulation study we fix the number of

degrees of freedom at ν = 4 as in Genest et al. (2009). Varying ν in the numerical

analysis of the GRB test is numerically challenging and computationally unstable

because of the Rosenblatt’s transform.

3. Clayton copula (Clayton, 1978)

C(u1, u2; θ) =
(

u−θ
1 + u−θ

2 − 1
)−1/θ

,

where the dependence coefficient θ ≥ 0, which corresponds to Kendall’s τ = θ/(θ +

2). This copula represents lower tail dependency and is of particular interest in the

modelling of Value-at-Risk.
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4. Gumbel copula (Gumbel, 1960)

C(u1, u2; θ) = exp
[
−
{
(− log u1)

θ + (− log u2)
θ
}1/θ

]
,

with dependence coefficient θ ≥ 1 and the corresponding Kendall’s τ = 1− 1/θ.

This family is the only extreme value Archimedean copula which also represents an

upper tail dependency. It is often used in the modeling of gains as well as in the

modeling of joint maxima.

APPENDIX C

This appendix is devoted to the results of the Simulation and Empirical Studies.
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Figure 1: Scatterplots of residuals transformed to the standard normal for C/BAC for 2004 (left)

and 2009 (right).

2004 2009

Tn(1) Rn Sn STn(1) SRn Tn(1) Rn Sn STn(1) SRn

Clayton 0.942 0.824 0.000 0.000 0.000 0.281 0.357 0.005 0.010 0.010

Gumbel 0.716 0.834 0.178 0.356 0.356 0.536 0.487 0.876 1.000 0.974

Gauss 0.235 0.423 0.660 0.470 0.846 0.101 0.229 0.788 0.202 0.458

t 0.019 0.003 0.100 0.038 0.006 0.118 0.377 0.652 0.236 0.754

Table 3: p-values for copula model specification for the residuals for the ARMA(1,1)+GARCH(1,1)

on the log returns of C and BAC for 2004 and 2009.
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Tn(1) Rn Sn STn(1) SRn

C
/B

A
C

2004 Clayton Gumbel Gauss Gauss Gauss

2005 Gumbel Gumbel t Gumbel Gumbel

2006 t t t t t

2007 t t t t t

2008 Gumbel Gumbel t t Gauss

2009 Gumbel Gumbel Gumbel Gumbel Gumbel

2010 t t Gumbel Gumbel Gumbel

2011 t t t t t

2012 t t t t t

Table 4: Copulas that are preferred in each time period by each goodness-of-fit test.

NT, Vol HL, Vol

Tn(1) Rn Sn STn(1) SRn Tn(1) Rn Sn STn(1) SRn

Clayton 0.004 0.004 0.000 0.000 0.000 Clayton 0.070 0.088 0.006 0.012 0.012

Gumbel 0.139 0.114 0.946 0.278 0.228 Gumbel 0.596 0.520 0.467 0.934 0.934

Gauss 0.016 0.017 0.419 0.032 0.034 Gauss 0.000 0.001 0.589 0.000 0.002

t 0.039 0.027 0.121 0.078 0.054 t 0.077 0.026 0.430 0.154 0.052

HL, NT HL, NT, Vol

Clayton 0.196 0.262 0.000 0.000 0.000 Gauss 0.003 0.003 0.540 0.006 0.006

Gumbel 0.178 0.150 0.484 0.356 0.300 Clayton 0.000 0.000 0.000 0.000 0.000

Gauss 0.443 0.318 0.242 0.484 0.484 Gumbel 0.073 0.070 0.997 0.146 0.140

t 0.018 0.009 0.074 0.036 0.018 HAC Clayton 0.059 0.006 0.000 0.000 0.000

HAC Gumbel 0.657 0.994 0.062 0.124 0.124

Vine 0.000 0.000 NA NA NA

Table 5: p-values of the goodness-of-fit tests for different 2- and 3-dimensional copulas for Apple

stock data.
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Figure 2: Scatterplots of residuals transformed to the standard normal for HL, NT and Vol, three

characteristics of Apple.
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Table 6: Summary of data analysis results obtained from the four copulas: Gaussian, Student’s t,

Clayton and Gumbel, including dependence parameter estimates, test statistics, and p-values.

copula parameter Tn(1) p-val Rn p-val Sn p-val STn(1) (p-val) SRn (p-val)

Clayton 0.511 1.316 0.000 1.323 0.000 1.407 0.000 0.000 0.000

Gumbel 1.428 0.954 0.370 0.959 0.315 1.072 0.006 0.012 0.012

Gauss 0.456 1.223 0.000 1.274 0.000 1.118 0.000 0.000 0.000

t 0.466 0.998 1.000 1.654 1.000 1.163 0.000 0.000 0.000
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