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Abstract

We consider a varying coefficient regression model for sparse functional data, with time
varying response variable depending linearly on some time independent covariates with co-
efficients as functions of time dependent covariates. Based on spline smoothing, we propose
data driven simultaneous confidence corridors for the coefficient functions with asymptoti-
cally correct confidence level. Such confidence corridors are useful benchmarks for statistical
inference on the global shapes of coefficient functions under any hypotheses. Simulation
experiments corroborate with the theoretical results. An example in CD4/HIV study is used
to illustrate how inference is made with computable p-values on the effects of smoking, pre-
infection CD4 cell percentage and age on the CD4 cell percentage of HIV infected patients

under treatment.

KEYWORDS: B spline, confidence corridor, Karhunen-Loéve L? representation, knots, func-

tional data, varying coefficient.

JEL Classification: C14, C23



1. INTRODUCTION

Functional data are commonly encountered in biomedical studies, epidemiology and social
science, where information is collected over a time period for each subject. In many longitu-
dinal studies, repeated measurements are often collected at few irregular time points. Data
of this type are frequently referred to as sparse longitudinal or sparse functional data. See,
for example, James, Hastie and Sugar (2000), James and Sugar (2003), Yao, Miiller and
Wang (2005a), Hall, Miiller and Wang (2006), and Zhou, Huang and Carroll (2008).

In longitudinal study, often, interest lies in studying the association between the co-
variates and the response variable. In recent years, there has been an increasing interest
in nonparametric analysis of longitudinal data to enhance flexibility, see e.g., Yao and Li
(2013). The varying coefficient model (VCM) proposed by Hastie and Tibshirani (1993)
strikes a delicate balance between the simplicity of linear regression and the flexibility of
multivariate nonparametric regression and has been widely applied in various settings, for
instance, the Cobb-Douglas model for GDP growth in Liu and Yang (2010), and the longi-
tudinal model for CD4 cell percentages in AIDS patients in Wu and Chiang (2000), Fan and
Zhang (2000) and Wang, Li and Huang (2008). See Fan and Zhang (2008) for an extensive
literature review of VCM.

To examine whether the association changes over time, Hoover et al. (1998) proposed

the following varying coefficient model
Y(t) = Bo(t) + X(t) ' B(t) +e(t), teT, (1)

where X(t) = (X(t),...,Xq(t))T are covariates at time ¢, B(t) = (B,(t),...,B4(t))" are
functions of ¢, and ¢(¢) is a mean zero process. Model (1) is a special case of functional
linear models, see Ramsay and Silverman (2005) and Wu, Fan and Miiller (2010).

The coefficient functions f,(t)’s in model (1) can be estimated by, for example, kernel
method in Hoover et al. (1998), basis function approximation method in Huang, Wu and
Zhou (2002), polynomial spline method in Huang, Wu and Zhou (2004) and smoothing spline
method in Brumback and Rice (1998). Fan and Zhang (2000) proposed a two-step method

5



to overcome the computational burden of the smoothing spline method.

For some longitudinal studies, the covariates are independent of time, and their observa-
tions are cross-sectional. Take for instance the longitudinal CD4 cell percentage data among
HIV seroconverters. This dataset contains 1817 observations of CD4 cell percentages on 283
homosexual men infected with the HIV virus. Three of the covariates are observed at the
time of HIV infection and hence by nature independent of the measurement time and fre-
quency: X;i, the i-th patient’s smoking status; X, the i-th patient’s centered pre-infection
CD4 percentage; and X3 the i-th patient’s centered age at the time of HIV infection. A
fourth predictor, however, is time dependent: Tj;, the time (in years) of the j-th measure-
ment of CD4 cell on the i-th patient after HIV infection; while the response Y;; is also time
dependent: the j-th measurement of the i-th patient’s CD4 cell percentage at time Tj;.
Wu and Chiang (2000), Fan and Zhang (2000) and Wang, Li and Huang (2008) all contain
detailed descriptions and analysis of this dataset.

A feasible VCM for multivariate functional data such as the above takes the form
d
Vi = 0 (Ty) Xu+ 0 (Ty) ey, 1<i<n, 1<j<N;, (2)
=1

where the measurement errors (gij)glv"j:l satisfy E (e;;) = 0, E(¢2) = 1, and {n;(t),t € T}
are 1.i.d copies of a L process {n,(t),t € T}, i.e., E [ n7(t)dt < +oo,1=1,...,d. The com-
mon mean function of processes {n,(t),t € T} is denoted as my(t) = E{n,(¢t)}, l =1,...,d.

The actual data set consists of {X;,T};,Y;;}, 1 <i <n,1<j <N, in which the i-th subject

d

is observed N; times, the time independent covariates for the i-th subject are X; = (Xy),_;,

1 < i < n, and the random measurement time 7;; € 7 = [a,b]. The aforementioned data
example is called sparse functional as the number of measurements N; for the ¢-th subject
is relatively low. (In the above CD4 example actually at most 14). In contrast, for a dense
functional data lim,,_,~, min;<;<, IV; = 0o.

For the CD4 cell percentage data, we introduce a fourth time independent covariate, the
baseline X;o = 1, and denote by m; (t), { = 0,1,2,3, the coefficient functions for baseline

CD4 percentage, smoking status, centered pre-infection CD4 percentage and centered age,



respectively. Figures 2-5 contain spline estimates of the m; (t), 0 <1 < 3, and simultaneous
confidence corridors (SCC) at various confidence levels.

In previous works the theoretical focus has mainly been on consistency and asymptotic
normality of the estimators of the coefficient functions of interest, and the construction of
pointwise confidence intervals. However, as demonstrated in Fan and Zhang (2000), this
is unsatisfactory as investigators are often interested in testing whether some coefficient
functions are significantly nonzero or varying, for which a SCC is needed. Take for instance,
Figure 3, which shows both the 95% and 20.277% SCC of m; (t) contain the zero line
completely, thus with a very high p-value of 0.79723 the null hypothesis of m; (t) =0,t € T
is not rejected. More details are in Section 6.

Construction of computationally simple SCCs with exact coverage probability is known
to be difficult even with independent cross-sectional data; see, Wang and Yang (2009) and re-
lated earlier work Hérdle and Luckhaus (1984) on uniform consistency. Most earlier methods
proposed in the literature restrict to asymptotic conservative SCCs. Wu, Chiang and Hoover
(1998) developed asymptotic SCCs for the unknown coefficients based on local polynomial
methods, which are computationally intensive, as the kernel estimator requires solving an
optimization problem at every point. Huang, Wu and Zhou (2004) proposed approximating
each coefficient function by a polynomial spline and developed spline SCCs, which are simpler
to construct, while Xue and Zhu (2007) proposed maximum empirical likelihood estimators
and constructed SCCs for the coefficient functions. All these SCCs are Bonferroni-type vari-
ability bands according to Hall and Titterington (1988). The idea is to invoke pointwise
confidence intervals on a very fine grid of [a,b], then adjust the level of these confidence
intervals by the Bonferroni method to obtain uniform confidence bands, and finally bridge
the gaps between the grid points via smoothness conditions on the coefficient curve. How-
ever, to use these bands in practice, one must have a priori bounds on the magnitude of
the bias on each subinterval as well as a choice for the number of grid points. Chiang, Rice
and Wu (2001) proposed a bootstrap procedure to construct confidence intervals. However,

theoretical properties of their procedures have not yet been developed.
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In this paper, we derive SCCs with exact coverage probability for the coefficient functions
my(t), l=1,...,d, in (3) via extreme value theory of Gaussian processes and approximating
coefficient functions by piecewise-constant splines. The results represent the first attempt at
developing exact SCCs for the coefficient functions in VCM for sparse functional data. Our
simulation studies indicate the proposed SCCs are computationally efficient and have the
right coverage probability for finite samples. Our work parallels Zhu, Li and Kong (2012)
which established asymptotic theory of SCC in the case of VCM for dense functional data.
It is important to mention as well that the linear covariates in Zhu, Li and Kong (2012)
are time dependent, which does not complicate the problem as they work with dense data
instead of the sparse data we concentrate on.

We organize our paper as follows. Section 2 describes spline estimators, and establish
their asymptotic properties for sparse longitudinal data. Section 3.1 proposes asymptotic
pointwise confidence intervals and SCCs constructed from piecewise constant splines. Section
3.2 describes actual steps to implement the proposed SCCs. In Section 4 we provide further
insights into the estimation error structure of spline estimators. Section 5 reports findings
from a simulation study. A real data example appears in Section 6. Proofs of technical

lemmas are in the Appendix and Supplementary Materials.

2. SPLINE ESTIMATION AND ASYMPTOTIC PROPERTIES
For a functional data {X;, 7;;,Yi;}, 1 <@ < n, 1 < j < N, denote the eigenvalues and
eigenfunctions sequences of its covariance operator Gy (s,t) = cov {n,(s), m;(¢)} as {Xei}o
{¢k7l(t)}zo:1, in which Adj; > Aoy > -+ >0, Y02 Mgy < 00, and {¢kjl}:}:1 form an orthonor-
mal basis of L? (7). It follows from spectral theory that Gy (s, t) = Y71 Aeathy (s)y, ().
For any [ = 1,...,d, the i-th trajectory {n;(t),t € T} allows the Karhunen-Lo¢ve L? rep-
resentation (Yao, Miiller and Wang, 2005b): n,(t) = my(t) + 377, &iry@ra(t), where the
random coefficients &;;,, are uncorrelated with mean 0 and variances 1, and the functions

bry =/ Meatpy, thus Gi(s,t) = 307 dpy(s)éy, (1), and the response measurements (2) can



be represented as follows
d d oo
Vi = mui(Ty) Xa+ D ity (To) X + 0 (Tiy) &35 (3)
=1 =1 k=1
Without loss of generality, we take 7 = [a, b] to be [0, 1]. Following Xue and Yang (2006),
we approximate each coefficient function by the spline smoothing method. To describe the
spline functions, one can divide the finite interval [0,1] into (Ns 4+ 1) equal subintervals
X; = [vrvy41), J = 0,...,Ng — Lxn, = [un,,1]. A sequence of equally-spaced points
{Uj}jjil, called interior knots, are given as vg = 0 < vy < -+ < vy, < 1 = vn.41. Let
vy = Jhs for 0 < J < Ny + 1, where hy = 1/ (Ns; + 1) is the distance between neighboring
knots. We denote by G(~Y = G~V [0, 1] the space of functions that are constant on each
subinterval x;, and the B-spline basis of G~V as {b J(t)}yio, which are simply indicator
functions of intervals x;, b;(t) = I,,(t), J = 0,1,...,Ns. For any t € [0,1], define its
location index as J(t) = J,(t) = min {[t/hs], N5} so that t € x ).

Next we define the space of spline coefficient functions on 7 x R? as

M = { Zgl t) e G- tET,x:(xl,...,xd)TERd},

and propose estimating the multivariate function sz:1 my(t)x; by

Z my(t)x, = argmm Z Z (Vi — g(Ti;, X))} (4)

i=1 j=1

Let 02 (,%) be the conditional variance of Y given T = t and X = x = (z1,...,2q)" € R?

ov(t,x)=Var(Y |T =t,X =x) =Y G (t,t)x} +o*(t).

||M&
Il

Next for any ¢ € [0, 1], let

Do) = &b, (nE)} EXXT [ [ ot )

J(t)

LE{N(N - 1) }Zl 1X2/ Gy (u,v) f (u) f (v) dudv|

EM X7 (8) XX (t)



where
1
cJ,anbz(T):/ RO F(D)dt, J=0,... N (©)
0
Further denote
_ _ d
2, =H'T,tHH ' = {ai’”,(t)}l’l,:l, (7)

where o7, ,(t) are later shown to be the asymptotic covariances between 7iy(t) and 7 (t).

THEOREM 1. Under Assumptions (A1)-(A6) in Appendiz A, for any t € [0,1], as n — oo,

$-1/2 (t) {r(t) —m (t)} i> N (0,14xq),

n

where M(t) = (h(t), ..., mq(t))" is the estimate of m(t) = (my(t), ..., ma(t)) . Further-

more, for anyl=1,...,d and o € (0, 1),
i P Ao ) bin(®) = mi(9)] < 21 app} =10

d
REMARK 1. Note that 2,(t) = {02, (t)}

Ly (7) is complicated to compute in practice.

The next proposition suggests that, for any t € [0,1], T',,(t) in (5) can be simplified by

T — T U%(t,X) ENI (Nl — 1) Zdzl XZ2G (t7t) f(t>hs
I, (t)=E [XX TR E {1 N l U%(lt’x) H NC)

Denote the supremum norm of a function ¢ on [a,b] by [|¢],, = sup,c,, [6(t)]. For
any matrix A = (a;;), define ||A||_ = max|a;;|, where the maximum is taken over all the

elements of A, while for a matrix function A(t) = (ai;(?)), [|All. = supseap A #) ]| -

PROPOSITION 1. Under Assumptions (A2)-(A6) in Appendiz A, there exists a constant
¢ > 0 such that as n — 00, |Tn(t) = Tp(t)]lee = O (0 hI7Y) = O (n7°).

To derive the maximal deviation distribution of estimators my(t), [ = 1,...,d, let

1
Qi (@) = bt — ity log {5 logl1 ~ ) . € (0.1) )

log (27?@?\,5“)

2an,41

ano1 = {2log (Ns + D}?, byoyr = ansr — (10)
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THEOREM 2. Under Assumptions (A1)-(A6) in Appendiz A, forl =1,...,d and any o €
(0,1),
lim P{ sup ag’b(t) [ (t) — my(t)] < Qnos1 (a)} =1-aq,

n—00 te[0,1]

where 0, () and Qn,11 () are given in (7) and (9), respectively.

3. ASYMPTOTIC CONFIDENCE REGIONS

In this section we construct the confidence regions for functions my(t), 1 =1,...,d.

3.1 Asymptotic Confidence Intervals and SCCs

Theorems 1 and 2 allow one to construct pointwise confidence intervals and SCCs for com-
ponents 7y (t), I = 1,...,d. The next corollary provides the theoretical underpinning upon

which SCCs can be actually implemented, see subsection 3.2.

COROLLARY 1. Under Assumptions (A1)-(A6) in Appendiz A, for any | = 1,...,d and

a € (0,1), asn — oo,

(1) an asymptotic 100 (1 — «) % pointwise confidence interval for my(t), t € [0, 1], ismy(t)£
Onu(t) Zi—aj2, with o, u(t) given in (7), while Zy_q 2 is the 100 (1 — a/2)th percentile

of the standard normal distribution.

(i1) an asymptotic 100 (1 — ) % SCC for my(t), with Qn.+1 (o) given in (9), is my(t) £

Tnu(t)Qn.1 (), t € [0,1].

3.2 Implementation

In the following we describe procedures to construct the SCCs and the pointwise intervals

given in Corollary 1. For any data set (75, Y, il)?;];]ijil j—; from model (3), the spline
estimators 1y(t), L = 1,...,d, are obtained by (4), and the number of interior knots is taken

to be Ny = [CN%/?’(log(n))], in which Np = > | N; is the total sample size, [a] denotes the

integer part of a, and c is a positive constant.
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To construct the SCCs, one needs to evaluate the functions Ui,u(t)a l=1,...,d, which
are the diagonal elements of matrix X,,(¢) in (7). Based on Proposition 1, one can estimate
each unknowns f(t), 0% (t,x), G (t,t) and matrix H and then plug these estimators into the
formula of the SCCs; see Wang and Yang (2009).

The number of interior knots for pilot estimation of f(t), 0%(¢,x), and G, (t,t) is taken
to be N = [0.5n'/%], and h; = 1/ (14 N;). The histogram pilot estimator of the density
function £(£) is f(t) = Ny'he ' X0y Y05 by (Ti).

We now discuss the estimation of T',, (¢) in (5). Defining R;; = < Zl L m(T35) Zl>2,

1 <j < N; 1<i<n, the estimator of 0% (¢,x) is

d N: d
Z PJle )27 "’ZMJbJ Z (t,1) xf +6°(t),
1=1 J=0 J=0 =1
where {Dg 15+ - Dnsas oy -+ - 5 Fs }T are solutions of the following least squares problem:

~ ~ ~ ~ T
(p0,17 <o PNz Hos - - HuNS*) =

n N; Ng 2

d

argmin { ’L] Z Z lebJ ’Lj Z /-LJbJ Z] } .
(Po1semms NNS*)TGRW;‘H)(«HI) i=1 j=1 =1 J—0

The matrix T, (¢) is estimated by substituting f(¢), G; (¢,t) and o2 (¢,x) with f(¢), Gy (t,1)

and 63 (t,x). Define

-1

N0 [nl Xn: XaXa o3 (6, %) { F(O)hNr }

=1
n d A
i (Bt ) gt
Y \¥y £

The following proposition provides the consistent rate of T',,(£) to Ty (t).

d

LU=1

PROPOSITION 2. Under Assumptions (A1)-(A6) in Appendiz A, there exists a constant ¢ > 0

£,(1) = Tu(t)| = 0, (7).

such that as n — oo,

Proposition 2 implies that ', () can be replaced by I',(¢) with a negligible error. Define
a d x d matrix H= {n"' 3" | XilXil’};ll/:p then 3,(t) can be estimated well by 3, (t) =

12



{&iﬂ,(t)}il,:l —H T, (t)H!. Therefore, as n — 0o, | = 1, ..., d, the SCCs

my(t) £ onu(t)Qne1 (@), (11)

with Qn,+1 (o) given in (9), and the pointwise intervals 17 () £6 4, 1(t) Z1-a/2 have asymptotic

confidence level 1 — a.

4. DECOMPOSITION
In this section, we describe the representation of the spline estimators ny(t), [ = 1,...,d,
in (4), then break the estimation error 7 (t) — m,(t) into three terms by the decomposition
of V;; in model (3). Although such representation is not needed for applying the procedure
describe in Section 3.2 to analyze data, it sheds insights into the proof of the main theoretical
results in Section 2.

We consider the following rescaled B-spline basis {B,(t)}}, for GV
By(t) = by(t) (csn)™*, J=0,...,N.. (12)
It is easily verified that E{B;(T)}* =1 for J =0,1,..., Ny, and B;(¢)By(t) =0 for J # J'.
By simple linear algebra, the spline estimator m,(t) defined in (4) equals

ZVJZBJ _CJ12:}/J(t),l ) lzl?"'ada (13)

where the coefficients v = (’S/OT, e ,’S/LS)T with 4, = (%JJ, e ,ﬁJ’d)T being the solution of

the following least squares problem

n N; N, 2
v = argmin Z {Yl] Z v5.Bs (T, Zl} ) (14)
0

T
7:(’70,1 ,,,,, ’YNs,d) cRdA(Ns+1) =1 j=1 =1 J=

n

In the following let Y = (Yi1,...,Ying, -y Yar, ... ,YnNn)T be the collection of all the
Yi’s. Let B(t) = (Boy(t), ..., By (t))" and X; = (X1, ..., X;q)" be two vectors of dimension
(Ns + 1) and d, respectively. Denote

D= (B(Th)®Xi,....,B(Tin) @ Xy,...,B(Tn) X,y ..., B(Tow,) @ X,) ", (15)

13



a Np x ((Ns+ 1) d) matrix, where “®” denotes the Kronecker product. Solving the least

squares problem in (14), we obtain

4=(D™D) " (DTY). (16)
Denote x = (1,...,x4)", thus equation (4) can be rewritten as
d 1
> itz = (B(t)@x)" (D'D)" (DY), (17)

I=1
According to (15), one has DTD = > | Zivzl {B(T;;)B(T;;)" ® X;X] }, in which ma-
trix B(7;;)B(T};)" = diag { B}(T}), ..., B%.(Ti;) }. So matrix D™D should be a block diag-

onal matrix, and we write Ny 'DTD = diag {VO, e ,VNS}, where

VvV, = { N O B?,(z;j)xﬂxﬂ,} . (18)
LU=1

i=1 j=1
On the other hand, we have DTY = Y7 | Z;V:ll {B(T};) ® X;}Yi;. Thus, 4 = (%g, ... ,'AYLS)T

can be easily calculated using

n N; d
A=Vt {N#ZZBJ(MXHY@} L J=0.. N, (19)
=1

i=1 j=1
Then the functions m(t) = (my(t), ..., mq(t))" can be simply estimated by

~ ~ ~ T —-1/2 ~ ~ T —1/2 ~
m(t) = (Mma(t),...,mqe(t) = CJ(t;ﬂ (%(t),la e >7J(t),d) = CJ(t§7n7J(t)' (20)

Projecting the relationship in model (3) onto the space of spline coefficient functions on

T xR% as M, we obtain the following important decomposition:

> (e =Y iu(tn+ Y §Om+ Y Eb)w, (21)

where for any [ =1,...,d,
Ns
- ~ ~1/2 ~
my(t) = Z VpuBa(t) = CJ(tg,n’YJ(t),n (22)
J=0

14



Ns
t)IZ&J’lBJ( —CJ(é aJt)l, él ZGJIBJ —CJ11$§26J (23)
and the vectors (7,,,J = 0,...,Ny,l = 1,...,d)7, (&, J=0,...,Ny,l =1,...,d)", and
(é”, J=0,...,Ns,l=1,...,d)7 are solutions to (14) with Y;; replaced by Zld:l my (Ti;) X,
Zldzl Ziozl fik,l¢k,l (Tij) i1, and U( zy) Eijs respectively.
Furthermore, under Assumption (A5) we can decompose 1(t) as

ig(t) = my(t) + &) + &), 1=1,....d (24)

The next two propositions concern the functions my(t), gl(t), gi(t),l=1,...,d, given in
(22) and (23). Proposition 3 gives the uniform convergence rate of m,(t) to m,(t). Proposition

4 provides the asymptotic distribution for the maximum of the normalized error terms.
PROPOSITION 3. Under Assumptions (A1), (A2) and (A4)-(AG6) in Appendixz A, the func-
tions my(t), 1 =1,...,d satisfy sup,ejo 1) SUP1<j<q [T (t) — mu(t)] = Op(hs).

PROPOSITION 4. Under Assumptions (A2)-(A6) in Appendiz A, for 7 € R, and o, 4(t),

an.+1, bn.r1 as giwven in (7) and (9),

n—0 t€[0,1]

lim P{ sup a;jl(t) ’%l(t) + él(t)‘ <7/an,41+ sz+1} =exp (—2¢77).

5. SIMULATION

To illustrate the finite-sample performance of the spline approach, we generate data from

the following model

2 3
Yij = {ml (1) + Zfik,1¢k,1 (Tij)} X + {m2 (T3) + Zfik,2¢k,2 (Tij)} X

k=1 k=1

where T ~ U[0,1], X; ~ N(0,1), Xy ~ Binomial[l,0.5], &, ~ N(0,1), k = 1,2, &, ~
N(0,1), k =1,2,3, e ~ N(0,1), and N; is generated from a discrete uniform distribution

from 2,...,14, for 1 < i < n. For the first component, we take my(t) = sin {27 (¢t — 1/2)},
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G11(t) = —2cos{m (t —1/2)} /V/5, ¢y (t) = sin{m (t —1/2)} /V/5, thus A1 = 2/5, Aoy =
1/10. For the second component, we take mqy(t) = 5(t —0.6)%, G1o(t) = 1, dgso(t) =
V/2sin (27t), P30(t) = V2 cos (2rt), thus A2 = A2 = A32 = 1. The noise level is cho-
sen to be o = 0.5,1.0, and the number of subjects n is taken to be 200, 400, 600, 800.

We consider the confidence levels 1 — a = 0.95 and 0.99. Table 1 reports the coverage
of the SCCs as the percentage out of the total 500 replications for which the true curve was

covered by (11) at the 101 points {k/100,k =0,...,100}.
[Table 1 about here.]

In the above SCC construction, the number of interior knots Ny is determined by the
sample size n and a tuning constant ¢ as described in Section 3.2. We have experimented
with ¢ = 0.3,0.5,0.8, 1.0 in this simulation study. The simulation results in Table 1 reflect
that the coverage percentages depend on the choice of ¢, however, the dependency becomes
weaker when sample sizes increase. For large sample sizes n = 600, 800, the effect of the
choice of ¢ on the coverage percentages is insignificant. Because Ng varies with N;, for
1 < i < n, the data-driven selection of an “optimal” Ny remains an open problem. At
all noise levels, the coverage percentages for the SCC (11) are very close to the nominal
confidence levels 0.95 and 0.99 for ¢ = 0.5. Note that since E N; = 8, the total sample size
Nt =~ 8x200,8x400,8 x 600, 8 x 800 which explains the closeness of coverage percentages in
Table 1 to the nominal levels. These large Ny’s are realistic as we believe they are common
for real data. For instance, the CD4 cell percentage data in Section 6 has Ny = 1817.

For visualization of actual function estimates, Figure 1 shows the true curve, the estimat-
ed curve, the asymptotic 95% SCC and the pointwise confidence intervals at o = 0.5 with
n = 200. The same plot for n = 600 has shown significantly narrower SCC and pointwise

confidence intervals as expected, but is not included to save space.

[Figure 1 about here.]
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6. REAL DATA ANALYSIS

To illustrate our method, we return to the CD4 cell percentage data discussed in Section
1 for further analysis. Since the actual visit times 7T;; are irregularly spaced and vary from
year 0 to year 6, we first transform the times by Z;; = Fy,. (T};), where Fy,. is the empirical
cdf of times {Tij}?iffj:l. Then the Z;j-values are distributed fairly uniformly. We have set
a slightly smaller number of interior knots Ny = [0.3]\7%/ ?(log(n))] to avoid singularity in
solving the least squares problem.

The left plots of Figures 2, 3, 4 and 5 depict the spline estimates, the asymptotic 95%
SCCs, the pointwise confidence intervals for m; (t), { = 0, 1,2, 3, respectively. The horizontal
solid line represents zero. Based on the shape of the SCCs, we are interested in testing the
following hypotheses:

Hoo : mg (t) = a + bt, for some a,b € R v.s. Hyg:mg(t) # a+ bt, for any a,b € R;

Hoy :mq (t) =0 v.s. Hyp i my (t) # 0, for some ¢ € [0, 6];
Hos : ma (t) = ¢ for some ¢ > 0 v.s. Hyp : mo (t) # ¢, for any ¢ > 0;
Hoys :mg(t) =0 v.s. Hyz:mg(t) # 0, for some t € [0, 6].

[Figure 2 about here.]

[Figure 3 about here.]

Asymptotic p-values are calculated for each pair of hypotheses as &y = 0.99072, &y =
0.79723, ag = 0.25404, &3 = 0.10775. Apparently, none of the null hypothesis is rejected.

The right plots of Figures 2, 3, 4 and 5 show the spline estimates, the 100(1 — é&;)% SCCs
and the pointwise confidence intervals, and estimates of m; (¢t) under Hy, [ = 0,1,2,3. From
these figures, one can see the baseline CD4 percentage of the population is a decreasing
linear function of time and greater than zero over the range of time. The effects of smoking
status and age at HIV infection are insignificant, while the pre-infection CD4 percentage is
positively proportional to the post-infection CD4 percentage. These findings are consistent

with the observations in Wu and Chiang (2000), Fan and Zhang (2000) and Wang, Li and
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Huang (2008), but are put on rigorous standing due to the quantification of type I errors by

computing asymptotic p-values relative to the SCCs.

APPENDIX A
Throughout this section, a,, ~ b, means lim,,_,, b,/a, = ¢, where ¢ is some nonzero constant.
For functions a,(t), b,(t), an(t) = u{b,(t)} means a,(t)/b,(t) — 0 as n — oo uniformly for
t €[0,1], and a,(t) = U {b,(t)} means a,(t)/b,(t) = O(1) as n — oo uniformly for ¢ € [0, 1].

We use u,,(-) and U,(-) if the convergence is in the sense of uniform convergence in probability.

A.1 Technical Assumptions

We define the modulus of continuity of a continuous function ¢ on [a,b] by w(¢,d) =
maxy yefqp) [i—|<s | @(t) — ¢ (t')|. For any r € (0, 1], denote the collection of order r Holder
continuous function on [0, 1] by

CO,T [O’ ]_] = {gb : ||¢||O,7‘ = sup M < +OO} ,

t#£t t,t'€[0,1] |1f - t/|T

in which |||, is the C%"-seminorm of ¢. Let C [0, 1] be the collection of continuous function
on [0,1]. Clearly, C%"[0,1] C C'[0,1] and, if ¢ € C%" [0, 1], then w (¢,0) < ||l 0"

The following regularity assumptions are needed for the main results.

(A1) The regression functions my(t) € C%1[0,1], 1 =1,...,d.

n,N;,00,d
i=1,j=1k=1,l=1

(A2) The set of random variables (Tij,sz-j, Ni, Eints Xi) is a subset of variables

(Tij, €ijs Niy Ein 1y Xil)j:ﬁi’zzl,l:l consisting of independent random variables, in which
all T;’s i.4.d with Ty; ~ T, where T is a random variable with probability density
function f(t); Xiy's i.i.d for each 1 =1,...,d; N;’s i.i.d with N; ~ N, where N > 0 is

a positive integer-valued random variable with E{N*"} < rlcy, r=2,3,..., for some

constant ¢y > 0. Variables (fik,l);:fc;:il iy and (g45)275_ are id.d N (0, 1).
(A3) The functions f(t), o(t) and ¢y, (t) € C*"[0,1] for some r € (0,1] with f(t) € [cs, Cf],
o(t) € [cr, Cyl, t €]0,1], for constants 0 < ¢y < Cp < 400, 0 < ¢, < Cy < +00.
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(Ad) For 1l =1,...,d, > 72, H(bk:lHoo < 400, and Gi(t,t) € [cqi,Cayl, t € [0,1], for con-

stants 0 < cqy; < Cgy < +o00.

(A5) There exist constants 0 < cg < Cug < +00 and 0 < ¢, < C, < 400, such that
calixg < H = {Hll/}ﬁl,zl = E(XXT) < Culyxqg. For somen > 4,1 =1,....,d,

¢, <EIX|*" < C,.

(A6) As n — oo, the number of interior knots Ny = o (n”) for some ¥ € (1/3,1/2) while
Nyt =o{n7'3 (log(n)) */3}. The subinterval length hs ~ Ng*.

Assumptions (A1)—(A3) are common conditions used in the literature; see for example,
Ma, Yang and Carroll (2012). Assumption (A1) controls the rate of convergence of the
spline approximation 7y, [ = 1,...,d. The requirement of N; in Assumption (A2) ensures
that the observation times are randomly scattered, reflecting sparse and irregular designs.
Assumption (A4) guarantees that the random variable »~° | &, ¢, ,(t) absolutely uniformly
converges. Assumption (Ab) is analog to Assumption (A2) in Liu and Yang (2010), ensuring
that the X;’s are not multicollinear. Assumption (A6) describes the requirement of the

growth rate of the dimension of the spline spaces relative to the sample size.

A.2 Proofs of Propositions 14
PROOF OF PROPOSITION 1. By Assumption (A3) on the continuity of functions ¢, ,(t),

o?(t) and f(t) on [0,1] and Assumption (A4), for any ¢,u € [0, 1] satisfying |t — u| <hs,

|Gi(t, 1) = Gi(u, w)] <Y [dr () = drp(w)| <2 || dall, w (Dr: hs) < ChE.
k=1 k=1
Furthermore,

< Ch;+r -0 (h;+r) :

| (Glt07(0) - Gl f ()} du
XJ(t)

< Chg—‘rr -0 (hg—l-r) ’

/ {Gi(t, t) f2(t) — Gy (u,v) f (u) f (v)} dudv
X () XX ()

{2 () — o® (u) f (u)} du| < ChIT™ = O (W)

XJ(t)
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According to the definition of Cj,, in (6),

Cm = /[ e = e+ / {f(x) = fw))}d, (A1)

[UJ7UJ+1]

thus, |Cy,, — f(vy)hs| < w(f, hs)hs for all J =0,..., Ns. Therefore,

T.(t) = {f(t)hs +L{(h1+r)}_2(nEN1)_lE[{ o2 (t,X) f (t) hs + U, (BT
E{N1EZX}1 1)} ZXI (t.8) £2 () B2 + U, (h§+r)}XXT]

E{N:(N, — 1)}
EN1

= E[XXT (t, X){f(t)hSnENl}_l{l

Zz 1 ngl(t(t)?) f (&) hs } {1+u, (hg>}] - f”(t) +u (n_lhg_l) ’

establishing the proposition. [J

PROOF OF PROPOSITION 2. The result follows from standard theory of kernel and spline
smoothing, as in Wang and Yang (2009), thus omitted. [

PROOF OF PROPOSITION 3. According to the result on page 149 of de Boor (2001),
there exist functions g; € GV [0, 1] that satisfies ||m; — gi||, = O (hs) for [ =1,...,d. By
the definition of 7y (t) in (22),

~ ~ ~ T —1/2 /~ ~ T —1/2 ~
m(t> = (ml(t)a s 7md(t)) = CJ(té <7J(t),17 <. J,YJ(t),d) - CJ(tg n Y I(t)

d
where 4, = V! {N S Zj L B (Ti) X Z my ( U)Xﬂ/} for V; defined in (18).
I=1
Let g(t) = (g1 (t),...,ga(t))7, then we have
N d d
. - ~1/2 {7
m (t) —g () = cj(tg . J(t Z Z By (Tij) X Z {my (Tij) — gv(T35) } Xar
i=1 j=1 =1

=1

Observing that §; = g; as g; € GV [0, 1], there is a decomposition similar to (24), 7y (t) =
m(t)—a®)+a@),l=1,...d
By (A.1), one has sup;¢( |cr)n| = . Next E|B,(T};)| = _1/2be r)dx ~
hi’?, thus SUDye[o,1] |Byy(T)| = (’)p(h;/Q). Then it is easy to show that ||m; — gl||oo =
( ha V2R ) O, (hs). Hence, forl = 1,....d, |l — mul|. < |7 — Gill_+llme — 1]l

= O, (hs) , which completes the proof. [J
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Note that B, (t) = ch;ﬂl]/z, t €10,1], so the terms &,(t) and &/(t), [ = 1,...,d, defined in

(23) are
~ ~ ~ T _ 5 B T _ B
£(t) = <£1(t)a~-->€d(t>> ZCJ(%,Q” (@) as -+ Qae),a) _C](lté?naJ(t)a (A.2)
~ T
E(t) = Gilt),....20) =), (em eJ(t),d) = ¢, 02 8.0, (A.3)
where

n N; d 0o d
oy = V}l {NTl Z Z B (Tij) X Z Z &k Ope g (Ti5) Xil“} ’
=1

i=1 j=1 1"=1 k=1 _
d
0] = {N E E BJ z] ZZU z])‘gzj} .
=1 j=1 -1

According to Lemma B.3, the inverse of the random matrix V; can be approximated by
that of a deterministic matrix H = E(XXT). Substituting V; with H in (A.2) and (A.3),
we define the random vectors

d oo d
&(t) = ;(142 { Z Z Byw(Tij)Xa > > &ty (Ti) Xil"} , (A4)
=1

i=1 j=1 "=1 k=1

n N; d
R - 1 -
€(t) = J(1t§2nH 1 {N_ Z Z BJ(t) (ﬂj)XﬂO— (7%) 8@'} . (A5)
=1

i=1 j=1

n,N;,d

PROOF OF PROPOSITION 4. Given (T}, Ny, Xj), L Am =1

let o7 () and o2, ,(t) be the
conditional variances of &,(t) and &(t) defined in (A.4) and (A.5), respectively. Define
2 2 —12 s A
m(t) = {o2.0+02,0} {aw+am}. (A.6)

By Lemma B.7, n,(t) is a Gaussian process consisting of (N + 1) standard normal variables

{nJJ}]j;o such that 7,(t) = 1, for t € [0,1]. Thus, for any 7 € R,

P ( SFP] Im@)] < 7/an1 + sz+1> = P (|max{ng, . iy} < 7/ane1 + bvora) -
tefo,1

By Theorem 1.5.3 in Leadbetter, Lindgren and Rootzén (1983), if &, ..., &y, are i.i.d. stan-
dard normal r.v.’s, then for 7 € R
P (|max{&,....En } < 7/an, + by,) — exp(—2e77).

21



Next by Lemma 11.1.2 in Leadbetter, Lindgren and Rootzén (1983),

P (| max{ng, - Nyt < 7/ane1 + sz+1) - P (| max{&o, .- {n | < 7/an1 + sz+1)

4 - —(7/an, 41+ bngs1)?
= o Z | Enganra (1= [Engm ) Y2 exp{ 1+ E :
0<J<J'<Ns UBRUNE

According to Lemma B.7, there exists a constant C' > 0 such that supg< ;. <y, |Enp im0, <

Chs for large n. Thus, as n — o0,

P (|max{ng;, ... nn | < 7/an1 4 by1) — P (Jmax{&y, ... En }H < 7/an,41 + byys1) — 0.

Therefore, for any 7 € R,

lim P ( sup |n;,(t)| < 7/an41 + sz+1> =exp (—2e77). (A7)
n—00 t€[0,1]

By Lemma B.8, we have

ANy+1 (SUP U;,%z(t) ‘éz(t) +&(t)| — sup ’771(75)|>

te[0,1] t€[0,1]
= 0, {1og (N + 1) (nhy) ™ (log(m)) 2} = 0, (1).

On the other hand, Lemma B.4 ensures that

ANy+1 (Sl[lp] () ‘51(75) +&(t)| — sup o, ,(t)
tef0,1

t€[0,1] él(t) +al) ‘)
=0, {(log (Ns + 1) nhe)/?nth3/? log(n)}
= 0, {n "?h; (log (Ns + 1))?log(n)} = 0, (1).

Then the proof follows from (A.7) and Slutsky’s Theorem. [J

A.3 Proof of Theorem 1
For any vector a = (ay,...,aq)" € R% E [Zld:l a {El (t)+ & (t)H = 0. Using the conditional
independence of &(t), &(t) on (Tj;, Ni, Xy)" 4 we have

i=1,j=1,1=1°
Var [Zal {él (1) + & (t)}

=1

(Tij, N;, X)) Nomd

j=1,i=1,l=1

d d
- Z Z ajap E {51 (1) &y () + & (t)&p (t) ‘(Tija N;, Xil)jy:iﬂiuﬂ }

=1 10=1

=a' {Zen(t) +2..(t)}a .
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Nm le)N ol

j=1,i=1,l=1"

the conditional distribution of [a™ {X¢,(¢) + X..(t)} a] 12 S al{ (t) + & (t)} is a s-

Meanwhile, Assumption (A2) entails that for any ¢ € [0,1], given (7};,

tandard normal distribution. So we have

—-1/2

M=

[a" {Zen(t) + Zen(t) Cll{ ) +& ( )}~N(0,1).

=1

Using (B.9), we have as n — oo

"= (a] Y a{&®+am} N ©1).

=1

Therefore [a’X,(t)a] e S {rg (t) —my ()} £y N (0,1) follows from (24), Proposi-
tion 3, Lemma B.4 and Slutsky’s Theorem. Applying Cramér-Wold’s device, we obtain
S () {ri (8) — mu ()Y, —=> N (0, Lyxg), and consequently, o, b (t) {riu(t) — my(t)} —=
N (0,1) for any t € [0,1] and [ = 1,...,d. O

A .4 Proof of Theorem 2

By Proposition 3, [y —myl|, = O, (hs), [ =1,...,d, so

annt { sup o, (1) () - mz<t>|} = 0, {(nh)"* (log (V. + 1))} = o, (1)

te[0,1]
According to (24), it is easy to show that
ax { sup a7 (1) () — mu(t)] — sup o (0|0 +a<t>\} o, (1).
te[0,1] t€[0,1]

Meanwhile, Proposition 4 entails that, for any 7 € R,

lim P {aNS+1 (sup an i )SZ )+ &t )‘ — sz+1> < T} = exp (—26_T) )
n—o0 te[o,]]

Thus Slutsky’s Theorem implies that

lim P {@NSH ( sup o () [y (t) — my(t)] — sz+1> < T} =exp (—2¢77).

n—0o0 te(0,1]

Let 7 = —log {—3log (1 — a)}, the definition of Qy,+1 (@) in (9) entails

lim P {ml(t) € ml(t) + O'n,ll(t)QNS—i-l (Oé) ,Vt S [0, 1]}

n—oo

= lim P{ sup o, (t) [y (t) — my(t)] < Qi (a)} =1—-a.

n—00 te[0,1]

Theorem 2 is proved. [
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B. SUPPLEMENTARY MATERIALS

Supplement to “A Simultaneous Confidence Corridor for Varying Coefficient

Regression with Sparse Functional Data”: Supplement containing the details of theo-

retical proofs referenced in the main article.

vemfdaband.xpl: XploRe-package containing code to perform estimations and SCCs for

the coefficient functions.
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Figure 1: Plots of 95% SCC (11) (upper and lower solid), pointwise confidence intervals
(dashed), the spline estimator (thin), and the true function (middle thick) at o = 0.5,
n = 200 for my (left) and my(right).
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Figure 2: Plots of (a) 95% SCC (upper and lower solid), pointwise confidence intervals
(dashed) and the spline estimator g (middle solid) for baseline effect; and (b) the same
except with confidence level 1 — &g and the estimated mg under Hyg (solid linear).
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Figure 3: Plots of (a) 95% SCC (upper and lower solid), pointwise confidence intervals
(dashed) and the spline estimator 7, (middle solid) for smoking effect; and (b) the same
except with confidence level 1 — @&, and the estimated m; under Hy; (solid linear).
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Figure 4: Plots of (a) 95% SCC (upper and lower solid), pointwise confidence intervals
(dashed) and the spline estimator m, (middle solid) for pre-infection CD4 effect; and (b) the
same except with confidence level 1 — é&s and the estimated ms under Hoy (solid linear).

Coeff. of PreCD4

03

(a) PreCD4 Effect

0.

o
S
S}

0,02

Coeff. of PreCD4

0.03

(b) PreCD4 Effect

o
=1
]

001

-002

Coeff. of Age

0.03

Year Year
(8) Age Effect (b) Age Effect

002

g
@

Coeff. of Age

0.

002

1
Q

Figure 5: Plots of (a)95% SCC (upper and lower solid), pointwise confidence intervals
(dashed) and the spline estimator m3 (middle solid) for age effect; and (b) the same ex-
cept with confidence level 1 — @3 and the estimated mg under Hos (solid linear).
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Table 1: Coverage percentages of the SCCs for functions m; (left) and ms (right), based on

500 replications.

o

n

11—«

c=10.3

c=10.5

c=10.8

c=1

1.0

200

0.950
0.990

0.950, 0.952
0.990, 0.998

0.944, 0.948
0.990, 0.990

0.920, 0.904
0.976, 0.984

0.886, 0.884
0.968,0.974

400

0.950
0.990

0.944,0.948
0.996, 0.984

0.950, 0.930
0.990, 0.988

0.922,0.912
0.984,0.988

0.908, 0.904
0.974,0.966

600

0.950
0.990

0.934,0.962
0.992, 0.996

0.954, 0.946
0.992, 0.986

0.930, 0.952
0.988,0.990

0.930,0.924
0.984, 0.990

800

0.950
0.990

0.936,0.934
0.998,0.996

0.960, 0.966
0.994,0.994

0.950, 0.964
0.986,0.992

0.956, 0.934
0.988,0.988

0.5

200

0.950
0.990

0.936,0.948
0.988,0.994

0.952, 0.942
0.992, 0.990

0.916, 0.900
0.972,0.974

0.912, 0.890
0.972,0.972

400

0.950
0.990

0.916, 0.930
0.994,0.984

0.936,0.932
0.992,0.988

0.928,0.916
0.996, 0.988

0.904, 0.898
0.978,0.976

600

0.950
0.990

0.924, 0.948
0.996, 0.994

0.952,0.954
0.994, 0.986

0.926, 0.958
0.984, 0.990

0.936, 0.938
0.990, 0.994

800

0.950
0.990

0.942,0.900
0.996, 0.998

0.950, 0.960
0.996, 0.994

0.942,0.962
0.990, 0.996

0.960, 0.938
0.992,0.988
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Supplement to “A Simultaneous Confidence Corridor
for Varying Coefficient Regression with Sparse

Functional Data”

Lijie Gu, 3Li Wang, *Wolfgang K. Hardle and “?Lijian Yang
1Soochow University, 2Michigan State University, *University of Georgia

4*Humboldt-Universitét zu Berlin, *Singapore Management University

In this document, we have collected a number of technical lemmas and their proofs. The

technical lemmas are used in the proofs of Propositions 1-4 in the paper.

LEMMA B.1. (Bosq (1998), Theorem 1.2). Suppose that {§;};_, are i.i.d with E(§;) =
0,0% = E£3, and there exists ¢ > 0 such that for r = 3,4,..., E|¢,|" < ¢ 2 E€ < +oo0.
Then for each n > 1, t > 0, P(|S,| > /not) < 2exp (—tQ (4+2ct/\/ﬁa)71>, in which
S = 2ia i

LEMMA B.2. Under Assumptions (A2)-(A6), we have

‘<BJXI;BJXI’>N —(Bs X1, By Xy) ]
A= sup T _o, [ |l (n) |

0<J<Ng, 1< <d \/<BJX[, BJX[>\/<BJXl/, BJXl/> nhs

where for any J =0,..., Ny and [,I' =1,...,d,

n Ni
(BsXi,BsXv)y, = Ni' Zi:l ijl B3(Tij) Xu X,

(B;X),B;Xy) = E{B3(Ty)XuXu} = Hy.



PROOF. Let wi; = wiw = iy B3(Ty;) Xy Xy, then Ew;; = ENyHy ~ 1 and
E(wiM)2 =E {Zjvzl B?,(Tij)}Q E(XilXﬂ/)2 ~ h;!. Next define a sequence D, = n® with
a(4+n/2) > 1 and \/log (n)Dyn=2hs*? = 0, n/20Y* D, O 5 0, which necessitates
n > 2 according to Assumption (A5). We make use of the following truncated and tail
decomposition

Xar = Xa Xy = Xz%,l + Xz%,z?
where X0 = XyXo I {|XuXw| > Dy}, Xjy = XaXud {|XqXw| < D,}. Define corre-
spondingly the truncated and tail parts of w; j as w; jm = B?,(J}J-)Xill)lﬁm, m = 1,2. According

to Assumption (Ab), for any [,I'=1,...,d,

E X, X, [T"?
ZP{IXMXW|>D}<Z X Xor| CZD (4+n/2)

4+77/2

By Borel-Cantelli Lemma, one has % i1 B%(Tij)XZ%Zl = 0,a.s.. So we obtain

E wle

sup |n

= a.s.( 7k)7 kZL
JLU

and
Ewi,ﬂ = XZZ? {ZBz z]}
< DG E| Xy X" E Ny E B3(Ty,) < eD;, G2,

Next we considerate the truncated part w; jo. For large n, E (w; j2) = E (wi ) —E (wi 1) ~ 1,

E (wi,J72)2 =E (wi,J)z —E (oJ,-J,l)z ~ h;!. Define Wi 7o = Wiz — E(wi2), then Ew; ;= 0,

and
N; 2
E(w)j2)’ = E(wis)’ — (Ewi)’ =E {Z B%(Tij)Xﬁﬁz} —U(1)
=1
2
2
- E(xh) {232 y } uq).
Note that

N; 2
Dn 2
E (X2 {233 y }
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e
o
m
—
e
=0
~3
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Thus, there exists c,, such that for large n, E (w;‘7J,2)2 > ¢, E(Xr)? h'. Next for any r > 2

E

WZJ,QV = Elwij2 — E(wis2)|" <277 (E|wiga|" + |E(wise)]")

N; r
_ zr-l{axzzzz S B () +u<1>}
j=1

Ty, =T

N;
r r s
E E B> (T;; um| ,
> (N)II 5 (Ty) b+ U(L)

0<ry, - yrv; <r

"E

. r—1 D,
= 2 E |Xm,’2

then there exists C,, > 0 such that for any r > 2 and large n,

E

N;
Wil < o2t [D;‘Q E(Xur)’E {N{ maXH EBY’ (Ej)} +U(1)

i=1

IN

21 [Dr 2 E (Xaw)? (ENT) Cphi™ + U(1)]

2D () Cah2 e E (w5)”

IN

< (CuDhIY) TR (W),

n

which implies that {w;“ Jyz}?: | satisfies Cramér’s condition. Applying Lemma B.1to » ;" w} 5,

for r > 2 and any large enough § > 0, P{}n‘lzle w;‘,J72| > 5(nhs)_1/2 (log(n))l/z} is

bounded by
2
QQXp{ 5 (log(n)) } < on-.

44 2C, Dy hi '8 (log(n))"/? n=1/2p"?

Hence

0<J<Ns, 1<’ <d

> § (nhy) "2 <1og<n>>1/2} < .

i P { sup
n=1

n
-1 *
n E :wi,J,Q
i=1

n Y W] = O {(nhs)fl/2 (log(n))1/2} as n — oo by Borel-Cantelli

Thus, sup,;

Lemma. Furthermore,

n
—1 *
n E Wi g2

i=1

=Ups. (N7F) + Ops. {(nhs)_l/ 2 (1og(n))1/2} + U (Dy )

=0, {(nhs)fl/2 (log(n))l/Q} .

—1
n E Wi j1| +sup
ANK

+ sup |[Ew; 1]
T

3



Finally, we notice that

SlllE) <BJXZ’BJXZ/>NT — <BJX1,BJXl/> :Slllg) (nNT_l) n_l E (.ULL]—(ENl)ilei,]

ARG JLU ,

<sup(EN)) ' |(nEN 1 § w; 7| + sup (E Ny) § wi.y — Ew;
J,z,lz?( 1) |( 1) N { J JZEJ/ 1) J J

=0, (%) + Ous {<nhs>*”2 <1og<n>>1/2} = 0, {(nhs) <1og<n>>1/2} ,

and (B, X, B;jX;) = H; =U(1). Hence, A, = O, {(nhs)_1/2 (10g(n))1/2}. O
For the random matrix V; defined in (18), the lemma below shows that its inverse can

be approximated by the inverse of a deterministic matrix H = E(XXT).

LEMMA B.3. Under Assumptions (A2) and (A4)-(A6), for any J =0, ..., N5, we have
Vii=H'10, {(nhs)_l/2 (1og(n>>1/2} . (B.1)
Proor. By Lemma B.2, we have
HVJ - HHOO ~0, {(nhs)*/? (1og(n))1/2} .
Using the fact that for any matrices A and B,
(A+hmB) ' =A™ —hATIBAT + O(h?),

we obtain (B.1). O
The next lemma implies that the difference between £ (t) and £ (t) and the difference

between (t) and &(t) are both negligible uniformly over ¢ € [0, 1].

LEMMA B.4. Under Assumption (A2)-(A6), for €(t), &(t) given in (A.2), (A.3) and &(t),
g(t) given in (A.4), (A.5), as n — oo, we have

sw €0 =€ = Oy {n "k loglm)}. (B.2)
sup [|E (1)~ & ()], = Oy {n"h;**1og(n)}. (B.3)
t€(0,1]



PROOF. Comparing the equations of €(¢) and &(t) given in (A.2) and (A.4), we let

NT Z Z BJ 2-7 X Z Z é-zk: l"¢k l” Zj X = — Z Z Q; NALRE

i=1 j=1 =1 k=1 Tl”lzl

where Qi,J,l”,l = Qz = n’l |:XZ‘ZXZ‘ZN 220:1 {Z;V:ZI BJ(Ej)gbk,l” (ﬂ])} fikz,l”] . Note that E Qz =0

and
O-?h,n = E<Q,L2 (ﬂ];Nz;X'Ll);l]Y]dll 1)
2
_ xuxmz{z& e m}
k=1
< {XX SN BT (%)}
k=1  j=1

N;
- oot xS mm G 1) |

j=1
< On?h'X3X2.N?.

Given (T35, N;, Xu) :L]Y]d” iy {a Qi}?zl are i.i.d N (0,1). It is easy to show that for

any large enough 6 > 0,

1
P ‘Zl 1 ¢ > §+/log(n ‘ T, Ni, X)) ”]Y ‘il =1 ¢ S 2exp{—§52 log(n)} <278,
Zn 10-9 n

ZQ

=1

Note that n=*Y "  X2X2,N? = O, (1), hence

ZP{ sup Zﬂmﬂl
n=1

0<J<Ns,1<11"<d
Thus, sup ;|27 Qi gl = O, {(nhs)_l/2 (log(n))l/z} as n — oo by Borel-Cantelli Lem-

i=1j5=1,l=1| —

1/2
1
> 6 {C og(n 1ZX5Xl,,N2} (T, Ny, X Nod < on~®,

> § (nhs)"/* (log(n ))1/2} < 0.

ma. Furthermore, sup;, )nNT_1 Zfl,,zl Yo Qi’ll//,l’: O, {(nhs)_1/2 (log(n))1/2}. Finally,

according to Lemma B.1, we obtain (B.2). (B.3) is proved similarly. [



Denote the inverse matrix of H by H™! = {le'}f,y:l- Foranyl=1,...,
I-th element of &,(t) and &,(t) in (A.4) and (A.5) as the following

d n oo
p —1/2 Ar—
&(t) = CJ(tg,nNT ' Z Z Z Riké,J(t),l”,lfik,l/u

"=11i=1 k=1

~ 1/2 1

€l(t> = g E RZ]EJ(t AEij,
=1 j5=1

where for any 0 < J < N,

d N;
Ripe gy = (Z le’Xil’Xil”> { By (Ti;) g (ng)} ;
1

=1 j=

2] e, I — (Z le’le’> ) (T‘Z]) :

=1
Further denote

d 2
Siwr = (Z le’Xil/Xil”> , sy =E(Sir), 1<L17<d.

'=1

d, we rewrite the

(B.8)

LeEMMA B.5. Under Assumptions (A2)-(A6), for Rie i1, Rijesi in (B.6), (B.7),

E (Z R?k,{,J,l”,l) = C;’;Sll// |:(E Nl) /bJ (U) Glu (u, u) f (U) du

k=1

FE{M(N, - 1)} / by () by (v) Gur (11,0) f (1) f () ducly |

ER? = c)la / by () o (w) f () dus,

for 0 < J < N5 and 0 < 1,1" <d. In addition, there exist 0 < cgp < Cg < 00, such that

oo
2
crsur < E (Z Rik,éJ,l”J) < Orsur, cr < ERje 51 < Cr,

for0< J< N, 0<1,I"<d, and as n — oo

A £ = Sl,}/p Z Z le LT T E (Z R?k,{,],l”,l) ‘ = Oa.s. {(nhs>_1/2 (10g(n))1/2} N
S i=1 k=1 k=1
Ave = sup | N SR B =0 {(nhe) ™7 (tog(m)) 2}
=1 j=1




PRrROOF. By independence of {Tij};il, {Xil}le , N;, the definition of B; and (B.8),

00 00 N; 2
E <Z R?k,g,J,l”,l) =E (Sill”> E Z {Z BJ (ng) ¢k7l” (TZJ)}
k=1 j=

= S””EZZBJ 1] BJ ij’ )Gl"( tj) )

Jj=1j'=1

= suncy, {(EN]_)/bJ (w) Gy (u,u) f (u) du
FEQN = 1) [ 8 (08 (0) G () £ (00 (0) e |

thus there exist constants 0 < cp < Cr < oo such that cgsyr < E (Zzozl R%M’J’l,,’l) < Cgsyr,
0<J< N, 0< 1" <d.

If sy = 0, one has Siy» = 0, almost surely. Hence n=' 37" | 3% Ry . ;n; = 0, almost
surely. In the case of syr > 0, let (; ; = (my = Dopey R?k,g,],l”,l for brevity. Under

Assumption (Ab), it is easy to verify that

1/2
0« SESu) < A EfmXuXul' €S s (EIXL ELXu ) <

=1 =1

So for large n,

2
2 1 7
E (C@J) - zll” (Z Z BJ zg BJ g’ ) Gl” ( i ))
Jj=1j'=1
1 N; 4 N;
> E(Suw)’ chl,, E {Z By (nj)} > cE Z By (T;) > chl ',
7j=1 7=1
and
N; 4
E(¢.,)" < E(Su)*4C2, E {Z By (ﬂj)}
j=1
N;
< ¢E [Nf’ZEB§ (T3;)| M1 | < cEN{EBY(Ty;) < chit.

=1
Define a sequence D, = n® that satisfies o (24 n/4) > 1, Duyn~'2hs"*(log(n))*/? — 0,

ni/2pt2 DU 0 which requires n > 4 provided by Assumption (A5). We make use of



the following truncated and tail decomposition

d
} :} : Dy,
Smu = le/le///Xll/le///Xl// = SZ”// 1 + Smuz,
ll 1 lll/ 1
where
d d
52”7/ 1 = le’le”’Xz'l’Xil”’Xz?l//I { ‘Xil’Xil’”XEl// > Dn} )
I'=10"=1
d d
D, _ } : } : 2 2
Sill”,Q —= le/le”/X’il’Xil’”Xil”I { ‘Xil/X’L'l”’Xil// S Dn} .
I'=10"=1

Define correspondingly the truncated and tail parts of ¢; ; as

Ci,],m Sﬁﬂmz ZBJ 1] BJ i’ )Gl” ( ij9 ), m = 1,2

j=1j'=1
According to Assumption (Ab), for any I/, 1", 1" =1,...,d,

E|X, 0 X, m X2, |24 >
> D} < Z | X Xrn X | <CnZDﬁ(2+n/4)<OO

2+77/4

Z P {| X X X2

n=1

Borel—Cantelh Lemma implies that

P{w ‘EIN (w),

Xy Xpum X l”( )‘ <D, for n > N(w)} =1,
P{w|3N (W), |XuXanXjn (w)| < Dpi=1,...,nforn>N(w)} =1,
P{w|3N (w), I {|XaXyw X5 (W) > D} =0,i=1,...,nforn>N(w)} =1.

Furthermore, one has

n { zll”lZZBJ i7) By (Tiy) G (T3, )}IO, a.s.
=1

J=1j4=1

Therefore, one has

ZC@Jl =

sup |n O ( _k) , k>1.

JL

Notice that

d d
E (Sﬁ?/ 1) — E g E le’le”’Xil’Xil’”Xizl”I { |Xil’Xil'”Xi2l“
I'=110"=1
d d
S D (14+n/4) E § 2 2 E ‘Xll'Xll'”le”
V=11"=1
—(1+n/4)
< cD, :

. Dn}]

24+n/4




So for large n,

E(Ciyn) = E(Siiy) {ZZBJ ii) By (Tijr) G (T4, Ty, )}

Jj=1j=1

N; 2
c D;(1+n/4)QCGJ,, E {Z B (T;) }

j=1
D, MY E (NT) E BS ()

IN

IN

< DY),

Next we considerate the truncated part ¢; ;,. For large n, E (CLJ,2) =E (Civ‘,) —E (Cw’l) ~1,
E (Ci,],2)2 =E (Ci,J)2 —E (Ci,],1)2 ~ hgl- Define G:J,Q = Ci,J,Q —-E (Ci,J,Z)v then EC;:J,Q =0,

and there exist c¢, C¢ > 0 such that for r > 2 and large n,

ZZBJ ij BJ( lJ)Gl”( ijs )

Jj=1j=1
2 al
CG I E { E B] } 1)

Jj=1

2

E(Cia2)” = ElSinal'E

> {E \Sm'/ —E }Szll)ﬁ 1

> {E[Sur|* —u(1)} cGl,,E{N Bj ( m}—u()
et
> 5 E[Siun|* %Cé,w EN EBj (Tiy) —U(1)
> ¢ E S| ht,
and
E¢isel” = E[Gu2—E(¢ sz)‘r<2H (E[Cial +]E(Ci2))

ZZBJ 1] BJ ij’ )Gl”( ij )

Jj=1j'=1

= 2’"‘1{E]S£%2

o)

2r
S 21”71 !(CDn)T2ES7;”// 2CGZ/’ {Z BJ ij } +Z/{(1)
< 271 [(eD,) P E|Suw|? (2CG )" (ENE) Cphi™ +U(1)]
< 27 (D)7 (206m) EnrICh e E (¢ )
< (CeDuhd) P E (¢ yn)”

9



which implies that {¢ : JQ}?: | satisfies Cramér’s condition. Applying Lemma B.1to » i, (7 /o,

for r > 2 and any large enough ¢ > 0,
P { n! Z Ciaz| = 5(”hs)_1/2(log(n))1/2}
i=1

< 2exp 0" log(n) <2n78.
- 44 2C:D,hi '8 (log(n))2n-120"% | —

Hence

ZP {sup he)'/? (log(n))1/2} < 00.

JUl

n
ZCZJ,Q >0 (n
i=1

WY Cal = Ous {(nhe) ™ (l0g(n)/2} as n — oo by the Borel-

Thus, sup .,

Cantelli lemma. Furthermore, we have
sup |n

n
Z CZ J,1 Z C;J,Q
AN -
EAS] i=1

= Ups. (N7F) + Ops. {(nhs)*l/2 (1Og(n))1/2} U (D)

= 0, {(nhs)_1/2 (log(n))l/z} .

Ange

IN

4+ sup |n
J

=+ sup ‘E (Ci,J,1)|
JU7

The properties of R;j. j; are obtained similarly. [
Next define two d X d matrices

F&”(t) = CJ(t 2222 {ZBJ 1] ¢k[//( )} Xl”XX

=1 i=1 k=1 =
Ny

Ton(t) = ¢yl Ny ZZB?, (T;) X: X

=1 j=1
LEMMA B.6. For any t € R, the conditional covariance matrices ofé(t) and € (t) on

(Toj, Ny, Xog)hoe are

i=1,j=1,l=1

A AT n.Ni, _ -
Sealt) = E{EME (1) |(Ty, N, X2ty L, b = HO T (H,
S (1) :E{é(t)éT()’(sz,Nl,Xll)f]f]dll 1} HIT.,()H ™,

and with 3,,(t) defined in (7),

sup [{Bea(t) + Ben(t)} = Bu()l = Oas. {n~*?h*(log(n))'/?} . (B.9)

te[0,1]

10



Proor. Note that

n N;
A /\T B _ 1 i
EWE (1) = ¢ H' {sz& T;) X szm piSp (Tig) X
T =1 j=1 =1 k=1
n Nz d 00 d
X BJ(t ’Lj Xll/ Z Zé-zk l”¢k l// ’L] ’Ll”} H*].'
=1 j5=1 =1 k=1 v
Thus,
avi n,Ni,d B
Sen(t) = E{E@E (1) |(T N X)L oy b = 5 H
d n oo 2
% NT2Z Z {ZBJ Z] ¢kl” (T )} X[//X XT Hi1
=1 1=1 k=1
=H T, (t)H".

Similarly, we can derive the conditional covariance matrix of € (¢). Next let

N; 2

Vike g = {Z By(Tij)orr (ng)} Xin XX,
j=1
Vijeanr = Bi(Tij)o” (Ti;) XuXv.
Similar to the proof of Lemma B.5,
E (Z ‘I’ik,g,J,l,Z/,z”) = C}i E (Xi2l”XilXil’) {(E Nl)/ G (u, u) f (u) du+
k=1 XJ

+E{N1<N1—1>}/

XJXXJ

G () f () f (v) dudv} ,

EWje i = C}; E (XilXil’)/ o (u) f (u) du,

XJ

and as n — 00,

sup [n~! Z‘Ifzkgﬂz' w—E (Z Wik.e g0, l”) | = Ogs. {(nh ) 12 (log(n ))1/2} ;
S i—1 k=1
n N;
i?l; NT ! Z \IJ’LJ e, Ll — E \Ilij,e,J,l,l’ = Oa.s. {(nhs)71/2 (log(n))l/Q} .

i=1 j=1

11



Furthermore,

n

o
-9 —2
Ny E § Uikegupar —n ' (EN) E( ‘I’ik,s,J,z,l',l")|
=1 k=1

sup
JLU L

nEN\’ n X
< sup n Y (EN))? Y _ql |yt v .
= s (EM) < Ny ZZ k&L
syl =1 k1

i=1 k=1
- 0, {n*3/2h 1/2 (log(n 1/2}

n o o0
1
n E E Vike g —E E Vik.e, 00,01
=1

and

n N;

NEZ Z Z \I]ik,e,J,l,l’ - (n E Nl)_l E ‘;[Jik,e,J,l,l’
=1

=1 j=1
12 2
\IlzkaJll’

=1 j=1

n N;
-1
NT E E \Ilik,s,J,l,l’ - E\Ijz'k,e,J,l,l/

i=1 j=1

—0,. { —3/2h 1/2 (log(n 1/2}

sup
JLU

nEN1

_ 1‘
JU

< sup (REN;)™! {

Notice that

d oo d
Su(t) = H ¢, (WEN) ™ { (EN)™ (Z > Ve, l”) +EWije u'}
=1

I"=1 k=1

xH™ !,

Ben(t) + ()

d
=H ¢ _1 {Zzzq’zmu)u'l"+ZZ‘I’WEM)”'} H,
=1

I""=1 i=1 k=1 =1 j=1

and (A.1) implies sup;c(g g |¢s(t)n| = O (hs). Hence (B.9) holds. O

Given (T35, Ny, Xq) ijd L= let of ,(t) and o2 () be the conditional variances of &(t)

and &;(t) defined in (A.4) and (A.5), respectively. Lemma B.6 implies that

Ugl,n@) + o2 (t) — 027”(1&)’ =0, {n’S/QhS’S’/Q(log(n))l/Q} ) (B.10)

sup -

t€(0,1]
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LEMMA B.7. Under Assumptions (A2)-(A6), for I = 1,...,d, n,(t) defined in (A.6) is
a Gaussian process consisting of (Ns+ 1) standard normal variables {nﬂ}yio such that

mt) = nyu, for t € [0,1], and there exists a constant C' > 0 such that for large n,

SUPg< j£J/<Ns E77J,l77J’,l| < Chs.

n,N;,d
PRrROOF. For any fixed [ =1,...,dand 0 < J < N;, L {77]’[ ‘(Ej,Ni,Xﬂ)i:Lj:lel} =
N (0,1) by Assumption (A2), so L{n;,} = N(0,1), for 0 < J < Ni.

Next we derive the upper bound for supg ;<. [Enjm |- Let
d mn oo
D -1 2
Rng(t)J = NT Z Z Z Rik7£7‘](t)7l//7l7 6 J(t) L= N Z Z RZ] 2 J
I"=1 i=1 k=1 i=1 j=1

then we have

d n oo 1/2
B 1/2
O'é'l’n<t) {Cj(l) NT2 Z Z Z R?k‘,f,](t),l”,l} {CJ( N IRE J } 5

'"=1 i=1 k=1

1/2
1/2
ael,n(t)z{cjl Ny ZZRWJ } —{ etV Regi}

i=1 j=1

For J # J', by (B.7) and the definition of B,

4 2
RijegiRije.r 1= (Z le’Xil’> B, (Tij) By (Tyy) 0 (T) = 0,
r=1
along with the conditional independence of &(t),(t) on (Tj;, N;, X)) jfjd 14—1» and inde-

pendence of &, Ti;, N;, {Xil};izl, 1<j<N,1<i<m k=12 ...,
E(nymys) = E[(Regu+ Rery) *(Re gy + Repyry) ™"

d n oo d
xNy'E { <Z Z Z Rik,f,J,l//,lfik,lH) (Z

1"=11i=1 k=1 "=1 i=1

n

[ee]
E Rike.gr 1 1&g
k=1

n N; n  N;
+ <Z Z Rij,e,J,lé?ij) (Z Z Rz‘j,e,J’,l£ij> (T35, Ni, Xa) lejd Li=1 }]
=1 j—1 =1 =1
= EC, 0.1,
in which
d n oo
Coggri = (Regy + Re ) (Re.yrg + Reyrg) ™2 {NTl Z Z Rige gy iRike, 1 l”l}

V=1 =1 k=1
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Note that according to definitions of Rk ¢ s 1, Rije, 1, and Lemma B.5, for 0 < J < N

Re jya + Re gy > Re gy = ERY .y — Ane > g — Ape,
2
‘ _ _ _ _ log(n) _
P f . )Y > — oy == >1—2n"8.
oy {(Regy+ Reyt)(Rery+ Reyry)} > | cr—10 e > n

Thus for large n, with probability > 1—2n78, the denominator of C,, ; ;; is uniformly greater

than ¢%/4. On the other hand, we consider the numerator of C,, s .

d n oo d n d 2
E (NT_l Z Z Z Rz‘k,g,J,l”,lRik,g,J’,l”,l) =E{N;! Z Z (Z le’Xil’Xil”)

=1 1i=1 k=1 "=11i=1 \lI'=1
N; N;

x (Z > By (Ty) By (Tyy) G (T, Tij/)) } ~ h.
j=1j'=1

Applying Bernstein’s inequality, there exists Cy > 0 such that, for large n,

d n o)
—1
Ny E E E RipeguriRike.g

"=11i=1 k=1

P ( sup < Cohs> >1—2n"%,
0<J#J'<Ns

Putting the above together, for large n, Cy = Cy (¢%/4) ",

P ( sup  |Cha] < C’lhs) >1—4n~8.
0<J#£J' <Ny

Note that as a continuous random variable, supg< ;. y<n. |Cn,s1| € [0,1], thus

1
E( sup \Cn,J7J/7l|) —/ P( sup  |Chail > u) du.
0<J#J'<Nq 0 0<J#J' <N

Cn’J’J’ |) is

C1hs 1
/ P{ sup  |Chil >u} du+/ P{ sup |Cr g1 >u}du
0 0<J#J'<Ns,l C1hs 0<J#J'<Ns,l

C1hs 1
< / ldu + / An~8du < Cihs 4+ 4n8 < Chs
0 Chhs

For large n, C1hs < 1 and then E (supOS#J,SNSJ

for some C' > 0 and large enough n. The lemma now follows from

sup  |E(Chu0)| <E < sup ’Cn,J,J/,z\) < Chs.

0<J£J'<Nq 0<J£J'<Nq

This completes the proof of the lemma. [J
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LEMMA B.8. Under Assumptions (A2)-(A6), for n,(t),onu(t),l =1,...,d, defined in (A.6)
ona® ™ {&(0) + &M} = mO)] = Irnat) = U m@)], where rat) =

1/2
U;,%l(t) {Ugl,n(t) + criw(t)} , and as n — 0o,

and (7), one has

sup {an1 [ra(t) = 11} = Ous { (1he) ™ (log (Ne + 1) log(n)) 2}

te[0,1]

PROOF. By Lemma B.5, o7, ;,(t) in (7) can be rewritten as

aru(t) = Cj(lt), (nENy)~ { (ENy) - Z E (ZRzngt) iz z) +ERY ., }

=1
~nthl.

Hence, according to (B.10) and (10),

bt {ot a0+ 2,0} 1]}
O MORCMOI Sl

an10, 5 (0) |0 u(0) + 02 () = % u(0)| |

sup {an.41|rna(t) — 1]} = sup
tel0,1] t€[0,1]

(nhs) ™" (1og (N, + 1) log(n)) 2} .

This completes the proof. [
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