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Abstract

When agents do not know where to find a match, they search. However, agents

could direct their search to agents who strategically choose a certain signal.

Introducing cheap talk to a model of sequential search with bargaining, we

find that signals will be truthful if there are mild complementarities in match

production: supermodularity of the match production function is a necessary

and sufficient condition. It simultaneously ensures perfect positive assortative

matching, so that single-crossing property and sorting condition coincide. As

the information from signals allows agents to avoid all unnecessary search, this

search model exhibits nearly unconstrained efficiency.
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1 Introduction

Search is a reaction to insufficient information: if we knew where to find the best available

option, we would not search for it. If a lack of information is thus the problem, exchange

of information can be the solution. When agents form matches on decentralised markets

such as the labour market, they can exchange a great deal of information before they

even meet - using job advertisements and applications. Rapid and large information flows

through email and internet have the potential to eliminate any lack of information, and

they can thereby reduce search unemployment to a minimum. However, especially when

made online, advertisements and applications can be truthful just as well as they can be

full of lies. Indeed, given that it matters with whom an agent matches, one would expect

that agents manipulate information so as to attain particular matches.

This paper proposes a simple market design that leads agents to exchange truthful

information. We build a model with heterogeneous agents whose type is private informa-

tion, and we let them choose the marketplace where they look for a match. The market

design consists of two requirements: first, each marketplace has to be publicly designated

for a specific set of types. Second, agents are asked to declare their type before entry to a

marketplace and they are only granted entry if they declare a type that the marketplace

is designated for. For example, only if they claim to hold a degree will they be invited to

a graduate job fair. Entering a certain marketplace then becomes a (costless) signal of an

agent’s type.1 Other agents can never observe the true type, so that agents’ bargaining

prior to a match is based on these signals. That is, agents who claim to have a high

type will be expected to produce like a high type. With only mild complementarities in

match production, any incentive to lie then disappears: too much would be expected of

low types for them to still gain from matching incognito with high types.

As a real-world example for the role of complementarities, suppose a low-skilled worker

faces the choice between working at McDonalds and working at McKinsey. While McKin-

sey would pay a higher salary, the worker would have to perform there like her high-skilled

colleagues. The sheer effort and the extra hours needed to reach this performance can

outweigh the benefit of a higher salary, so that the low-skilled worker actually prefers

working at McDonalds. In our model, a low type can conceal the difference between

expected and actual match output by reducing her net share of the output accordingly,

but this reduction can outweigh her gain from higher match production with a high type.

If the match production function is supermodular, so that agents are themselves more

productive when matched to a higher type, the reduction will outweigh the gain: then the

output expected from a match of two higher types rises disproportionately, while actual

match output with one higher type only rises proportionately.

The types in our model can only match with certain higher types if they themselves

1In fact, it is irrelevant for our results whether agents choose a signal and thereby join a marketplace
or whether they choose a marketplace and thereby send a signal.

2



behave like those higher types. When the match production function is supermodular,

this behaviour does not pay off, and all agents instead signal their type truthfully. Super-

modularity ensures truthful signals by introducing a single-crossing property into agents’

marginal productivity, rather than into signal costs as in Spence (1973). Hence, none of

our results relies on differential signal costs; after all, writing down an invented CV for

an application is as costly as writing down a truthful CV, and painting an advertised job

in unduly bright colours is as costly as honestly laying out its dull nature. We therefore

normalise signal costs to zero, so that the signals in our model are cheap talk.

In practice, lies in applications and job advertisements certainly occur. Yet they seem

much less frequent than one might think, given how easy it would be to lie. This suggests

that most real-world agents consciously choose not to lie. If so, it remains an open question

whether the choice not to lie is rather intrinsically motivated by agents’ preferences over

matches, as in this paper, or extrinsically motivated, as when agents’ claims are rigorously

assessed. Circumstantial evidence, such as recurrent incidences of fake doctors, documents

that effective assessment is often missing even where strong qualifications are essential.

This evidence supports intrinsic motivation, which includes our argument that expected

performance levels would appear too demanding to underqualified candidates (apart from

a few individuals with boundless self-confidence).

The model can in turn account for real-world behaviour that might puzzle a search

theorist. When a worker is found out to have lied in the application, why is the worker

then typically fired (or not hired in the first place) rather than being kept on at a different

wage? This paper points to asymmetric information: while the worker’s exact qualification

remains unknown to the employer, it is very likely that a worker who lied is underqualified

rather than overqualified. It may then be easier to find replacement rather than to

disentangle lies from truth, thereby determine the worker’s actual qualifications, and

then - if possible at all - adjust the job design to fit these qualifications. Correspondingly,

if a low type in our model signals like a high type, meets a high type, but then does not

behave like a high type, bargaining will fail because bargaining strategies are based on

the signals. All the high type can infer is to be facing some lower type, as higher types

cannot gain from such behaviour. A sufficiently high type then prefers meeting another

agent to a second round of bargaining with the lower type. Therefore, agents do not get

away with reneging on their signals.

When signals thus provide full information, agents know where to find the best avail-

able option and their first meeting results in a match. As long as search frictions are

not so high that agents are even discouraged from one meeting (and therefore do not

participate), the outcome is the same as in the frictionless case: in a setting with frictions

and full information, agents find the best option at first try, and in a frictionless setting

with imperfect information, nothing keeps agents from searching until they find the best

option. Hence, the separating equilibrium of our search model achieves benchmarks set by

Becker’s (1973) frictionless matching model: not just positive assortative matching (likes
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tend to match with likes) but even perfect positive assortative matching (only equal types

match), a stable matching, and maximised aggregate output.

Through the market design proposed here, policy makers can therefore achieve both

a shorter search duration and a more efficient sorting. When interpreted in the context

of frictional labour markets, the design reduces search unemployment: agents are unem-

ployed only until their first meeting. The delay and the costs associated with the first

meeting thus constitute the only difference between the decentralised outcome in the sep-

arating equilibrium and the first-best outcome that could be centrally imposed by a social

planner. In other words, full information allows agents to avoid almost all search costs

(concretely, the costs associated with second and further meetings), so that unconstrained

efficiency is almost achieved here despite frictions.

Finally, this paper makes a technical contribution. Our model and Becker’s (1973)

frictionless setting also have the mild condition for positive assortative matching (PAM)

in common: in both models, the necessary and sufficient condition for perfect PAM is

supermodularity of the match production function. A search model comparable to ours,

but without signals, has been analysed by Shimer and Smith (2000). They establish

(imperfect) PAM under the condition that the match production function, the logarithm

of its first derivative, and the logarithm of its cross-partial derivative are all supermodular.

These conditions are directly comparable to our condition and are unambiguously more

restrictive. From an empirical perspective, one would rather expect a mild condition

because PAM is a pervasive phenomenon: across regions and cultures, more productive

workers tend to be hired by more productive firms and more educated women tend to

marry more educated men.2 Note that the conditions for PAM and for truthful signals

exactly coincide in our model: supermodularity of the match production function here

ensures both sorting and single-crossing.

The paper proceeds as follows. After further related literature has been discussed in

section 2, section 3 specifies a frictional matching market and the procedures of search.

Section 4 defines equilibrium in the model and proposes a separating equilibrium in which

supermodularity suffices for perfect PAM. Its existence is proven step by step through a

series of lemmas in section 5. The separating equilibrium is found to be unique as well

as efficient in section 6. There we also discuss the role played by supermodularity and by

the model’s priors before section 7 concludes. All proofs are provided in the appendix.

2 Relation to the literature

Signals in the context of search have typically been analysed in models of directed search:

sellers post offers and commit to them; having observed the offers, buyers then simul-

taneously choose which seller to visit. As buyers cannot coordinate, queues may result

2As an exemplary reference for these stylised facts, see Mare (1991).
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and only some buyers can buy. This congestion constitutes the only kind of search fric-

tion in directed search models. In a sequential search model such as Shimer and Smith

(2000), the frictions are instead due to agents’ discounting. While sequential search mod-

els analyse agents’ decentralised behaviour in continuous time, directed search models

feature stylised stages at which all agents move simultaneously. The aim of this paper is

to integrate signals into a sequential search model close to Shimer and Smith (2000).

The key difference between our model and directed search, however, concerns the rea-

son why signals are informative. In directed search, the assumption that sellers somehow

commit to their posted offers is almost ubiquitous. This ad-hoc assumption is made

because sellers might otherwise renege on their signals, as we demonstrate in Poeschel

(2012). In other words, the reasons why sellers’ signals are reliable are exogenous to di-

rected search models. We argue in this paper that, in sequential search models, a simple

market design can lead to truthful signals under mild conditions. The core of our analysis

will explore why agents might not have an incentive to renege on their signal, even though

agents can freely choose their signal at no cost.

Being an exception in the directed search literature, Menzio (2007) is much closer to

this paper. He shows for a directed search model with bargaining that cheap talk can

endogenously be informative: expectations created by signals feed back into bargaining, so

that a correlation arises between signals and actual behaviour. In effect, agents are bound

by their signal. The sequential search model in this paper somewhat similarly embeds

strategic bargaining, but signals here are perfectly correlated with the actual types. This

perfect correlation then allows sorting to be perfect in our separating equilibrium.

The analysis in Eeckhout and Kircher (2010) of sorting in a directed search model (with

the commitment assumption) relates to the technical contribution of this paper. They

show that PAM will arise for common meeting technologies if the square root of the match

production function is supermodular. This condition is weaker than in Shimer and Smith

(2000), but still stronger than in Becker (1973) and this paper. Yet our results confirm the

impression from Eeckhout and Kircher (2010) that models with more information in the

search process only require weaker complementarities for PAM. While they focus on links

between these complementarities and agents’ individual matching rates, we focus on links

between the complementarities and agents’ incentives to signal truthfully. By assuming

commitment to posted offers, Eeckhout and Kircher (2010) abstract from the issue of

truthful signals; in turn, we abstract from differences in matching rates by allowing for

any number of marketplaces with constant returns to scale.3

A search model built by Chade (2006) features discounting and noisy signals uncon-

trolled by the agents. Yet these signals are not observed before agents meet. Rather, when

3Several other papers identify conditions for sorting, but are not directly applicable to the set-up
considered here. Notably, Smith (2006) finds log-supermodularity to be the sorting condition in a model
without bargaining, again a stronger condition than in this paper. In Morgan (1998) and Atakan (2006),
supermodularity suffices, but the only search frictions in their models are explicit costs that agents pay
out of pocket for each meeting. By contrast, our model includes explicit costs in addition to discounting.
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agents do meet, they do not observe each others’ true types but only the noisy signal.

Hence search is still random in this model, and the noisy signals in fact add information

frictions to search frictions. Assuming that the noisy signals carry some information -

again for exogenous reasons -, matching is shown to exhibit PAM in a very weak sense:

the distribution of types that a high type might match with first-order stochastically dom-

inates this distribution for a low type.4 This paper primarily differs from Chade (2006)

in that signals in our model are not informative by assumption but are deliberately and

strategically chosen by agents. Moreover, signals are observed before meetings and allow

agents to avoid search costs, thereby tending to reduce the effect of frictions.

Jacquet and Tan (2007) consider a search model with non-transferable utility and

a particular log-supermodular match production function. For such an environment,

Burdett and Coles (1997) found that types segregate into classes and match exclusively

within them. Building on this, Jacquet and Tan (2007) let agents establish any number

of marketplaces, as in our model. They find that each marketplace is populated by only

one class in equilibrium. By going to the appropriate marketplace, each agent can thus

avoid meetings that do not lead to a match and can instead match after the first meeting.

However, perfect PAM cannot be achieved in Jacquet and Tan (2007) because agents

still have an incentive to invade the marketplaces of slightly higher types: precisely because

of frictions, higher types will accept somewhat lower types rather than continue searching.

This incentive is absent in the separating equilibrium our model. The key difference is

private information: in our model, sufficiently high types never accept lower types they

meet because they cannot tell just how low the type is. Only agents whose own type is

sufficiently low expect an unknown lower type to be acceptably close to their type. As a

result, marketplaces are in equilibrium only populated by one type.

Finally, contributions by Hoppe et al. (2009) and Hopkins (2012) consider signals

and sorting in matching tournaments, where match partners are essentially prizes for ex-

ante investments in signals. In both models, agents first select a costly signal of their

privately observed type and then match without frictions. Hopkins (2012) assumes a

single-crossing property and Hoppe et al. (2009) assume a specific multiplicative match

production function that satisfies log-supermodularity. In the symmetric equilibrium,

agents’ signals are then strictly increasing in their types. This leads to perfect PAM at

the matching stage - just as one would have expected, given Becker’s (1973) findings.

However, as there are no frictions in these papers, they cannot explain how truthful

signals can arise despite the incentive to lie that prevents perfect PAM in Jacquet and

Tan (2007).

4The same form of sorting is found in a contribution by Lentz (2010) that does not feature any signals
but allows for search on the job (more generally, search while matched), while search is also random.
Agents in Lentz (2010) and in the related model in Goldmanis et al. (2009) sort only over time. By
contrast, the fundamentally different sorting mechanism in our model can explain PAM already among
graduates in their first job, without invoking stronger conditions.
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3 Model

The market consists of heterogeneous agents who match among themselves. Agents are

indexed by a discrete productivity type x ∈ Θ, where Θ = {x, . . . , x̄} with x > 0. Types

are exogenously given, but only privately observable. For each discrete type, there is

a continuum of agents and the overall mass of agents is normalised to 1. The measure

of agents with types weakly below x ∈ Θ is denoted L(x), where L(·) is a cumulative

distribution function with probability mass function l(·). The mass of agents of type x is

thus given by l(x), and we require l(x) > 0, ∀x.

Time is continuous with an infinite horizon. Each agent is always in one of four

states: matched, searching (that is, unmatched but participating), waiting (for continued

bargaining, as explained below), and not participating. We denote the mass of waiting

agents of type x by κ(x) ≤ l(x) and that of non-participating agents by ν(x) ≤ l(x).

Searching agents can create marketplaces to meet on. We index the N marketplaces

agents use by n, and N may be countably infinite. Agents cannot be on several market-

places simultaneously (i.e. their search activity is indivisible), but they can always switch

between marketplaces without incurring any cost. Let un(x) ≤ l(x) represent the mass of

searching agents of type x on marketplace n. Only searching agents can be met on a mar-

ketplace; waiting agents are temporarily unavailable and agents who match immediately

leave the marketplace. When indifferent whether to engage in search, whether to accept

a match, and whether to stay in a marketplace or switch, an agent respectively searches,

accepts the match, and stays.

Before two agents can match, a meeting between them will have to occur. To distin-

guish between the agents, we will denote one’s type by x and the other’s by y. Agents

can produce together in one of two sectors F and G, where a match between types x

and y generates constant flow output f(x, y) and g(x, y), respectively. The flow output

generated by an unmatched agent is normalised to zero. We assume that types with low

productivity in one sector have a high productivity in the other:

Assumption 1 (Regularity and symmetry). The match production function f(·, ·) is

positively valued (i.e. f : Θ2 7→ R++), strictly increasing, and symmetric (i.e. f(x, y) =

f(y, x)). Let g(·, ·) be the exact mirror image of f(·, ·) so that g(x, y) = f(x̄, ȳ) and

g(x̄, ȳ) = f(x, y).

Agents can influence whom they meet through their choice of marketplace: each market-

place n belongs to one sector and is characterised by a set Rn of types that the marketplace

is intended for. The set Rn is public information. By choosing to enter marketplace n,

an agent thus sends the (costless) signal x̃ = “x ∈ Rn” to the agents she meets on this

marketplace, which may or may not be a true statement about her privately observed

type x. As every agent who enters a given marketplace sends the same signal, meetings

are random inside a marketplace and are described by a meeting function m(·). With a

7



mass of agents

λn =
∑
x∈Θ

un(x)

the flow of meetings in marketplace n equals m(λn) ≤ λn, and m(0) = 0. The meeting

rate on the marketplace is

ηn =

{
m(λn)
λn

if λn 6= 0

0 if λn = 0
(1)

We assume constant returns to scale in meeting, so that agent x faces the same meeting

rate ηn = η across all N marketplaces. Then x must choose her marketplace by the agents

she wants to meet, as she would meet all agents equally quickly. When indifferent, she

randomises over her most preferred marketplaces. Finally, a marketplace can be created

at no cost but must attract agents in order to last. The agent creating marketplace n

irreversibly chooses the sector it belongs to and Rn.

Meeting an agent y on a marketplace with Rn is equivalent to observing the signal

ỹ = “y ∈ Rn”. The agent x in the meeting can only form a belief about the true type y,

as agents never directly observe each other’s types. Let h be the history of the interaction

with some agent, i.e. a set of actions such as the observed signal. We represent a belief as

a probability distribution Ψ(·). Concretely, for each h, the belief held by agent x of the

other agent’s true type y is the probability distribution Ψ(·|h) over Θ. Then x, having

observed h, believes that the other’s type is y with probability mass ψ(y|h). All agents

use Bayes’ rule whenever possible.

Next, match output must also be unobservable: knowing f(·, ·), x could otherwise infer

y from observing f(x, y). Let f e(x|h) (and similarly ge(x|h)) denote the match output

that x expects after observing h:

f e(x|h) =
∑
y∈Θ

f(x, y)ψ(y|h)

Agents in a meeting bargain over the division of the match output that they would produce

between them. We model this using a strategic bargaining procedure where only one offer

is made per meeting. The players are Nature and the agents x and y who meet. The

history h records the actions that x has observed thus far, and we simply index histories

in chronological order. When x and y first meet, they already know both signals, so that

h1 = {x̃, ỹ}. Nature selects x and y each with probability 1
2

to move first.

Suppose x is selected. Then h2 = h1∪{x} and x proposes some share π(x|y) for herself,

according to her bargaining strategy B(x) that assigns an action to every possible history

at which she moves. Hence h3 = h2∪{π(x|y)} and y responds according to B(y) by choos-

ing an action from the set {“accept”, “reject but stay”, “reject and walk away”}.5 Agents

who walk away immediately continue searching. If y chooses “accept” or “reject and walk

5The fact that agents have met implies that these agents prefer engaging in search to not participating.
It is thus without loss of generality that non-participation is not a further outside option here.
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away”, then h4 will be a terminal history. If she chooses “reject but stay”, then h4 =

h3 ∪ {“reject but stay”} and x chooses from {“continue”, “walk away”}. If x does not

walk away, the same two agents will meet at rate ζ ≥ η for the next round of bargaining,

in which Nature again randomly selects one agent to move first, and so on.

If y accepts, agents match immediately and obtain their respective share as a flow

utility for the duration of the match. Given that y bases her response on the share she

believes would be left for her, i.e. f e(x|h3)− π(x|y) in sector F (which may be negative),

it can happen that the agreed shares sum to more than f(x, y). However, in this case the

match immediately breaks up: let the second mover also be the residual claimant. Then y

would in this case protest immediately because she does not obtain her agreed share of the

flow payoff. The immediate dissolution of the match is practically the same as bargaining

failure, so that agents then either walk away or meet again to bargain anew. Further,

as each agent can assure herself flow utility 0 by not participating, negative shares will

always be rejected. Shares offered in previous rounds can never be accepted ex post, and

if players never agree nor walk away, both will obtain 0.

Matches dissolve exogenously at constant rate δ. All agents are risk-neutral, observe

everything except other agents’ types and match output, apply a discount rate r (with

0 < r <∞), and seek to maximise the present discounted value of their expected utility.

Because of discounting, the time that elapses before a meeting makes meetings costly. In

addition, we include a second kind of search friction by allowing for explicit cost c ≥ 0

that an agent incurs each time she attends a meeting. Finally, we only assume a minimum

of gains from trade:

Assumption 2 (Gains from trade). The output produced in a match between two

agents of the lowest type, discounted at effective discount rate r + δ, can reimburse both

agents’ explicit costs of one meeting, i.e. 2c ≤ f(x, y)/(r + δ) for sector F .

4 Equilibrium

4.1 Definition of equilibrium

We begin by defining three expected present values: Un(x) as the value to x of searching

in marketplace n, V (x|y) as the value to x of waiting for another bargaining round with

y, and W (x|y) as the value to x from being matched with y. Let the set A(h) com-

prise of all combinations of bargaining strategies (B(x), B(y)) that lead to a subgame-

perfect equilibrium (SPE) of the bargaining game given history h, so that an agreement

is reached immediately and agents match. Let α(·, ·) be an indicator function such that

α(B(x), B(y)) = 1 if (B(x), B(y)) ∈ A(h) and 0 otherwise. In exact analogy, also define

Ω(h) as the set of bargaining strategies that lead to another round of bargaining given h,

and ω(·, ·) as an indicator function such that ω(B(x), B(y)) = 1 if (B(x), B(y)) ∈ Ω(h).

Then the following asset equation expresses, for one marketplace, the expected return on
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searching as the expected gain from a meeting net of search cost c:

rUn(x) = ηn

(
−c+

∑
y∈Θ

α(B(x), B(y)) [W (x|y)− Un(x)]ψ(y|h = {x̃, ỹ})

+
∑
y∈Θ

ω(B(x), B(y)) [V (x|y)− Un(x)]ψ(y|h = {x̃, ỹ})

)
(2)

where ψ(y|h = {x̃, ỹ}) is the probability mass of y that x believes conditional on meeting

y in marketplace n. The first summation thus captures the gain agent x expects in case

of a match, while the second captures the gain expected in case of continued bargaining.

Let us define U(x) as the value of Un(x) that x obtains in equilibrium. As is natural

when signals are involved, we look for a perfect Bayesian equilibrium (PBE) of our model.

We will focus our attention on separating equilibria that survive the Intuitive Criterion.6

Because signals are costless all PBE will necessarily be cheap-talk equilibria. A steady-

state PBE of our model, separating or not, requires that the flows into and out of matches

balance for every type (a pointwise steady state), that agents choose all their strategies

optimally, and that agents’ beliefs are consistent with actual equilibrium behaviour.

Definition 1 (Search equilibrium with signals). In a steady-state PBE of the model,

each agent x ∈ Θ

(i) engages in search if and only if U(x) ≥ 0

(ii) optimally chooses a sector-specific marketplace such that ∀n, U(x) ≥ Un(x) given

B(x), B(y) for all y ∈ Θ, and (Rn)Nn=1, where Un(x) is determined by equation (2)

(iii) chooses a stationary subgame-perfect bargaining strategy as arg maxB(x) rU
n(x) given

all B(y) and Rn, noting that W (x|y) depends on the share obtained in bargaining

(iv) holds beliefs that are formed using Bayes’ rule where possible and that are consis-

tent with equilibrium play: given an equilibrium history h, ψ(y|h) = un(y|h) where

un(y|h) is the true probability mass of y in marketplace n conditional on h

and the matching market is in a pointwise steady state, so that the flows into and out of∑N
n=1 u

n(x) +κ(x) balance for each x ∈ Θ. Marketplaces are created until there is no new

marketplace n0 such that Un0
(x) > Un(x), ∀n holds for any x ∈ Θ.

A PBE only requires agents’ beliefs to be consistent with equilibrium play, not with

actions out of equilibrium. As is well known, a PBE can therefore depend on unreason-

able off-equilibrium beliefs because these beliefs are never tested in equilibrium. Since

unreasonable beliefs are not needed for any of our results, we rule out beliefs that are

6Kübler et al. (2008) report experimental evidence suggesting that pooling equilibria never arise when
some types can benefit from the effective use of signals.
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unreasonable in the sense of the Intuitive Criterion. To do this formally, let us call the

choices of n and B(x) the ’grand strategy’ of agent x, denoted GS(x) = (n,B(x)). Also

define BR(x|h) as the set of continuation strategies GS(x|h) that are best responses for

x. To apply the Intuitive Criterion as an equilibrium refinement, we have to define the

notion of equilibrium domination in our model:

Definition 2 (Equilibrium domination). Given a PBE of the model, the continuation

strategy GS(x|h) is equilibrium-dominated at history h if

U(x) > max
GS(y|h)∈BR(y|h)

U(x|GS(x|h))

where U(x|GS(x)) is the present value to x of searching with strategy GS(x|h).

The Intuitive Criterion then demands that the beliefs of y assign probability 0 to any

type x who would have to pursue equilibrium-dominated strategies to reach the respective

history: ψ(x|h) = 0 if, at a history up to h, x would have had to play an equilibrium-

dominated strategy GS(x|h).

4.2 Putative equilibrium

We next propose that a particular separating equilibrium exists under a simple condition

on the match production function f(·, ·). All we need is a weak and intuitive form of

complementarity known as strict supermodularity (or increasing differences): the marginal

product of one agent in a match is strictly increasing in the type of the other agent.

Definition 3 (Supermodularity). The match production function f(·, ·) is strictly su-

permodular if, for all xH > xL and yH > yL,

f(xH , yH)− f(xL, yH) > f(xH , yL)− f(xL, yL)

A match production function is strictly submodular if the reverse inequality holds.

Further, we refer to the sorting with x = y in all matches as perfect positive assortative

matching (PPAM). We can now propose existence of the following PBE in our model:

Proposition 1 (Existence). Let η and ζ be sufficiently close and let agents’ beliefs assign

probability 0 to equilibrium-dominated actions. Then for any type distribution L(x), strict

supermodularity of f(·, ·) is necessary and sufficient for the existence of a separating PBE

in which each agent x ∈ Θ

(i) engages in search: U(x) ≥ 0

(ii) chooses a marketplace n for which the signal x̃ = “x ∈ Rn” is truthful, where n can

only belong to sector F if f(x, y) ≥ g(x, y) for x = y

11



(iii) reaches a bargaining agreement in the first meeting and thus matches:

α(B(x), B(y)) = 1 and ω(B(x), B(y)) = 0 for x = y

(iv) correctly believes all signals to be truthful:

ψ(y|h = {x̃, ỹ = “y ∈ Rn”}) = un(y|h = {x̃, ỹ = “y ∈ Rn”}) = 1 for y ∈ Rn.

The market is in pointwise steady state and is perfectly segmented: |Rn| = 1, ∀n.

Crucially, the combination of truthful signals and |Rn| = 1 means that there is only one

type x ∈ Θ on each marketplace. When agents meet exclusively agents of their own type

and then match, the matching that necessarily results is PPAM.

The figure below depicts the overall symmetric structure of the putative equilibrium.

We find in section 5.2 for sector F that all types above a certain threshold x∗F cannot

gain from invading the marketplaces of higher types, while types below x∗F might. Yet

suppose that x∗F lies below (x̄ − x)/2, which will be the case if η and ζ are sufficiently

close. Then the types below x∗F will prefer a marketplace in sector G: as all other types

below (x̄ − x)/2, they are more productive in sector G. By exact analogy to sector F ,

their marketplaces in sector G are not invaded by relatively unproductive types above

the threshold x∗G because all types above (x̄ − x)/2 prefer a marketplace in sector F . If

there is a type x = (x̄− x)/2, the agent randomises over sectors. In short, types choose a

marketplace in the sector where they are more productive and they sort perfectly within

each sector.

x x∗F
x̄−x

2◦
sector G

◦
x∗G x̄◦

sector F

◦

The next section proves proposition 1 through a series of lemmas. Each time, we sepa-

rately consider a component of proposition 1, taking as given that all other components

are indeed as specified in proposition 1. We verify for the component in question, as

applicable, that it is optimal for agents to behave as specified, that a steady state results,

and that beliefs are consistent with equilibrium play.

5 Existence of the putative equilibrium

5.1 Bargaining, participation, and steady state

We first determine the expected present values in the putative equilibrium situation.

Given that beliefs are consistent with equilibrium play (and that |Rn| = 1), we have

ψ(y|h = {x̃, ỹ = “y ∈ Rn”}) = un(y|h = {x̃, ỹ = “y ∈ Rn”})
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If x only meets agents of her own type, then

un(y|h = {x̃, ỹ = “y ∈ Rn”}) = 0 ∀y 6= x (3)

Since every meeting in the putative equilibrium leads to match,

α(B(x), B(y)) = 1 for y = x and ω(B(x), B(y)) = 0 for y = x (4)

For the marketplace chosen in the putative equilibrium, equation (2) thus simplifies to

rU(x) = η [W (x|y)− c− U(x)] (5)

with y = x. Hence the rate of matches equals the rate of meetings, and an agent effectively

incurs costs c each time she matches. Next, the expected return on being matched with y

is the expected flow utility while matched and the loss from match dissolution at rate δ:

rW (x|y) = σ(x|y)− δ[W (x|y)− U(x)] (6)

where σ(x|y) denotes the expected share that x obtains when bargaining with y over the

flow of match output, which is in effect known from truthful signals: for sector F ,

σ(x|y) =
1

2
π(x|y) +

1

2
[f(x, y)− π(y|x)] (7)

One can solve equation (5) for U(x) and equation (6) for W (x|y), then use the latter to

substitute for W (x|y) in the former to obtain

rU(x) = β[σ(x|y)− (r + δ)c] (8)

where β = η/(r + δ + η). Now suppose y has been randomly selected to move first in

the bargaining game. In response to the share left for her, x can reject it and continue

searching, which carries the value U(x), or she can reject this share and wait for another

round of bargaining, which carries a value V (x|y). Note that the first mover y cannot

hope to attain a better position than she currently has: at best, she will find herself as

first mover again in a later meeting, be it with the same agent x or another agent of the

same type. As delay is costly, y seeks to seize the opportunity and to ensure that x accepts

her offer. In turn, x will accept any implicitly offered payoff WO(x|y) that satisfies

WO(x|y) ≥ max[V (x|y), U(x)] (9)

as she would otherwise reject the offer. When x moves first, y requires

WO(y|x) ≥ max[V (y|x), U(y)] (10)
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In case of a second meeting, the same logic as before implies that the first mover seeks to

ensure agreement, so that the second meeting can be expected to result in a match. The

second meeting happens at rate ζ, so that

rV (x|y) = ζ [W (x|y)− c− V (x|y)] (11)

in the putative equilibrium. Solving equation (11) for V (x|y) and equation (5) for U(x),

one finds that V (x|y) ≥ U(x) since ζ ≥ η. Hence the outside option U(x) is not binding.

As we also require bargaining strategies to be stationary, the game reduces to a variant of

Rubinstein’s (1982) set-up, and we have the following result (see appendix for all proofs):

Lemma 1 (Bargaining equilibrium). Given truthful signals and given marketplace

choices as in the putative equilibrium situation, the following stationary strategies form

the unique SPE of the bargaining game in sector F :

(i) for herself, agent x always proposes

π∗(x|y) =

(
1− φ

2

)
f(x, y) + φ(r + δ)c with φ =

ζ − βδ
r + ζ

(12)

When y proposes π(y|x), x always accepts if and only if π(y|x) ≤ π∗(y|x).

(ii) for herself, y always proposes π∗(y|x) = π∗(x|y). When x proposes π(x|y), y always

accepts if and only if π(x|y) ≤ π∗(x|y)

Agreement is reached in the first round of bargaining. The expressions for sector G are

obtained by substituting g(·, ·) for f(·, ·).

The essence of the bargaining SPE is that each agent makes offers that leave the other

indifferent, and each agent accepts offers that make her indifferent or better off: the

first-mover takes a share π∗(x|y) such that the second-mover share

f(x, y)− π∗(x|y) =
φ

2
f(x, y)− φ(r + δ)c

is just enough to prevent the second mover from rejecting. The second-mover share will

still be weakly positive if

φ

2
f(x, y) ≥ φ(r + δ)c ⇔ 2c ≤ f(x, y)

r + δ

which by assumption 2 even holds for f(x, y) = f(x, y). The two indifference conditions

in equations (9) and (10), depending on who moves first, thus together pin down a unique

SPE for each sector. Finally, expected shares in the SPE reflect the symmetry of the

bargaining situation: for sector F ,

σ(x|y) = σ(y|x) =
1

2
π∗(x|y) +

1

2
[f(x, y)− π∗(x|y)] =

1

2
f(x, y) (13)
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To ensure that all agents engage in search, c must not be so high that U(x) becomes

negative for some x, since each agent can obtain a payoff 0 by not participating.

Lemma 2 (Participation). Assumption 2 is necessary and sufficient for all agents to

prefer engaging in search to non-participation.

By definition, the mass of matched agents is l(x)−
∑N

n=1 u
n(x)−κ(x)−ν(x). As agents in

the putative equilibrium prefer search to non-participation and reach an agreement in the

first bargaining round, ν(x) = κ(x) = 0, ∀x ∈ Θ. Hence agents only flow from searching

to being matched (at rate η) and back (at rate δ). Equating these flows, we obtain the

pointwise steady state in the putative equilibrium:

δ

l(x)−
∑
N (x)

un(x)

 = η
∑
N (x)

un(x) ∀x ∈ Θ (14)

where N (x) ≡ {n|Rn = {x}} is the set of all marketplaces on which x meets exclusively

her own type when signals are truthful.

5.2 Marketplace choices, signals and beliefs

In this section, we examine whether any one agent in the putative equilibrium has a

unilateral incentive to deviate by choosing to enter a marketplace in the same sector but

intended for another type, so that the agent’s signal is false. There are two reasons why

we need to worry about such deviations. First, because true types are only privately

observable, agents can perfectly imitate agents of other types by bargaining as these

types would. Second, agents might enter another type’s marketplace but, once in a

meeting, renege on the signal they thereby sent. Since search frictions make switching to

another meeting costly, the other agent in the meeting might still accept the match. For

example, consider a rather high type yH in sector F who matches with xH in the putative

equilibrium. If yH finds herself in a meeting with a type xL < xH , she might nevertheless

grudgingly accept whenever her share of f(xL, yH) is not so far below her expected share

of f(xH , yH) that the costs of another meeting would be justified. Therefore, there can

be an incentive to send false signals and invade other types’ marketplaces.

Let us focus on marketplaces in sector F for the rest of this section, as all results will

analogously apply to sector G. We take as given that all other agents on the marketplace

signal truthfully, that all believe signals to be truthful, and that agents choose sectors as

in the putative equilibrium: then only agents with a type x ≥ (x̄− x)/2 search in sector

F . We proceed by identifying first the conditions under which everyone of these agents

prefers her match in the putative equilibrium (henceforth the equilibrium match) to any

other match in sector F that is available to her (i.e. a mutually acceptable match with

another agent searching in F ). From this, we infer under which conditions there will be

no unilateral incentive to deviate from truthful signals.
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We first compare the equilibrium match to matches with lower types. Let us take the

perspective of some agent with a type xH > (x̄−x)/2, so that lower types necessarily exist

in sector F . We thus want to compare being matched with yH = xH to being matched

with yL, where (x̄ − x)/2 ≤ yL < xH . The expected present discounted values of these

matches are W (xH |yH) and W (xH |yL), respectively. In the spirit of the one-deviation

principle, x reverts to the putative equilibrium strategies after the deviation. Hence, the

asset equations for both rW (xH |yH) and rW (xH |yL) in analogy to equation (6) depend

on the same U(xH) and thus differ only in the expected shares. Solving these two asset

equations respectively for W (xH |yH) and W (xH |yL), we therefore find that

W (xH |yH) > W (xH |yL) ⇔ σ(xH |yH) > σ(xH |yL)

where σ(xH |yH) and σ(xH |yL) denote the expected share obtained by xH in a match with

yH and yL, respectively.

Thus suppose xH signals to be of type xL in order to meet a type yL. Further suppose

that xH continues to behave like a type xL so as to conform to the beliefs of yL, given

that all other agents signal truthfully. Recall from section 5.1 that neither agent’s signal

implies a binding outside option. Hence the bargaining equilibrium described by lemma

1 will be reached in the first round of bargaining. Then the expected flow utility for xH

in the match with yL is

σ(xH |yL) =
1

2

[
f(xH , yL)− φ

2
f(xL, yL) + φ(r + δ)c

]
+

1

2

[
f(xH , yL)−

(
1− φ

2

)
f(xL, yL)− φ(r + δ)c

]
= f(xH , yL)− 1

2
f(xL, yL) (15)

If xH moves first (with probability 1
2
), she leaves a second-mover share to yL as if output

was f(xL, yL) and keeps the rest of the actual output f(xH , yL). If yL moves first, yL

takes the first-mover share of f(xL, yL) for herself and xH obtains the actual remainder.

In an equilibrium match, by contrast, xH would obtain

σ(xH |yH) =
1

2

[(
1− φ

2

)
f(xH , yH) + φ(r + δ)c

]
+

1

2

[
φ

2
f(xH , yH)− φ(r + δ)c

]
=

1

2
f(xH , yH) (16)

Comparing σ(xH |yL) and σ(xH |yH), we find the following:

Lemma 3 (Matches with lower types). In the putative equilibrium, strict supermod-

ularity of f(·, ·) is necessary and sufficient for any agent in sector F to strictly prefer the

equilibrium match to matching with a lower type while perfectly imitating the lower type.
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Next suppose that xH has signalled to be of type xL, has thus met a type yL, but now

wants to renege on the signal. We will find below that xH has to let at least one round

of bargaining fail to actually convince yL of her true type. Here we ask whether reneging

could possibly make the deviation to a match with a lower type worthwhile. By considering

the hypothetical extreme case that yL instantly observes the true type xH , we obtain an

envelope result and thereby a negative answer:

Lemma 4 (Reneging in matches with lower types). Suppose types were instantly

observable in meetings. Consider a type xH in sector F who deviates from the putative

equilibrium situation and meets a type yL, with (x̄− x)/2 ≤ yL < xH .

a) If neither agent’s outside option is binding, the following stationary strategies will form

the unique SPE of the bargaining game and lead to agreement in the first round:

(i) for herself, agent xH always proposes

π∗(xH |yL) =
2r + ζ

2(r + ζ)

[
f(xH , yL) +

βδ

2r

[
f(xL, yL)− ζ

2r + ζ
f(xH , yH)

]]
+ φ(r + δ)c

When yL proposes π(yL|xH), xH always accepts if and only if π(yL|xH) ≤ π∗(yL|xH).

(ii) for herself, yL always proposes

π∗(yL|xH) =
2r + ζ

2(r + ζ)

[
f(xH , yL) +

βδ

2r

[
f(xH , yH)− ζ

2r + ζ
f(xL, yL)

]]
+ φ(r + δ)c

When xH proposes π(xH |yL), yL always accepts if and only if π(xH |yL) ≤ π∗(xH |yL).

b) Strict supermodularity of f(·, ·) is sufficient for any agent in sector F to strictly prefer

the equilibrium match to this deviation.

Part a) of lemma 4 may be regarded as a generalisation of lemma 1 to an asymmetric case.

Crucially, part b) finds that even if xH could immediately convince yL of her true type, xH

would strictly prefer the equilibrium match, as she does when she would have to imitate

some lower type. Based on lemmas 3 and 4, we show below that types x ≥ (x̄−x)/2 never

have an incentive to deviate from the putative equilibrium to matches with lower types if

f(·, ·) is supermodular, for any beliefs that lower types might hold about deviants.

In turn, whenever a deviant causes bargaining to fail, the other agent thus knows that

she faces a strictly lower type: for a weakly higher type, a deviation would be equilibrium-

dominated. The other agent now has to choose between two options:7 another round

of bargaining with an evidently lower type or, as in the putative equilibrium, meeting

another agent of her own type (as we consider only a single deviation, another agent

signals truthfully). Define x∗F as the highest one of all thresholds that equalise these

7The same holds when a deviation is only detected after the start of the match: it can only be detected
when agents’ initial bargaining agreement breaks down, so that there is no basis for further production
while agents wait for the new round of bargaining required for renegotiation.
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two options (and similarly x∗G for an agent in sector G), so that rU(x∗F ) = rV (x∗F |y) or

equivalently

η[W (x∗F |y∗F )− c− U(x∗F )] = ζ

−c+
∑
y<x∗F

α(B(x∗F ), B(y)) [W (x∗F |y)− U(x∗F )]ψ(y|h)

+
∑
y<x∗F

ω(B(x∗F ), B(y)) [V (x∗F |y)− U(x∗F )]ψ(y|h)

 (17)

in analogy to equations (5) and (2). If η and ζ were equal, x∗F would not exist: by lemma

4b), x (whose type was observable from a truthful signal) strictly prefers her equilibrium

match to a match with a lower type, so that the left-hand side of equation (17) would

always exceed the right-hand side. The only reason to possibly continue bargaining with a

lower type is that ζ ≥ η. Types x < x∗F are willing to because their own type is sufficiently

low: then the expected type of the deviant is not so far below their type to outweigh the

difference between ζ and η. By contrast, types x ≥ x∗F walk away to meet another agent.

As these arguments are central to our reasoning, we prove them more formally:

Lemma 5 (Equilibrium-dominated strategies). Let f(·, ·) be strictly supermodular

and let η and ζ be sufficiently close so that x∗F ≤ (x̄− x)/2.

a) For any agent in sector F , a deviation such that she meets a weakly lower type with

whom bargaining fails is equilibrium-dominated.

b) Also let agents’ beliefs assign probability 0 to equilibrium-dominated actions and con-

sider a meeting in the putative equilibrium between some x and y in sector F . If x deviates,

y will correctly believe to face a lower type and will walk away.

Let us finally turn to the incentive for lower types to deviate to a match with a higher

type. Consider some agent with a type xL < x̄, so that higher types necessarily exist.

Now we want to compare being matched with an exactly corresponding type yL = xL, as

in the equilibrium match, to being matched with a higher type yH > xL. The lower type

xL has two possibilities: she can either perfectly imitate xH , or she can signal having type

xH in order to meet yH but then renege on the signal.

We have just shown that, if xL reneges in a meeting in sector F with a type yH , then

yH will walk away and xL does not gain from the deviation.8 Hence, unless xL herself

walks away (without gain from the deviation), she will have to bargain with a type yH

under two constraints: yH believes to face a type xH and bargaining must not fail. Recall

that these are exactly the constraints under which the bargaining strategy of xH in the

putative equilibrium is optimal (see lemma 1), so that xL cannot do better than perfectly

imitate xH : if she is more demanding than xH , bargaining will fail, and if she is less

8If xL instead simply claims to have a lower type, this will not be credible: also a type xH has an
incentive to downplay her type in order to make yH propose and accept lower shares for herself.
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demanding, she will not be optimising. When xL therefore perfectly imitates xH , the

expected flow utility for xL is

σ(xL|yH) =
1

2

[
f(xL, yH)− φ

2
f(xH , yH) + φ(r + δ)c

]
+

1

2

[
f(xL, yH)−

(
1− φ

2

)
f(xH , yH)− φ(r + δ)c

]
= f(xL, yH)− 1

2
f(xH , yH) (18)

If xL moves first, she has to leave yH the second-mover share of f(xH , yH) to avoid being

found out and can thus take whatever is left of the actual output f(xL, yH). If yH moves

first, yH takes the first-mover share of f(xH , yH) for herself and xL obtains the remainder.

By contrast, the expected flow utility for xL from her equilibrium match would be

σ(xL|yL) =
1

2
f(xL, yL) (19)

A comparison of σ(xL|yH) and σ(xL|yL) yields the following result:

Lemma 6 (Matches with higher types). In the putative equilibrium, strict supermod-

ularity of f(·, ·) is necessary and sufficient for any agent in sector F to strictly prefer the

equilibrium match to matching with a higher type while perfectly imitating the higher type.

If also types below (x̄ − x)/2 searched in sector F , then xL might gain from reneging in

a meeting with yH , because a type yH < x∗F would not walk away. However, all types

below (x̄− x)/2 prefer sector G, as we argue in the next section. Corollary 1 collects the

conditions identified in this section and the implications for agents’ beliefs and choice of

marketplace:

Corollary 1 (Truthful signals). Let agents’ beliefs assign probability 0 to equilibrium-

dominated actions and let η and ζ be sufficiently close so that x∗F ≤ (x̄ − x)/2. Then

strict supermodularity of f(·, ·) is necessary and sufficient for each agent in sector F to

strictly prefer a marketplace n ∈ N (x) among the marketplaces in sector F , so that the

signal x̃ = “x ∈ Rn” is truthful. Given h = {x̃, ỹ}, the only beliefs consistent with truthful

signals are

ψ(y|h = {x̃, ỹ = “y ∈ Rn”}) = un(y|h = {x̃, ỹ = “y ∈ Rn”}) = 1 for y ∈ Rn, n ∈ N (x).

Each agent in sector F essentially finds it optimal to choose a marketplace n ∈ N (x),

and to thereby signal truthfully, because this is the only way to obtain her equilibrium

match, which she prefers to a deviation. As all agents in sector F therefore indeed signal

truthfully, only beliefs that signals are truthful on the marketplaces in the sector can be

consistent with equilibrium play.
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In conclusion, this section has presented an extensive but essentially simple reasoning.

We found that agents in sector F will never deviate from the putative equilibrium to

match with lower types if f(·, ·) is supermodular. A type y in sector F who detects

a deviation should therefore believe to face a lower type; when y can choose between

continued bargaining with a lower type and her equilibrium match, she prefers the latter

because y ≥ x∗F . Lower types can thus only match with y by imitating her type, but they

will not gain from such a deviation if f(·, ·) is supermodular.

5.3 Sector choice and market segmentation

By choosing a marketplace, agents implicitly also choose the sector it belongs to. The

previous section found that agents sort perfectly within sector F , and this result extends

to sector G: by the symmetry between f(·, ·) and g(·, ·) (see assumption 1), strict super-

modularity of f(·, ·) also implies strict submodularity of g(·, ·). Further, if η and ζ are

sufficiently close so that x∗F ≤ (x̄ − x)/2, this simultaneously implies x∗G ≥ (x̄ − x)/2.

Hence results analogous to lemmas 3 through 6 also apply to the types x ≤ (x̄ − x)/2

who may search in sector G in the putative equilibrium, while the conditions for signals

being truthful in sector G and for agents meeting only agents of the same type are even

exactly the same as in corollary 1. It remains to confirm that types optimally self-select

into sectors as proposed in the putative equilibrium:

Lemma 7 (Sector choice). Let η and ζ be sufficiently close so that x∗F ≤ (x̄ − x)/2.

Any agent in the putative equilibrium with a type x < (x̄ − x)/2 then strictly prefers to

search in sector G, while any agent with a type x > (x̄− x)/2 strictly prefers sector F .

Let us now take choices among existing marketplaces as given and concentrate on the

creation of marketplaces within a given sector. Consider three types xL, xM , and xH in

sector F , with (x̄ − x)/2 ≤ xL < xM < xH ≤ x̄. Suppose these types search in the

same marketplace, so that each of them can meet with yL, yM , or yH . We know from

lemma 4 that each xH would prefer a match with yH to a match with yM or yL. The

agents of type xH can profitably set up a new marketplace where Rn = {xH} so that

agents of type xH exclusively meet each other. In the initial marketplace, they would

also meet other types although matches with these types would be less desirable, which

is not offset by any advantage in meeting rates. By setting up an exclusive marketplace,

the congestion externality imposed by these other types is avoided (see Jacquet and Tan

(2007) for details of this logic).

Given our results above, other types would not invade this new exclusive marketplace,

so that the remaining types xM and xL can no longer meet with yH . Among the possible

matches, xM prefers by lemma 4 the match with yM , so that all agents of type xM now

set up an exclusive marketplace with Rn = {xM}, leaving the initial marketplace to the

agents of type xL. This logic applies to any marketplace with different types in either
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sector.9 Hence all types have their own exclusive marketplaces in equilibrium; formally,

|Rn| = 1 for all n. (We will generalise this logic in section 6.4 to show that it does not

only apply in the putative equilibrium, but in any separating equilibrium.) There may

be several exclusive marketplaces for the same type in equilibrium (|N (x)| ≥ 1), as none

of our conclusions is affected by their exact number due to constant returns to scale in

meeting.

By way of summary, this subsection and the preceding have each shown a component

of the putative equilibrium situation to hold, given the other components. We thus found

the pointwise steady state in the PBE. Given a supermodular match production function

and beliefs that rule out equilibrium-dominated actions, agents search in the sector where

they are more productive and seek to meet only exactly corresponding types. All agents

then signal their types truthfully and correctly believe that all other agents on their

marketplaces signal truthfully. With optimal bargaining strategies, every meeting leads

to a match, as one would expect when truthful signals allow agents to know everything

in advance. The matches are only between exactly corresponding types. Our model thus

leads to PPAM under the same weak condition as in Becker’s (1973) frictionless model,

despite two kinds of search frictions. The next section discusses key properties of the

separating equilibrium.

6 Equilibrium properties

6.1 Dependence on priors

Let us first clarify why supermodularity is central to our results. Since types are only

privately observable and nothing keeps agents from imitating other types, an agent may

match incognito with any type she likes. However, because actual match output then dif-

fers from the match output suggested by the signals, the deviant will only remain incognito

if she bears the necessary adjustment: she has to give up as much of her own share as is

necessary to bridge the gap when actual output is lower (otherwise bargaining fails and the

other agent walks out), and she quietly pockets the excess output when actual output is

higher. To explain why a lower type xL would then not match incognito with a higher type

yH > xL, supermodularity is key: f(xH , yH)−f(xL, yH) is the necessary adjustment when

yH otherwise matches with xH in equilibrium, while f(xL, yH)−f(xL, yL) is the extra out-

put produced in comparison to the equilibrium match of xL. With f(xL, yH) = f(xH , yL)

in the latter, as established by equation (27), the necessary adjustment will exceed the

extra output if f(·, ·) is strictly supermodular. From the perspective of a lower type, any

possible gains from higher output with a higher type are therefore more than outweighed

9The logic also applies to types who do not search in the sector but for whom the separating equilibrium
could be sustained; that is, types x with x∗F ≤ x < (x̄ − x)/2 in case of sector F and types x with
(x̄− x)/2 < x ≤ x∗G in case of sector G.
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by the costs from adjustment.

It is crucial for this argument that the necessary adjustment falls entirely on the

deviant xL. This happens when the treatment xL faces is independent of her actual type.

Therefore, our results are obtained under the realistic assumption that true types are

always only privately observable. With publicly observable types, yH would be willing to

compromise when she bargains with a deviant xL, in order to avoid bargaining failure.

Yet under private information, yH instead bases her bargaining behaviour on the signal

sent by xL, which creates a link between signals and payoffs. Now given that xL has to

signal like a type xH in order to meet yH at all, she will be treated exactly like a type

xH at least in the first round of bargaining (and as failure of this round is bad news, a

second round with yH ≥ x∗F never happens). This way, the supermodularity of the match

production function fully translates into supermodularity of the payoffs that determine

signal choice. In effect, supermodularity assumes the role of a single-crossing property

in our model and we thus obtain a fully separating equilibrium even though signals are

costless. Separation is therefore not driven by differences in the cost of signals, but by

differences in marginal productivity of the same agent over different matches.

6.2 Efficiency

The separating equilibrium we have identified is efficient in a number of important re-

spects. First and foremost, search costs are minimised, both for each agent individually

and overall: every meeting results in a match, so that agents match after an expected

search time of 1/η. This is the minimum delay because a meeting necessarily precedes a

match. In a random search model, each match would typically be preceded by a number

of unsuccessful meetings, and only by chance will the first meeting of an agent result

in a match. Therefore, search costs in random search models are at least as high from

the individual perspective as in our model with truthful signals, and strictly higher in

expectation as well as on aggregate. Second, note that all agents match in equilibrium so

that there is no unrealised surplus left in the form of agents who never match. On the

contrary, Becker (1973) proved the following result:

Corollary 2 (Output efficiency). If the match production function is strictly super-

modular, PPAM will maximise aggregate output.

Random search models, be it with or without supermodularity of the match production

function, do in general not maximise aggregate match output, as they lead to a certain

degree of mismatch instead of PPAM. Finally, among the mutually acceptable matches,

agents in the equilibrium we found always obtain the match they most prefer. This again

contrasts starkly with random search models, where the match an agent expects is the

expectation over the mutually acceptable matches, not the most preferred one of them.
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6.3 Stability

In this section, we examine whether the equilibrium matching we found is a stable match-

ing. Because this equilibrium is symmetric, our notation can abstract from the distinction

between types and individual agents without loss of generality. Suffice to let σ(x) denote

the expected flow utility that an agent of type x obtains under a particular matching.

Recall that σ(x) = σ(x|y) if x and y are matched in this matching and σ(x) = 0 if x

remains unmatched. We can then define stability as follows:

Definition 4 (Stable matching). The equilibrium matching is stable if σ(x) satisfies

σ(x) ≥ 0 for all x ∈ Θ and there is no match between any two agents with types x and y

such that σ(x|y) > σ(x) and σ(y|x) > σ(y).

It is worth noting that a stable matching in this model is by definition also in the core.10

We find that supermodularity of the match production function is a sufficient condition

here for PPAM to be a stable matching:

Corollary 3 (Stability of PPAM). Whenever it exists, the separating equilibrium de-

scribed by the putative equilibrium leads to a stable matching.

A stable matching is a most unusual result in a model with search frictions. In random

search models, agents cannot search selectively and accept any type from a certain range

because search frictions make continued search undesirable. A stable matching cannot

be expected to arise under such circumstances and is very unlikely to arise by chance

whenever the number of different types is not trivially small. Stable matchings normally

only arise in frictionless models. We attribute the reason that a stable matching is achieved

here despite search frictions to the signals: they allow agents to pursue their search almost

as if there were no search frictions.

Adachi (2003) shows for a fairly general search model that the set of equilibria will

reduce to the set of stable matchings in a model à la Gale and Shapley (1962) if search

frictions become negligible. Our result in this section qualifies this finding in so far as

search frictions remain in our model because agents do not meet immediately (η < ∞)

and incur costs from meetings (c ≥ 0), and yet a stable matching results. This suggests

that frictions do not prevent a stable matching in a search model as long as they do

not keep agents from meeting only specifically chosen types. Intuitively, arbitrarily high

frictions do not have any effect as long as agents participate and then find ways to match

like in a frictionless environment.

10The notion of the core implicitly assumes side payments within a coalition, so that only the coalition’s
total utility counts. For example, side payments in Becker (1973) ensure that agents end up in the match
generating the highest match output, among the available matches. In our model without side payments,
each agent’s σ(x) in the core has to weakly exceed the utility of being single and of any other available
match (while a match is available to x if σ(y|x) > σ(y)). These are the requirements in definition 4.
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6.4 Uniqueness

While we have shown that a particular separating equilibrium exists, this section argues

that it is unique. The first thing to note is that, by its very nature, a separating equilibrium

is characterised by truthful signals.11 In section 5.3, truthful signals lead to marketplaces

where agents meet exclusively their own type. This result generalises:

Lemma 8 (Market segmentation). Agents will meet only their own type in any sepa-

rating equilibrium if f(·, ·) is strictly supermodular.

Therefore, PPAM is the unique matching that may result in any separating equilibrium

of our model. We can now conclude more comprehensively:

Proposition 2 (Uniqueness). Whenever it exists, the separating equilibrium described

by the putative equilibrium is unique up to off-equilibrium beliefs.

No formal proof is needed, as proposition 2 follows from our earlier results. We know

from lemma 8 that any separating equilibrium would have to lead to PPAM, so that other

separating equilibria would have to differ in agents’ beliefs, their choice of marketplace,

their bargaining strategy, or in the steady state. However, lemma 8 implies that choosing

a marketplace n ∈ N (x) in the sector where one is more productive is the uniquely

optimal choice rule for x. When signals are therefore truthful, the unique bargaining SPE

in section 5.1 always results. Then only one specification of beliefs about equilibrium

actions will be compatible with these choices.

Finally, as the bargaining SPE ensures agreement in the first round of bargaining,

κ(x) = 0 for all x ∈ Θ and in any separating equilibrium. Since this agreement to

match is reached with an agent of the same type, assumption 2 is sufficient to ensure

participation of all types, as shown in section 5.1. Hence also ν(x) = 0, ∀x ∈ Θ, so that

equation (14) applies to the steady state and determines a unique mass for the matched

and for the unmatched agents of each type. Hence, separating equilibria other than the

putative equilibrium can only differ in beliefs about off-equilibrium actions.

7 Conclusions

This paper has introduced costless signals into a search model with transferable utility.

A simple market design has been proposed that leads agents to signal truthfully. We

thus find a unique separating equilibrium characterised by perfect sorting, minimised

search duration and search costs, and maximised overall match output. These efficiency

benchmarks are virtually never met by random search models because frictions lead to

lengthy search and to some mismatch. In our model, signals allow agents to avoid this, so

11We ignore separating equilibria where signals are not truthful yet still informative because they are
linked by a one-to-one mapping to agents’ true types, and this mapping forms the basis of agents’ correct
beliefs. Such equilibria would only be variants of equilibria with truthful signals.
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that signals largely offset the effect of frictions on efficiency. This role of signals reflects the

pervasive use of effective communication in real-world matching markets that facilitates

search.

PAM in the separating equilibrium only requires supermodularity of the match pro-

duction function, i.e. the same condition as in a frictionless model. While this condition

is unambiguously weaker than the conditions in random search models such as Shimer

and Smith (2000), it does not merely ensure PAM, but even perfect PAM. To the best

of our knowledge, perfect sorting has not resulted before in a model with discounting or

explicit search costs. The key is to allow for more information: supermodularity here does

not only ensure enough complementarity for sorting but also ensures truthful signals that

help agents sort. Supermodularity thereby replaces a single-crossing condition. Hence,

compared to models with random search, a model with more information in the search

process appears to generate sorting more easily.

Sorting is likely to become more important as technological and societal progress

favours specialisation. At the same time, many new means have appeared of effective

and rapid communication that might, as in our paper, support sorting. Such means

of communication and the greater availability of information may therefore be expected

to increase efficiency, but also to deepen segregation. In any case, the interaction of

specialisation and communication offers ample scope for further research.
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A Proofs

Proof of lemma 1. Since outside options are not binding, y maximises π(y|x) subject to

WO(x|y) ≥ V (x|y) whenever she moves first. When match output is f(x, y) and y takes π(y|x)

for herself, f(x, y)− π(y|x) would be left for x. Therefore,

rWO(x|y) = f(x, y)− π(y|x)− δ
[
WO(x|y)− U(x)

]
(20)

while W (x|y) and V (x|y) are determined by

rW (x|y) = σ(x|y)− δ [W (x|y)− U(x)] (21)

rV (x|y) = ζ[W (x|y)− c− V (x|y)] (22)

Use equation (21) to substitute for W (x|y) in equation (22) and solve for V (x|y). After also

solving (20) for WO(x|y), we can rewrite WO(x|y) ≥ V (x|y) as

f(x, y)− π(y|x) + δU(x) ≥ ζ

r + ζ
[σ(x|y) + δU(x)− (r + δ)c] (23)

Substituting for rU(x) and then for σ(x|y) from equations (8) and (7), respectively, this is

(2r + ζ + βδ) [f(x, y)− π(y|x)] ≥ (ζ − βδ) [π(x|y)− 2(r + δ)c] (24)

after collecting terms. As y raises π(y|x) the left-hand side of equation (24) linearly falls,

while the right-hand side stays constant. Hence this constraint will hold with equality for the

equilibrium value of π(y|x). When x moves first, the constraint is analogously found as

(2r + ζ + βδ) [f(x, y)− π(x|y)] ≥ (ζ − βδ) [π(y|x)− 2(r + δ)c] (25)

As binding constraints, equations (24) and (25) are two equations in two unknowns, so that they

determine a unique equilibrium. By the symmetry of these equations, we infer π(x|y) = π(y|x).

When we make this substitution in either equation and solve, we obtain the expression in lemma

1. Because both first-mover shares have been derived under the constraint that the second mover

accepts, agreement is reached in the first round of bargaining. Finally, subgame perfection as in

Rubinstein (1982) holds because present values such as V (x|y) and U(x) incorporate optimising

behaviour in every later subgame. The proof for sector G proceeds analogously. �

Proof of lemma 2. As match output is the only source of utility in the model, agents who

do not engage in search obtain payoff 0. Then agent x will only engage in search if U(x) ≥ 0.

By equation (8), this requires

c ≤ σ(x|y)/(r + δ) ⇔ 2c ≤ f(x, y)/(r + δ)

using equation (13). If this holds for f(x, y), as stated in assumption 2, then it will also hold

for the output generated in any other match because f(x, y) is strictly increasing in x and y by

assumption 1. This carries over to sector G since f(x, y) = g(x̄, ȳ). �
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Proof of lemma 3. Any type xH > (x̄−x)/2 in sector F will strictly prefer the equilibrium

match to a match with a lower type yL ≥ (x̄ − x)/2 if W (xH |yH) > W (xH |yL). As argued

before, this is equivalent to

σ(xH |yH) > σ(xH |yL)

⇒ f(xH , yH)− f(xH , yL) > f(xH , yL)− f(xL, yL) (26)

using equations (15) and (16). Next, note that we can write

f(xH , yL) = f(yH , xL) = f(xL, yH) (27)

where the first equality holds because xH = yH and yL = xL, while the second equality holds by

symmetry of f(·, ·) (see assumption 1). Therefore substituting f(xL, yH) for f(xH , yL) on the

left-hand side of equation (26) only, we obtain the equation in definition 3. By this definition,

strict supermodularity of f(·, ·) is necessary and sufficient for the equation to hold. �

Proof of lemma 4, part a). Agents xH ≥ (x̄−x)/2 and yL ≥ (x̄−x)/2 in sector F would

respectively accept if

WO(xH |yL) ≥ max[V (xH |yL), U(xH)], WO(yL|xH) ≥ max[V (yL|xH), U(yL)]

If outside options are not binding and yL moves first, she will maximise π(yL|xH) subject to

WO(xH |yL) ≥ V (xH |yL). As players revert to the putative equilibrium after a match break-up,

rWO(xH |yL) = f(xH , yL)− π(yL|xH)− δ
[
WO(xH |yL)− U(xH)

]
(28)

while W (xH |yL) and V (xH |yL) are determined by

rW (xH |yL) = σ(xH |yL)− δ [W (xH |yL)− U(xH)] (29)

rV (xH |yL) = ζ[W (xH |yL)− c− V (xH |yL)] (30)

Use equation (29) to substitute for W (xH |yL) in equation (30) and solve for V (xH |yL). After

also solving (28) for WO(xH |yL), we can rewrite WO(xH |yL) ≥ V (xH |yL) as

f(xH , yL)− π(yL|xH) + δU(xH) ≥ ζ

r + ζ
[σ(xH |yL) + δU(xH)− (r + δ)c] (31)

With σ(xH |yL) defined in analogy to equation (7), equation (31) becomes

(2r + ζ) [f(xH , yL)− π(yL|xH)] ≥ ζπ(xH |yL)− 2 [δrU(xH) + ζ(r + δ)c] (32)

after collecting terms. Using the results from lemma 1 in equation (8),

rU(xH) = β

[
1

2
f(xH , yH)− (r + δ)c

]
(33)
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Thus substituting for rU(xH) in equation (32), we obtain

(2r + ζ) [f(xH , yL)− π(yL|xH)] ≥ ζπ(xH |yL)− βδf(xH , yH)− 2(ζ − βδ)(r + δ)c (34)

As before, the left-hand side of equation (34) linearly falls as yL raises π(yL|xH), while the right-

hand side stays constant. This constraint will therefore hold with equality. The same applies to

the analogous constraint for the case that xH moves first:

(2r + ζ) [f(xH , yL)− π(xH |yL)] ≥ ζπ(yL|xH)− βδf(xL, yL)− 2(ζ − βδ)(r + δ)c (35)

As a system of two binding constraints in two unknowns, equations (34) and (35) then deter-

mine a unique equilibrium. Solving them simultaneously, one obtains the expressions given for

π∗(xH |yL) and π∗(yL|xH) in lemma 4. The equilibrium is subgame-perfect because the present

values incorporate optimising behaviour in following subgames. �

Proof of lemma 4, part b). We want to prove that some xH > (x̄ − x)/2 in sector F

strictly prefers the equilibrium match to a match with a type yL, where (x̄ − x)/2 ≤ yL < xH ,

when the type xH is observed before bargaining begins. First suppose the outside option of xH

binds, V (xH |yL) < U(xH), where

rV (xH |yL) = ζ[W (xH |yL)− c− V (xH |yL)], rU(xH) = η[W (xH |yH)− c− U(xH)] (36)

Solving equation (36) respectively for V (xH |yL) and U(xH), we write V (xH |yL) < U(xH) as

ζ(r + η)[W (xH |yL)− c] < η(r + ζ)[W (xH |yH)− c] (37)

From ζ ≥ η it follows that ζ(r + η) ≥ η(r + ζ). Equation (37) thus requires W (xH |yL) <

W (xH |yH), which means that xH strictly prefers her equilibrium match whenever her outside

option binds. Therefore suppose instead that neither agent’s outside option binds, so that the

results from part a) apply. Then

σ(xH |yL) =
1

2
π∗(xH |yL) +

1

2
[f(xH , yL)− π∗(yL|xH)]

=
1

2

[
f(xH , yL) +

βδ

2r
[f(xL, yL)− f(xH , yH)]

]
Recalling that σ(xH |yH) = 1

2f(xH , yH), we will thus have σ(xH |yH) > σ(xH |yL) if

f(xH , yH) > f(xH , yL) +
βδ

2r
[f(xL, yL)− f(xH , yH)]

which holds because f(xH , yH) > f(xH , yL) and f(xL, yL) − f(xH , yH) < 0. We conclude that

xH strictly prefers her equilibrium match when neither outside option binds. This preference

extends to the case when only the outside option of yL binds, as xH then cannot be better off

than in the case when neither outside option binds. Suppose it did make xH better off, so that

the share for xH increases. Since agents split output, the share for yL decreases accordingly.

Then yL would choose not to take her outside option, which therefore cannot be binding. �
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Proof of lemma 5, part a). We have to establish that any agent xH ≥ (x̄−x)/2 in sector

F always prefers, for any beliefs of some yL with (x̄ − x)/2 ≤ yL ≤ xH , her equilibrium match

to a deviation such that she meets yL with whom bargaining fails. For xH = yL, lemma 1

implies that xH would have preferred reaching a bargaining agreement with yL. For xH > yL,

we have to consider all possible beliefs held by yL about the potential match output f(x, y)

when bargaining fails:

(i) fe(yL|h) = f(xH , yL) so that yL believes to face the true type xH . By lemma 4, xH

strictly prefers her equilibrium match.

(ii) fe(yL|h) > f(xH , yL) so that yL overestimates potential match output and thus believes

to face a type even higher than xH . By the same argument as in the proof of part b)

of lemma 4, yL does not believe the outside option of xH to bind: if it did, x would

have had to pursue an equilibrium-dominated strategy. Observe that both π∗(yL|xH) and

f(xH , yL)− π∗(xH |yL) in lemma 4 are non-decreasing in xH , whether or not the outside

option of yL binds. Hence yL demands weakly higher shares than under (i). Because xH

strictly prefers her equilibrium match under (i), she still prefers her equilibrium match

when yL is more demanding.

(iii) f(xH , yL) > fe(yL|h) > f(xL, yL) so that yL underestimates potential match output but

still believes to face a higher type. Note that f(xL, yL) is then a lower bound for fe(yL|h).

By lemma 3, xH strictly prefers her equilibrium match if yL believes to face xL (and

xH imitates xL to avoid bargaining failure). By the same arguments as under (ii), if yL

believes to face a higher type xH > xL, she will not believe the outside option of xH to

bind and will demand weakly higher shares. Then xH still prefers her equilibrium match.

(iv) fe(yL|h) = f(xL, yL) so that yL believes to face the same type as her own type. By lemma

3, xH strictly prefers her equilibrium match.

(v) fe(yL|h) < f(xL, yL) so that yL believes to face a lower type. By the definition of x∗F
in equation (17), if x∗F ≤ (x̄ − x)/2 then yL prefers meeting another agent rather than

continued bargaining with xH who is perceived as a lower type. Hence yL walks away and

xH would prefer her equilibrium match to this deviation.

Hence the deviation in question is equilibrium-dominated for weakly higher types than yL. �

Proof of lemma 5, part b). When we require that agents’ beliefs assign probability

0 to equilibrium-dominated actions and that f(·, ·) be strictly supermodular, any type yL ≥
(x̄−x)/2 must believe by part a) of lemma 5 to face a lower type when bargaining fails, so that

fe(yL|h) < f(xL, yL). By the argument under (v) in the proof of part a), yL then walks away

when bargaining fails. �

Proof of lemma 6. Any type xL in sector F , with (x̄− x)/2 ≤ xL < x̄, will strictly prefer

the equilibrium match to a match with a higher type yH if W (xL|yL) > W (xL|yH), which is
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equivalent to

σ(xL|yL) > σ(xL|yH)

⇒ f(xH , yH)− f(xL, yH) > f(xL, yH)− f(xL, yL)

using equations (18) and (19). By equation (27), we can replace f(xL, yH) on the right-hand

side by f(xH , yL). Hence strict supermodularity is necessary and sufficient for this equation to

hold. Finally, for the type x̄, a higher type than in the equilibrium match does not exist. �

Proof of corollary 1. Consider some arbitrary unmatched agent in sector F and call this

exemplary type xE . Recall that N (xE) ≡ {n|Rn = {xE}}. Given the choice of bargaining

strategy and given all other agent’s choices in the putative equilibrium, an agent of type xE will

obtain her equilibrium match with an agent of type yE = xE if she chooses a marketplace n ∈
N (xE). Further given that agents meet exclusively their own type in the putative equilibrium,

|Rn| = 1 for all n. Hence xE will obtain her equilibrium match only if she chooses a marketplace

n ∈ N (xE).

By lemmas 3 through 6, xE will strictly prefer this match to any other match in sector F

if f(·, ·) is supermodular, η and ζ are sufficiently close, and agents’ beliefs rule out equilibrium-

dominated actions. Because type xE was arbitrarily chosen, the reasoning extends to any type

in the sector. If signals are therefore truthful, then un(y|h = {x̃, ỹ = “y ∈ Rn”}) = 1 for y ∈ Rn,

and agents’ beliefs can only be consistent if ψ(y|h = {x̃, ỹ = “y ∈ Rn”}) = 1 for y ∈ Rn. �

Proof of lemma 7. Suppose to the contrary that an agent with a type x sets up a mar-

ketplace in sector F . Instead of x, we write xL to keep the proof general. Let us first focus on

matches between xL and some y < (x̄− x)/2, recalling that truthful signals cannot be expected

from types below x∗F . To provide an envelope result, consider as in lemma 4 the most favourable

case for xL that agents instantly observe each others’ types. If xL then matches with another

agent of type yL = xL, the symmetry of the bargaining situation will imply

σ(xL|yL) =
1

2
f(xL, yL)

while xL would obtain 1
2g(xL, yL) in her equilibrium match in sector G. Since xL < (x̄− x)/2,

we know that g(xL, yL) > f(xL, yL), and hence xL strictly prefers sector G. Alternatively, the

other agent has a higher type yH . Suppose again the most favourable case for xL that the

outside option of yH does not bind. Suppose that the outside option of xL to search in sector G

also does not bind (if it does, the same logic as in the proof of lemma 4, part b) will imply that

xL strictly prefers sector G). Then we can proceed as in the proof of lemma 4, part a) with the

exception that we replace equation (33) by the value to xL of searching in sector G, since this

option is always available to her:

rU(xL) = β

[
1

2
g(xL, yL)− (r + δ)c

]
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We find the expressions for the bargaining shares as

π∗(xL|yH) =
2r + ζ

2(r + ζ)

[
f(xH , yL) +

βδ

2r

[
g(xH , yH)− ζ

2r + ζ
g(xL, yL)

]]
+ φ(r + δ)c

π∗(yH |xL) =
2r + ζ

2(r + ζ)

[
f(xH , yL) +

βδ

2r

[
g(xL, yL)− ζ

2r + ζ
g(xH , yH)

]]
+ φ(r + δ)c

The expected share for xL is in this case

σ(xL|yH) =
1

2
π∗(xL|yH) +

1

2
[f(xL, yH)− π∗(yH |xL)]

=
1

2

[
f(xL, yH) +

βδ

2r
[g(xH , yH)− g(xL, yL)]

]
Agent xL will strictly prefer her equilibrium match in sector G if

g(xL, yL) > f(xL, yH) +
βδ

2r
[g(xH , yH)− g(xL, yL)]

Noting that g(xH , yH)− g(xL, yL) < 0, this holds for any type xL as long as yH < (x̄− x)/2 so

that g(xL, yL) > f(xL, yH). As x∗F ≤ (x̄− x)/2, this holds in particular for all yH < x∗F . Hence

type x strictly prefers her equilibrium match in sector G. Now consider the second lowest type

instead: this type cannot match anymore with x in sector F , so that the logic above now applies

to this type, who therefore strictly prefers sector G. The argument can be repeated for all types

x < (x̄− x)/2.

Let us now focus on matches between xL and some y ≥ (x̄− x)/2. Since therefore y ≥ x∗F ,

the definition of x∗F implies that y prefers searching for her equilibrium match to meeting any

types below x∗F . The same preference keeps y from searching on a marketplace with Rn = {x}
for x∗F ≤ x < x̄ but x 6= y: lemmas 3 through 6 extend to all y ≥ x∗F and were limited to

y ≥ (x̄− x)/2 only for expositional reasons. As explained in section 5.3, y also does not search

on mixed marketplaces for types y ≥ x∗F . Finally, if xL chooses Rn = {y} for the marketplace,

then y will believe signals to be truthful and will walk away after bargaining fails. Therefore, xL

can only match with any y ≥ (x̄− x)/2 by perfectly imitating her. By lemma 6, xL would then

obtain less than 1
2f(xL, yL), and since g(xL, yL) > f(xL, yL), yL strictly prefers her equilibrium

match in sector G. Analogous arguments, using x̄ instead of x above, prove that all types

x > (x̄− x)/2 strictly prefer sector F . �

Proof of corollary 2. The proof given in Becker (1973) applies to our set-up and we

essentially repeat it here. Let f(·, ·) be strictly supermodular and index types in sector F by

1, 2, . . . I such that x1 < x2 < . . . < xI . If PPAM maximises aggregate output, then

I∑
j=1

f(xj , yij ) <
I∑
i=1

f(xi, yi) for all permutations (i1, i2, . . . iI) 6= (1, 2, . . . I)

Suppose to the contrary that aggregate output is maximised by some permutation i1, i2, . . . iI

for which i1 < i2 < . . . < iI does not hold. Then the permutation includes at least one j0 such
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that ij0 > ij0+1. By strict supermodularity of f(·, ·),

f(xj0+1, yij0 )− f(xj0 , yij0 ) > f(xj0+1, yij0+1)− f(xj0 , yij0+1)

because xj0+1 > xj0 while yij0 > yij0+1 . After rewriting this as

f(xj0 , yij0+1) + f(xj0+1, yij0 ) > f(xj0 , yij0 ) + f(xj0+1, yij0+1)

the left-hand side represents the match production under PPAM, while the right-hand side

represents the match production under the permutation i1, i2, . . . iI . As the former exceeds the

latter, the permutation i1, i2, . . . iI does not maximise aggregate output. �

Proof of corollary 3. Recall that the separating equilibrium exists, and that it leads to

PPAM, provided f(·, ·) is strictly supermodular and η and ζ are sufficiently close. Now suppose

that PPAM is not a stable matching. Then there must be a match between unequal types that

is preferred by both types to matches with exactly corresponding types. However, given strict

supermodularity of f(·, ·), matching with a lower type is an equilibrium-dominated action for

the higher type in any match between unequal types in sector F , by the proof of lemma 5.

Likewise, such a match is an equilibrium-dominated action for the lower type in sector G. By

lemma 7, there is no agent who wishes to switch sectors, so that a match between unequal types

that is preferred by both does not exist. Finally, lemma 1 implies together with assumption 1

that σ(x) ≥ 0 ∀x ∈ Θ under PPAM. �

Proof of lemma 8. Suppose there is at least one marketplace n =M in which, with truthful

signals, agents do not only meet their own type, so that two or more types meet. Focus on the

lowest type yL in M. This type must be the most preferred feasible type of some higher type

xH > yL in M, otherwise the higher types would exclude yL from M to reduce congestion.

We will show that such a marketplaceM cannot exist in a separating equilibrium. When xH and

yL bargain, V (xH |yL) ≥ U(xH) because xH most prefers yL and continued bargaining guarantees

a meeting with yL at rate η. While U(yL) is unknown, yL could choose in any separating

equilibrium to meet only agents of her own type on an exclusive marketplace n = L. As part

of a separating equilibrium, the situation in L would correspond to the putative equilibrium

situation in sector F , say, and because of the symmetry when yL and xL bargain in L,

π∗(xL|yL) = π∗(yL|xL) ⇒ σ(yL|xL) =
1

2
f(xL, yL)

independently of outside options. As L is always an option for yL, the payoff yL would obtain

there constitutes a lower bound for U(yL), denoted U(yL). With equation (8), it is found as

rU(yL) = β

[
1

2
f(xL, yL)− (r + δ)c

]
Next observe that xH cannot do better in a match with yL than to leave yL only with the

payoff U(yL) in expectation, so that the payoff to xH in this case constitutes an upper bound

W (xH |yL). Now suppose that an agent of type yH = xH sets up an exclusive marketplace n = H
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for her type. If this creates a profitable deviation for xH who currently most prefers yL, the

supposed marketplace M cannot exist in equilibrium. The symmetry in H would lead to

π∗(xH |yH) = π∗(yH |xH) ⇒ σ(xH |yH) =
1

2
f(xH , yH)

again as in the putative equilibrium situation in sector F . As an envelope case, suppose xH

obtains W (xH |yL) in a match with yL in M and now faces the choice between this match and

a match with yH in H. Part b) of lemma 4 applies to this choice (with U(yL) = U(yL)) and

establishes a strict preference for the match with yH over the match with yL. As xH meets yH

at rate η and yL at most at rate η, this preference also translates into a strict preference for

marketplace H. Hence xH has a profitable deviation from M to H even when W (xH |yL) is

obtained in M. By the same reasoning, yH also gains from setting up H. �
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