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Abstract: Large panels of variables are used by policy makers in deciding on policy actions.

Therefore it is desirable to include large information sets in models for economic analysis. In

this survey methods are reviewed for accounting for the information in large sets of variables

in vector autoregressive (VAR) models. This can be done by aggregating the variables or by

reducing the parameter space to a manageable dimension. Factor models reduce the space of

variables whereas large Bayesian VAR models and panel VARs reduce the parameter space.

Global VARs use a mixed approach. They aggregate the variables and use a parsimonious

parametrisation. All these methods are discussed in this survey although the main empha-

size is on factor models.
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Typical vector autoregressive (VAR) models used for policy analysis include only small num-

bers of variables. On the other hand, in policy institutions such as central banks and gov-

ernment organisations large panels of variables are processed and used for policy decisions.

If important variables are not included in a VAR model, there will be omitted variables

bias in impulse responses etc. This suggests that one should include all variables that are

potentially important in a structural vector autoregressive (SVAR) model. In other words,

if a variables is not known to be irrelevant, one should in principle include it in the SVAR

model. It should be understood that deciding on the importance of a particular variable in

an empirical model is a difficult task for a number of reasons. For example, the variables for

which data are available may not be exactly the ones that an economist has in mind in a

theoretical model. As an example consider the Taylor rule. It includes the output gap as an

explanatory variable which is not easy to measure. Thus, one would need to include all vari-

ables in the model related to or containing information on the output gap. They could all be

important in an analysis that wants to investigate the impact of monetary policy. Moreover,

it may be of interest to see the impact of monetary policy shocks at a more disaggregate

level. For example, one may not only be interested in the response of the general price level

to a monetary policy shock but also in the reaction of sub-indices of specific sectors of the

economy. Likewise, one may be interested in the output response in specific sectors of the

economy. In that case all variables of interest have to be included in the analysis.

On the other hand, the number of parameters in a VAR increases with the square of

the number of variables included. Hence, in a conventional frequentist analysis estimation

precision suffers from including many variables and degrees of freedom limitations keep

the number of variables included in SVAR models low. Thus, the analyst often faces a

dilemma in setting up the model. On the one hand, degrees of freedom considerations

suggest including only a small number of variables whereas possible omitted variables bias

and other considerations make a large number of variables desirable in a model. Therefore

techniques have been developed that make it possible to include the information content

in a large number of variables in a VAR model. A couple of possibilities, namely factor

augmented VAR models and large Bayesian VAR models are discussed in this chapter. We

also discuss other related methods such as panel VAR models and generalized VAR models

briefly.

Factor augmented VAR models summarize the information contained in a large panel of

variables in a small number of factors and include those factors in the SVAR analysis. By

summarizing a large set of variables in factors these models impose additional structure on

the data that reduces the dimensionality of the estimation problem and, hence, standard

frequentist estimation and analysis methods can be used. The idea is to decompose the
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observed variables in common factors and idiosyncratic components. The common factors

incorporate the relations between the variables that are of central interest for a specific

analysis. The factors can be static or dynamic.

In the next section a number of important properties of static factor models are reviewed.

They are potentially useful for cross-sectional data and show some specific features of factor

models that are important to understand when generalizing them for time series data. In

Section 1.2 dynamic factor models (DFMs) for time series variables are presented as a general

framework for factor models suitable for time series data. There are different representations

of such models that will be discussed and that are also the basis for SVAR analysis. The

problem of determining the appropriate number of factors is treated in Section 1.3. Structural

identification is considered in Section 1.4. Applications are discussed in Section 1.5 and some

critical thoughts about structural analysis with factor models are presented in Section 1.6.

There are a number of good surveys of factors in SVAR models, e.g., Stock and Watson

(2005), Breitung and Eickmeier (2006), Barhoumi, Darné and Ferrara (2013). DFMs have

been used extensively for forecasting (e.g., Stock and Watson (2002a, 2006, 2011) and many

more listed in Breitung and Eickmeier (2006) and Barhoumi et al. (2013)). Some of that

literature is also relevant in the present context. Important results on statistical inference for

DFMs are available in Forni, Hallin, Lippi and Reichlin (2000, 2004), Breitung and Tenhofen

(2011), Choi (2012), Stock and Watson (2002a, 2005), Bai (2003) and many others. For a

survey see Bai and Ng (2008).

Imposing Bayesian restrictions on the parameters of a VAR model is another alterna-

tive for dealing with many variables in a VAR analysis. Large BVAR models have gained

popularity lately in particular in the context of forecasting. Examples of related studies

are, for instance, Bańbura, Giannone and Reichlin (2010), Gupta, Jurgilas, Kabundi and

Miller (2009), Carriero, Kapetanios and Marcellino (2009, 2012), Koop (2013). In Section 2

specific problems that result from including large panels of variables in the present context

of structural modelling are discussed. Finally, some alternative approaches to fitting large

VAR models are considered in Section 3. In particular, panel VARs and global VARs are

treated. Concluding remarks with a critical evaluation of structural VAR modelling in the

presence of many variables are presented in Section 4.
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1 Factor Models

1.1 Static Factor Models

1.1.1 Model Setup

The classical static factor model is a model for cross-sectional data. It has the form

yt = Λft + vt, (1.1)

where yt ∼ iid(0,Σy) is a vector of K observed variables, ft is an r-dimensional vector of

unobserved common factors and r is typically much smaller than K, r << K. Accordingly

Λ is a (K × r) matrix of factor loadings. Finally, vt ∼ iid(0,Σv) is a K-dimensional vector

of uncorrelated idiosyncratic components, that is, Σv is diagonal. Moreover, the common

factors and idiosyncratic components are assumed to be orthogonal, that is, E(ftv
′
s) = 0 for

all s and t. Hence,

Σy = ΛΣfΛ
′ + Σv, (1.2)

where Σf = E(ftf
′
t) is the covariance matrix of the factors. If the factors are mutually

uncorrelated, that is, if Σf is diagonal, the factors are said to be orthogonal. Otherwise

they are oblique. This basic model has been used for statistical analysis already for many

decades. For a detailed treatment see, e.g., Anderson (2003) who traces such models back to

Spearman (1904). Notice that in the basic model (1.1) the observed variables are assumed

to have mean zero. In practice that may require mean-adjustment prior to an analysis based

on the model (1.1).

Obviously, in the model (1.1) the factors and factor loadings are not separately identified.

For any nonsingular (r × r) matrix Q, defining f ∗t = Qft and Λ∗ = ΛQ−1 gives Λft = Λ∗f ∗t .

Thus, we may choose the factor loading matrix such that it has orthonormal columns, that

is,

Λ′Λ = Ir, (1.3)

or we may choose uncorrelated factors with variances normalized to 1,

ft ∼ (0, IK). (1.4)

In the latter case, the factors are orthogonal and

Σy = ΛΛ′ + Σv.

Such normalizations are useful for developing estimation algorithms. They are not sufficient

for uniquely identifying the model. For instance, if we normalize the factors as in (1.4), Λ
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Table 1: Identification Conditions for Factors and Factor Loadings

Restrictions for Λ Restrictions for Σf

Λ′Λ = Ir Σf diagonal with decreasing diagonal elements

Λ′Λ diagonal with distinct, Σf = Ir

decreasing diagonal elements

Λ =



λ11 0 · · · 0

λ21 λ22 0
...

...
. . .

...

λr1 λr2 · · · λrr
...

...
...

λK1 λK2 · · · λKr


Σf = Ir

λii 6= 0, i = 1, . . . , r

Λ =

[
Ir

Λ2

]
Σf unrestricted

is still not unique without further restrictions. This can be seen by choosing an orthogonal

matrix Q and defining Λ∗ = ΛQ. Thereby we get a decomposition

Σy = Λ∗Λ∗′ + Σv.

Uniqueness (identification) can be ensured by choosing Λ such that (1.3) holds and the

factors such that they are mutually uncorrelated, that is, Σf is a diagonal matrix and the

diagonal elements are distinct and ordered from largest to smallest. In other words, the

first factor has the largest variance and, hence, explains the largest part of the variance

of yt that is explained by common factors. The second factor, f2t, has the second largest

variance etc.. The requirement that the factor variances have to be distinct ensures that

the columns of Λ cannot simply be reordered. In Table 1 some sets of identification con-

ditions for factors and factor loadings from Bai and Ng (2013) are presented. It should be

noted that even when these conditions are satisfied, the Λ matrix is unique only up to sign

changes of its columns. For a thorough discussion of identification conditions see also An-

derson (2003, Section 14.2.2). If the model parameters are identified, they can be estimated

straightforwardly. Being aware of conditions for uniqueness of the factors is also important

for identifying shocks of interest, as will be seen in Section 1.4.

1.1.2 Estimating Static Factor Models

If the factor loadings were known and normalized such that Λ′Λ = Ir, a natural estimator for

the factors would be obtained by left-multiplying (1.1) with Λ′ and dropping the idiosyncratic
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term,

f̂t = Λ′yt. (1.5)

In practice the factor loadings are typically unknown. A possible objective function for

estimation in that case is the sum of squared idiosyncratic errors. Minimizing the variance

of the idiosyncratic components amounts to maximizing the part of the variance of the

observed variables explained by the common factors. In other words, we may estimate the

factor loadings and factors so as to minimize the sum of squared errors,

min
Λ,f1,...,fT

T−1

T∑
t=1

(yt − Λft)
′(yt − Λft) = min

Λ,f1,...,fT
trT−1

T∑
t=1

(yt − Λft)(yt − Λft)
′. (1.6)

A solution to this minimization problem is obtained by considering the r largest eigenvalues

λ1 > · · · > λr of Sy = T−1
∑T

t=1 yty
′
t with corresponding orthonormal eigenvectors λ1, . . . ,λr,

choosing Λ̂ = [λ1, . . . ,λr] and using f̂t = Λ̂′yt. Notice that Λ̂ is the so-called principal

components (PC) estimator of Λ. Given the orthogonality of the eigenvectors, it satisfies

Λ̂′Λ̂ = Ir. The factors are the principal components and Σ̂f = T−1
∑T

t=1 ftf
′
t = Λ̂′SyΛ̂ =

diag(λ1, . . . , λr), that is, the eigenvalues λ1, . . . , λr are the empirical variances of the factors

so that their variances are ordered from largest to smallest.

Asymptotic properties of estimators of factor models can be found in Anderson (2003,

Chapter 14) for T → ∞ and fixed K and results for more general factor models under the

assumption that both the number of components K and the sample size T go to infinity

are derived by Stock and Watson (2002a), Bai (2003) and many others. In particular, these

authors show consistency of the estimators and asymptotic normality if K and T go to

infinity at suitable rates and suitable normalisations are made. In addition some further

regularity conditions are necessary for these results to hold (see Bai and Ng (2008) for a

review of conditions and results).

The PC estimator is the ML estimator if the observations yt come from a normal dis-

tribution and the idiosyncratic components have equal variances, Σv = σ2IK . In other

words, it is assumed that the factors and idiosyncratic components are normally distributed,

ft ∼ iidN (0,Σf ) and vt ∼ iidN (0, σ2IK) (see Anderson (2003)). If the variances of the id-

iosyncratic components are heterogeneous, Σv = diag(σ2
1, . . . , σ

2
K) 6= σ2IK , the log-likelihood

becomes

log l(Λ, f1, . . . , fT ,Σv) = constant− T

2
log |Σv| −

1

2
tr

(
T∑
t=1

(yt − Λft)(yt − Λft)
′Σ−1

v

)
.

Anderson (2003, Section 14.4) points out that the likelihood function is unbounded in general

and, hence, it does not have a global maximum. Thus, standard ML estimation cannot be
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used. Instead a local maximum in the neighbourhood of the true parameter vector has to

be considered (e.g., Breitung and Tenhofen (2011) and Bai and Li (2012)).

If an estimator Σ̃v of Σv is available, the factor loadings and factors may be estimated

by a feasible GLS (FGLS) method based on the minimization problem

min
Λ,f1,...,fT

T−1

T∑
t=1

(yt − Λft)
′Σ̃−1

v (yt − Λft).

See Choi (2012) for FGLS procedures for factor models and related asymptotic properties

of the estimators.

If the normalization in (1.4) is used for the common factors and the observations are

normally distributed, ML estimation of the factor loadings and idiosyncratic variances is

achieved by maximizing the log-likelihood

log l(Λ,Σv) = constant− T

2
log |Σy| −

1

2
tr(TSyΣ

−1
y )

= constant− T

2
log |ΛΛ′ + Σv| −

1

2
tr
[
TSy(ΛΛ′ + Σv)

−1
]
.

Again this maximization problem calls for numerical methods. Suitable algorithms are dis-

cussed, for instance, by Magnus and Neudecker (1988, Chapter 17).

1.1.3 Approximate Static Factor Models

So far we have considered what might be called an exact static factor model where the

idiosyncratic components are clearly separated from each other and the factors. For economic

data such an assumption may be too strict, in particular, if large sets of variables are

considered. In that case, one may want to assume that there are infinitely many potentially

interesting variables and a model could be specified under the assumption thatK →∞. Such

a model was, for instance, considered by Chamberlain and Rothschild (1983) for investigating

a market with many assets (see also Connor and Korajczyk (1986, 1993)). In that case it is

of interest to look at approximate factor models that allow for some correlation within the

idiosyncratic components or, in other words, models where the common factors do not fully

capture all relations between the observed variables, that is,

Σy = ΛΣfΛ
′ + Σv,

where Σv is not necessarily a diagonal matrix. Assuming that the common factors are

normalized to have variance one, Chamberlain and Rothschild (1983) define an approximate

factor model to exist if Σy has only r unbounded eigenvalues when K → ∞. The common

factors are defined by the requirement that there exists a sequence of (K × r) matrices Λ
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and positive definite covariances Σv such that

Σy = ΛΛ′ + Σv

and the maximum eigenvalue of Σv is bounded when K → ∞. Thus, the relative variance

share of each idiosyncratic components is small when the number of variables is large.

Obviously, in that case identification of the model becomes more difficult and conditions

different from those stated earlier are required. In fact, it is then even possible that Σv

has a factor decomposition that needs to be clearly separated from the common factor

part captured by ΛΛ′, at least asymptotically, if asymptotic properties of estimators are

of interest. Choi (2012) considers estimation of models of that type and provides general

asymptotic results.

Approximate factor models are particularly relevant if time series data are considered.

We turn to that case next.

1.2 Dynamic Factor Models

If time series data are under consideration, taking into account the serial dependence is

essential for forecasting and structural analysis. Hence, dealing with models that capture

dynamic relations is important. In other words, in the context of factor models the clas-

sical static model has to be generalized to allow for dynamic structures. Of course, serial

dependence may well be represented by a model of the form (1.1) if ft and vt are not seri-

ally uncorrelated or independent. Thus, dynamic factor models are obtained by allowing ft

and vt to be general stochastic processes. If we remain in the stationary world, a natural

extension of the covariance decomposition in (1.2) would be a decomposition of the spectral

density of yt. Denoting the spectral density functions of yt, ft and vt by Σy(ξ), Σf (ξ) and

Σv(ξ), respectively,

Σy(ξ) = ΛΣf (ξ)Λ
′ + Σv(ξ), (1.7)

where Σv(ξ) is assumed to be a diagonal matrix in the exact dynamic factor model while

more general assumptions are made in an approximate dynamic factor model.

Different dynamic factor models for time series data that decompose the spectral density

of the observations in the way shown in (1.7) have been proposed in the literature. Clearly,

it depends on the assumptions made for the stochastic processes considered for ft and vt

which model is obtained. A number of special cases are considered in the following.

If vt is white noise, that is, Σv(ξ) = Σv, then yt inherits all its serial dependence from

the common factors. An early example of such a model for time series data is considered by

Peña and Box (1987) who assume that the factors have a vector ARMA generation process

9



and the Σv matrix is not necessarily diagonal. For inference purposes there is no difference to

the static factor model (e.g., Choi (2012)). This case is therefore not specifically considered

here. From a practical point of view such models are typically too restrictive.

If the model can be written in the form (1.1) and ft and vt have parametric VAR rep-

resentations, then the model is a dynamic factor model in static form. In fact, Boivin and

Ng (2005), for example, simply call this model a static factor model to distinguish it from a

model where lagged factors ft−j appear on the right-hand side of (1.1) in addition to the con-

temporaneous factors. We do not use this terminology here because, as we will see, dynamic

factor models in the sense of Boivin and Ng (2005) can always be written in static form.

Instead we call any dynamic factor model with parametric VAR representation of the factors

and idiosyncratic components a dynamic factor model (DFM). A more general model where

the common component and the idiosyncratic components are general stochastic processes

is called a generalized dynamic factor model (GDFM). This terminology is in line with some

of the related literature. Generally, when reading that literature, it is worth checking which

assumptions precisely are made and which terminology is used.

The remainder of this section is structured as follows. In Subsection 1.2.1 the static form

of a DFM is presented and its estimation is discussed. In Subsection 1.2.2 the dynamic form

of a DFM is considered and it is shown how it can be written in static form. A specific

variant of the DFM contains observed variables in addition to dynamic factors. It is the

model that is commonly known as factor augmented VAR (FAVAR) model and is considered

in Section 1.2.3 because it is of particular importance for structural VAR analysis. Finally

the GDFM is presented in Section 1.2.4. Estimation methods for all the models are also

presented.

In this section we have in mind models for stationary variables. Factor models can also be

considered for integrated variables although in that case the inference and analysis methods

have to be modified. In fact, a model with cointegrated variables captures the common trends

in a system of integrated variables. The common trends can be viewed as common factors.

Given the differences in inference procedures relative to stationary models, it is perhaps not

surprising that adjustments are necessary if the variables have stochastic trends. In fact,

the estimation procedures presented in the following are based on covariance matrix and

spectral density estimates that are not meaningful for integrated variables. Extensions of

factor models to allow for integrated variables can be found in the cointegration literature

or Bai (2004), for example.
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1.2.1 Static Form of a DFM

Consider the model (1.1),

yt = Λfft + vt, (1.8)

with dynamic factors being generated as

ft = Γ1ft−1 + · · ·+ Γsft−s + ηt and vt = A1vt−1 + · · ·+ Apvt−p + ut,

where the Ai, i = 1, . . . , p, are diagonal matrices and ut is white noise with diagonal covari-

ance matrix Σu. Using lag operator notation,

Γ(L)ft = ηt and A(L)vt = ut,

where A(L) = diag[α1(L), . . . , αK(L)]. This model is called a static form of a DFM be-

cause the relation between the observed yt and the dynamic factors can be described as

instantaneous, that is, no lagged ft appears in (1.8).

Estimation Estimation of the factors and factor loadings in (1.8) for a given number

of factors, r, can be done by PC, ignoring all serial dependence in the error terms. Bai

(2003) derives properties of the estimators. PC estimation is generally inefficient because

the dependence structure of the errors is ignored. Choi (2012) develops a GLS estimation

procedure that can accommodate heteroskedastic idiosyncratic components and Breitung

and Tenhofen (2011) propose a GLS estimation procedure that can deal with a more general

dependence structure in the error terms. In fact, it works even if the model is just an

approximate factor model with a more general dependence structure of the error terms. Bai

and Li (2012) discuss maximum likelihood estimation of such models.

1.2.2 Dynamic Form of the Factor Model

A more general formulation of a DFM is obtained if the factors are allowed to enter also in

lagged form. The general form is

yt = Λf
0ft + Λf

1ft−1 + · · ·+ Λf
q∗ft−q∗ + vt. (1.9)

Assuming the same generation mechanisms for ft and vt as in the static form (1.8), the

model can be written in lag operator notation as

yt = Λf (L)ft + vt, A(L)vt = ut, Γ(L)ft = ηt,

where

A(L) = diag[α1(L), . . . , αK(L)],
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Λf (L) = Λf
0 + Λf

1L+ · · ·+ Λf
q∗L

q∗ ,

Γ(L) = Ir − Γ1L− · · · − ΓsL
s,

ft = (f1t, . . . , frt)
′ are the common factors as before, vt = (v1t, . . . , vKt)

′ is the vector of

idiosyncratic components and ηt is white noise such that E(utη
′
s) = 0 ∀ t, s.

Defining Ft = (f ′t , . . . , f
′
t−q∗)

′ and ΛF = [Λf
0 ,Λ

f
1 , . . . ,Λ

f
q∗ ] the model (1.9) can be written

in static form,

yt = ΛFFt + vt,

where just the dimension of the factor vector is larger. It is often referred to as the vector

of static factors, whereas the corresponding shorter vector ft is called the vector of primitive

dynamic factors.

Left-multiplying (1.9) by A(L) gives

A(L)yt = Λ(L)ft + ut, (1.10)

where Λ(L) = A(L)Λf (L) is a matrix polynomial of order q ≤ pq∗. Assuming without loss

of generality that q ≥ s, the model (1.10) can be written in static form as

A(L)yt = ΛFt + ut, Ft = ΓFt−1 +Gηt, (1.11)

where, using similar notation as before, Ft = (f ′t , . . . , f
′
t−q)

′, Λ = [Λ0,Λ1, . . . ,Λq], and

Γ =



Γ1 Γ2 · · · Γq Γq+1

Ir 0 · · · 0 0

0 Ir 0 0
...

. . . 0 0

0 0 · · · Ir 0


(R×R)

and G =



Ir

0

0
...

0


(R×r)

.

Here R = r(q + 1) and Γi = 0 for i > s. The overall model in VAR form can be written as[
IR − ΓL 0

−ΛΓL A(L)

][
Ft

yt

]
=

[
Gηt

ΛGηt + ut

]
. (1.12)

This DFM is a restricted version of the factor-augmented VAR (FAVAR) model considered

in the next subsection. In particular, the VAR coefficient matrices contain a block of zeros

and the residuals have a specific structure.

Following Chamberlain and Rothschild (1983), Stock and Watson (2005) call the model

(1.9) an exact DFM if A(L) has a diagonal structure and the error covariance matrix
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E(utu
′
t) = Σu is diagonal which implies mutually uncorrelated idiosyncratic components.

Models of this type were used in the earlier econometrics literature by Sargent and Sims

(1977). They are also closely related to index models considered by Reinsel (1983) and re-

duced rank VAR models discussed by Velu, Reinsel and Wichern (1986), Tso (1981), Ahn

and Reinsel (1988), Reinsel (1993), Reinsel and Velu (1998) and Anderson (1999, 2002).

Such models differ from the DFM in (1.9) by their assumptions for the error term vt. They

assume that vt is white noise with a general, not necessarily diagonal covariance matrix. In

other words, the error term cannot be interpreted easily as a vector of idiosyncratic com-

ponents. In contrast to exact DFMs, approximate DFMs also allow for more dependence

between the idiosyncratic components. In the following we treat A(L) and Σu as diagonal,

unless otherwise specified.

Before we discuss the unrestricted FAVAR model we consider estimation of the restricted

model (1.12).

Estimation We now discuss estimation of DFMs for a given number of lags and a given

number of factors. Of course, these quantities have to be decided first. It is still useful

to consider estimation for given numbers of lags and factors because determining these

quantities requires estimation of the models. We discuss model specification later.

Before estimating a DFM it may be a good idea to scale the variables such that they

have zero mean and variance one, that is, one may want to mean-adjust the variables and

scale them by the sample standard deviation. Of course, the static form of the DFM can be

estimated easily as described earlier. Following Stock and Watson (2005), the dynamic form

of the DFM can be estimated as follows:

Step 1 Get an initial estimate Ã(L) of A(L) = diag(α11(L), . . . , αKK(L)), for example, by

regressing the individual variables on their own lags.

Step 2 Compute the PC estimator Λ̂ of Λ from the model Ã(L)yt = ΛFt + ũt and estimate

the factors as F̂t = Λ̂′Ã(L)yt.

Step 3 Estimate A(L)yt = ΛF̂t + ût by single equation OLS for each equation separately to

get new estimates of A(L) and Λ and choose F̂t = Λ̂′Ã(L)yt.

Step 4 Iterate Step 3 until convergence.

Using single equation OLS in Step 3 is justified because the idiosyncratic error terms

are assumed to be instantaneously uncorrelated, that is, Σu is a diagonal matrix. If that

assumption is false estimation efficiency can be improved by using a feasible GLS procedure
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because the regressors in the different equations of the system A(L)yt = ΛF̂t + ût are not

identical if the diagonal structure of A(L) is taken into account.

Once the estimated factors F̂t are available, the Γ coefficient matrix of the transition

equation in (1.11) can then be estimated by regressing F̂t on F̂t−1. Thereby we have estimates

of all the parameters in the model (1.12).

Unfortunately, the procedure will only deliver a linear transformation of the true factors

because the PC estimator uses just some statistical normalisation or identification that may

not result in the primitive dynamic factors, ft, of which the static factors, Ft, are composed.

Therefore we need to do another PC estimation to determine the r linearly independent

factors ft underlying Ft. Let Ŵ be the matrix of eigenvectors corresponding to the r largest

eigenvalues of the residual covariance matrix Σ̂U = T−1
∑

t ÛtÛ
′
t , where Ût = F̂t − Γ̂

∗
F̂t−1

and Γ̂
∗

is an estimator obtained by regressing F̂t on F̂t−1. Then η̂t = Ŵ ′Ût and the primitive

factors ft can be estimated as f̂t = Ŵ ′F̂t. If estimates of Γ1, . . . ,Γq+1 are required they

may be obtained by regressing f̂t on f̂t−1, . . . , f̂t−q−1. Finally, the covariance matrix of ηt

can be estimated in the usual way using the covariance estimator of the latter regression.

Alternatively, it may be based on the η̂t, that is, Σ̂η = T−1
∑

t η̂tη̂
′
t may be used. Methods

for choosing the values of R and r required in this procedure are discussed in Section 1.3.

It may be worth pointing out that there does not appear to be a standard procedure in

the literature for estimating the Γ1, . . . ,Γq+1. The one presented here may not be generally

appealing. Perhaps this is one reason for the growing popularity of the FAVAR approach

presented in the next section.

It is also possible to use ML estimation under normality assumptions for all parame-

ters simultaneously, that is, one may set up the log-likelihood and maximize that by some

nonlinear optimization algorithm. The actual evaluation of the log-likelihood can be done

with the Kalman filter because (1.11) is in state space form. The computations may still be

challenging if a large panel of variables is considered. Doz, Giannone and Reichlin (2011)

propose an alternative two-step estimator based on the Kalman filter that may be helpful

for large panels of variables.

Asymptotic results for estimators of dynamic factor models can be found in Stock and

Watson (2002a), Bai (2003) and Bai and Ng (2008) among others. Despite the fact that

asymptotic properties are obtained for T and K → ∞, small sample results by Boivin and

Ng (2006) indicate that including more variables in a factor analysis does not necessarily

result in better estimates. In particular, they find that including more variables may not

improve forecasts of an approximate factor model.

Rather than using frequentist estimation methods, one may also use Bayesian methods

for estimating dynamic factor models. We return to Bayesian estimation in the context
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of large panels of variables in Section 2 and therefore do not discuss these methods here

but just mention that they have been used by Otrok and Whiteman (1998), Kose, Otrok

and Whiteman (2003) and Amir Ahmadi and Uhlig (2009), for example, in the context of

estimating dynamic factor models.

1.2.3 FAVAR Models

Bernanke, Boivin and Eliasz (2005) consider a more general, unrestricted version of a FAVAR

model,

A(L)

[
Ft

yt

]
= wt, (1.13)

where wt is (R + K)-dimensional white noise, A(L) = A0 + A1L + · · · + ApL
p is a ((R +

K) × (R + K)) matrix operator, Ft is a vector of R unobserved common factors that are

related to a large number of N informational variables xt by the observation equation

xt = ΛFFt + Λyyt + et. (1.14)

The K observed variables yt are usually a small set of variables of interest from an economic

point of view that drive the dynamics of the system together with the unobserved factors

Ft. The yt variables must not be included in xt because otherwise some of the idiosyncratic

components would be zero and, hence, the covariance matrix of the idiosyncratic components

would be singular. Hence, although the DFM (1.12) may be viewed as a restricted FAVAR

model, alternatively the observation equation in (1.14) can be interpreted as a specific DFM

where some of the factors are observed variables. Thus, it is not clear which of the models

should be viewed as more general.

For identifying the factors, Bernanke et al. (2005) assume that the upper (R×R) block of

ΛF is an identity matrix and the upper (R×K) block of Λy is a zero matrix. They mention

that these conditions are sufficient for identification. Clearly, they are not necessary and

they may well be over-identifying and, hence, may imply unwanted distortions.

As an example Bernanke et al. (2005) consider the following variables: output, qt, poten-

tial output, qpt , a cost push shock, st, an inflation rate, πt, and a nominal interest rate, Rt,

and they mention that variables such as the output gap and a cost push shock are not ob-

servable and, hence, should be replaced by a set of informational variables. In fact, one could

even go further and argue that policy makers view variables such as output and inflation as

latent variables that are measured as factors.

Estimation Bernanke and Boivin (2003) augment a VAR model by factors for forecasting

purposes. They estimate the factors in a first step by PC analysis and then include them
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in a VAR model together with observed variables. This procedure is inspired by Stock and

Watson (2002b). It is also used by Favero, Marcellino and Neglia (2005) and, in modified

form, by Bernanke et al. (2005) for estimating the factors and their FAVAR model. The

factors are estimated in the first step by a PC analysis of the large set of informational

variables, xt, that do not include the observed variables of interest, yt. Then the FAVAR

model (1.13) is estimated with the estimated factors replacing the true factors. Bernanke

et al. (2005) also use another method that leads to similar conclusions, suggesting that the

method works reasonably well.

Alternatively, estimation of the factors may be based directly on the observation equation

(1.14). We define X = [x1, . . . , xT ], F = [F1, . . . , FT ], Y = [y1, . . . , yT ], and E = [e1, . . . , eT ]

and write the relation in matrix form as

X = ΛFF + ΛyY + E. (1.15)

This form suggests the following iterative estimation procedure inspired by the approach

used in Boivin and Giannoni (2009).

Step 1. Initial estimate of Λy

Λ̂y
(0) = XY ′(Y Y ′)−1

Step 2. Iteration for i = 1, 2, . . .

Let Λ̂F
(i) be the R largest PCs of T−1(X − Λ̂y

(i−1)Y )(X − Λ̂y
(i−1)Y )′. Compute F̂(i) =

Λ̂F ′
(i)(X − Λ̂y

(i−1)Y ) and Λ̂y
(i) = (X − Λ̂F

(i)F̂(i))Y
′(Y Y ′)−1.

Iterating the second step until convergence avoids the identification restrictions for Λy that

are imposed by Bernanke et al. (2005).

Extensions Dufour and Stevanović (2013) extend the FAVAR model to a factor augmented

vector autoregressive moving average (FAVARMA) model. They argue that if the factors

are driven by a finite order VAR process this implies a mixed VARMA generation process

for the yt variables in yt = ΛFt + vt. Hence it is natural to consider VARMA rather than

VAR models. They also propose a suitable estimation procedure for such models and find

improved forecast performance of a FAVARMA model for U.S. macro data relative to a

FAVAR model.

Banerjee and Marcellino (2008) and Banerjee, Marcellino and Masten (2013, 2014) con-

sider factor augmented cointegrated VAR models and set them up in error correction form.

They abbreviate the factor augmented VECM as FECM and discuss estimation, forecasting
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and structural analysis based on such models. The advantage of FECMs is that they ex-

plicitly allow for integrated variables whereas standard dynamic factor models are typically

designed for stationary variables. An obvious advantage of including integrated variables in

levels is that the models can also capture cointegration relations.

1.2.4 Generalized Dynamic Factor Models

The generalized dynamic factor model (GDFM) generalizes (1.8) by allowing the common

and idiosyncratic components to be general stationary processes that may not admit a finite

order VAR representation, that is, we consider a model yt = Λft + vt, where ft is the process

of common factors and vt is the process of idiosyncratic components. The two processes ft

and vt can be characterized via their frequency domain or spectral properties as in (1.7) (see

Forni and Lippi (2001) and Forni et al. (2000, 2004, 2005)). The decomposition in (1.7) also

suggests estimation methods which are presented now.

Estimation Estimation of GDFMs is considered by Forni and Reichlin (1998) and Forni

et al. (2000, 2004, 2005). Since they do not assume a parametric model for the generation

process of the observables and the common factors, they use a nonparametric frequency

domain PC analysis as developed by Brillinger (1975). Based on the work of Forni et al.,

Favero et al. (2005) propose the following procedure for estimating the dynamic PCs and

common components:

Step 1 For a sample y1, . . . , yT of size T , the spectral density matrix of yt is estimated as

Σ̂y(ξj) =
M∑

m=−M

wmΓ̂y(m)e−imξj , ξj = 2πj/(2M + 1), j = 0, 1, . . . , 2M,

where M is the window width, wm = 1− |m|/(M + 1) are the weights of the Bartlett

window and Γ̂y(m) = T−1
∑

t(yt − ȳ)(yt−m − ȳ)′ is the sample covariance matrix of

yt for lag m. The window width has to be chosen such that M → ∞ and M/T → 0

as T → ∞. Forni et al. (2000) remark that a choice of M = 2T 1/3/3 worked well in

simulations.

Step 2 For j = 0, 1, . . . , 2M , determine the eigenvectors λ1(ξj), . . . ,λr(ξj) corresponding

to the r largest eigenvalues of Σ̂y(ξj).

Step 3 Defining

λmk =
1

2M + 1

2M∑
j=0

λm(ξj)e
ikξj , k = −M, . . . ,M,
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the dynamic PCs of yt are obtained as

f̂mt =
M∑

k=−M

λ′mkyt−k, m = 1, . . . , r,

and collected in the vector f̂t = (f̂1t, . . . , f̂rt)
′.

Step 4 Run a regression

yt = Λ−qf̂t+q + · · ·+ Λpf̂t−p + vt

and estimate the common component as

χ̂t = Λ̂−qf̂t+q + · · ·+ Λ̂pf̂t−p,

where Λ̂j, j = −q, . . . , p, are the OLS estimators, that is, the common component χt

is estimated as the fitted value of the regression. The leads q and lags p used in the

regression could be chosen by model selection criteria. In practice small numbers of

leads and lags seem to be used.

Using leads of the estimated factors and, hence, of the observations in Step 4 to recon-

struct the common component may be a disadvantage in forecasting and impulse response

analysis. Therefore it may be worth knowing that a one-sided procedure has been proposed

(see Forni, Hallin, Lippi and Reichlin (2005)). For impulse response analysis it is in fact not

clear that a one-sided procedure has advantages. Although impulse responses can be seen as

forecasts, estimating them from the full sample is also common in standard VAR analysis.

Hence, we have presented the two-sided procedure here.

1.2.5 Comparison of Dynamic Factor Models

As we have seen in the foregoing, the various forms of the dynamic factor models are to some

extent just different representations of the same data generation process. The particular

form used in a specific analysis is a matter of convenience in setting up inference procedures

or using them in a specific analysis. Of course, the models also differ to some extent in

the underlying assumptions. This is in particular true for DFM and GDFM models. The

latter allow in principle more general underlying dynamics of the factors and idiosyncratic

components. As noted earlier, GDFMs allow the factors and idiosyncratic errors to be

general stochastic processes while DFMs focus on finite order VAR and AR processes for

these quantities. But even that distinction is not substantial in practice because stationary

processes can be approximated arbitrarily well by finite order AR or VAR processes if the lag

order is not restricted. Thus, for practical purposes the choice of model may just be made by
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convenience and personal preference. This issue is to some extent important when it comes

to structural analysis. The model or model form that is most suitable for identifying the

shocks of interest is then the model of choice. Technical considerations may be of secondary

importance.

Before we discuss structural analysis in more detail, we first consider choosing the number

of factors.

1.3 Selecting the Number of Factors and Specifying the Model

A full specification of a DFM requires selecting the number of common factors and the

various lag orders. Since a PC analysis does not require that the lag order is specified, it is

in fact possible to specify the number of static factors before lag orders of the VAR operators

are determined. In classical static factor models, subjective criteria such as choosing as many

factors as are necessary to explain a prespecified fraction of the overall variance have been

used traditionally. More precisely, if PC analysis is used, the sum of the variances of the

PCs considered as common factors has to exceed a prespecified fraction of the sum of the

eigenvalues of the sample covariance matrix. Another criterion of that kind is the so-called

scree test proposed by Cattell (1966). It is based on assessing for which number of factors

the variance explained by the factors starts to taper off.

1.3.1 Specification of DFMs

For DFMs more formal criteria have been developed that assume a true number of factors

R0 and allow for consistent estimation of this quantity when both the cross-section and time

dimension become large (K,T → ∞). The most popular criteria are proposed by Bai and

Ng (2002) and take the form

IC(R) = log V (R) +Rg(K,T ) (1.16)

where V (R) = (KT )−1
∑T

t=1(yt− Λ̂F F̂t)
′(yt− Λ̂F F̂t). Notice the similarity with information

criteria for VAR order selection. These authors show that under suitable conditions the

estimator R̂ = argminR=1,...,RmaxIC(R) is consistent for the true number of factors R0. Of

course, a minimum condition is that Rmax ≥ R0. Moreover, the penalty term g(K,T ) has to

go to zero at a suitable rate with growing T and K. According to Breitung and Eickmeier

(2006), the most popular criterion from this class chooses g(K,T ) =
(
K+T
KT

)
log(min[K,T ]),

that is, the criterion becomes

ICp2(R) = log V (R) +R

(
K + T

KT

)
log(min[K,T ]). (1.17)
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Using this criterion we can estimate the number of static factors, that is, the dimension of

Ft.

For structural analysis the number of primitive dynamic factors, that is, the dimension

r of ft in the dynamic model form (1.10) is of prime interest, however. Bai and Ng (2007)

propose a procedure for determining them or the number of related primitive shocks, as they

call them. They utilize that the error term in the transition equation in the static form

(1.11), Gηt, has covariance matrix GΣηG
′ of rank r and devise a procedure for determining

that rank. Starting from estimates F̂t of the static factors they propose to fit a VAR model to

the F̂t. In our present framework that VAR model is of order one because we have assumed

that q ≥ s. Thus, fitting

F̂t = ΓF̂t−1 + Ut

gives estimated residuals Ût, t = 1, . . . , T (see Section 1.2.2). Let ρ1 ≥ ρ2 ≥ · · · ≥ ρR be

the eigenvalues obtained from a PC analysis of the estimated residual covariance matrix

T−1
∑T

t=1 ÛtÛ
′
t and define

D̂1(r) =

(
ρ2
r+1∑R
i=1 ρ

2
i

)1/2

(1.18)

and

D̂2(r) =

(∑R
i=r+1 ρ

2
i∑R

i=1 ρ
2
i

)1/2

. (1.19)

Based on these quantities Bai and Ng (2007) propose to estimate the number of primitive

dynamic factors as

r̂ = min r ∈
{
r : D̂1(r) <

1

min(K1/2−δ, T 1/2−δ)

}
(1.20)

or as

r̂ = min r ∈
{
r : D̂2(r) <

1

min(K1/2−δ, T 1/2−δ)

}
, (1.21)

where δ is a small number between 0 and 1/2. In a simulation study they choose δ = 1/4

which appears to give reasonable results.

Notice that by choosing the number of static factors and the underlying dynamic primitive

factors suggests that the lag length of Λ(L) in the DFM (1.10) cannot be longer than R/r.

More precisely, we can choose q + 1 = R/r, if the latter ratio is an integer. If R/r is not an

integer, a plausible value for q is the smallest integer larger than (R/r)−1. Thus, choosing the

number of factors is related to selecting the lag length of at least one of the lag polynomials in
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the DFM. The other lag lengths can be chosen by standard model selection criteria. Jacobs

and Otter (2008) propose a procedure for determining the number of dynamic factors and

their lags simultaneously.

A number of publications address the problem of estimating the number of factors in

DFMs. Further important contributions include Amengual and Watson (2007) and Breitung

and Pigorsch (2013). For a thorough review see Bai and Ng (2008).

1.3.2 GDFMs

There are also methods specifically designed to estimate the number of factors in GDMFs.

For example, Onatski (2009) presents a testing procedure for the number of static factors

that may be viewed as a formalization of the scree test mentioned earlier. Hallin and Lǐska

(2007) develop information criteria for estimating the number of dynamic factors based

on the eigenvalues λ1(ξj), . . . , λK(ξj) of the estimated spectral density matrix Σ̂y(ξj), ξj =

2πj/(2M + 1), j = 0, 1, . . . , 2M . They are defined as

PCP (k) =
1

K

K∑
j=k+1

1

2M + 1

M∑
m=−M

λj(ξm) + kϕ(K,T )

and

IC(k) = log

(
1

K

K∑
j=k+1

1

2M + 1

M∑
m=−M

λj(ξm)

)
+ kϕ(K,T ).

The bandwidth M has to be such that M → ∞ and M/T → 0 for T → ∞, the penalty

term has to be such that

ϕ(K,T )→ 0 and min{K,M−2, (MT )1/2}ϕ(K,T )→∞

and the search is done over k ∈ {0, . . . , rmax} with rmax greater than or at least equal to the

true rank to obtain consistent selection criteria.

1.4 Structural Identification

1.4.1 FAVAR Models

If the FAVAR model (1.13) is considered, structural shocks can be recovered as in a standard

VAR model by a linear transformation of the reduced form residuals, that is, the structural

shocks are obtained as εt = B−1wt. In that setup identification of the shocks can be done

as in a conventional VAR model. Of course, the number of variables and, hence, potential

shocks may be larger which may make identification more difficult. However, if only some

of the shocks are of interest, only those shocks have to be identified.
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For example, Favero et al. (2005) first extract factors from large data sets and then use

these as additional variables in a FAVAR model. They order the policy interest rate last

and as they are only interested in the effects of monetary policy shocks, they use a recursive

identification scheme, that is, the impact effects matrix is lower triangular. In other words,

the variables in their FAVAR are

(F ′t , y
∗′
t , rt)

′,

where y∗t contains all observed key variables apart from the interest rate rt. They assume

that a monetary policy shock has no instantaneous impact on any of the observed variables

and the factors. Since the other shocks are not of interest in their analysis they can be

identified arbitrarily.

Of course, the assumption that none of the factors and observed variables reacts instan-

taneously (or, more precisely, within the period of sampling frequency) to a monetary policy

shock may be regarded as restrictive, in particular, if fast-moving financial variables are

included in the model. If one wants to avoid such an assumption, one could split up the

variables in fast-moving and slow-moving variables, as in Bernanke et al. (2005) and extract

factors separately from the two groups of variables. Then one could order the slow-moving

factors (f st ) before the interest rate and the fast-moving factors (f ft ) behind it so that they

can be instantaneously affected in a lower-triangular recursive identification scheme. In other

words, the variables in the FAVAR are arranged as follows:

(f s′t , y
s′
t , rt, f

f ′
t , y

f ′
t )′,

where yst and yft contain the slow- and fast-moving observed variables, respectively, in the sys-

tem. Suitable restrictions separating slow- and fast-moving factors can also be implemented

by imposing zero restrictions on the factor loadings. In other words, one may specify that

some factors load only on fast-moving variables and others load only on slow-moving vari-

ables. Imposing such restrictions requires suitable estimation algorithms that allow for a

restricted loading matrix. Maximum likelihood and Bayesian methods can in principle be

used although they may be more difficult to implement than methods that impose only

identifying (uniqueness) restrictions on the loading matrix.

In this approach no overall model for the DGP is considered and the factors are treated

as actual variables measured without errors. Clearly this is a strong assumption, although,

as we will see shortly, also an impulse response analysis based on DFMs requires strong

assumptions. In any case, if the FAVAR setup (1.13) is used for impulse response analysis,

the responses of the informational variables are not obtained. They may also be of interest

and can be obtained via (1.14) by considering

xt = [ΛF : Λy]A(L)−1wt + et. (1.22)
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Alternatively, impulse response analysis can be performed in the framework of DFMs or

GDFMs.

1.4.2 Identification of Shocks in DFMs

In a DFM the dynamics of the system and in particular the relationships between the vari-

ables are determined by the factors. Hence, the shocks are also assumed to be transmitted

through the factors and we replace the factors in the DFM by their MA representation and

get a reduced form

yt = Φ(L)ηt + vt, (1.23)

where Φ(L) = Λf (L)Γ(L)−1 = A(L)−1Λ(L)Γ(L)−1 = A(L)−1Λ(IR−ΓL)−1G if we start from

(1.9). For our discussion of structural forms and identifying structural shocks we assume

that the reduced form parameters Φ(L) and Ση are known. They can be estimated from the

data as discussed in Section 1.2.

Assuming as usual that the (r × 1) vector of reduced form residuals ηt is related to the

(r×1) vector of structural shocks εt by a linear transformation ηt = Bεt, the structural form

corresponding to (1.23) is

yt = Φ(L)Bεt + ut. (1.24)

If the structural shocks are instantaneously uncorrelated and the variances are normalized

to 1 we get εt ∼ (0, Ir). Hence, B has to satisfy BB′ = Ση and, as in the standard case, we

need at least r(r− 1)/2 more restrictions for identification of the (r× r) matrix B. In other

words, identifying the structural shocks requires putting enough restrictions on B to obtain

uniqueness. These restrictions may come in the form of exclusion restrictions on the impact

effects or the long-run effects of the shocks. They may also be available in the form of sign

restrictions. Some specific restrictions are discussed in the following.

Restrictions on the Impact Effects of Shocks Notice that the impact matrix Φ0 in

Φ(L) =
∑∞

i=0 ΦiL
i will in general not be an identity matrix. In fact, Φ(L) is (K × r) and

is typically not a square matrix. Therefore the impact effects of the shocks are given by

Φ0B and exclusion restrictions on the impact effects are zero restrictions on the elements of

the matrix product Φ0B. For example, one may want to impose a recursive identification

scheme on the impact effects, as is often done in a standard SVAR analysis. This amounts to

choosing a suitable (r× r) submatrix of Φ0B to be lower triangular. Such restrictions would

suffice for identifying B and, hence, the structural shocks. Denoting the (r × r) submatrix

of Φ0 that is of interest in the present context by Φ0b, the corresponding B matrix can be
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obtained by noting that Φ0bBB
′Φ′0b = Φ0bΣηΦ

′
0b. Thus, computing a Cholesky decomposition

of this matrix and left-multiplying by Φ−1
0b gives a suitable B matrix.

As an example consider a study by Forni and Gambetti (2010) who use a GDFM for

analysing the effects of U.S. monetary policy. They use a panel of 112 monthly series for a

period 1973 - 2007 and work with different numbers of factors. In their benchmark model the

number of dynamic primitive factors is four. They use industrial production, a consumer

price index, the federal funds rate and the Swiss/US real exchange rate as the first four

variables in their panel in that order. The structural shocks are identified recursively and

the monetary policy shock is specified to be the third one. Hence, it is identified as a shock

that does not have an instantaneous effect on industrial production and the price index but

may induce immediate reactions of the exchange rate. Of course, in this setup all four shocks

can have impact effects on many other variables.

More generally, exclusion restrictions can be imposed on the impact effects by choosing

a suitable (1
2
r(r − 1)× r2) selection matrix J such that

Jvec(Φ0bB) = 0

which implies restrictions

J(Ir ⊗ Φ0b)vec(B) = 0

for B.

As in standard SVAR models identified by exclusion restrictions on the impact effects,

we may get away with imposing fewer than r(r − 1)/2 structural restrictions if only fewer

than r shocks are really of interest in a particular analysis and, hence, only a subset of the

shocks has to be identified. The other shocks can then be identified arbitrarily. For example,

in the Forni and Gambetti (2010) study, if only the monetary policy shock is of interest, the

restrictions used for making the other shocks unique are not important.

In a standard SVAR analysis the identifying restrictions are typically placed on the impact

effects of the shocks (B-model) or on the instantaneous relations between the variables

(A-model). The previously discussed restrictions correspond to a B-model setup. It is

also possible, of course, to identify the shocks by placing restrictions directly on the factor

loadings in a structural version of the model (1.9) or (1.10). Such an approach may be more

natural if the common factors have a direct interpretation. As an example consider a study

of the international business cycle by Kose et al. (2003). These authors investigate a panel

of 60 countries from 7 different regions in the world and consider output, consumption and

investment macroeconomic aggregates from each country. They identify one world factor,

a factor for each region and a country specific factor for each country. The world factor
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is the only one that is allowed to have a direct impact on all variables and the effects of

the other factors are restricted by imposing suitable zero constraints on the corresponding

loadings. The shocks are identified by imposing that the VAR process driving the factors has

instantaneously uncorrelated residuals, that is, in our notation, ηt has a diagonal covariance

matrix.

Restrictions on the Long-run Effects of Shocks Long-run restrictions à la Blanchard-

Quah are also easy to use in the present context. They amount to choosing an (r×r) subma-

trix of Φ(L), say Φb(L), such that Φb(1)B is lower-triangular. In this case the corresponding

B is obtained by computing a Cholesky decomposition of Φb(1)BB′Φb(1)′ = Φb(1)ΣηΦb(1)′

and left-multiplying by Φb(1)−1.

In principle other long-run restrictions can also be used, e.g., those proposed by King,

Plosser, Stock and Watson (1991). They are less natural in the present context, however,

because factor models are more commonly based on I(0) variables without stochastic trends.

Identification Through Instruments Identification of B and thereby the structural

shocks can also be achieved by using instruments with suitable properties. Suppose a variable

zt is available that is correlated with the kth structural shock but uncorrelated with all other

shocks, that is, it has the property

E(εitzt) =

{
ρ 6= 0 for i = k,

0 for i 6= k.

Then, using ηt = Bεt and denoting the columns of B by bi, i = 1, . . . , K, we get

E(ηtzt) = BE(εtzt) = bkρ. (1.25)

Thus, a multiple of the kth column of B can be obtained as the covariance of the reduced

form error ηt and the instrument zt. A natural estimator of bkρ is

T−1

T∑
t=1

ηtzt.

Of course, in practice ηt has to be replaced by an estimator. More precisely it will be replaced

by the estimated quantities from the reduced form model (1.23). This is an easy way to

estimate a multiple of the kth column of B if a suitable instrument variable is available that

is only correlated with the kth structural shock and uncorrelated with all other structural

shocks. Stock and Watson (2012) call such instruments external instruments if they are not

part of the database yt used in the factor analysis but use outside information.
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Note that for identification it is sufficient to know a multiple of the kth column of B

because the responses of the variables to the kth shock are obtained as Φ(L)bk and, hence,

considering a multiple just changes the scaling. In other words, multiplying the shock by

some constant just changes the size of the shock but not the shape of the response. Hence,

the size of the shock can be chosen freely. For example, Stock and Watson (2012) propose to

choose it such that the initial response of a specific variable is one. For example, a monetary

shock may be chosen such that the policy interest rate changes by one unit on impact. It

is important to note that changing the scaling does not change the shape of the response

function. Similarly, changing the sign of the shock just reflects the response function at the

zero line but leaves the shape otherwise invariant because we are currently dealing with a

linear model.

So far we have just explained how to identify the columns of B and, hence, the impulse

responses. Stock and Watson (2012) mention that the associated shocks can be determined

by regressing zt on ηt and using the predicted values of that regression as estimated structural

shocks (see Section III.a of Stock and Watson (2012) for details).

So technically identification via instruments is easy. The important practical question

of interest in this context is, of course, from where to get suitable instruments. Stock and

Watson (2012) use for that purpose shocks that have been constructed in other studies based

on other models and assumptions. For example, as an instrument for a productivity shock

they consider the productivity shock series from a DSGE model constructed by Smets and

Wouters (2007). As monetary shocks they use the corresponding shocks identified by Sims

and Zha (2006) and the shock to the monetary policy reaction function of the Smets and

Wouters (2007) DSGE model.

If there are two different instruments identifying the same shocks, e.g., the monetary

policy shocks in the above example, then the resulting shocks should in principle be per-

fectly correlated. Of course, in practice this is not the case and getting very different shocks

and impulse responses with different instruments can be a reason of concern regarding the

suitability of the instruments. Similarly, two different structural shocks should be uncorre-

lated in theory. In practice, that may not hold precisely because the instruments are not

necessarily chosen such that uncorrelated structural shocks are guaranteed. In that case,

the empirical correlation between different structural shocks can give an indication of the

suitability of the instruments. If, for example, a technology shock and a monetary policy

shock turn out to be highly correlated, then this suggests that the instruments used for their

identification are not suitable. Of course, it has to be kept in mind that in practice we do

not have the true shocks and impulse responses but only estimates. Hence, small empirical

correlation may be acceptable.
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Sign Restrictions So far we have just discussed identification of the shocks via exact

restrictions, for instance, exclusion restrictions for the impact effects or long-run responses.

In principle it is, of course, also possible to use sign restrictions. In the context of FAVAR

models they have been considered by Mumtaz and Surico (2009), Amir Ahmadi and Uhlig

(2009) and Amir Ahmadi and Ritschel (2009), for example. The way the sign restrictions

are imposed is quite different in these studies. Mumtaz and Surico (2009) use a mixture

of exclusion and sign restrictions in a FAVAR setting, that is, they place sign restrictions

on the effects of shocks on the factors. In contrast, Amir Ahmadi and Uhlig (2009) and

Amir Ahmadi and Ritschel (2009) impose sign restrictions on the effects of the disaggregated,

informational variables. In other words, a shock is identified by its impact in the equations

(1.22). It is admissible if the responses of the xt variables have the correct sign.

For example, Amir Ahmadi and Uhlig (2009) consider a panel of 120 monthly U.S.

macroeconomic time series. Their objective is to investigate the impact of U.S. monetary

policy on the economy. In one of their scenarios they define a contractionary monetary

policy shock as a shock that rises the federal funds rate and lowers inflation measured by

several consumer and producer price indices, the M1 monetary aggregate and nonborrowed

reserves.

Other Restrictions It is also possible to link the identifying assumptions for shocks

directly to the properties of factors. For example, Giannone, Reichlin and Sala (2004)

determine two main factors in a system of U.S. macroeconomic variables and, hence, two

shocks are of central importance in driving the system. They identify the real shock such that

the corresponding factor maximizes the share of the variance of the real variables explained

by the factor. The other shock is taken to be the nominal shock.

Bäurle (2013) assumes that the factors correspond to economic quantities that are related

according to a DSGE model. He uses that model to identify the structural shocks and de-

velops Bayesian methods based on ideas of Del Negro and Schorfheide (2004) for estimation.

Thus, he also links identification to the factors.

Some authors consider so-called multi-level or hierarchical factor models where the vari-

ables are partitioned in blocks and there are block-specific and global common factors (e.g.,

Moench and Ng (2011), Hallin and Lǐska (2011)). For example, Hallin and Lǐska investigate

industrial production in a multiple-country study where the blocks refer to the different coun-

tries. Such models open up the possibility for identifying block-specific and global shocks

separately.
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1.5 Applications

There are many examples of structural analysis with factor models in the literature. We have

mentioned already some of them previously. Many of them fall in two categories, monetary

policy analysis and international business cycle analysis. In the following a small number of

these studies is reviewed to provide a flavour of the variety of models and approaches used

in applied work. Those interested in more detailed examples may find them useful further

reading.

The Effects of Monetary Policy As mentioned earlier, structural FAVAR analysis was

proposed by Bernanke et al. (2005). They perform an analysis of U.S. monetary policy. The

factors are determined from a panel of 120 monthly time series and are used to augment

small macro models. For example, they consider a VAR model for industrial production,

CPI, the federal funds rate and one factor. In another specification they add three factors to

the federal funds rate. Identification of the monetary policy shocks is achieved by assuming

that none of the other variables or factors responds instantaneously to a monetary monetary

shock. This can be imposed by using a recursive identification scheme in which the federal

funds rate is ordered last. They find that taking into account the additional information

summarized in the factors makes a substantial difference for the impulse responses. Hence,

the additional information presents a different picture of the transmission of monetary policy

shocks than a standard small VAR model.

Del Negro and Otrok (2007) use a FAVAR model for quarterly U.S. variables to investigate

the impact of monetary policy on house prices. They are explicitly interested in including

information on regional house prices in the analysis. Using state level house prices, they

find that there is a period in which the house price increase can be attributed mainly to a

national factor constructed from the regional price series. Therefore they include that factor

in a FAVAR model consisting of six variables: the house price factor, total reserves, CPI

inflation, the GDP growth rate, a 30-year mortgage rate and the federal funds rate. They

use sign restrictions for identifying the monetary policy shocks. Specifically, they assume

that the federal funds rate increases and the growth rate of total reserves, changes in CPI

inflation and changes in GDP growth do not increase for several quarters after a monetary

policy shock. They find that monetary policy can have an effect on house prices and may

hence contribute to housing booms although the impact of monetary policy may be small.

Favero et al. (2005) use FAVAR models to investigate the impact of monetary policy

shocks in the U.S. and four large European economies (Germany, France, Italy, Spain).

They are mainly interested in comparing different methods for constructing factors. They

use the Stock-Watson principle components approach and contrast that with the dynamic
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factors constructed à la Forni, Hallin, Lippi, Reichlin. The common factors are extracted

from large monthly panels of variables from the U.S. and the four European countries. The

country FAVAR models include small sets of economic variables such as output, inflation,

commodity price inflation, an exchange rate and the policy rate in the case of the U.S.

and in addition foreign variables for the European countries. For example, U.S. inflation is

included in the model for Germany. Moreover, results are compared for models augmented

with different sets of factors. Identification is achieved by a recursive scheme where the policy

interest rate is ordered last. The authors conclude that including common factors can make

a difference for impulse response analysis. For example, it can remove the ‘price puzzle’, that

is an increase in inflation after a contractionary monetary policy shock. This phenomenon

is often attributed to omitted variables bias and, hence, removing it by including further

information in the form of factors is plausible. Although the type of factors added makes a

difference, the effect is often not great. There is no clear recommendation in favor of which

type of factors to include.

We have already mentioned earlier that Amir Ahmadi and Uhlig (2009) consider a panel

of 120 monthly U.S. macroeconomic time series to investigate the impact of U.S. monetary

policy on the economy. They use sign restrictions for identification. A contractionary mon-

etary policy shock is characterized as a shock that rises the federal funds rate and lowers

inflation measured by several consumer and producer price indices, the M1 monetary aggre-

gate and nonborrowed reserves. They specifically account for the disaggregate effects and

do not simply confine the impulse response analysis to a small dimensional FAVAR model

but use the dynamic factor model setup for investigating the responses of a large panel of

variables to monetary policy shocks. They find reasonable responses to monetary policy

shocks even for samples that include the recent financial crisis period. In particular, the

response of output to a contractionary monetary policy shock is negative but of modest size.

Amir Ahmadi and Ritschel (2009) use a similar approach to investigate the role of monetary

policy for a historic period of the inter war Great Depression. They find that monetary

policy may have had only a very modest impact in that period.

Boivin and Giannoni (2009) consider the impact of global forces on the U.S. economy and

in particular on the transmission of monetary shocks. They extract domestic factors from a

panel of 671 quarterly macroeconomic and financial series for the period 1984Q1 - 2005Q2

and foreign factors from 49 series from other countries. Then they set up a FAVAR model

with 10 domestic factors, four foreign factors and the federal funds rate in their preferred

model. Identification of the monetary shocks is done by assuming that surprise changes of

the federal funds rate impact on the factors only with a delay of at least one quarter. In

other words, a recursive identification scheme with federal funds rate ordered last specifies
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the monetary policy shocks. The authors are interested in the effects of monetary shocks

on some key economic variables and the corresponding impulse responses are obtained via

(1.22). They do not find strong evidence for significant changes in the transmission of

monetary shocks due to international factors and conclude that global forces may have a

stronger impact in the last part of their sample period at best.

Boivin, Giannoni and Mihov (2009) investigate the impact of macroeconomic factors and

monetary policy shocks on sectorally disaggregated consumer and producer prices. They

construct a FAVAR model based on a large number of monthly U.S. series for the period

1976M1 - 2005M6 as informational variables. The number of extracted factors is five and in

addition the policy interest rate taken to be the federal funds rate is included. Identification

of the monetary shocks is achieved by the assumption that none of the common factors reacts

instantaneously to surprise changes in the policy rate which amounts to a lower-triangular

recursive scheme where the interest rate is ordered last. They find that the reaction of

sector specific prices to macroeconomic shocks and sector-specific shocks is very different.

The response of disaggregated prices to a monetary shock is delayed and little evidence is

found for a price puzzle.

Eickmeier and Hofmann (2013) consider the contribution of monetary policy to the hous-

ing boom and financial imbalances in the U.S. and find that it was considerable in the 2001

- 2006 period. They obtain their conclusions from a FAVAR analysis based on a quarterly

model for real GDP growth, inflation based on the GDP deflator, the federal funds rate and a

panel of 232 financial variables as informational variables. Identification of monetary shocks

is based on a combination of zero restrictions on the impact effects and sign restrictions. The

restrictions are such that instantaneous interaction between the policy rate and the financial

factors is ensured.

Finally, we mention the study by Bäurle (2013) again that was already referred to earlier

because of its specific way to identify the shocks. Recall that he uses a Bayesian setup

and that his factors correspond to economic quantities that are related according to a DSGE

model that is used to identify the structural shocks. He considers a dynamic factor model and

assumes that there are as many shocks as factors. In other words, the shocks are driving the

observed variables via their impact on the factors. He performs an analysis based on a large

panel of quarterly U.S. macro series for the period 1985 - 2007. He compares the responses

to monetary shocks identified by his DSGE model with those obtained from sign restrictions

and a recursive identification scheme. The sign restrictions in this approach are imposed on

the responses of the factors. In particular, one factor is viewed as a price factor and another

one as an interest rate factor. A contractionary monetary policy shock is then characterized

as a shock that does not increase the price factor and does not decrease the interest rate
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factor. He finds that the DSGE and sign identification do not lead to conflicting results

but the error bands around the impulse responses are smaller for the DSGE identification

scheme. In contrast to the latter two identification schemes, the Cholesky identification leads

to a price puzzle.

International Business Cycle Analysis The objective of business cycle analysis with

dynamic factor models is typically to find a factor that describes the business cycle fluctu-

ations globally or in a large region. For example, Kose et al. (2003) use a dynamic factor

model and Bayesian estimation techniques to investigate the business cycle fluctuations in

a set of 60-countries that covers seven regions of the world. They consider aggregate out-

put, consumption, and investment variables and find a dynamic factor that explains some

of the fluctuations in the aggregates in most countries and can thus be viewed as a world

business cycle factor. They decompose the variance in components that can be attributed

to the different factors and thereby determine how much of the variance in specific variables

is determined by the business cycle factor and how much is accounted for by other factors.

They find that a large part of the fluctuations in many aggregate variables can be attributed

to the global business cycle factor while region-specific factors are only less important in de-

termining fluctuations in economic activity. In a related study Kose, Otrok and Whiteman

(2008) investigate possible differences in the business cycle dynamics over specific historic

periods.

Eickmeier (2007) uses structural factor models to study international business cycle trans-

mission between the U.S. and Germany. She uses quarterly data for the period 1975 - 2002

for a large set of U.S. and German series. The factors are assumed to be generated by a

VAR model and the shocks driving the factors are identified by extracting the two shocks

that explain as much as possible of the forecast error variance of the common component

of U.S. GDP over a six year horizon and then characterizing them as supply and demand

shocks by using sign restrictions. She then investigates how much the U.S. shocks affected

Germany and in particular their role in German business cycle fluctuations.

Mansour (2003) uses generalized dynamic factor models with orthogonal shocks driving

the common components. He considers annual growth rates of GDP for a panel of 113

countries over the period 1961 - 1989. He interprets the shocks driving the common factors

as global shocks and investigates their effects on the characteristics of cyclical fluctuations

in the countries under investigation. Then he studies how much the individual countries

are affected by the global shocks and he analyses business cycle synchronization in different

regions of the world.
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Helbling and Bayoumi (2003) also use dynamic factor models for analyzing cyclical fluc-

tuations in the G7 countries. They identify the global business cycle with two global factors

and find that these two factors contribute an important part of the output gaps in the

countries under consideration. There are a number of other studies of international business

cycle fluctuations based on dynamic factor models including Bordo and Helbling (2010) who

consider business cycle synchronization in 16 industrial countries over the last century.

As mentioned earlier, factor models have become increasingly popular tools for structural

economic analysis. Therefore there are now many empirical studies in the literature and more

are likely to appear in the future. Hence, there is a rich set of examples interested readers

may refer to.

1.6 Critique of Structural Analysis with FAVARs

The identifying assumptions discussed in Section 1.4 are, of course, critical for the structural

analysis considered in this chapter. One could question the identification of structural shocks

as a linear transformation of the residuals ηt driving the factors in (1.23). This assumption

may be justified if there is a latent structure in the background of the DGP that describes

the economic structure of interest. Moreover, it is difficult to see that it makes sense in

approximate DFMs that allow more structure in the part of the model not explained by

the common factors. Such models admit effectively that the relation in the variables is only

partly captured by the common factors and, hence, it is conceivable that the transmission

of shocks is only partly captured by Φ(L)B. Clearly, in practice the assumption that the

transmission of the shocks of interest is via Φ(L)B may be questioned and has to be justified

carefully in any particular analysis. In any case, even if the true DGP is an exact DFM, the

Wold MA representation of the observed variables yt is different from (1.24). Hence, building

on the MA representation of yt results in a different transmission of the shocks. The shocks

of the DFM based on (1.24) instead are aggregated shocks extracting information from a

large panel of variables.

Stock and Watson (2005) rightly point out that if the DFM is taken as true model,

the factors contain all the dynamic interaction between the variables. Conditioning on the

factors, none of the variables is Granger-causal for any other variable. Still this does not

mean that the shocks are best extracted from the model driving the factors. It may well

be that important shocks come in through individual variables, that is, they may enter

through the idiosyncratic components. Moreover, the idiosyncratic components may well

play an important role in the propagation of the shocks that is ignored by extracting them

from the ηt errors in the representation (1.24). For example, if a monetary policy shock

is implemented by the central bank through a change in the policy interest rate, this is a
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change in an individual variable and, hence, may be better viewed as an idiosyncratic shock

that may, of course, have an impact on the factors and other variables. Thus, even if factor

models are used it is important to think carefully about the informational variables to be

included in the dataset. It can have a crucial impact on the results, in particular, if only a

small number of factors is considered that is likely to represent just an approximate factor

model.

Although factor model solve the missing information problem by allowing to include a

large set of variables in an analysis, including such rich data sets can also cause problems.

For example, not much is known about the sensitivity of structural results with respect to

changes in the information set and/or the model structure. How many factors are included

may, for instance, make a difference for some results and that in turn may depend on the

variables considered for analysis. Having to deal with a large number of variables may

require a substantial updating effort when revisions and new data become available. That

FAVAR analysis may well be affected substantially by such factors was also mentioned by

Amir Ahmadi and Uhlig (2009) who note that a Cholesky recursive identification scheme

for monetary policy shocks results in implausible responses of some of the variables in a

FAVAR analysis. In particular, they find an increase in inflation due to a contractionary

monetary policy shock while Favero et al. (2005) find a more plausible reaction for some of

their scenarios. Thus, the results appear to depend crucially on such things as the model

setup, the number of factors and the variables and data used. An analysis of the sensitivity

of the results with respect to the set of variables, sampling period, model setup as well as

type and number of factors is therefore highly recommended for every study.

2 Large Bayesian VAR Models

As mentioned earlier, instead of frequentist estimation methods, one may use Bayesian meth-

ods for estimating dynamic factor models (see, e.g., Otrok and Whiteman (1998), Kose et al.

(2003), Amir Ahmadi and Uhlig (2009)). If Bayesian methods are used, it is not obvious,

however, that one wants to focus on factor models. Recall that a motivation for using factor

models is that they allow to integrate large panels of variables in a SVAR analysis. In the

context of Bayesian estimation, suitable priors serve the same purpose (see, e.g., De Mol,

Giannone and Reichlin (2008)). In fact, as pointed out by Bańbura et al. (2010), using

Bayesian shrinkage methods to overcome the degrees of freedom (curse of dimensionality)

problem in a SVAR analysis has several advantages. First of all, having no limits on the

number of observed variables included in a VAR model for macroeconomic analysis allows

to include all the variables desired by macroeconomists. Second, sectoral information can
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be included in disaggregated form and the impact of specific shocks such as monetary policy

shocks on the disaggregated variables can be traced. Thereby large scale international com-

parisons become possible without imposing restrictions as in global VARs or panel VARs

that are used just to account for the degrees of freedom limitations otherwise encountered

and not because economic reasoning would suggest them. Similarly, in particular in mon-

etary policy analysis considering the effects on disaggregated price series may be desirable

and can be studied if a large number of disaggregate price series is included in the model.

Another advantage of starting from an unrestricted VAR model rather than summarizing

some of the information in factors is that levels variables can be included easily. Recall that

standard factor analysis tends to be based on stationary variables without stochastic trends.

Thereby they may miss out on common trend structures. As explained earlier, factor analysis

can in principle also be done for trending variables. In that case some assumptions regarding

the stochastic trends are necessary for deriving proper inference procedures. From a practical

point of view it may be advantageous to do without such assumptions and include the

variables in levels and thereby potentially accommodate unit roots, long-range dependence,

near unit root behaviour and the like.

A crucial problem for using large scale VAR models is the choice of prior that makes

estimation feasible. We discuss that issue in the next subsection and consider specific issues

related to structural identification in Section 2.2.

2.1 Priors for Large Bayesian VARs

Bańbura et al. (2010) use the so-called Minnesota or Litterman prior as their point of de-

parture. Recall that it assumes a reduced form Gaussian VAR model,

yt = ν + A1yt−1 + · · ·+ Apyt−p + ut,

and imposes a normal prior with a random walk mean, that is, the prior mean is

B∗ = [0, IK , 0, . . . , 0],

where B = [ν,A1, A2, . . . , Ap] and hence, the prior mean of A1 is the identity matrix. This

prior should be modified if there are I(0) variables. For those variables the prior mean of

the corresponding diagonal element of A1 is set to zero instead of 1. The prior variance of

the ijth element of Al is

vij,l =

{
(λ/l)2 if i = j,

(λθσi/lσj)
2 if i 6= j,

where λ is the prior standard deviation of αii,1, 0 < θ < 1, and σ2
i is the ith diagonal element

of the reduced form residual covariance matrix Σu. If Σu is known, the posterior is also normal
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and quite easy to deal with. Thus, if one is prepared to replace the covariance matrix by some

known quantity such as a plausible estimator, the Bayesian estimation problem is basically

solved. Note, however, that we cannot just replace Σu by its unrestricted OLS estimator

because this estimator is typically not available given the degrees of freedom limitations. An

alternative would be to estimate the variances by fitting univariate AR models by OLS and

assuming that Σu is diagonal. This solution is sometimes used in practice. For example,

Koop (2013) uses it to evaluate the forecast implications of a number of different priors for

large Bayesian VARs (BVARs).

The original Minnesota prior is regarded as unattractive by Bańbura et al. (2010) because

of the restrictive requirements for the reduced form residual covariance matrix. Instead they

propose using a normal-inverted-Wishart prior which is a natural conjugate prior if the

Minnesota prior is used with θ = 1. Using that prior, the posterior mean is

B̄ = (B∗V −1 + Y Z ′)(V (λ)−1 + ZZ ′)−1,

where Y = [y1, . . . , yT ], Z is the corresponding matrix of regressors and V (λ) is such that the

prior covariance matrix is V (λ)⊗Σu. For given Σu and assuming θ = 1, the prior covariance

matrix depends only on λ and therefore the tightness parameter λ is explicitly indicated.

The posterior mean may be interpreted as a shrinkage estimator where the shrinkage is

completely determined by λ. For large models the matrix ZZ ′ will not even be invertible

and the posterior mean can only be determined by adding another matrix (V (λ)−1) that

makes the sum invertible and, hence, effectively determines the outcome of the estimation.

In other words, the prior determines the estimation outcome to a large extent. Thus, the

question is how to choose the shrinkage or tightness parameter. Of course, if forecasting is

the objective, one could choose it such that the model forecasts well as in Carriero et al.

(2009). Alternatively, it may be chosen so as to maximize the marginal likelihood in a

hierarchical modelling framework as proposed by Giannone, Lenza and Primiceri (2010) (see

also Carriero, Kapetanios and Marcellino (2012) for a similar approach). For models with

hundreds of variables the latter procedure poses computational challenges, however.

Based on an investigation of the issue of selecting the shrinkage parameter by De Mol

et al. (2008), Bańbura et al. (2010) propose choosing this parameter tighter when the model

gets larger. More precisely, they propose choosing λ such that the estimated model has the

same in-sample fit as a small VAR model estimated by OLS. The procedure works as follows.

Denote the posterior means of the parameters obtained from a model with tightness

parameter λ and K variables by ν(λ,K) and A
(λ,K)
i , i = 1, . . . , p, and the corresponding 1-step

ahead forecasts as

y
(λ,K)
t|t−1 = ν(λ,K) + A

(λ,K)
1 yt−1 + · · ·+ A(λ,K)

p yt−p.
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Moreover, let y
(λ,K)
k,t|t−1 be the kth component of y

(λ,K)
t|t−1 , that is, y

(λ,K)
k,t|t−1 is the 1-step ahead

forecast of the kth variable of a system with K variables and prior tightness parameter λ.

The corresponding in-sample mean squared forecast error is

msfe
(λ,K)
k =

1

T − p

T∑
t=p+1

(y
(λ,K)
k,t|t−1 − yk,t)

2.

Suppose there is a small number, K∗, of variables of central interest and their index set is

K, then the tightness parameter for a large panel of a total of K variables, λK , is chosen

such that

λK = arg min
λ

∣∣∣∣∣Fit− 1

K∗

∑
k∈K

msfe
(λ,K)
k

msfe
(0,K)
k

∣∣∣∣∣ . (2.1)

In other words, the MSEs are evaluated relative to the forecast MSEs obtained for a forecast

based on the prior mean. Here the benchmark fit is obtained from a small model for the

variables of central interest. Using that set of K∗ variables and fitting a VAR model by OLS,

the fit is defined as

Fit =
1

K∗

∑
k∈K

msfe
(∞,K∗)
k

msfe
(0,K∗)
k

.

The actual minimization of λK in (2.1) can be done by a grid search over λ because only

one parameter is involved (see Koop (2013)).

Thus, a small model with the central variables for a particular application of interest is

set up and estimated by OLS first. Then λ is chosen for large models such that the in-sample

fit for the equations corresponding to the central variables remains constant. This procedure

worked well in a forecasting experiment reported by Bańbura et al. (2010). Notice that

this choice of tightness parameter amounts to specifying a tighter prior for larger models

with more variables and lags. Koop (2013) also uses an analogous procedure for the original

Minnesota prior where he chooses both λ and θ so as to minimize the fit of the central

variables. One could also use the prior that optimizes the forecasts for a given set of variables

as in Carriero et al. (2009) or one could consider choosing the shrinkage parameters by

maximizing the marginal likelihood in a hierarchical Bayesian setting as in Giannone et al.

(2010).

Bańbura et al. (2010) find in their forecasting experiment that a sum-of-coefficients prior

which is a variant of the Minnesota prior worked better in their application. Hence, they

recommend that also for structural analysis. It can accommodate long-run relations more

easily and may therefore give more realistic impulse responses if, for instance, cointegration

relations exist. Koop (2013) points out the very restrictive nature of the Minnesota prior
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which uses only one or two parameters to determine the degree of shrinkage. He also considers

another prior based on a proposal by George, Sun and Ni (2008). They obtain flexibility by

allowing different parameters to be shrunk differently. In Koop’s forecast comparison this

prior tends to deteriorate when the number of variables in the VAR increases. Given that

we are primarily interested in dealing with large BVARs, we therefore do not further discuss

this prior here.

Korobilis (2013) proposes to combine BVARs with Bayesian variable selection. In his

approach an indicator variable is specified for each parameter that indicates whether the

parameter is included or set to zero. A prior is specified for the indicator variables that can

be combined easily, for example, with the Minnesota prior. Korobilis (2013) also presents

a modification that makes it feasible to deal with large panels of variables. However, the

largest model he uses in a forecast assessment exercise contains 13 variables and is far from

the dimensions we have in mind when we talk about large BVARs. Given the limited evidence

on the performance of these procedures we do not elaborate on them here.

Of course, structural analysis requires identifying assumptions for the shocks. For the

large-scale BVAR context they are discussed next.

2.2 Structural Identification in Large BVARs

In large BVAR models identification of structural shocks is most easily achieved by linking

the properties of the shocks to their impact effects. For example, if exclusion restrictions

can be specified for the impact effects, that is useful identifying information. Bańbura et al.

(2010) are interested in the effects of monetary policy shocks and, in line with Bernanke

et al. (2005), they split up their variables in those that move slowly after such shocks and

those that move fast and may change instantaneously in the same period when the shock

hits the system. Thus, they order their variables such that

yt = (ys′t , rt, y
f ′
t )′,

where yft contains the fast moving variables such as financial variables, yst is the vector of

slow moving variables such as prices and real variables and rt is the policy interest rate.

Then they identify the monetary policy shock by a lower-triangular Cholesky decomposition

of the reduced form covariance matrix Σu. Thereby the fast-moving variables are allowed to

be affected instantaneously while the slow-moving variables are assumed to be known to the

policy makers at the time of their decisions. For another study of monetary policy shocks

based on a large BVAR model see Gupta et al. (2009).

In principle one could also identify a shock of interest by sign restrictions. Although plau-

sible sign restrictions for a large set of variables may be available, as argued in Amir Ahmadi
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and Uhlig (2009), such an approach is complicated by the large dimension of the structural

form covariance matrix and the corresponding dimension of the possible rotation matrices

that have to be considered in computing admissible shocks. Thus, such an approach may be

computationally infeasible with current technology. A possible solution may be to combine

sign restrictions with exclusion restrictions and thereby reduce and solve the computational

problems.

In summary, large-scale BVARs have some advantages but also drawbacks. On the pos-

itive side, they allow for inclusion of unlimited numbers of observed variables and, hence,

sectorally disaggregated variables can be included and regionally disaggregated analysis be-

comes feasible. Their drawback is that the prior is based on practical considerations and

not on subject matter knowledge. Unfortunately, such diffuse priors distort some results in

typically unknown directions. Thereby the results induced by the prior may have an element

of arbitrariness. Notice that, without the prior, estimation of large-scale models is usually

not possible. So in some sense the estimates are determined by the prior.

3 Alternative Models

In this chapter we have discussed possibilities to deal with large panels of data either by

summarizing them in factors or by applying Bayesian shrinkage methods for estimation.

There are also other proposals for dealing with large panels of variables. For example, panel

VARs, global VARs or spatial VARs have been considered for this purpose (see Canova and

Ciccarelli (2013), Pesaran, Schuermann and Weiner (2004) or Chudik and Pesaran (2011)).

These models impose specific restrictions on the VAR parameters to ensure feasible esti-

mation. Clearly, if many variables are to be included this means that large numbers of

restrictions have to be imposed. These restrictions are often viewed as quite strong and

perhaps not very realistic. Of course, if specific restrictions can be defended in a particular

analysis, they may be preferable to using factors or BVAR methods. In any case, it is im-

portant to understand that large panels of variables can be included in a VAR analysis, but

only at the cost of imposing some kind of restrictions that may distort the results to some

extent. Hence, it is important to think carefully about the types of restrictions that are best

suited for a specific analysis.

3.1 Panel VARs

Large panels of variables often come up when studies for different countries or regions or

more generally units are considered and a set of variables for each unit is of interest. Such

a data situation makes it convenient to assign an additional subscript to a variable. For
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example, we may denote the tth observation for the ith variable of country n by yint, where

i = 1, . . . ,M and n = 1, . . . , N . Thus, using our earlier notation, K = M × N . Let

ynt = (y1nt, . . . , yMnt)
′ be an M -dimensional vector and denote by Yn,t−1 and Yt−1 vectors of

lags of ynt and all variables in the panel, respectively. Then a full dynamic VAR model for

ynt has the form

ynt = νn + AnYt−1 + unt, (3.1)

say, with fully general error covariance matrix Σu for the system of all N units, that is, Σu

is the covariance matrix of ut = (u′1t, . . . , u
′
Nt)
′.

Clearly in this general form it may be impossible to estimate the model in unrestricted

form due to degrees of freedom limitations. However, the panel structure suggests possible

restrictions. For example, there may be no dynamic interdependencies between the units,

that is, every unit is represented by a separate VAR model,

ynt = νn + AnYn,t−1 + unt,

where the coefficient matrix An is much smaller than An in (3.1) and may be easy to estimate

from the data for the nth unit. Note that there may still be some dependence between the

units via the residual covariance matrix.

Of course, further restrictions can be imposed if an assumption of dynamic homogeneity

can be justified. For example, if a panel of countries with similar economic systems is con-

sidered such an assumption may be justified, provided the countries are also not dynamically

related. In that case, all units are assumed to have the same VAR coefficients, that is,

ynt = νn + AYn,t−t + unt.

In that case special estimation methods are available for estimating the parameters (see,

e.g., Canova and Ciccarelli (2013)).

Of course, such assumptions are too restrictive in many situations and at least some

dynamic interdependency may be required given the data properties for a particular appli-

cation. The panel setup may suggest restrictions that make estimation still feasible in that

case. Alternatively one may of course ignore the panel structure and estimate the model

with Bayesian methods as proposed in Section 2.

Panel VAR techniques have become increasingly popular recently. There are many issues

we have not touched upon in this section. A review of the literature is given by Breitung

(2013).
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3.2 Global VARs

Global VARs (GVARs) are also typically considered if large country panels are under inves-

tigation (e.g., Dees, Di Mauro, Pesaran and Smith (2007)). The idea is, however, to augment

a VAR for each unit by factors capturing the other countries. In that respect GVARs have

some similarity to FAVAR models. More specifically, the model for the nth country is set

up as

ynt = νn + AnYn,t−1 +W (L)y∗nt + unt,

where W (L) is a matrix polynomial in the lag operator and y∗nt summarizes global variables

such as the price of oil and possibly aggregated variables from other countries. Typically the

latter variables are weighted averages of the variables from other countries corresponding

the ynt, that is,

y∗nt =
N∑
j=1
j 6=n

wnjyjt,

where wnj is the weight attached to country j in the model for the nth country. For example,

Dees et al. (2007) link the weights to the share of country j in world trade. These weights

may also be matrices, of course, if different variables are weighted differently. Generally y∗nt

can be thought of as common factors consisting of global variables and variables computed

from the variables for the other countries. Thus, the common factors are not necessarily

determined by some statistical procedure but may be based on economic considerations.

Apart from that the models can be viewed as factor-augmented VAR models.

The models for many countries or regions can be linked together to a global model, the

GVAR, which is easily recognized to be a large restricted VAR model with potentially some

additional unmodelled variables, if there are no equations explaining the globally important

variables appearing on the right-hand side of all the individual country models. The param-

eter restrictions are partly due to the choice of weights in aggregating the foreign variables

and partly they are just exogeneity restrictions.

Since the global model has a VAR structure it is also possible to use standard analysis

tools such as impulse responses, provided shocks of interest can be identified. The GVAR

literature has used non-structural generalized impulse responses to study the dynamics of

the system and it has also used limited structural assumptions. For instance, Dees et al.

(2007) specify a U.S. monetary shock by ordering the U.S. system first and considering a

Cholesky decomposition of the reduced form covariance matrix associated with the U.S.

system. Thereby they specify the monetary policy shock similarly to other authors who

have studied U.S. monetary policy based on shocks that are identified by restrictions on
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the impact effects. The effects on other countries are left open and they are allowed to be

instantaneous. Such an approach may be justified if a dominant country like the U.S. is

considered. The identification of shocks becomes more difficult, however, if also the effects

of monetary shocks in other countries for the U.S. are of interest or, more generally, if the

effects of many shocks are to be investigated.

The difficulties in structural shock identification can be seen as a drawback of GVAR

analysis. Another drawback may be that the implications of the specific aggregation of

variables from other countries for the overall dynamics and the transmission of shocks are

difficult to disentangle.

3.3 Other Ideas

There are also other ideas how to restrict the number of variables or the parameter space

in VARs (see also Canova and Ciccarelli (2013)). For example, spacial models have been

considered where it is assumed that a region depends more strongly on its close neighbours

than on more distant regions (see Anselin (2006), Chudik and Pesaran (2011), or Canova and

Ciccarelli (2013)). In other words, the distance between units is used to impose restrictions

and thereby reduce the parameter space. Again such assumptions are problematic in many

applications because it may be unsatisfactory to link the relation between units to their

physical distance. For example, if monetary policy is studied the U.S. policy may affect

many other countries in the world that are quite far away in distance. In other words, there

are global effects that are quite important irrespective of the physical distance of units.

Another idea is to consider smaller submodels involving only a subset of regions or coun-

tries. For example, one may just consider two models at a time even though a much larger

panel of countries is of interest. Such submodel comparisons can give useful insights re-

garding differences in the structures. It has to be kept in mind, however, that the impulse

responses in a submodel can be quite different from those in the full model. Thus, extracting

information on the actual dynamic interactions from them is problematic and requires strong

assumptions.

4 Model Comparison and Discussion

The proposals for dealing with large panels of variables in VAR models considered in this

chapter all amount to imposing restrictions. This can be accomplished by shrinking either

the number of variables or the parameter space. Of course, these two approaches cannot be

distinguished perfectly in some approaches. They all result in smaller dimensional parameter

spaces and, hence, deal with the curse of dimensionality. Factor models clearly reduce the
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number of variables and large BVARs shrink the parameter space. Some other approaches

are somewhat in-between. For example, GVAR models to some extent reduce the space of

variables by restricting the parameter space. All the models considered in this chapter have

their pros and cons. They all enable the researcher to deal with large panels of variables.

Factor models extract important information from the variables first and aggregate it in

factors. These factors are then used in a model together with observed key variables of central

interest. Thereby quite manageable models may be obtained that can be analysed with

standard frequentist methods. On the other hand, aggregation generally leads to distortions

in the transmission of shocks. The importance of such distortions is usually unknown in

any particular application. Moreover, factor analysis is tailored for stationary variables

with time-invariant moments, although these methods have been extended to nonstationary

variables with stochastic trends. Proper factor analysis requires assumptions regarding the

stochastic trends, however, that may be problematic when many variables are involved.

They may have quite different trending properties and assumptions regarding their order of

integration or long-range dependence properties may be problematic.

Large-scale BVARs avoid prior aggregation of variables and they may include variables

in untransformed form in the VAR model regardless of their unit root and trending prop-

erties. Thereby the models may become so large that degrees of freedom deficiencies make

frequentist, classical estimation impossible. The Bayesian solution in this case is to impose

a prior on the parameter space. The priors typically imposed in large-scale BVAR analysis

are rather standardized and shrink the VAR parameters to zero or values corresponding

to unit roots. Such priors do not account for the actual economic structures underlying a

panel of variables. Even if they are not meant to be restrictive, they may lead to substantial

distortions in the standard tools for structural VAR analysis. For example, they may dis-

tort impulse responses and, hence, they may provide an incorrect impression of the actual

transmission mechanism of shocks.

In a forecast comparison based on large panels of variables, Bańbura et al. (2010) and

Koop (2013) find that large BVARs forecast overall better than factor models. In fact,

De Mol et al. (2008) give conditions based on asymptotic theory that ensure that Bayesian

shrinkage for large panels of variables that are driven by a limited number of factors, results

in optimal forecasts asymptotically, if both the number of variables and the time series

dimension go to infinity. Although such results could be used to make a case for BVARs,

it is not clear that out-of-sample forecast performance is the best criterion for evaluating

the transmission mechanism of shocks. Also, forecast evaluations are to some extent data

dependent and case specific. Hence, for structural analysis it may be more important to

think about the underlying economic structure.

42



Panel VAR models account, for instance, for the regional structure of the data and

use that information to impose restrictions on the parameters. They may, for example,

impose homogeneity restrictions for a set of countries with similar economic structure. Such

restrictions may be justified if a set of similar units is considered. On the other hand, it is not

uncommon in practice that, despite some similarities, there are also substantial differences

in the units that may be sufficiently important to result in distortions when ignored. In fact,

even the unit root and trending properties of the same variables from different countries are

often different. Such findings hint already at the presence of substantial differences between

the countries. There is no guarantee that by trend-adjusting the data such differences are

properly eliminated. In any case, trend-adjustments and other data revisions may lead to

changes in the transmission of shocks which is undesirable in a structural analysis.

Global VAR models may be viewed as a combination of imposing direct restrictions on

the parameter space and factor models. The factors are not chosen by a purely statistical

criterion and procedure but may be chosen on the basis of economic considerations. Also

the parameter restrictions may be suggested by subject matter considerations and may be

susceptible to statistical testing. Although this means that they are not as removed from

the underlying economic structure at the variable selection stage as in a statistical factor

analysis, they have, of course, all the problems of data aggregation mentioned earlier. The

fact that the factors are not picked with purely statistical procedures does not mean that the

aggregation cannot lead to distortions of the transmission of shocks. Another problem in the

GVAR literature is the lack of convincing strategies for the identification of proper structural

shocks. As mentioned in Section 3.2, in these models shocks are often identified based on

mathematical/statistical criteria. The resulting impulse responses are called generalized

impulse responses to distinguish them from structural impulse responses.

For applied work the distinction between shrinkage of the variables or the parameter

space may not be of prime importance. What is important is the question whether the

necessary restrictions can be defended for a specific economic analysis. It seems plausible that

purely statistical reductions may not be optimal from an economic point of view. Hence, if

economic arguments are available for a specific form of restrictions they may be preferable to

purely statistical restrictions. On the other hand, it is also important to account adequately

for the statistical data properties. Thus, in the end, mixtures of economic and statistical

restrictions are probably the most common result in practice. In any case, ignoring one

type of information, either the statistical properties of the data or the information from

an economic model is not likely to give satisfactory, widely acceptable results. Therefore a

careful consideration of the model to be used for a particular analysis is of prime importance.

In that process knowing the alternative models and their pros and cons is important.
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