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Abstract

We consider theoretical bootstrap “coupling” techniques for non-
parametric robust smoothers and quantile regression, and verify the
bootstrap improvement. To cope with curse of dimensionality, a vari-
ant of “coupling” bootstrap techniques are developed for additive
models with both symmetric error distributions and further exten-
sion to the quantile regression framework. Our bootstrap method can
be used in many situations like constructing confidence intervals and
bands. We demonstrate the bootstrap improvement over the asymp-
totic band theoretically, and also in simulations and in applications
to firm expenditures and the interaction of economic sectors and the
stock market.
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1 Introduction

Confidence bands are important tools for model specifications. However it
is hard to construct precise confidence bands for nonparametric curves as
usually a supreme norm is involved in the statistics. Traditional methods
based on asymptotic theory have natural drawbacks in their finite sample
performance, and this motivates bootstrap methods to attain more precise
bands. In this article, we deal with bootstrap bands construction for a general
class of nonparametric M - and L- estimates, moreover, we adopt additive
models to handle the multivariate covariates case.

Consider Y,X ∈ Rd+1 with variable Y and X ∈ Rd.

l(x) = arg minθ E Y |X=xρ(Y − θ), (1)

with ρ(·) as a loss function described in detail in Section 2.1. For the con-
fidence bands construction, one stream of literature using empirical process
theory follows the asymptotic results of Bickel and Rosenblatt (1973), which
is further extended by Johnston (1982), and has recently been studied by
Härdle and Song (2010) for L-smoothers. However, it has also been shown
by Härdle, Ritov and Song (2012) that such an asymptotic confidence band
has much lower coverage probability in finite sample than what it is sup-
posed to have. The poor performance of such kind of band in finite sample
has been well attributed to its slow convergence, see Hall (1991). To ad-
dress improvement of finite sample performance, there is a class of literature
on the bootstrap confidence band, see Claeskens and Van Keilegom (2003),
Härdle and Marron (1991), among others. Figure 1 shows a bootstrap confi-
dence band and an asymptotic band for an M -smoother with ρ(·) being the
Tukey’s bisquare loss. One sees that the asymptotic band is narrower than
the bootstrap one. Moreover, the asymptotic band does not cover the true
curve while the bootstrap one does.

The bootstrap is a class of data driven resampling techniques that provide
non-asymptotic approximations of finite sample distributions of different
statistics. In a location model (more generally a regression model), resam-
pling is done from the estimated residuals and a typical theoretical analysis
leads to the conclusion “bootstrap works” in the sense that a suitably cen-
tered bootstrap estimator converges to the same asymptotic normal distribu-
tion as the original estimator under consideration. A large literature body has
focused on showing bootstrap improvements and refinements of approxima-
tions via bootstrap resampling, see Hall (1992), Mammen (1992), Horowitz
(2001a), Härdle, Horowitz and Kreiss (2003), which discuss the conditions for
bootstrap consistency, and also prove the bootstrap accuracy as an approx-
imation to the exact finite sample distribution for special types of statistics
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Figure 1: Plot of true curve (grey), robust estimate with Tukey biweight loss
and 5% confidence bands (blue dashed ), local polynomial estimate (black),
bootstrap band (red dotted), n = 150.

in a nonparametric framework. But very few articles have focused on non-
linear statistics (e.g. maximum) in nonparametric regression. Härdle et al.
(2012) proposed a bootstrap procedure and showed its improvement prop-
erties. This stimulated the current research on finding common properties
that loss functions have to share to attain such improvement. Accordingly,
we prove a generalized version in the univariate case for the class of loss func-
tion with bounded influence. For the high dimensional case, the bootstrap
improvement becomes difficult when the dimension d of the regressors gets
large. One way to avoid this problem is to impose a structure, such as an
additive model, on the multivariate nonparametric function. The additive
structure assumes that the covariates’ effects are separable, and this effect
is presented in many economic applications, Härdle (1990). Specifically, we
consider the regression function

m(x1, . . . , xd) =
d∑
j=0

mj(xj), (2)

with m0(x0) a constant.
It is well known that (2) solves the dimensionality curse in the sense

that one dimensional convergence rates are achieved for the estimation of
m(x1, . . . , xd), but keeps enough flexibility of the marginal influence of the d-
ifferent variables. See Horowitz (2001b), Horowitz and Lee (2005), Horowitz,
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Klemelä and Mammen (2006), and among many others. Horowitz (2001b) fo-
cuses on generalized additive models with unknown link functions, Horowitz
and Lee (2005) propose a two-stage estimation for quantile regression in ad-
ditive models, Horowitz et al. (2006) show the equivalence between spline,
kernel and other methods in terms of optimal minimax rate in additive model
estimation. The resulting estimate m̂j(xj) in (2) though needs to be screened
for closeness to mj(xj). This requires construction of confidence intervals and
bands (as a function of xj. For such screening tests, our tightened bootstrap
techniques will be verified. Namely, the bootstrap based confidence bands
are shown to be very close to the true finite sample distribution based ones.

In sum, we investigate a coupling technique that allows us to “tie the
straps” even a little tighter for a class of estimators. We mean by that,
theoretically speaking, confidence band construction is made more precise in
a variety of the estimation problems we consider. The coupling idea is based
on mimicking the distribution of the original data via a controllable random
mechanism. Similar results like (9) will be derived for additive models.

The remainder of the paper is organized as follows. In Section 2 we
explain in details the model setup and the bootstrap method. Section 3
presents the main results. In Section 4 a small simulation study is presented.
Finally, we show in Section 5 applications on managerial compensation and
impacts on stock markets.

2 Models and bootstrap confidence sets

This section describes the estimator and our coupling techniques, motivates
the obtainable theoretical results and discusses some of the assumptions.

2.1 Univariate case

Let us describe the coupled bootstrap in the simple case of nonparametric
minimum contrast curve estimation. Here (X, Y )> ∈ R2. The object of
estimation is identified via:

l(x) = arg minθ E (Y |X=x)ρ(Y − θ), (3)

where ρ(·) is a loss function of e.g. Hampel/Huber type or more generally (up
to a constant) a negative (pseudo) log likelihood. In the quantile regression
case, ρ(x) = |x|{τ −1(x ≤ 0)} is the check function. Other examples for ρ(·)
include the trimmed mean, Huber (1964)

ρ(x) =

{
x2/2, |x| ≤ k,

−k2/2 + k|x|, |x| > k.
(4)

4



or a form of Winsorized mean:

ρ(x) =

{
x2, |x| ≤ k,
k2, |x| > k

, (5)

A sample based version of (3) is:

l̂h(x) = argminθn
−1

n∑
i=1

ρ(Yi − θ)Kh(x−Xi), (6)

where Kh(u) = K(u/h)/h is a kernel function with bandwidth h. Now gener-
ate a bootstrap sample using an i.i.d. uniform random variables U1, . . . , Un ∈
U(0, 1), and then generate:

Y ∗i = l̂g(Xi) + ε∗i , i = 1, . . . , n, (7)

where ε∗i ∼ F̂−1(ε|X=xi)
(Ui) (discussed in detail in (24)) and g = O(n−1/9) a

slightly larger bandwidth than h. The basic idea of coupling is based on
comparing this sample to the pseudo observations:

Y ]
i = l(Xi) + ε]i, i = 1, . . . , n, (8)

where ε]i = F−1(Y |X=xi)
(Ui). Note that given {Xi}ni=1, the distribution of Y ]

i

and Yi are the same. We will show that for a class of loss functions the
following approximation holds:

sup
x∈B

[
l̂]h(x)− l(x)− {l̂∗h,g(x)− l̂g(x)}

]
= Op(h

2Γn), (9)

where B is a closed compact set in [0, 1], Γn a slowly increasing sequence (a
sequence an is slowly increasing if n−αan → 0 for any α > 0), l̂]h(·) is the

nonparametric estimate calculated from {(Xi, Y
]
i )}, l̂∗h,g(Xi) is an estimate

calculated from the bootstrap sample {(Xi, Y
∗
i )} with bandwidth h,

ˆ̀∗
h,g

def
= argminθ

n∑
i=1

ρ(Y ∗i − θ)Kh(x−Xi) (10)

and l̂g(Xi) is calculated as in (6) from the original sample with bandwidth g.
The basic elements in proving (9) are smoothness of Fε|X=x(·) and bounded
influence of ρ(·) in (3).

5



2.2 Additive models and bootstrap confidence sets

For any x ∈ Rd (d > 1), the nonparametric approach in (6) is not appropriate
when d is large, as the standard nonparametric optimal convergence rate,
Op(n−4/(4+d)), would be too slow when d is large. Additive models were
suggested to remedy the problems posed by the dimensionality. Recall (2),
and impose the additive structure:

Yi =
d∑
j=0

mj(xi,j) + εi. (11)

Further, approximate the additive model via a basis function approach:

mj(xi,j) ≈
Lj+1∑
l=1

al,jνl(xi,j),

where the ν1(·), ν2(·), . . . could be any sequence of functions spanning the
L2 space. Our implementation uses B-splines, for example, linear B-splines:
Consider a sequence of H−1 equally spaced knots on the interval [0, 1], which
define the width H subintervals [lH, (l+1)H], 0 ≤ l ≤ (H−1−1). The linear
B-spline basis is:

νl(x) =


H−1x− l + 1 (l − 1)H ≤ x ≤ lH
l + 1−H−1x lH ≤ x ≤ (l + 1)H
0 otherwise

Denote the theoretical standardized B spline basis φl(·), for the jth variable,
j = 1, · · · , d,

φl,j(xj)
def
= νl(xj)− νl−1(xj)cl,j/cl−1,j

Bj,l(xj) = φl,j(xj)/‖φl,j(xj)‖2,

where l = 0, . . . , H−1, cl,j
def
=
∫
φl,j(u)fj(u)du with fj(u) is the density for xj,

so that EBj,l(xj) = 0, EBj,l(xj)
2 = 1.

The additive estimate can then be obtained as follows. Define the vectors in
(RH−1d+1),

A = (a0, a
>
1 , . . . , a

>
d )>

Φ(Xi) = {1,g(xi,1)
>, . . . ,g(xi,d)

>}>,

where

aj = (a1,j, . . . , aH,j)
>,

g(xi,j)
> = {ν1(xi,j), . . . , νH(xi,j)}>.

6



Finally, let Â be the estimation of A:

Â = arg min
A

n∑
i=1

ρ{Yi − A>Φ(Xi)}, (12)

and
m̂j(xi,j) = â>j g(xi,j), (13)

with j = 1, . . . , d.

2.3 Coupled bootstrap for cases of high dimensional
covariates

The additive structure in (11) is one solution to the curse of dimensionality,
however, the bootstrap approach in (7) does not work for this modeling sce-
nario as nonparametric estimation of Fε|X(·) would again run into the ”curse
of dimensionality” problem. We suggest another bootstrap technique (only
for bounded influence functions), and prove that it strongly approximates a
model with the same asymptotic properties as the original model.

Define

Zi =

{
1 with prob τ
−1 with prob 1− τ , i = 1, . . . , n. (14)

This includes the special case for symmetric error distributions with τ = 1/2,
which is the usual assumption for mean or robust M -smoothers. Moreover,
it generally adapts to the case of quantile regression for asymmetric error
distributions. The bootstrap couple (ε∗, ε]), the bootstrap residuals and its
associate theoretical couple respectively are:

ε∗i
def
= Zi|ε̂i| (15)

ε]i
def
= Ziηi, i = 1, . . . , n, (16)

where
ηi

def
= F−1i,Zi

{Fi,sgn(εi)(|εi|)}, i = 1, . . . , n, (17)

and
Fi,s(t)

def
= P(|εi| ≤ t|sεi > 0), i = 1, . . . , n, s ∈ {1,−1}. (18)

Note that the same Zi appears both in (15) and in (16).
Recall that FY |X=Xi

{l(Xi)} = τ and, hence, Fε|X=Xi
(0) = τ . Now, it is

easy to see that Vi
def
= Fi,sgn(εi)(|εi|) have a standard uniform distribution,

7



and if Zi is as above, then εi and ZiF
−1
i,Zi

(Vi) have the same distribution.
Formally, note that

Fi,+1(t) =
Fi(t)− 1 + τ

τ
,

Fi,−1(t) =
1− τ − Fi(−t)

1− τ
,

where Fi(·) is the cdf of εi. Hence, for t > 0:

P(ε]i < t) = τP[F−1i,+1{Fi,sgn(εi)(|εi|)} < t] + 1− τ
= τP{Fi,sgn(εi)(|εi|) < Fi,+1(t)}+ 1− τ
= τP{εi < 0, Fi,−1(−εi) < Fi,+1(t)}

+ τP{εi > 0, Fi,+1(εi) < Fi,+1(t)}+ 1− τ

= τP{εi < 0,
1− τ − Fi(εi)

1− τ
<
Fi(t)− 1 + τ

τ
}

+ τP(0 < εi < t) + 1− τ

= τP[1− τ > Fi(εi) >
1− τ
τ
{1− Fi(t)}]

+ τP(0 < εi < t) + 1− τ

= τ [1− 1− τ
τ
{1− Fi(t)} − τ ] + τ{Fi(t)− 1 + τ}+ 1− τ

= Fi(t).

The case t < 0 is dealt similarly. It follows

L(ε]i) = L(εi). (19)

Our confidence “ideal” interval is conditional on {Vi}ni=1 which has a
direct link to the absolute value of errors {|εi|}ni=1. Note however that the
estimator is asymptotically consistent and its bias does not depend on these
absolute values. Moreover, by the law of large numbers, the pointwise width
of the conditional confidence interval is within a factor of 1 + Op(1) of the
unconditional one.

2.4 How does the coupling work?

The basic idea of our approach is trying to construct an empirically feasible
bootstrap sample that is strongly approximating a sample from the true
distribution. One example of the coupled bootstrap approach was already
explained in (7) and (8). It however relies on estimators of the conditional
distribution FY |X=x(·), which become very imprecise when d is large.

8



Another approach proposed in Section 2.3 motivated as the wild bootstrap
is based on randomizing the obtained residuals and using the same random
source to mimic the stochastic of the unobservable errors. To get the basic
idea, let us assume for a moment that the distributions of εi are symmetric.
Then the coupling may be performed via a Rademacher randomized variables
Zi with

P(Zi = 1) = P(Zi = −1) = 1/2

and generation of the couple ε∗i (the bootstrapped residuals), ε]i (the theo-
retical coupling), where {ε∗i , ε

]
i} is :

ε∗i
def
= Zi|ε̂i|

ε]i
def
= Ziηi. (20)

With this construction, we are able to establish a result similar to (9).
In a non symmetric distribution (required for quantile regression), one defines
Zi with P(Zi = 1) = τ and P(Zi = −1) = 1 − τ assuming the centering
FY |Xi

{l(Xi)} = τ , and the couple (ε∗i , ε
]
i) is given by (15) and (16). It was

argued that the distributions of ε]i and εi are identical and also the conditional
distributions given {Vi}ni=1 are the same.

The resampling technique will be applied to nonparametric estimation of
an additive quantile regression model. The reanalysis of the data used by
Horowitz and Lee (2005) provides us with sharper bands that have not been
calculated in that paper.

2.5 Extension to Generalized Linear Models

The model in Section 2 can be extended to generalized linear models, with
the relation g{E(Y |X)} = l(X), where g(·) is the known prespecified link
function. For continuous random variable Y , the extension to the above
bootstrap procedure is trivial. Moreover, it can be also generalized to the
models with discrete Yi. For example, for the binary logistic model with Yi
as binary data, define

ε̂i = Yi − g{l̂h(Xi)}, (21)

then ε̂i will be bounded in [−1, 1], and one can apply the same bootstrap
procedure as in (20).

3 Main Results

The section gives asymptotic results for the estimators described in Section
2. To establish the asymptotic property, some assumptions are needed:

9



Assumptions

A.1 The solution l(·) of (1) is two-times differentiable and bounded. We ab-
breviate ψ(Y, ·) to ψ(·), and ψ(·) = ρ′(·) (or subgradient in the quantile
regression case) is a.s. bounded by M < ∞. E{ψ(ε)|X} = 0 w.p. 1.
Also ψ(·) is Liptchitz continuous except for a finite number of points
in the compact set B.

A.2 Assume the support ofX is [0, 1]d, the conditional density of ε f(ε|X=·)(·|·),
and is bounded by C1 and is twice differentiable in the interior point
of [0, 1]d, and bounded away from 0 by c1 > 0.

A.3 The kernel function Kh(·) is a product kernel composed from one di-
mensional kernels with bandwidth h:

Kh(s) = Πd
j=1K(sj/h)/h, s = (s1, . . . , sd)

> ∈ Rd. (22)

A.4 The kernel bandwidth satisfies h ∼ n−1/5. Let g be another bandwidth
sequence g >> h, e.g., g = O(n−1/9).

A.5 For each j, the true regression function mj(·), j ∈ 1, . . . , d, is at least
one time continuous differentiable function on [0, 1].

A.6 E{g2l (Xj)} = 1 for j ∈ 1, . . . , d. ||Φl(Xj)||∞ ≤ C3H, a.s., where

Φl(Xj)
def
= {φ2

l (x1,j), . . . , φ
2
l (xn,j)}>, with j ∈ 1, . . . , d.

A.7 The number of regressors in (12) is of O(p), where p = dH−1 + 1 with
H−1 ∼ n1/5, and d = O(n2/3).

A.1 is about the continuity and the bounded influence structure of the
loss function, it is quite essential for proving the bootstrap improvement.
A.2 assumes W.L.O.G., the covariates are on bounded support and imposes
assumption on the conditional density of the error term. A.3 is a standard
assumption on the kernel function. A.4 is about theoretical rates of the
bandwidths h and g. h is of the standard optimal rate in nonparametric
regression, while g is required to be smaller as we need to reduce the bias,
see Härdle and Marron (1991). A.5 - A.7 are assumptions on additive mod-
els. A.5 assumes that additive components behave properly. A.6 imposes
conditions on the basis functions, and the linear B-spline satisfies A.6.

We show first convergence results for bootstrap methods in (7) and (8) .
The resampling step has been defined in (7), where the smooth estimate of
the conditional distribution is:

10



F̃(ε|X=x)(t)
def
=

n∑
i=1

Wh,i(x)1[{Yi − l̂h(Xi)} ≤ t], (23)

with Wh,i(x) = n−1Kh(x − Xi)/f̂h(x) and f̂h(x) = n−1
∑n

i=1Kh(x − Xi)
the kernel density estimator. To have a correctly centered estimation for
F(ε|X=x)(t), we define

dF̂(ε|X=x)(t) =


dF̃(ε|X=x)(t)

F̃(ε|X=x)(0)+C0(1−F̃(ε|X=x)(0))
if t < 0,

C0dF̃(ε|X=x)(t)

F̃(ε|X=x)(0)+C0(1−F̃(ε|X=x)(0))
otherwise.

(24)

where C0 is a constant defined as

C0
def
=
−
∫ 0

−∞ ψ(u)dF̃(ε|X=x)(u)∫∞
0
ψ(u)dF̃(ε|X=x)(u)

.

Note that the estimator in (24) is centered so that

E F̂ε|X=xi
ψ(ε∗i ) = 0 = E Fε|X=xi

ψ(ε]) (25)

The influence function of the estimator is proportional to ψ(·) = ρ′(·).
If it is bounded with bounded derivatives a.e. and L(ε|X) is such that
||F̂(ε|Xi=x)(·) − F(ε|X=xi)(·)||∞ = O(h2Γn), then a similar coupling argument

as in (7) can be used. Recall ε∗i = F̂−1(ε|Xi=x)
(F(ε|Xi=x)), then

|ψ(ε∗i )− ψ(ε]i)| = Op(h2Γn) (26)

This ensures that

n−1
n∑
i=1

{ψ(ε∗i )− ψ(ε]i)}Kh(x−Xi) = Op(h
2Γn). (27)

The argument is based on two facts. First from (25) the means are zero and
second that (26) holds.

Once the Y ∗i s are generated, one applies (10) to the bootstrap data
{(Xi, Y

∗
i )}ni=1 to obtain l̂∗h,g(x). Summarizing, we have:

Theorem 3.1. Let assumptions A.1- A.4 be fulfilled and define l̂]h(·) as in
(9). Then

sup
x∈B
|An(x)| = Op(h

2Γn), (28)

11



where
An(x)

def
= (l̂]h − l)(x)− {(l̂∗h,g − l̂g)(x)}. (29)

Let assumptions A.1- A.7 be fulfilled and consider the additive model of (11)
with the estimator (12), and the resampling scheme is considered as in (15)
and (16), then

sup
x∈B
|(m̂]

j −mj)(x)− {(m̂∗j − m̂j)(x)}| = Oa.s.(H2Γn).

Remark 1. The aforementioned strong approximation results mean that
the stochastic behavior of l̂]h(x) − l(x)((m̂]

j − mj)(x)) is well approximated

by its bootstrap counterpart l̂∗h,g(x) − l̂g(x)((m̂∗j − m̂j)(x)). This implies in

particular that the distribution of supx |l̂
]
h(x)− l(x)|(supx∈B |(m̂

]
j −mj)(x)|)

is consistently approximated by that of supx |l̂∗h,g(x)− l̂g(x)| ( supx∈B |(m̂∗j −
m̂j)(x)|). Also the rate H2Γn is sufficient for the validity of the bootstrap
for supremum-functionals, see Kreiss and Neumann (1998). Therefore, the
bootstrap confidence band is a direct consequence of the results.

Remark 2. Similar result was proved by Härdle et al. (2012) for quantile
regression. There the centering ensures that the bootstrap error distribution
has the proper quantile. Here it is generalized to a wider class of centering,
and to additive models.

4 Simulation

This section is divided into two parts. First, we concentrate on the univariate
x ∈ [0, 1] case and the bootstrap procedure (7), (8), check the validity of the
bootstrap procedure, and compare it with asymptotic uniform confidence
bands. Second, we adopt the bootstrap procedure for the additive model as
in (20), and check the validity of the bootstrap band in the same fashion.

4.1 Univariate Case

The simulation setup in the univariate case is:

1) Simulate (Xi, Yi), i = 1, . . . , n according to the predefined joint proba-
bility density function (pdf) f(x, y). In order to compare with Härdle
(1989), we set the joint pdf of (X, Y ) as,

f(x, y) = g{y − sin(πx)}1(x ∈ [0, 1]) (30)

g(u) = 9ϕ(u)/10 + ϕ(u/9)/90 (31)

12



95% 90%
n Rel. Err. Area Rel. Err. Area

100 0.07(0.02) 1.23(2.51) 0.08(0.02) 1.02(2.20)
200 0.08(0.01) 0.89(1.95) 0.10(0.02) 0.74(1.76)
400 0.05(0.01) 0.78(1.32) 0.09(0.01) 0.64(1.15)

Table 1: Relative errors and areas (estimated as averaged width of the con-
fidence bands over the grid points) of asymptotic (bootstrap) with 100 rep-

etitions per sample, and 200 samples. Relative error
def
= |(true coverage −

nominal coverage)|/nominal coverage.

2) Compute l̂h(x) as in (6), with ρ(·) as a biweight loss, ε̂i
def
= Yi − l̂h(Xi).

3) Compute the estimated conditional edf as in (33) with Gaussian kernel

Kh(u) = (
√

2π)−1 exp{−u2/2h}/h,

and h = 0.06 is selected by cross validation.

4) For each i = 1, . . . , n, generate random variable ε∗i ∼ F̂(ε|X)(t), i =
1, . . . , n:

Y ∗i = l̂g(Xi) + ε∗i ,

with g = 0.2.

5) For each sample {Xi, Y
∗
i }ni=1, compute l̂∗h,g(·) and the random variable

di∗
def
= sup

x∈B
[|l̂∗h,g(x)− l̂g(x)|

√
f̂X(x)f̂(ε|X=xi)(ε

∗
i )}/

√
ÊY |X{ψ2(ε∗i )}]

6) Calculate the 1− α quantile d∗α of d1, . . . , dn∗ .

7) Construct the bootstrap uniform band centered around l̂h(x)

l̂h(x)± [

√
f̂X(x)f̂(ε|X=xi)(ε

∗
i )}/

√
ÊY |X{ψ2(ε∗i )}]−1d∗α

Figure 1 shows the theoretical signal curve, the robust estimate using
Huber’s loss function with corresponding 95% uniform confidence band from
the asymptotic theory and the confidence band using the bootstrap method.
The real curve is marked as the grey solid line. We then compute the con-
fidence band based on asymptotic theory according to Härdle (1989). We

13



notice that the asymptotic band is narrower than the bootstrap band. The
width of the bands has not been affected by outliers since we adopt robust
estimation. To compare which method is more precise, Table 1 presents re-
spectively the relative errors of simulated bands compared with their nominal
levels together with the calculated area of the 95% and 90% confidence band,
for sample size n = 100, 200, 400. 100 simulation runs are carried out and
200 bootstrap samples are generated for each simulation. From Table 1, we
observe that, for the asymptotic method, coverage probabilities improve with
increased sample size and the bootstrap method (shown in brackets) obtain a
larger coverage probability than the asymptotic one, as it has smaller relative
errors. It is also observed that the sizes of the bands decrease with increased
sample sizes. Overall, the bootstrap method displays a better convergence
rate, while not sacrificing much on the width of the bands.

4.2 Additive model

We now extend to the case of multivariate covariates, where we use an addi-
tive model for the estimation. The bootstrap procedure is as follows:

1) Simulate (Xi, Yi), i = 1, . . . , n following model (11). The variables
x1, x2, x3, x4 ∼ U(−2.5, 2.5),

m1(x1) = sin(πx1),m2(x2) = Φ(3x2),m3(x3) = x33,m4(x4) = x44,

and εi is simulated from a mixture normal density function with density
ϕ(u/9)/90 + ϕ(u)/10.

2) Compute the estimation m̂1(x1), m̂2(x2), m̂3(x3), m̂4(x4) via (13) and
ε̂i = Yi −

∑4
j=1 m̂j(xi,j).

3) For each i = 1, . . . , n, generate random variable ε∗i , i = 1, . . . , n as in
(15):

Yi,i∗ =
4∑
j=1

m̂j(xi,j) + ε∗i .

4) For each sample {xi,1, xi,2, xi,3, xi,4, y∗i }, compute m̂∗j(·) and the random
variable

di∗
def
= sup

x∈[−2.5,2.5]
{
√
f̂Xj

(x){f̂(ε|Xj=xi,j)(ε
∗
i )}/

√
ÊY |Xj=xi,j{ψ2(ε∗i )}

|m̂∗j(x)− m̂j(x)|}

14
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Figure 2: Plot of true curve (dark blue), robust estimates and bands (cyan),
bootstrap band (red dotted)

5) Calculate the 1− α quantile d∗α of d1, . . . , dn∗ .

6) Construct the bootstrap uniform band centered around m̂j(xj)

m̂j(xi,j)± [

√
f̂xi,j(xj)f̂(ε|Xj=xi,j)(ε

∗
i )}/

√
ÊY |Xj=xi,j{ψ2(ε∗i )}]d∗α

The estimation of m̂j(xj)s (j = 1, . . . , 4) and their bootstrap confidence
bands are shown in Figure 2.

The relative errors between the bootstrap bands and their nominal levels
are shown in Table 2. The coverage are close to the nominal levels and the
widths of band are clearly shrinking w.r.t. the sample sizes.

5 Empirical analysis

5.1 Firm expenses analysis

Yafeh and Yosha (2003) use a sample of Japanese firms in the chemical in-
dustry to examine whether a concentrated shareholding is associated with
lower expenditure on activities with scope for managerial private benefits.
We focus on the same regression problem as proposed in Horowitz and Lee
(2005). The dependent variable Y is: general sales and administrative ex-
penses deflated by sales (denoted by MH5), which is one of five measures of
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n Rel. Err. Area
95% 100 0.07, 0.03, 0.05, 0.01 6.06, 5.37, 5.44, 5.21

200 0.07, 0.03, 0.02, 0.04 5.50, 4.74, 4.54, 4.65
400 0.04, 0.02, 0.01, 0.03 4.83, 3.63, 3.76, 3.70

90% 100 0.05, 0.08, 0.06, 0.03 5.88, 5.07, 5.04, 5.30
200 0.03, 0.02, 0.04, 0.02 4.84, 3.84, 3.85, 4.00
400 0.06, 0.02, 0.02, 0.01 4.02, 3.25, 3.11, 3.03

Table 2: Relative errors and areas of bootstrap bands for
m̂1(·), m̂2(·), m̂3(·), m̂4(·) with 100 repetitions per sample, and 200 samples.

expenditures on activities with scope for managerial private benefits consid-
ered. The covariates are: ownership concentration (denoted by TOPTEN,
cumulative shareholding by the largest ten shareholders), and firm charac-
teristics: the log of assets, firm age, and leverage (the ratio of debt to debt
plus equity), sample size= 185. The regression model we consider here is:

MH5 = m0 +m1(TOPTEN) +m2{log(Assets)}
+m3(Age) +m4(Leverage) + error

The estimated additive components and its bootstrap confidence bands are
shown in Figure 3. Similarly, it can be seen that the nonlinear effects are
log(asset) and TOPTEN, and the firm age effects are minor compared to the
other three. Differently, the effect of leverage is also a little bit nonlinear,
and the shape of curves deviates from what Horowitz and Lee (2005) present,
especially for the effect of TOPTEN. This may due to the different subjects
studied: in our case robust estimation with Tukey biweight loss, while in
their case the conditional median curve.

5.2 The impact on stock market

We analyze how the four markets (oil, currency, bond, real estate) affect the
stock market. This study would give implications to the interactions of the
economic conditions among different sectors. The data source is ProQuest
Statistical Datasets, we focus on the US market. Therefore, the covariates
are taken as: the crude oil index, EUR- USD exchange rate, the 10 year
treasury constant maturity inflation index %, the real estate index, and the
Y variable is S&P 500 index returns. The data are synchronized to weekly
frequency. We select the data during the period 20080903− 20111128.

It can be observed that all the four markets have non linear effects on the
stock indices values, Figure 4, but only exchange rate EUR-USD and crude
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Figure 3: Robust estimates (blue), bootstrap bands (red dotted), left up:
Log(Asset), right up: Leverage, left below: Age, right below: TOPTEN.

oil prices affect the the stock indices returns nonlinearly, Figure 5. It is
not difficult to interpret the relationships: In Figure 4, for the exchange rate
EUR-USD, the weakness of EUR up to a certain level (< 1.27) are negatively
correlated with the stock indices, and then a positive correlation follows, but
this relationship is again reversed when the EUR is too high(> 1.43). Oil
prices have negative impact on stock indices at every level, but the effects
decrease when the prices raise. As for the inflation index, when the inflation
rate is high, interest rates are typically high, this may reduce the consumption
and investments in the stock market. So one sees a negative correlation there
when the inflation index is bigger than (0.7). Finally, increasing real estate
index can be a sign of booming economic condition, therefore the stock indices
raise when the real estate index gets higher. However, when the real estate
index is too high, it is likely that there exist bubble, so one sees a drop in
the market indices.

In Figure 5, we see difference effects on S&P log returns, exchange rate
EUR- USD are positively correlated with returns until a high lever (> 1.40),
the crude oil has majorally negative effects on stock returns. More non-
linearity is presented in the plots for inflation index and real estate index.
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Figure 4: Robust estimate (blue), bootstrap bands (red dotted), Y: S&P
index, left up: exchange rates EUR-USD, right up: crude oil price, left
below: inflation index, right below: real estate index.
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price, left below: inflation index, right below: real estate index.
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6 Conclusion

We have developed and proved the bootstrap improvement for a wide class
of smoothers with bounded influence functions. Moreover, we extend our
results to additive models to cope with curse of dimensionality.

A Appendix

A.1 Proof of Theorem 3.1 in the d = 1 case

To prove Theorem 3.1, we show finally, with (optimal rate) h = O(n−1/5):

max
i

[(l̂]h − l)(Xi)− {(l̂∗h,g − l̂g)(Xi)}] = Op(h
2Γn), (32)

This is extended to any point x in a compact set B in (43).
Proving (32) can be done by showing first:

max
i
|ψ(ε∗i )− ψ(ε]i)| = Op(h2Γn). (33)

Recall the definition of F̃ψ|X(·) in (24), it is the induced conditional cdf of
{ψ(ε∗i )}ni=1. By Franke and Mwita (2011) we have for a small b:

sup
|t|≤b,i=1,...,n

|F̃(ε|X)(t)− F(ε|X)(t)| = Op(h2Γn). (34)

Also recall (24) F̂(ε|X) is a scaled version of F̃(ε|X). Then according to A.2,

the inverse function of F̂(ε|X)(·) and F(ε|X)(·) will also be close in the sense
that

max
i
|ε]i − ε∗i | = max

i
|F−1(ε|X)(Ui)− F̂

−1
(ε|X)(Ui)| = Op(h

2Γn) (35)

Moreover, for a δi = Op(h2Γn) uniformly, define F−1ψ|X(·) as the conditional

c.d.f. of ψ(ε) on X,

|ψ(ε]i)− ψ(ε∗i )| = |F−1ψ|X [F̂ψ|X{ψ(ε∗i )|Xi}|Xi]− ψ(ε∗i )|
= |F−1ψ|X [Fψ|X{ψ(ε∗)|Xi}+ δi|Xi]− ψ(ε∗i )|
= |F−1ψ|X [Fψ|X{ψ(ε∗)|Xi}+ δi|Xi]− F−1ψ|X [Fψ|X{ψ(ε∗)|Xi}|Xi]|

≤ 1

c1
δi = Op(h2Γn),

by A.2. Therefore, (33) is proved. As ψ(·) plays a role in the estimation via
the zero functions defined below, to prove (32), we first want to write the

19



estimation difference (l̂]h − l)(Xi) and (l̂∗h,g − l̂g)(Xi) written w.r.t. to their
zero functions defined as follows.

G∗n(θ,Xi)
def
=

1

n

n∑
j=1

Wh,j(Xi)[ψ{ε∗j − θ + l̂g(Xj)}]

=
1

n

n∑
j=1

Wh,j(Xi){ψ(Y ∗j − θ)}

G]
n(θ,Xi)

def
=

1

n

n∑
j=1

Wh,j(Xi)[ψ{ε]j − θ + l(Xj)}]

=
1

n

n∑
j=1

Wh,j(Xi){ψ(Y ]
j − θ)}

Note that, for the first moment, we have the natural equality as follows, so
we can focused the difference in the second moment,

E F̂ε|Xi=x
ψ(ε∗i ) = 0 = E Fε|Xi=x

ψ(ε]). (36)

We abbreviate EFε|X=Xi
as E and EF̂ε|X=Xi

as E∗ , define

l̃(x)
def
= argminθ E ρ(Y − θ)Kh(X − x) (37)

l̃g(x)
def
= argminθE

∗ρ(Y ∗ − θ)Kh(X − x) (38)

Tn(Xi)
def
= G∗n{l̃g(Xi), Xi} −G]

n{l̃(Xi), Xi}. (39)

as the unbiased version of true function, and it is not hard to derive that the
bias has the order of Op(h2).

l̃(Xi)− l(Xi) =
EG]

n(l(Xi), Xi)

∂ EG]
n(l(Xi), Xi)

+ O(l̃(Xi)− l(Xi))

= {h2l′′(Xi)/2 + f ′X(Xi)l
′(Xi)h

2/fX(Xi)}‖K‖2s + Op(h
2)

Similarly for l̃g(Xi)− l̂g(Xi), we have

l̃g(Xi)− l̂g(Xi) =
E∗G∗(l(Xi), Xi)

∂ EE∗G∗n(l(Xi), Xi)
+ O(l̃g(Xi)− l̂(Xi))

= {h2l̂′′g(Xi)/2 + f ′X(Xi)l̂
′
g(Xi)h

2/fX(Xi)}‖K‖2s + Op(h
2),

where ‖K‖2s
def
=
∫
s2K2(s)ds . A balance between bias and variance term

would lead to the choice of the rate h as O(n−1/5Γn), and we have |l̃(Xi) −
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l(Xi)−{l̃g(Xi)− l̂g(Xi)}| = Op(h
2), so we can write the difference of the bias

term as Op(h
2) in the following derivation.

Remark In the case when ψ(·) is not differentiable, in particular for the
quantile case, the above stochastic expansion is still valid, see the stochastic
expansion in Kong, Linton and Xia (2010).

According to A.1, excluding non-differentiable ψ(·) case, one can use the
Lipschitz condition of the function ψ(·), and ψ(·) is bounded, we have, ∃ a
constant C, such that,

max
i
|Tn(Xi)|

= max
i
| 1
n

n∑
j=1

Wh,j(Xi){ψ(ε∗j − l̃g(Xi) + l̂g(Xj))− ψ(ε]j − l̃(Xi) + l(Xj))}|

≤ max
i

1

n

n∑
j=1

Wh,j(Xi)|(C[{ε∗j − l̃g(Xi) + l̂g(Xj)} − {ε]j − l̃(Xi) + l(Xj)}])|

So we can break the upper bound of maxi |Tn(Xi)|by two terms, the
first term maxi Tn,1(Xi) involves the bootstrapped error and its theoretical
couple, which has been proved by (34), and the second term maxi Tn,2(Xi) is

concerning the convergence rate of l̂g(·),

max
i
|Tn(Xi)| ≤ max

i

1

n
C

n∑
j=1

Wh,j(Xi)|(ε∗j − ε
]
j)|

+ max
i

1

n
C

n∑
j=1

Wh,j(Xi)|[{l̂g(Xj)− l̃g(Xi)} − {l(Xj)− l̃(Xi)}]|

≤ max
i
Tn,1(Xi) + max

i
Tn,2(Xi).

maxi |Tn,1(Xi)| is know to have the rate Op(n−1/2h3/2Γn), and

max
i
Tn,2(Xi) = max

i

1

n
C

n∑
j=1

Wh,j(Xi)|{l̂′g(Xi,j,0)− l′(Xi,j,0)}(Xi −Xj)|

+Op(h
2),

where Xi,j,0 is a point between Xi and Xj, and C is a constant, according to

the mean value theorem. supx∈B |l̂′g(x)−l′(x)| is of the rateOp(g−1(ng)−1/2Γn+

g3), see Stone (1982). Therefore the optimal rate for g would be O(n−1/9) in
our case (as in A.4), this rate is slower than the choice of h, which confirms
the results in Härdle and Marron (1991). Then we can achieve

max
i
Tn,2(Xi) = Op(h

2Γn).

21



As the second derivative of the loss function ψ(·) does not exist at zero, we
use the local version of equicontinuity lemma from chapter VII.1 in Pollard
(1984). Our loss function have the following expansion with the remainder
term defined as r{y, θ(x)}

ρ{y−θ(x)} = ρ{y− l(x)}+{θ− l(x)}ψ{y− l(x)}+ |θ− l(x)|r{y, θ(x)}, (40)

define
R∗n(Y ∗, l̃g(Xi))

def
= n−1

∑n
j=1 r(Y

∗
j , l̃g(Xi)), Rn(Y, l̃(Xi))

def
= n−1

∑n
j=1 r(Yj, l̃(Xi))

are the high order function, we need to prove it satisfies the equicontinuity
condition around the point l̃g(Xi) and l̃(Xi), namely, for each η and ε, ∃δ
such that,

lim sup
n

P( sup
l′:‖l′g−l̃g‖<δ

‖R∗n(l′g)−R∗n(l̃g)‖ > η) < ε (41)

lim sup
n

P( sup
l′:‖l′−l̃‖<δ

‖Rn(l′)−Rn(l̃)‖ > η) < ε. (42)

According to the equicontinuity lemma in Pollard (1984), first of all we
can prove that |r(y, θ)| has an envelope. As the bounded influence condition
in A.2,

|r(y, θ)| = {|ρ(y − θ)− ρ(y − l(x))− (θ − l(x))ψ(y − l(x))|}/|θ − l(x)|
≤ {|θ − l(x)|ψ(y − θ0)}|/|θ − l(x)|+ {|(θ − l(x))ψ(y − l(x))|}

/|θ − l(x)|
≤ 2C1.

The ρ{Y − l(x)} is differentiable in quadratic mean at l(x). Moreover, we
observe that the condition on covering numbers is satisfied, since the class
of function r(y, θ) can be expressed as a union or intersection of classes of
polynomial discrimination, therefore the covering number is bounded.

So we can achieve the estimations are linked to the zero functions around
the point l̃g(Xi) and l̃(Xi) respectively, as follows

l̂∗h,g(Xi)− l̃g(Xi) = − G∗n{l̃(Xi), Xi}
∂EE∗G∗n{l̃g(Xi), Xi}

+ Op((nh)−1/2),

l̂]h(Xi)− l̃(Xi) = − G]
n{l̃(Xi), Xi}

∂ EG]
n{l̃(Xi), Xi}

+ Op((nh)−1/2),

where ∂ EE∗G∗n{l̃g(Xi), Xi} denote the partial derivative of EE∗G∗n{θ,Xi}
w.r.t. θ taking value at the point l̃g(Xi).

22



This means,

|l̂∗h,g(Xi)− l̂g(Xi)− l̂]h(Xi) + l(Xi)|

= − G∗n{l̃g(Xi), Xi}
∂ EE∗G∗n{l̃g(Xi), Xi}

+
G]
n{l̃(Xi), Xi}

∂ EG]
n{l̃(Xi), Xi}

+ Op(h
2)

= −∂ EG
]
n{l̃(Xi), Xi}[G∗n{l̃g(Xi), Xi} −G]

n{l̃(Xi), Xi}]
∂ EE∗G∗n{l̃g(Xi), Xi}∂ EG]

n{l̃(Xi), Xi}

+
G]
n{l̃(Xi), Xi}[∂ EE∗G∗n{l̃g(Xi), Xi} − ∂ EG]

n{l̃(Xi), Xi}]
∂ EE∗G∗n{l̃g(Xi), Xi}∂ EG]

n{l̃(Xi), Xi}
+ Op(h

2)

Therefore, since G∗n{l̂g(Xi), Xi} and G]
n{l(Xi), Xi} are known by S.L.L.N. to

have strong consistency to E∗G∗n{l̂g(Xi), Xi} and EG]
n{l(Xi), Xi}, we have,

max
i
|l̂∗h,g(Xi)− l̂g(Xi)− l̂]h(Xi) + l(Xi)|

= O(max
i
Tn(Xi)) + Op(h

2Γn) + Op(h
2Γn),

and (32) is proved.
Define the order statistics X(1), · · · , X(n) of X1, · · · , Xn, so the claim (28)

can be proved from (32) using the fact that,

sup|An(x)| ≤ maxi|An(X(i))|+ maxisupx∈[X(i),X(i+1)]
|An(X(i))− A(x)| (43)

it suffices to consider the speed of the last term. With Lipschitz continuity
of An(·):

maxisupx∈[X(i),X(i+1)]
|An(X(i))− A(x)| ≤ c2maxisupx|Xi − x|, (44)

where c2 > 0 is a constant, this upper random bound is of orderOp(n−1/d log n) =
Op(h

2Γn). The uniform bound for ‖Xi − x‖ results from the uniform law of
large numbers over a ball of size n−1/d, see Penrose (1964), Theorem 1.1.
Remark For the non-differentiable ψ(·) cases, in particular quantile regres-
sion case, one can still establish similar inequality, as

max
i
| 1
n

n∑
j=1

Wh,j(Xi){ψ(ε∗j − l̃g(Xi) + l̂g(Xj))− ψ(ε]i − l̃(Xi) + l(Xj))}|

≤ max
i

1

n

n∑
j=1

Wh,j(Xi)|(ψ{ε∗j − l̃g(Xi) + l̂g(Xj)} − ψ{ε]i − l̃(Xi) + l(Xj)})|
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Define ψi,j
def
= |ψ{ε∗j − l̃g(Xi) + l̂g(Xj)}−ψ{ε]i − l̃(Xi) + l(Xj)}| = Op(h2)

because, so

P(ψi,j > c3h
2) ≤ E(|ψi,j|)/(c3h2)

= Op({l̃g(Xi) + l̂g(Xj)− l̃(Xi) + l(Xj)}/h2).

Then the argument follows from the above proof.
Moreover, one can also use the strong consistency of G]

n, G∗n to E(G]
n) and

E∗G∗n respectively based on A.1 and lemma 2.4 of Newey and McFadden
(1986).

A.2 Proof of second part of Theorem 3.1

The number of regressors in (11) is of order p = H−1d + 1. Portnoy (1997)
shows that as long as n−1(p log n)3/2 → 0 then the estimators of the regression
parameters are consistent and have the standard variance. In our situation,

n−1n1/5∗2/3 log n = O(1) (45)

and therefore the condition is satisfied.
Now we have a look at the behavior of the design matrix in (12).

L̂(A)
def
= −n−1

n∑
i=1

ρ{Yi − A>Φ(Xi)}

∇L̂(A)
def
= n−1

n∑
i=1

ψ{Yi − A>Φ(Xi)}Φ(Xi)

∇2 E L̂(A)
def
= −∇Eψ{Yi − A>Φ(Xi)}Φ(Xi)Φ(Xi)

>

Recall that
Â = argminAL̂(A)

Lemma 14 of Stone (1985) ensures that with probability approaching 1, Â
exists uniquely and that ∇L̂(Â) = 0. In addition, there exists m(x) =

A
>

Φ(x), such that
sup
x∈B
|m(x)−m(x)| ≤ C∞H

2. (46)

According to the bounded influence condition A.1, the jth term, j ∈ 1, 2, . . . , H−1d+

24



1.

|{∇L̂(A)}j| = |{−n−1
n∑
i=1

[ψ{m(Xi) + εi − A
>

Φ(Xi)} − ψ(0)]Φ(Xi)}j|

≤ [n−1
n∑
i=1

C3|{A>Φ(Xi) + εi − A
>

Φ(Xi)}Φ(Xi)|]j

≤ [n−1
n∑
i=1

C3|{A>Φ(Xi) + εi − A
>

Φ(Xi)}Φ(Xi)|]j

We know first that,

E |[{m(Xi)−m(Xi)}Φ(Xi)]j| = O(H2).

Let ξi,j
def
= {|m(Xi)−m(Xi)Φ(Xi)|−E |m(Xi)−m(Xi)Φ(Xi)|}j, by Bernstein’s

Lemma:

Lemma A.1. Let Z1, . . . , Zn be independent r.v.s.

log E exp(tZi) ≤ E(Z2
i )t2/2

for all t ∈ [0,∞]. Then

P
(
|

n∑
i=1

Zi| ≥ t

√√√√2
n∑
i=1

EZ2
i

)
≤ 2 exp(−t2)

Finally, we can derive that,

n−1
n∑
i=1

ξi,j = Oa.s.(H2n−1/2Γn), j 6= 1 (47)

The last term

n−1|{
n∑
i=1

εiΦ(Xi)}j| = Oa.s.(n−1/2Γn) (48)

Therefore, one has collective term from (47) and (48),

‖∇L̂(A)‖ = Oa.s.(H3/2 +H−1/2n−1/2Γn),

where ‖.‖ denotes the L2 norm.
By assumption A.5, A.7, ∀l = 1, . . . , H−1, the d dimensional vector

Φ>l (Xi) satisfies,

β‖b‖2/d ≥ E b>Φ>l (Xi)Φl(Xi)b ≥ α‖b‖2/d,

where α and β are two constants.
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Lemma A.2. Assume A.1 and A.5, as n→∞,

‖Â− A‖ = Oa.s.(H3/2 +H−1/2n−1/2Γn)

maxi∈1,...,n‖m̂(Xi)−m(Xi)‖ = Oa.s.(H +H−1n−1/2Γn)

Proof According to similar equicontinuity arguments, exists an (H−1d+1)×
(H−1d+ 1) matrix A, such that

‖Â− A‖ = O(‖{∇2 E L̂(A0)}−1{−∇L̂(A)}‖),
since

∇2 E L̂(Xi) = Φ(Xi)Φ(Xi)
>∇Eψ(Yi − Â>0 Φ(Xi))

According to assumption A.7,

c3IH−1d+1 ≥ ∇2 E L̂(Xi) ≥ c4IH−1d+1

therefore
‖Â− A‖ = Oa.s.(H3/2 +H−1/2n−1/2Γn).

Moreover, by Cauchy-Schwarz inequality

maxi∈1,...,n|m̂(Xi)−m(Xi)| ≤ maxi‖Â− A‖‖Φ(Xi)‖
= Oa.s.(H3/2 +H−1/2n−1/2Γn)Oa.s.(H−1/2)
= Oa.s.(H +H−1n−1/2Γn).

We would like to check for the pseudo observations Y ]
i = m(Xi) + ε]i.

|{m̂∗k(Xi,k)− m̂k(Xi,k)} − {m̂]
k(Xi,k)−mk(Xi,k)}|

≤ |(Â∗> − Â> − Â]> + A>)Φ(Xi,k)|
= O(|[∇2EE∗L̂∗(Â)−1{−∇L̂∗(Â)} − ∇2 E L̂(A)−1{−∇L̂(A)}]>Φ(Xi)|+H2)

as ∇2 E L̂∗(Â)−1 and ∇2 E L̂(A)−1 are both bounded,

|{m̂∗k(Xi,k)− m̂k(Xi,k)} − {m̂]
k(Xi,k)−mk(Xi,k)}|

= O(|n−1
n∑
i=1

{ψ(ε∗i )− ψ(ε]i + A
>

Φ(Xi)− A>Φ(Xi))}Φ(Xi)
>Φ(Xi)|+H2)

= O(|n−1
n∑
i=1

{ψ(ε∗i )− ψ(ε]i)}Φ(Xi)
>Φ(Xi)|+H2)

= O(|n−1
n∑
i=1

{ε∗i − ε
]
i}Φ(Xi)

>Φ(Xi)|+H2)

= O(|n−1
n∑
i=1

{Zi|ε̂i| − Ziηi}Φ(Xi)
>Φ(Xi)|+H2)
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One can derive using coupling argument,

|{m̂∗k(Xi,k)− m̂k(Xi,k)} − {m̂]
k(Xi,k)−mk(Xi,k)}|

= Oa.s.(n−1/2(H2 + n−1/2Γn)H−1/2 +H2)

= Oa.s.(H2)
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