Attanasio, Orazio P.; Lechene, Valerie

Working Paper

Efficient responses to targeted cash transfers

IFS Working Papers, No. W13/28

Provided in Cooperation with:
Institute for Fiscal Studies (IFS), London

This Version is available at:
http://hdl.handle.net/10419/91549

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

Standard-Nutzungsbedingungen:
Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.
Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.
Efficient responses to targeted cash transfers

IFS Working Paper W13/28

Orazio Attanasio
Valérie Lechene
Efficient responses to targeted cash transfers

Orazio P. Attanasio Valérie Lechene

October 23, 2013

Abstract

In this paper, we estimate a collective model of household consumption and test the restrictions of collective rationality using z-conditional demands in the context of a large Conditional Cash Transfer programme in rural Mexico. We show that the model is able to explain the impacts the programme has on the structure of food consumption. We use two plausible and novel distribution factors, that is variables that describe the mechanism by which decisions are reached within the household: the random allocation of a cash transfer to women, and the relative size and wealth of the husband and wife’s family networks. We find that the structure we propose does better at predicting the effect of exogenous increases in household income than an alternative, unitary, structure. We cannot reject efficiency of household decisions.

Keywords: Intrahousehold allocation, collective rationality, social experiment, conditional cash transfers, QUAIDS, food, z-conditional demand.

Acknowledgement

We thank Hunt Alcott, Martin Browning, Chris Carroll, Pierre-André Chiappori, Tom Crossley, Esther Duflo, Jim Heckman, Murat Iyigun, Joan Llull, Robert Moffitt, Ian Preston, Konrad Smolinski, Richard Spady, Rob Townsend, Rodrigo Verdu, Ken Wolpin and anonymous referees for their comments and suggestions. We also thank participants to the 2009 IFS Workshop on Household behaviour, to the World Bank Workshop on Gender in LAC, to the Cergy Pontoise Workshop on Economics of couples, to the Barcelona Conference on Economics of the Family and seminar participants at Cambridge University, Penn, Johns Hopkins, and MIT. The authors acknowledge funding from the World Bank Gender in LAC study. Part of this research was funded by Lechene’s ESRC Research Fellowship RES-063-27-0002, Orazio Attanasio’s European Research Council Advanced Grants 249612, ESRC/DfID grant RES-167-25-0124, as well as ESRC Professorial Fellowship RES-051-27-0135.
1 Introduction

There is a growing consensus that households decisions are not accurately represented by the unitary model, which assumes that the household acts as a single decision unit maximizing a common utility function. Many implications of the unitary model have been soundly rejected in empirical applications. These rejections are often obtained using variables that are assumed not to affect preferences or resources and, therefore, under the unitary model, should not determine the allocation of resources. The empirical evidence that they do is therefore interpreted as a rejection of the unitary model. In the literature, these variables are referred to as ‘distribution factors’. The presumption is that they affect allocations only through the role they play in the intrahousehold allocation of resources. The main issue that arises in this literature is that, for many distribution factors, it is possible to think of reasons why they could affect preferences (or resources) and therefore salvage the unitary model. The main empirical challenge for the literature that departs from the unitary model, therefore, is the identification of plausible distribution factors: variables whose variation is arguably not related to preferences and resources and clearly exogenous.

If intrahousehold allocations are determined by the interaction of different agents with different objectives, the issue is to characterize these allocations when one knows little of the bargaining processes that go on inside the household. An attractive approach is the collective model proposed by Chiappori (1988), which does not take a stand on the specifics of intrahousehold decisions but only assumes that allocations are efficient. Among others, Browning and Chiappori (1998) and more recently Bourguignon, Browning and Chiappori (2009) have shown that this model does, in principle, impose strong restrictions on the data. Many of these restrictions, however, require the identification of multiple distribution factors, which can be difficult to observe in practice. In particular, it is difficult to find data containing information on variables that can be plausibly interpreted as distribution factors and whose variation is exogenous with respect to individual tastes.

1 There is a bit of a semantic issue here. In some papers, distribution factors are understood to be any factor that affects the intrahousehold allocation of resources. Here and throughout this paper, we mean by a ‘distribution factor’ a variable that affects the intrahousehold allocation of resources and does not affect either the budget constraint nor preferences. Under a unitary model, therefore, a distribution factor should not enter demand equations.
The main contribution of this paper is to provide a test of the collective model in a context where we can identify two plausible distribution factors. Moreover, the variation of at least one of the factors we consider is, by construction, exogenous, as it is driven by the randomization implemented to evaluate welfare programmes. This context, therefore, constitutes a unique and novel opportunity to provide a strong test of the collective model.

The welfare programme we consider is PROGRESA, in which, as in most of the CCT programmes that have been implemented in many countries, the transfers are targeted explicitly to women, with the explicit objective to change the condition of women within the household. The mother of the children associated with the programme receives the cash transfers (and participates in the program’s activities). The programme, therefore, explicitly and deliberately changes the control of resources within the households, increasing the share of total income controlled by women. Furthermore, because of the programme, women are involved in new activities that imply that they go out more and have more frequent connections with other women in the locality. This structure makes it possible that the programme changes the balance of power within the household and, as a consequence, the allocation of resources. Implicit in this argument is, of course, that the allocation of resources within the households is a function of who controls them, a clear violation of the unitary model. As, within the evaluation sample, the programme was randomly allocated to a number of communities, we have exogenous variation in a plausible distribution factor that we can use to test our models.

The evaluation of many CCT programmes has brought to light a remarkable fact: following the injection of cash in the budget of poor households induced by CCTs (in Mexico, about 20% of household income), as total expenditure and consumption increase as expected, the consumption of food increases, proportionally, at least as much, so that the share of food among beneficiaries either increases or stays constant. This contradicts the standard view that, as a necessity, food has an income elasticity less than unity so that when total consumption increases, the share of food should decrease. This fact has been documented in the context of the urban version of the Mexican programme by Angelucci and Attanasio (2009, 2012), in rural Mexico by Attanasio and Lechene (2010), in the context of a similar programme in Colombia by Attanasio, Battistin and Mes-

In Attanasio and Lechene (2010), we document the fact that the food budget share does not decrease in rural Mexico whilst total consumption increases as a consequence of the programme. We rule out a number of reasons why this could be, such as price increases, changes in the quality of food consumed and homotheticity of preferences as explanations for this puzzle. By estimating a carefully specified Engel curve, we show that food is indeed a necessity, with a strong negative effect of income on the food budget share. In other words, higher levels of income or total expenditure are associated (in a cross section of observations not yet affected by a CCT) with lower levels of the food share.

In the case of PROGRESA/Oportunidades, therefore, as income and total consumption are increased substantially by the programme, the tendency of the food budget share to go down is counterbalanced by some other effect of the programme so that the net effect is nil. Whilst PROGRESA/Oportunidades is a complex intervention with many components, we argue that the programme has not changed preferences and that there is no labelling of money. We propose that the key to the puzzle resides in the fact that the transfer is put in the hands of women and that the change in control over household resources is what leads to the observed changes in behaviour. In this sense, the evidence points to a substantial and strong rejection of the unitary model, as we have argued in Attanasio and Lechene (2002).

In this paper, we take the rejection of the unitary model as given and use the same data to test the collective model. The rejection we consider is particularly salient because the variation in the control of resources is by construction exogenous. In particular, we ask if the effect that PROGRESA/Oportunidades and other distribution factors have on the demand of different commodities is consistent with the restrictions imposed by the collective model. The shift in the Engel curves induced by the programme is strong and well documented both in our case and in that of other CCTs. One way to see our exercise is to ask whether the collective model can explain these shifts in the Engel curves. In this sense, our evidence constitutes a very strong test, both because some of the variation we use is truly random and because we burden the collective model
with the task of explaining a strong shift in behaviour. A first contribution of this paper, therefore, is to use in our empirical analysis the exogenous variation generated by the random assignment of a welfare programme as a distribution factor. We also provide a formal test of the collective model, which requires two distribution factors, using as a second distribution factor a variable that measures the relative bargaining strength of the husband and wife within the household by using data on the network of relatives present in the village and their wealth.

Our main findings can be summarized as follows. Being in a village (randomly) targeted by PROGRESA turns out to have an important effect on the expenditure shares we model, over and above the effect of total consumption (which is also affected by the programme). Moreover, we find that our additional distribution factor (the relative size of husband and wife’s networks) also enters significantly the demand system. These results can be interpreted as yet another rejection of the unitary model. However, we find that these two distribution factors enter in the five equation demand system in a proportional fashion, consistently with the predictions of the collective model. In particular, when we test the restriction that the PROGRESA program is not significant in what Bourguignon, Browning and Chiappori (2009) have defined as z-conditional demand, we cannot reject the null that the living in a PROGRESA village does not affect z-conditional demands. This is equivalent to testing a set of proportionality restrictions which are the necessary and sufficient conditions of the collective model.

This finding is also confirmed by the fact that observed changes in consumption shares are not statistically different from the predictions using the program impacts on total consumption and the estimates of a demand system which allow the distribution factors to affect its intercepts. We therefore conclude that the collective model can explain a clean, specific and strong deviation from the unitary model.

To our knowledge, our paper is the first to test the collective model using exogenous variation in one incontrovertible distribution factor and variation in a second, plausible, distribution factor. Like us, Bobonis (2009) implements the test developed by Bourguignon, Browning and Chiappori (2009), using the same data we use, the evaluation data set for the PROGRESA program. However,
Bobonis’s implementation of the test is problematic, which makes his results difficult to interpret. Firstly, Bobonis uses rainfall as a distribution factor without justifying how rainfall could affect the intra-household allocation of resources in the Mexican context. In fact, he even presents evidence to the contrary. Secondly, the version of the collective test he implements requires to perform a functional inversion, and the distribution factor he uses for this is an indicator variable for the assignment to Progresa. A functional inversion requires a continuous distribution factor. Thirdly, there are technical problems with the demand system estimation in Bobonis’s paper, for instance the fact that the proportion of zero expenditures is high for the goods considered and the zeros are replaced with arbitrary numbers. We detail our criticism in a Web appendix.

The rest of our paper is organized as follows. In section 2, we present the framework and the theoretical results on which the empirical analysis is based. We show the form taken by the demand functions in the case of two distinct hypothesis on the intra-household negociation process: unitary rationality and collective rationality. We also present the tests of collective rationality based on z-conditional demands. In section 3, we present the economic context and the data, a sample of poor households from the Mexican population randomly drawn to receive or not to receive large cash transfers. We then document the fact that motivates the analysis: the absence of effect of large cash transfers on the structure of the budget, in section 3.5. In section 4, we discuss our distribution factors. In section 5, we discuss the methodological issues pertinent to the estimation of a demand system in the context of a CCT programme. In section 6, we present the empirical results: we estimate a demand system to evaluate the impact of Oportunidades on food consumption, and we present tests of efficiency of decisions, using the conditional approach derived in Browning, Bourguignon and Chiappori (2009) within a modified Quaida. Section 7 concludes.
2 Theoretical framework

We consider households with 2 adult decision makers\(^2\) \(A\) and \(B\). There are \(n\) private consumption goods on which the household can spend, \(q_i^A\) and \(q_i^B\), where \(q_i^j\) denotes the private consumption of good \(i\) by agent \(j\) and \(i = 1, \ldots, n\), and \(Q\) denotes the \(m\) vector of household consumption of public goods. Household consumption of good \(i\) is \(q_i = q_i^A + q_i^B\). Vector \(q^A\) is the vector of private good consumption of individual \(A\) and similarly for \(B\). Household private consumption is \(q = q^A + q^B\). Individual preferences are defined on the consumption of private goods and public goods, and they also depend on a set of demographic taste shifter \(d\), called preference factors \(v^A(q^A, q^B, Q; d)\) and \(v^B(q^A, q^B, Q; d)\).

Denoting exogenous total expenditure by \(x\), the budget constraint is

\[
p'(q^A + q^B) + P'Q = p'q + P'Q = x
\]

where \(p\) and \(P\) are the price vectors of private and public goods respectively.

Individual preferences are in general not identical so that there must exist some mechanism by which households reach decisions. We consider two such mechanisms. One leads to a standard unitary model and the other to a general collective model. We show how the demand functions differ in these two cases. In what follows, we will denote \(\zeta_i\) the demand function for good \(i\), irrespective of whether it is a private or public good when we discuss properties which are shared by public and private goods. Browning, Chiappori, Lechene (2006) give a detailed discussion of the distinction between unitary and collective models when there are price variations.

2.1 Demand functions in the unitary model

One way to rationalise a unitary model based on individual preferences is to assume that households maximise a weighted sum of individual preferences where the weights are fixed.

\[
\max_{q^A, q^B, Q} \mu v^A(q^A, q^B, Q; d) + (1 - \mu) v^B(q^A, q^B, Q; d)
\]

\[\text{Max}_{q^A, q^B, Q} \mu v^A(q^A, q^B, Q; d) + (1 - \mu) v^B(q^A, q^B, Q; d)
\]

\[\text{2.1 Demand functions in the unitary model}
\]

\[\text{One way to rationalise a unitary model based on individual preferences is to assume that households maximise a weighted sum of individual preferences where the weights are fixed.}
\]

\(^2\)This assumption is not as restrictive as it may appear. First, a major part of the sample of poor households we consider are composed of a couple with any number of dependent relatives (children and others). Second, a number of the tests we describe can be extended to the case of households with any number of decision makers. For ease of exposition, we here limit the discussion to the case of nuclear households.
subject to the budget constraint (1). With fixed weights \(\mu \), this is equivalent to assuming the existence of a utility function \(U(q^A, q^B, Q; d) \) which, maximised, gives rise to demand functions \(\zeta_i(x, p, P, d) \) for \(i = 1, ..., n \). The quantity demanded for any good \(i \) depends on total expenditure \(x \), prices \(p \) and \(P \) and taste shifters \(d \). For well behaved individual utility functions, the demand functions must satisfy adding up, homogeneity, symmetry and the Slutsky matrix of compensated price responses must be negative semi definite.

2.2 Demand functions in the collective model

In the collective model (Chiappori 1988, 1992), individuals are characterised by their own preferences and the household’s decisions are efficient. Efficiency of decisions means that, in the collective model, unlike in the unitary model, the weights \(\mu \) in equation (2) given to the utility of each individual in the household are not fixed, but they can vary with a variety of factors, including prices and factors that affect the budget constraint. Thus, household decisions can be represented as resulting from the maximisation of a generalised household welfare function, subject to the household budget constraint (1):

\[
\max_{q^A, q^B, Q} \mu(x, p, P, d, z) v^A(q^A, q^B, Q; d) + (1 - \mu(x, p, P, d, z)) v^B(q^A, q^B, Q; d)
\]

The difference between (2) and (3) is the functional dependence of \(\mu \) on \((x, p, P, d, z)\), with \(x, p, P \) and \(d \) are as above, and \(z \) is a vector of observable factors which play a role in the negotiation but do not affect either the budget constraint or individual preferences. Following the literature, these are called distribution factors. Notice that while variables that affect the weights but also enter the budget constraint or affect preferences (such as prices or total income) might be rationalized within the unitary model, distribution factors should not appear in the demand functions associated with such a model. Therefore, variables that can be plausibly be defined as distribution factors, are crucial in distinguishing between the collective and the unitary models. In the absence of distribution factors, only functional form assumptions on preferences and the

3The representation of the unitary model in equation (2) is not the only possible and is somewhat restrictive. Most of the restrictions of the unitary model, such as income pooling, can be obtained from the maximization of a generic function \(W(v^A, v^B) \). We use this representation to relate it to our formulation of the collective model, where \(\mu \) depends on distribution factors.
Pareto weights yield identification.

However, if we observe more than one distribution factor, then powerful tests of the collective model can be conducted, since Pareto efficiency implies strong restrictions on the manner in which distribution factors z affect demand. These restrictions follow from the fact that distribution factors, as they do not affect preferences or budget constraints, enter only through the index that defines the relative weights of the two adults in the Pareto problem.

For any good, private or public, the demand function for good i derived from the maximisation of equation (3) is $\xi_i(x, p, P, d, z)$, which depends on total expenditure x, prices p and P, preference factors d and distribution factors z. Demand functions in the collective model satisfy adding up and homogeneity. They also satisfy a set of restrictions which we detail below, stemming from the way the distribution factors enter the model. However, it is well known that they do not satisfy symmetry, but rather that the Pseudo Slutsky matrix of compensated price responses is the sum of a symmetric matrix and a matrix of rank 1 (Browning, Chiappori, 1998).

In the discussion of the tests of the collective model which we present in section (2.3) below, we assume that it is possible to find a set of variables which are incontrovertibly distribution factors. In the absence of a theory of marriage and of the determination of power, whether a given characteristic is a distribution factor z or a preference shifter d is an (untestable) identifying assumption. The fundamental difficulty in finding incontrovertible distribution factors that shift neither preferences nor budget constraints has been a major hurdle for the development of the collective approach.\footnote{In the absence of distribution factors, it is possible to assume a fully structural version of a collective model, for instance Nash Bargaining. Similarly, one might chose to specify that interactions can be represented by a non cooperative Nash equilibrium. There is however, some arbitrariness in doing so.} In this respect, the context of the PROGRESA programme and of its evaluation survey is unique in that it does contain information on variables which cannot enter preferences or the budget constraint and yet influence demand. We discuss the distribution factors we use and the identifying assumption in our context in section (4) and we show that the distribution factors do influence choices in section (6.2.2).
2.3 Tests of collective rationality

Tests of collective rationality differ depending upon whether the data contains price variation or not, and whether distribution factors are observed. We focus here on tests that use variation in distribution factors.

Browning, Bourguignon and Chiappori (2009) show that testing for collective rationality is equivalent to testing any of the following three conditions:

\[
\xi_i(x, p, P, d, z) = \Xi_i(x, p, P, d, \mu(x, p, P, d, z)) \quad \forall i = 1, \ldots, n \quad (4)
\]

\[
\frac{\partial \xi_i/\partial z_k}{\partial \xi_i/\partial z_l} = \frac{\partial \xi_j/\partial z_k}{\partial \xi_j/\partial z_l} \quad \forall i, j, k, l \quad (5)
\]

\[
\frac{\partial \theta_j^i(x, p, P, d, z_{-1}, C_j)}{\partial z_k} = 0 \quad \forall i \neq j, \text{ and } k = 2, \ldots, K \quad (6)
\]

The first condition states that the functional form of the demand function is restricted so that the distribution factors only affect demands through an index. The second condition is a proportionality restriction which states that the ratio of partial derivatives of the quantities demanded with respect to the distribution factors have to be equal across goods. This restriction follows easily from the first and has been tested for instance in Bourguignon et al. (1993).

To derive the final condition, let us assume that there exists at least one good \(j \) and one observable distribution factor \(z_1 \) such that \(\xi_j(x, p, P, d, z) \) is strictly monotonic in \(z_1 \). Then invert demand for \(j \) so that \(z_1 = \zeta(x, p, P, d, z_{-1}, C_j) \).

Replacing \(z_1 \) by this expression in the demand for any other good \(i \), one obtains the \(z - \text{conditional} \) demand for good \(i \):

\[
C_i = \xi_i(x, p, P, d, z_1, z_{-1}) = \theta_j^i(x, p, P, d, z_{-1}, C_j). \quad (7)
\]

From this, the third condition equation (6) can be derived (cf Bourguignon et al. 2009). Equation (6) states that, conditional on \(C_j \), the demand for any \(C_i \) should be independent not only of \(z_1 \) (which has been substituted out) but of all other \(z_k \)’s . Note that because the unobservables of the demand for \(C_j \) now appear in the demand for \(C_i \), the former is endogenous in the demand for \(C_i \). One obvious instrument for \(C_j \) is the omitted distribution factor \(z_1 \). Note

\(^5 \)See also Browning and Meghir (1991) for conditional demand systems.
also that all these tests require at least two distribution factors and at least two demand functions. It should also be stressed that one of the distribution factors has to be such that one can invert one of the demand functions: one therefore needs a continuous factor and that one demand function is monotonic with respect to that factor.

In this paper, we implement a test of collective rationality based on \(z \) – conditional demands. The main difficulty in implementing such a test is the identification of two variables that can be plausibly labeled as distribution factors. One of the innovative features of this paper is the fact that we work with two such variables. We discuss these in section (4).

3 \textsc{PROGRESA and its evaluation surveys}

The data set we use is unique for a variety of reasons. First, it is a survey which has been collected to evaluate the impact of a welfare programme in part motivated by the desire to change the position of women within rural families in Mexico. Second, the evaluation design was based on a rigorous randomized design and involved the collection of a rich and high quality survey. Third, the nature of the data allows us to construct some credible distribution factors. In this section, we give some background information on the programme and the evaluation surveys and present some descriptive statistics.

3.1 \textsc{PROGRESA}.

After a major crisis in 1994/5, and partly in reaction to it, the Zedillo administration started an innovative programme, PROGRESA, one of the first of a new generation of ‘conditional cash transfers’ programmes that have since become extremely popular throughout Latin America and elsewhere. PROGRESA, which was later expanded to urban areas and changed its name into \textit{Oportunidades}, was initially targeted to poor and marginalized rural areas and had, as its stated objectives, to introduce incentives to the accumulation of human capital while at the same time alleviating short run poverty by providing poor households with cash conditional on certain investments.

Several practical aspects pertaining to the implementation of the programme are relevant for our analysis. PROGRESA/ \textit{Oportunidades} is a conditional cash transfer programme, in the sense that receipt of the grants is conditional on the
fulfillment of criterions further to the fact of being identified as poor in the sense of the program. The first set of conditions is related to health seeking behaviour. Women have to take their young children to health centres and they have to attend a number of courses organized by the programme. The second set of conditions is pertinent only for the education component of the grant. Receipt of this component is conditional on school attendance. In practice, nearly all children go to primary school. However, as about 60% of children continue to secondary school, for households with children who have finished primary school, the conditions might be binding. Importantly, the grants are paid to the women, in person, on the basis of fulfillment of the programme conditions during the preceding period.

PROGRESA is considered a success in many dimensions, and the gold standard of welfare programmes. Replicated in most of Central and South America, and even in poor areas of New York city, the programme has been found to lead to decreases in short term poverty, and to some improvements in health, educational attainment and investment in human capital. It also marks important changes in the design and delivery of interventions and welfare programmes. Price subsidies and transfers in kind are replaced by monetary transfers; evaluation is conducted from the beginning of the programme; possibilities of appropriation of the programme money are removed by using private banks and other institutions to deliver the cash, and finally, the transfers are put in the hands of women. Women’s role and involvement in the programme has been heralded as one of the keys of its success. We come back to this aspect below.

At the start in 1997, 300,000 families were PROGRESA beneficiaries. Now, Oportunidades covers 5 million households, or 25 million individuals representing 25% of the population. Oportunidades has the largest budget of all human development programmes in Mexico.

The aim of the programme is to increase human capital investment of the poorest households in rural Mexico, through investment in education, health and nutrition. The grants have three components, designed to address these

6Detailed information on PROGRESA/Oportunidades and its evaluation can be obtained from the Oportunidades website (http://www.oportunidades.gob.mx/EVALUACION/es/docs/docs2000.php), or Skoufias (2001) or in a recent World Bank Policy Research Report, (Fiszbein and Schady, 2009) Some evidence on the New York programme, which is relatively less well known, is in Riccio et al, (2010).
three aims. The amount of the education grant varies with the gender and age of the child, from 65 pesos for a boy in third grade to 240 pesos for a girl in third grade in secondary school (Hoddinott and Skoufias, 2004). At the start of the school year, another component of the education grant is paid to beneficiary households, towards the cost of school supplies. The education grants, therefore, depend on the number, gender and school level of the children, but are capped at 490 pesos per month and per household from January to June 1998 rising to 625 pesos from July to December 1999 (Hoddinott and Skoufias, 2004). The grants are paid to the households every two months. For rural households, the programme constitutes an important component of their income. For the average beneficiary, the PROGRESA grant constituted about 20% of household income.

3.2 The PROGRESA evaluation sample.

From its start, PROGRESA/Oportunidades was the subject of a rigorous impact evaluation. The evaluation exploited the fact that the expansion of the programme to the population targeted in the first phase would take about two years. The first phase of the programme was targeted to villages identified as poor, but in possession of a certain level of amenities in terms of school and health provision. Of the 10,000 localities included in the first expansion phase, 506 localities were included in the evaluation sample and 320 of them were randomly chosen to have an early start of the programme (in June 1998), while the remaining 186 were put ‘at the end of the queue’ and were excluded from the programme until the last months of 1999. In the 320 ‘treated’ villages, the households that in the initial (August 1997 and March 1998) surveys qualified as eligible, started receiving the cash transfers (subject to the appropriate conditionalities) in June 1998, while in the 186 ‘control’ villages, although households were defined as eligible or non-eligible in the same fashion as in the treatment villages, no payment was made until November 1999.

In the evaluation sample, extensive surveys were administered roughly every six months from August 1997 to November 2000. In each of the selected villages, the survey is a census, which is crucial for the measurement of one of the variables we use. We use two survey waves, October 1998 and May 1999. In subsequent survey waves, starting from November 1999, poor households in
control villages start being incorporated in the programme and receive part or all of the transfer they are entitled to by the programme.

The evaluation sample contains 24077 households, of which 61.5% are couples with any number of children and no other individual living in the household, 6.5% are female headed households, with any number of children and no other individual living in the household, and 4% are male headed households with any number of children and no other individual living in the household. The remaining 28% of households are neither nuclear families nor single parent or single individual households; they contain members of extended families or non blood relatives.

One issue which is prevalent in some areas of Mexico but does not affect the rural evaluation sample of Oportunidades is that of households in which the husband works elsewhere and sends remittances. In the Oportunidades rural evaluation sample, of the 125 674 individuals, 97% live regularly in the house surveyed, and only 2% live regularly elsewhere, be it to study or work.

Skoufias (2001), Hoddinott and Skoufias (2004), the World Bank CCT Policy Research Report (2009), and IFPRI reports (see IFPRI,2006) contain detailed descriptions and analysis of the effects of PROGRESA/Oportunidades. The programme’s website contains up to date description of the programme and of its impacts: http://www.oportunidades.gob.mx/index.html (see also the papers cited in footnote 1).

Our Sample. The evaluation sample, within each village, is a census that includes both beneficiaries and non-beneficiaries. As our interest is in using PROGRESA (since it was targeted to women) as a distribution factor, we select a sub sample of households considered as eligible for the programme in 1997, residing either in control or treatment villages. In order to work with a homogenous sample in terms of number of decision makers, we also select households in which there are no more than two adults and any number of children.

7In August 1997, on average, just about half the households in the targeted localities turned out to be eligible for PROGRESA. It was subsequently thought that the individual targeting had been too tight and, in March 1998, a new set of households was made eligible, so that, on average, about 78% of the households in the targeted localities turned out to be eligible. However, many of the new eligible households did not receive the transfer, for reasons that are not completely clear, for some time. To avoid dealing with these problems, in what follows we focused on the households that were originally defined as poor and that started receiving the program from its start. As the classification (and re-classification) was done both in ‘treatment’ and ‘control’ villages this does not constitute a problem.
The sample contains 14,464 households, of which 7,522 observed in October 1998 and 6,942 observed in May 1999. Of these, 62.08% (8,979 households) are in treatment villages and 37.92% (5,485 households) are in control villages.

3.3 Descriptive statistics

In Table 1, we report some descriptive statistics from the sample. In the first column, we report the average of each of the relevant variables in the control sample, while in the second, we report the same average in the treatment sample. A formal comparison of the two averages shows that the two samples are balanced, as reported in Behrman and Todd (1999).

<table>
<thead>
<tr>
<th>Variable</th>
<th>C</th>
<th>T</th>
<th>Variable</th>
<th>C</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Educ head</td>
<td>2.19</td>
<td>2.23</td>
<td>Household size</td>
<td>5.99</td>
<td>5.99</td>
</tr>
<tr>
<td>Educ spouse</td>
<td>2.15</td>
<td>2.16</td>
<td>Nb young children</td>
<td>2.42</td>
<td>2.44</td>
</tr>
<tr>
<td>Head indigenous</td>
<td>0.39</td>
<td>0.38</td>
<td>Nb old children</td>
<td>1.57</td>
<td>1.55</td>
</tr>
<tr>
<td>Age of head</td>
<td>39.52</td>
<td>39.36</td>
<td>Children in primary</td>
<td>1.25</td>
<td>1.54</td>
</tr>
<tr>
<td>Head male</td>
<td>0.96</td>
<td>0.95</td>
<td>Children in sec.pre.</td>
<td>0.30</td>
<td>0.35</td>
</tr>
<tr>
<td>Townsize</td>
<td>403.70</td>
<td>387.70</td>
<td>Distance sec. school</td>
<td>2347</td>
<td>2107</td>
</tr>
<tr>
<td>Guerrero</td>
<td>0.07</td>
<td>0.10</td>
<td>Dummy secondary school</td>
<td>0.24</td>
<td>0.26</td>
</tr>
<tr>
<td>Hidalgo</td>
<td>0.12</td>
<td>0.19</td>
<td>Distance primary school</td>
<td>0.61</td>
<td>0.23</td>
</tr>
<tr>
<td>Michoacan</td>
<td>0.13</td>
<td>0.13</td>
<td>Family network</td>
<td>0.42</td>
<td>0.42</td>
</tr>
<tr>
<td>Puebla</td>
<td>0.15</td>
<td>0.17</td>
<td>Relatives eat in</td>
<td>0.07</td>
<td>0.08</td>
</tr>
<tr>
<td>Queretaro</td>
<td>0.05</td>
<td>0.04</td>
<td>Household members eat out</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>San Luis Potosi</td>
<td>0.14</td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veracruz</td>
<td>0.35</td>
<td>0.23</td>
<td>Nb obs</td>
<td>5485</td>
<td>8979</td>
</tr>
</tbody>
</table>

The sample reflects the fact that we are dealing with a very poor population. Education of head and spouse, coded as 1 for incomplete primary, 2 for primary, 3 for incomplete secondary, and 4 for secondary and above, are low. About 60% of the sample has primary education only. The average family size is 6. Just under 40% of households are of indigenous origin. The sample is drawn from seven different states (Guerrero, Puebla, San Luis Potosi, Michoacan, Queretaro, Veracruz and Hidalgo). About a quarter of the localities have a secondary school in the village. Few households have relatives or other outsiders eating in the house, and similarly few household members declare eating outside the house.\footnote{In fact, the information on whether members of the household eat out is missing for 97% of households. Similarly, there are some missing values for other variables in the table (for less...}.
We will control for this in the empirical analysis to correct for the direct effect on food expenditure of either. We will discuss the construction of the family network variable below, in section 4. For now, suffices to say that there does not appear to be a difference between the mean values of this variable in control and treatment villages.

3.4 Definition of Commodities and Prices

In what follows, we implement a test of collective rationality on z-conditional demands. To do this, however, we have to consider at least two distribution factors (which we discuss below) and two commodities. We study the demand for the components of total food expenditure, which, in our sample, represents about 80% of non durable expenditure on average. The PROGRESA data contains very detailed information on food: the survey collects information on many narrowly defined commodities and includes information both on expenditure and consumption. In computing the shares of the different foods, we include a valuation of in kind consumption.

Obviously it would not be feasible to model the demand for several dozens food items: we therefore aggregate our data to create consumption and budget shares of 5 different commodities: (i) starches; (ii) pulses; (iii) fruit and vegetables; (iv) meat, fish and dairy; and (v) other foods. For each of the individual commodities that make our five commodities, we compute consumption so as to include both what has been bought and quantities obtained from own production, payments in kind and gifts. These quantities are valued in pesos using locality level price information derived from unit values. We take particular care to avoid duplication induced by household production.\footnote{If a household has consumed some tortilla that were produced in the house, we include the value of the tortillas (valued at average prices in the town) but do not include the value of the flour that was purchased to make the tortillas.}

Unit values are very important for our analysis and are used for two purposes. First, as we mentioned above, we use them to evaluate consumption in kind. Second, we use them to compute price indexes for each of the composite commodities. Unit values can be computed for each household that purchases a given commodity, dividing the value of the purchase by the quantity, as they

\[\text{than 1\% of the sample, information is missing for the variables recording the age of the head of household, the size of the town, the number of children in school, and distance to school. For family network, there are as many as 15\% of missing values, as we discuss below.} \]
are both reported in the survey. ‘Prices’ for individual commodities at the locality level are set at the median unit value of the households that purchased that product in a given locality. We use medians rather than means to avoid our estimates of prices being dominated by a few outliers in the distribution of quantities.

Locality level prices for individual commodities are then used to compute price indexes for each of the composite commodities, averaging individual level prices and using as weights locality level budget shares in each of the individual commodities. Details on the computation of the unit values and their use to compute price indexes can be found in Attanasio et al. (2009).

Spatial and temporal differences in prices of foods mean it is important to condition demands on prices. It is worth noting that the prices of foods decreased considerably between October 1998 and May 1999. As mentioned above, prices do not seem to have moved differentially between treatment and control communities. Having said that, however, it is clear that the data present a considerable amount of price heterogeneity across communities. To estimate demand functions, therefore, it will be necessary to take into account price variability even if we were considering a single cross section. The necessity to take into account variation in prices is compounded by the fact that we use two separate waves of the survey, October 1998 and May 1999.

3.5 Effect of the PROGRESA transfers on budget structure

Given the availability of the experimental setup, we can estimate the impact of the programme on total expenditure, on the share of food and on the share of the five commodities in food in a very simple fashion and with a minimal set of assumptions. The strongest of these assumptions is probably that there is no effect (maybe through anticipation) on the control localities. 10

As the programme was randomly allocated across localities and treatment and control samples have been proved to be well balanced in terms of baseline characteristics, the impact of the programme on any given variable can be simply obtained by comparing averages in treatment and control localities. In this

10 Notice that this is different from the absence of spillover effects on individuals not receiving the transfer. As the program was randomized across communities, we can allow for spillover effects of the kind documented in these data by Angelucci and DiGiorgi (2009).
section, we document the effects of the programme on total consumption, the consumption of food and the share of food. We use some of these impacts as inputs in subsequent tests of the theoretical structure. Given a demand system in which, say, the demand for food depends on total consumption, one could take the impact of the programme on total consumption, feed it in an estimated relationship and test whether the model is able to predict the change in food consumption.

Table 2 shows averages for total non durable consumption, total food consumption and the budget share of food in treatment and control villages, in October 1998 and in May 1999. Not surprisingly, the consumption of non durable is considerably higher on average in treatment villages than in control villages. In May 1999, the average difference between non durable consumption in control and treatment villages is 16%, which, when converted in pesos, is still less than the amount of the grant, which accounted for about 20-25% of total consumption on average. This difference is estimated with considerable precision (the standard error is 0.03) and is therefore significantly different from zero. The increase in consumption in treatment villages in October 1998, when the programme had only just started, is considerably smaller, but still sizeable at 8% and statistically different from zero. Such a modest impact might be explained by the fact that the programme was not necessarily perceived as permanent at its inception and by administrative delays in the first few payments. The evidence on total consumption is consistent with what has been reported in the literature. The fact that the increase in total consumption is below the amount of the grant has been noted and interpreted by Gertler, Martinez and Rubio-Codina (2012), who present some interesting evidence that the part not consumed is saved and invested in productive assets (such as small animals) which allow a permanent increase in consumption in the long run.

The log of expenditure on food is 7% higher in treatment villages than in control villages in 1998. The difference between treatment and control villages increases to 16% in 1999. These average impacts of the programme, again strongly significant, are remarkably similar to the increases in total non-durable consumption, implying that the share of food does not change much. Indeed, we cannot reject the hypothesis that food shares are the same in treatment and control villages both in 1998 and 1999.
It is therefore the case that in Mexico, as in other countries where similar programmes have been operating, the share of food does not decrease after the transfer and after an increase in total consumption. This is a somewhat surprising result: if food is a necessity, one would expect its share to decrease with total expenditure.

<table>
<thead>
<tr>
<th>Table 2: Comparison of total (log) consumption and food share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control and treated villages in October 1998 and May 1999</td>
</tr>
<tr>
<td>October 1998</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ln(food exp.)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Share of Food</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Nb of obs</td>
</tr>
</tbody>
</table>

Budget shares are multiplied by 100; Nb in parenthesis are standard errors for differences; standard deviations elsewhere. Bootstrap clustered by village. 500 replications.

In Attanasio and Lechene (2010), we rule out a number of explanations for the lack of a significant decline in the share of food as total consumption increases, and argue that it might be explained by the fact that targeting the cash transfer to women might have changed the balance of power within the household. Here, we want to check whether the restrictions implied by a specific non-unitary model of intrahousehold resource allocation, the collective model, hold in the same data and can explain this evidence.

As discussed in Section 2, to perform this test, we need at least two distribution factors and at least two independent demand functions. The latter and adding up of expenditure shares imply considering three commodities. One possibility, therefore, would be to consider the demand for food and the demand for two other commodities. However, given that food accounts for such a large fraction of these families’ budget and the fact that the quality of the information on non food items is not as high as that on food consumption, makes this strategy difficult to implement in practice. Therefore, in what follows we focus on the demand for food components. This choice is also motivated by the fact that the information we have on unit values seems to indicate a large level of heterogeneity in prices across villages. To test the predictions of the collective
model on a demand system, it will therefore be important to control for prices and we do not have that information for non-food components of consumption. Finally, as we document below, even when food consumption increases, the programme seems to induce relatively small changes in the composition of food consumption. It is therefore particularly interesting to check whether the demand system we estimate is able to generate this type of patterns.

In table 3, we consider the effect of the programme on the composition of food consumption. We consider consumption of five food groups: starches, wheat and rice; pulses; fruit and vegetables; meat, fish and dairy products; and finally other foods. Our figures include a valuation of in-kind consumption.

Starches account for 40% of food consumption and, therefore, about 30% of total consumption. The size of this share is another reminder of the level of poverty of these households. By contrast, expenditure on meat, fish and dairy products, which are important sources of proteins, account for only 18% of total food, while fruit and vegetables, account for 12%. Notice that almost 8% of households report zero consumption of meat, fish and dairy products in the previous week.

The table also shows the impact of the program on the shares of the five food components we are considering. The structure of the budget is not very different between control and treatment villages both in October 1998 and in May 1999. In October 1998, the statistically significant differences are for pulses, whose share is 0.80 percentage point lower in treatment villages and for meat, fish and dairy, whose share is 1.16 percentage point higher. In May 1999, again, statistically significant differences are not large: the largest differences recorded are for starches and meat, fish and dairy, respectively -2.30 percentage points and 2.54 percentage points different between treatment and control villages. As we see in section 6, estimating the demand for food components on control villages identifies income elasticities much different from one for several commodities. Starches, for instance, are identified as a necessity and meat a luxury. This implies that the size of the effects in Table 3 is surprisingly small.
Table 3: Composition of the food basket
Control and treated villages in October 1998 and May 1999

<table>
<thead>
<tr>
<th></th>
<th>October 1998</th>
<th></th>
<th></th>
<th>May 1999</th>
<th></th>
<th></th>
<th>Average % of zeros</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash transfer</td>
<td>40.26</td>
<td>40.04</td>
<td>-0.21</td>
<td>43.34</td>
<td>41.04</td>
<td>-2.30</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>(14.72)</td>
<td>(13.73)</td>
<td>(0.72)</td>
<td>(15.37)</td>
<td>(14.79)</td>
<td>(0.81)</td>
<td></td>
</tr>
<tr>
<td>Starches</td>
<td>12.82</td>
<td>12.03</td>
<td>-0.80</td>
<td>11.42</td>
<td>10.63</td>
<td>-0.79</td>
<td>3.89</td>
</tr>
<tr>
<td></td>
<td>(8.24)</td>
<td>(7.72)</td>
<td>(0.39)</td>
<td>(7.26)</td>
<td>(7.47)</td>
<td>(0.35)</td>
<td></td>
</tr>
<tr>
<td>Fruit and vegetables</td>
<td>13.26</td>
<td>13.65</td>
<td>0.38</td>
<td>10.55</td>
<td>11.53</td>
<td>0.97</td>
<td>2.72</td>
</tr>
<tr>
<td></td>
<td>(8.61)</td>
<td>(7.86)</td>
<td>(0.43)</td>
<td>(7.41)</td>
<td>(7.38)</td>
<td>(0.30)</td>
<td></td>
</tr>
<tr>
<td>Meat, fish and dairy</td>
<td>16.03</td>
<td>17.20</td>
<td>1.16</td>
<td>15.99</td>
<td>18.53</td>
<td>2.54</td>
<td>8.23</td>
</tr>
<tr>
<td></td>
<td>(12.47)</td>
<td>(12.36)</td>
<td>(0.64)</td>
<td>(12.75)</td>
<td>(12.78)</td>
<td>(0.65)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>17.62</td>
<td>17.08</td>
<td>-0.53</td>
<td>18.69</td>
<td>18.27</td>
<td>-0.42</td>
<td>1.14</td>
</tr>
<tr>
<td></td>
<td>(9.93)</td>
<td>(8.98)</td>
<td>(0.49)</td>
<td>(9.94)</td>
<td>(10.17)</td>
<td>(0.58)</td>
<td></td>
</tr>
<tr>
<td>Nb of obs</td>
<td>2874</td>
<td>4798</td>
<td></td>
<td>2611</td>
<td>4486</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Budget shares are multiplied by 100; Nb in parenthesis are standard errors for differences; standard deviations elsewhere. Bootstrap clustered by village. 500 replications

The evidence we have shown in this section confirms that the share of food, surprisingly, has not declined in correspondence of the increased consumption, as one would expect if food is a necessity. Furthermore, the composition of the food basket changes very little even when total food (and total consumption) change substantially. This is the evidence that a structural demand system needs to match.

4 Distribution factors

As mentioned in the introduction, distribution factors are variables that affect the allocation of resources exclusively by changing the relative weights of the two agents within the household (\(\mu \) and \(1 - \mu \) in equation (3) above). That is, these are variables that do not enter individual preferences or affect the amount of household resources and yet play a role in determining equilibrium outcomes. As such, they play a key role in testing the implications of the collective model.

Arguably, the identification of plausible distribution factors constitutes the main challenge of the exercise we propose and, more generally, it has always been a stumbling block in the empirical development of the collective model. Theory gives no guidance as to what constitutes a distribution factor. For many variables that have been used in the literature, it is often possible to think of reasons why such a variable could affect preferences and/or budget
constraints. One of the best examples, in the case of couples, is the share of income earned by the wife. While it is plausible, and documented (Bourguignon et al., 1993; Browning et al, 1994) that such a variable affects the distribution of resources within the family, if preferences are non separable between female leisure and consumption, one might find that the share of women’s income, which is obviously related to female leisure, appears in the demand system even if the unitary model holds.

In this section, we discuss the variables we assume to be distribution factors, and the extent to which such an assumption is plausible. In section (6.2.2), we document how our chosen distribution factors affect demand patterns.

The context of PROGRESA and its evaluation data set is unique in several respects, which makes it possible to construct two convincing candidates for distribution factors. First, women are randomly selected to participate in the programme and to receive a cash transfer. For recipients, this leads to an exogenous increase in the share of the household income controlled by women. Second, the survey associated with the programme is a census of villages and it is possible to establish family ties of individuals in the villages. We use this information to construct a measure of family networks for both spouses, which we argue influence individual weights in the intra-household allocation of resources. The distribution factors we use in what follows are receipt of the PROGRESA transfer and the relative importance of the husband and wife’s networks of relatives, in terms of size or of financial prowess.

4.1 Receipt of PROGRESA transfer

Eligibility for PROGRESA within a village targeted by the programme was based on a multi-dimensional assessment of household’s poverty. Women in eligible households were entitled to receive a cash transfer. However, within villages included in the evaluation survey, based on eligibility for the programme, effective receipt of the cash transfer was randomised across villages.

The motivation for targeting women as recipient of a transfer based on an assessment of the household’s poverty, was an explicit attempt, on the part of the administration of the programme, to improve the condition of women within the household in rural Mexico. Therefore, unless a woman was controlling 100% of the household income independently from PROGRESA, receipt of the PRO-
The PROGRESA transfer corresponds to an increase in the share of household income she controls. Furthermore, because of the randomisation of the programme, PROGRESA generates an exogenous increase in the share of income controlled by the wife only for women in some of the surveyed villages.

The share of income controlled by the wife is not an argument of preferences, and conditional on total income, it does not affect the budget constraint. Thanks to the exogenous variation in this variable induced by the randomisation of the programme, PROGRESA assignment constitutes an ideal distribution factor.

Of course, the PROGRESA grant affects the total amount of resources that a household receives and, therefore, affects the budget constraint. However, if the demand system one uses is correctly specified, controlling for total expenditure should take care of this increase in resources. Conditional on total expenditure, whether a household receives or not PROGRESA grants should make no difference to the allocation of total expenditures among different commodities. In other words, if the standard model is correctly specified, one should be able to describe how shares change upon receiving PROGRESA grants by movements along the Engel curve and predict them conditioning on the effect that the program has on total expenditure.

If, instead, after conditioning on total expenditure (including that induced by the programme) in a flexible and yet theory consistent fashion, PROGRESA has an impact on commodity shares, it has to be because it shifts the Engel curves, possibly as a consequence of a shift of Pareto weights within the households. Therefore, assignment to PROGRESA is a distribution factor as, within a unitary model, it should not affect share equations once the effect on total expenditure is taken into account.

There are two additional caveats that need to be made to this argument. As discussed above, the PROGRESA grant is a conditional cash transfer, where some conditions, namely the enrollment in school of the household children, might be related to certain expenditures. However, the argument we have sketched above holds conditional on school enrolment behaviour. For this reason, in what follows, we estimate a conditional demand system where we consider expenditure shares conditional on schooling behaviour. Analogously, if the receipt of the PROGRESA transfer affected labour supply, then it would not be a valid distribution factor. The experimental evidence on PROGRESA has
not shown any impacts on adult labour supply (see Skoufias, 2001 and Skoufias and Di Maro, 2008).

4.2 Relative importance of family networks.

The second distribution factor we consider is the relative importance of husband’s and wife’s networks. The main idea behind the use of the relative importance of the networks is the fact that the presence of such networks may impact, for a variety of possible reasons, on the balance of power within the household. It is plausible to assume that the position within the household and the relative weights of husband and wife in the allocation of resources depend, within the context of the rural villages we are studying, on the relative strength and influence of the two extended families in the village. A woman who can count on a network of siblings and relatives larger, wealthier and more resourceful than that of her husband is likely to be in a stronger position in the allocation of resources within the household. On the other hand, having a relatively larger and impoverished extended family network can arguably weaken one’s position within the household.

Before justifying fully the use of such a variable as a distribution factor, we first describe how we construct it and present some descriptive statistics on it.

To construct the relative importance of the spouses’s networks we use an idea developed in an innovative paper by Angelucci, De Giorgi, Rangel and Rasul (2009) (ADRR09, from now on). ADDR09 use the fact that the PROGRESA evaluation survey is a census within each locality and the convention of Spanish last names to map the network of siblings and cousins within each community. In Spanish speaking countries, individuals get two surnames. The first is the (first) surname of their father, while the second is the (first) surname of their mother. As in one of the waves of PROGRESA, both surnames of all individuals are available, one can identify the family network for a large fraction of the sample households. We construct an algorithm which is very similar to that used by ADDR08 and construct, for each individual in the evaluation sample, the number of siblings and cousins that are present in the same locality.

We use these data to construct our candidate distribution factor, the relative importance of husband and wife’s networks, in two ways: the size and the wealth of the networks. The former is the relative number of siblings residing in the
same village, \(s_2/(s_1 + s_2) \), where \(s_i, \ i = 1, 2 \) is the number of siblings of the wife and the husband respectively. We can also take into account the relative economic resource of the siblings and not only their number. More specifically, we construct a second index as the ratio of the (food) consumption of the wife’s siblings over the (food) consumption of all siblings (husband and wife), where consumption is proxying for wealth.

Out of 14,769 households, in 8,848 households either the wife or the husband or both have siblings present in the village. For these households, the family network variable is straightforward. For 3,513 households, neither wife nor husband have siblings living in the village. When both spouses have an identical positive number of siblings in the village, the relative strength of the family network \(F \) takes the value 1/2. We therefore code 1/2 for households with no siblings in the village, highlighting the fact that what matters is to have an equal number of siblings. Finally, for 2,408 households, it is not known whether husband or wife have siblings in the village. Missing information about the presence of siblings arises when there is ambiguity about last names.

In Table 4, we report some descriptive statistics for the two measures of relative family networks importance we have considered in the analysis. The first column contains information about the relative number of siblings, and the second column contains information about the relative wealth of the family network. This table shows that both variables exhibit a considerable amount of variation and, therefore, have the potential of capturing variation in the bargaining strength of women in different households. The correlation coefficient between the two variables is very high, at 0.9906.

<table>
<thead>
<tr>
<th></th>
<th>Min.</th>
<th>Max.</th>
<th>25%</th>
<th>Median</th>
<th>75%</th>
<th>Mean</th>
<th>Std Dev.</th>
<th>Nb missing</th>
<th>Nb Obs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siblings</td>
<td>0</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>0.42</td>
<td>0.35</td>
<td></td>
<td>2,408</td>
<td>14,769</td>
</tr>
<tr>
<td>Wealth</td>
<td>0</td>
<td>1</td>
<td>0.5</td>
<td>0.57</td>
<td>0.42</td>
<td>0.35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Our first assumption, in using relative family networks as a distribution factor is that the extent of each spouse’s network provides some support for that individual. In the psychological literature, there is some evidence about this. For instance, Procidano and Heller (1983) discuss three studies that measure perceived support from networks of family and friends. They report that ‘symp-
toms of distress and psychopathology’ were inversely related to both measures of network support but the relationship was particularly strong for family networks. We argue, therefore, that the relative size of the network will affect the relative position of the spouses in the household.\footnote{11Several papers in the literature have looked at the effects that family networks have on various aspects of household behaviour, such as consumption and risk sharing (Altonji et al., 1992; inter-generational transfers (Altonji et al., 1997; Behrman and Rosenzweig 2006; Cox and Jakubson, 1995; La Ferrara, 2003); children’s education choices (Loury, 2006); and non-resident parental investments into children (Weiss and Willis, 1985).}

As an additional check on whether the relative size of the spouses network affects the relative position of the spouses in the household, we use some information on decision making that is elicited in the evaluation survey. In particular, there are several questions about who makes decisions about certain issues (such as making major purchases, taking the children to the doctor, allocating additional resources), where the possible answers are ‘the wife’, the ‘husband’ or both. We construct an index of the bargaining power of the woman and regress it on the relative network size to find that the two variables seem to be associated. Incidentally, the same index is also affected by the assignment to PROGRESA. This evidence (available upon request) supports our choice of distribution factors.

For the relative importance of the family network to be a valid distribution factor, it has to be excluded from preferences and from the budget constraint, and yet influence choices. We document in section 6.2.2 the extent to which the relative importance of the family network influences choices. Here, we discuss why it can be excluded from both the budget constraint and preferences.

The number of siblings (of either or both spouses) might have a direct effect on the demand for food, if siblings share meals. Whilst this would not invalidate the relative size of the family network as a distribution factor, not accounting for the direct effect of the number of siblings on the demand for food might bias the estimates. To avoid this potential bias, we control for the number of relatives who share meals with the household as a determinant of expenditure shares. The survey contains explicit information on this variable.

There might furthermore be reasons for the size of the spouses networks to affect the demand system outside of the collective framework. Three reasons come to mind: altruism, the reciprocity of caring and risk sharing possibilities. In the presence of altruism, one could argue that a relatively large number of
relatives of, say, the wife, would give more weight to wife’s preferences even if the right model is a unitary one. Moreover, if women care about their siblings, presumably their siblings care for them. Then, the number of siblings might affect preferences rather than bargaining, if women’s preferences are different depending upon the number of siblings they have. Similarly, if there is insurance between households, the size of family networks might be related to the necessity of sharing risk.\footnote{Rosenzweig and Stark (1989) present evidence that, in South India, women might tend to marry to far away villages by the need to insure large idiosyncratic risks.}

We ignore these worries for several reasons. First, these arguments refer to the size of the network rather than to the relative size of husband’s and wife’s networks. Second, if altruism effects are additive these considerations will not affect the demand system. Third, and especially relevant for risk sharing, we are considering the effect of distribution factors on expenditure shares, conditional on the level of total expenditure. The latter is more likely to be affected by the size of networks, maybe because of risk sharing considerations. For expenditure shares, however, standard two stage budgeting considerations make it less obvious that the relative size of networks would have a direct effect, once one conditions on total consumption.

5 The Demand System: Methodological issues

We model the demand for the components of food consumption, ignoring non-food consumption, partly because we do not observe the prices of non food consumption and partly because the quality of the non-food data is not as high as that for food items. We assume two stage budgeting and separability of food from the rest of consumption and labour supply, so that the shares of the various components of food consumption are functions of total food consumption, demographics, relative prices and, possibly, distribution factors. Given that food constitutes a very large fraction of total consumption for these households, this is a meaningful exercise in this context.

The estimation of a demand system on data such as PROGRESA raises methodological issues, most of which have been addressed in previous papers, among which Attanasio and Lechene (2002 and 2010) and Attanasio, Di Maro, Lechene and Phillips (2009, 2013). Specific additional issues arise in the im-
plementation of a test of collective rationality. We review these methodological issues here, starting with the functional form of the demand system, followed by the endogeneity of total expenditure, of the conditioning good and of schooling. Finally, we discuss separability in the collective model, and the question of endogeneity of prices.

5.1 Functional form of the demand system

We estimate a Quadratic Almost Ideal Demand System (QUAIDS, Banks, Blundell and Lewbell (1997)) which allows for quadratic effects in total expenditure. Allowing for quadratic effects is particularly important in our context where we want to predict changes in expenditure shares related to a relatively large change in total (food) consumption. In Attanasio, Di Maro, Lechene and Phillips (2009), we find that it is important to allow for income responses to vary with the level of income as permitted by a QUAIDS when estimating a demand system on the PROGRESA data.

The QUAIDS can be derived from the maximization of a unitary utility function, in which case, the coefficients on the vector of prices have to satisfy a number of restrictions (so that, for instance, the resulting Slutsky matrix is symmetric and negative definite). In the context of a collective model with public goods within the family, the shape of the demand functions that would arise is not obvious, even when both agents have preferences that would give rise to a QUAIDS in the unitary case.

In our application, following Browning and Chiappori (1998) and Attanasio, Di Maro, Lechene and Phillips (2009), we specify a QUAIDS, in which expenditure shares are allowed to depend on log total (food) consumption and its square, on prices and on demographics, as they would in a standard QUAIDS. We do not impose symmetry of the Slutsky matrix, but only homogeneity and adding-up. We also allow the effect of the two distribution factors we consider and assume that they enter the demand system additively.

\footnote{Browning and Chiappori (1998) show that symmetry does not hold in the collective model, but that the Pseudo-Slutsky matrix of price responses is the sum of a symmetric matrix and a rank one matrix and, in their empirical application, have used the QUAIDS specification as a useful parametrization of the household demand function. Browning and Chiappori (1998)'s restrictions on the Slutsky matrix from the demand system of a collective model can also be tested. We leave that exercise, however, for future work.}
In particular, we estimate the following approximation to a QUAIDS

\[w_i = \theta_i' z + \phi_i' d + \sum_{j=1}^{n} \gamma_{ij} \ln(p_j) + \beta_i \ln \left(\frac{x}{a(p)} \right) + \lambda_i \left(\ln \left(\frac{x}{a(p)} \right) \right)^2 + u_i \]

where \(w_i \) is the share of commodity \(i \) in total expenditure on goods, \(i = 1, \ldots, n \), \(x \) is total expenditure on goods and the price index \(a(p) \) is approximated by a Stone price index where expenditure shares are used as weights. \(d \) is a vector of demographic variables and \(z \) a vector of distribution factors, \(\theta_i \) and \(\phi_i \) are vectors of parameters. The variable \(u_i \) represents unobserved taste heterogeneity.

The 'intercept' in equation (8) is a function of the distribution factors \(z \) and of various demographic variables that represent shocks to tastes. The former include the number of young children, controls for the education of the head of household and his spouse, for the age of the head of household, for whether the head of household is indigenous and the size of the town. We also control for household members eating out and for relatives eating in.

What distinguishes distribution factors \(z \) from demographics \(d \) is the fact that there are additional restrictions in the manner in which they enter into the demand functions. These restrictions are equivalently the proportionality restrictions or the restrictions on conditional demands, as we saw in section 2.3.

The assumption of an additive effect of distribution factors on a (QU)AIDS is somewhat arbitrary. Nothing prevents the distribution factors to affect demands in more complicated manners. For instance, it could be that they enter demands multiplicatively on total expenditure. In that case the restrictions to be tested are much more complicated. However, we did not find significant interaction effects between distribution factors and expenditure. In other words, the distribution factors affect the intercept but not the slope of the Engel curves. We did not investigate the possibility that distribution factors affect price elasticities.

Under the unitary model, the two distribution factors we consider should not enter the demand system, so that the evidence we present also constitutes a test of the unitary model. The collective model imposes cross-equation restrictions on \(\theta_i \) that we will test in section 6.3.

5.2 Endogeneity of total expenditure

We model the five components of food as a function of total food consumption, under the assumption of two stage budgeting. Households first decide how much
to allocate to food and then, conditional on total food expenditure, how much
to allocate to each food component. The residuals of our equations can be
interpreted as unobservable components of tastes that affect budget shares. If
taste shocks to the system that determines total food consumption are correlated
to the unobserved shocks to food components, then total food will be endogenous
in our system. Measurement error in total expenditure is also a likely cause of
endogeneity.

An instrument for total expenditure often used in the literature is house-
hold income, which implicitly assumes that the measurement error in total
expenditure is uncorrelated with measured income. Under the assumption that
heterogeneity in tastes is the source of endogeneity of total expenditure, income
is a valid instrument if labour supply is separable from consumption. It may be
worthwhile to make explicit and formal these arguments. Suppose the household
maximizes expected utility subject to an intertemporal budget constraint:

\[
\text{Max} E_0 \sum_{t=1}^{T} \beta(z_t, v_t) U(q_t, e_t, l_t, u_t, d_t, z_t). \quad \text{s.t.}
\]

\[
p_t q_t = x_t
\]

\[
x_t + S_t = w_t (T - l_t) + y_t + (1 + r) S_{t-1}
\]

where \(U() \) is a household utility function which might be collective or unitary;
\(q \) and \(p \) are vectors of commodities and prices, \(x \) total expenditure, \(w \) wages, \(h \)
hours worked, \(y \) non labour income, \(S \) savings, \(d \) some demographic variables,
\(z \) distribution factors in the case of a collective model, \(v \) is an intertemporal
taste shock and \(e \) and \(u \) are taste shocks that affect the marginal utility of
commodities and labour respectively. By two-stage budgeting, one could think
that first the household members choose total expenditure and then how to
allocate it among different commodities. If the function \(U \) can be written as:

\[
U(q_t, e_t, h_t, u_t) = u(q_t, e_t, d_t, z_t) + V(h_t, u_t, d_t, z_t)
\]

one can decouple the labour supply problem from the determination of total
expenditure and the allocation of the latter across different commodities. Total
expenditure would still be endogenous if the vector of unobservable taste shocks
\(e \) is correlated in the cross section with the intertemporal taste shock \(v \). In such
a situation, total household income \(w_t (T - l_t) + y_t \) can be used as an instrument,
if one assumes that the taste shock \(u_t \) is uncorrelated with the vector \(e_t \).
If one thinks that such an assumption is too strong, a possible alternative is to use the component of income that the household takes as given (the wages) as an instrument for total expenditure. We considered the average agricultural wage in a village as an instrument. Such a variable would be a valid instrument (under separability) even when the three taste shocks we consider \((u, e \text{ and } v)\) are correlated.

There is an additional reason to consider aggregate wages (rather than individual income) as an instrument for total expenditure. Income can be a weak instrument in a context where large transitory shocks or measurement error may weaken the relationship between income and total expenditure. This argument is particularly relevant in the context of developing countries where, while consumption is relatively simple to measure, income (and its many components) might be difficult to capture. In Attanasio and Lechene (2002), we find that individual level expenditure is better explained by average wages than by individual income in the cross section.

Obviously, by using average wages, we lose the variability at the individual level since, in this case, we only exploit the variation across villages. However, given the high variance of measurement error in income, this is not necessarily a problem. We find that once we introduce distribution factors in the model, only results obtained with the village average agricultural wage are robust across different dimensions.

If consumption and leisure are not separable in the utility function, income or wages are not valid instruments for total expenditure. However, in that case, the entire demand system is mispecified as one should allow for the effect of hours of work on the marginal utility of consumption. Hours of work should enter in their own right as a determinant of the demand system. In the context we are studying we have decided to assume separability of food consumption from non food consumption and leisure for two reasons. First, labour supply behaviour is likely to be fairly inelastic in the present context for the poor households in our sample. Considering it as separable from consumption, therefore, might not be a bad approximation. Second, as we focus on the role of Oportunidades as a distribution factor in the demand system, we can appeal to the fact (reported in the literature, see Skoufias (2001) and Skoufias and DiMaro (2008)) that the programme has not affected adult labour supply.
5.3 Endogeneity of conditioning good in \(z \)-conditional test

An additional endogeneity issue arises when we estimate the \(z \)-conditional demand system in equation 7, as the conditioning good \(j \) is correlated with the unobserved taste shock of the demand for good \(i \). The instrument that identifies the model is suggested directly by the theory and by the test we propose: if the collective model is valid, the distribution factor used for inverting the demand of the conditioning good is a valid instrument as, conditional on the demand for commodity \(j \) in equation 7, no distribution factor affects the demand for any commodity \(i \neq j \). This is the sense of the test in equation 6. The distribution factor used to invert the demand for commodity \(j \) is therefore a valid instrument for \(C_j \) in equation 7. We can use the significance of the second distribution factor (in our case the PROGRESA/Oportunidades indicator) as a test of the validity of the model.

5.4 Schooling

Conditional cash transfer programmes impose minimum schooling requirements for children of the recipient households to receive the largest component of the grant. The grant amounts are devised with the aim to cover the opportunity cost of schooling for the household, which is why they vary with the age and gender of the child. The conditionality might affect consumption behaviour, if sending children to school imposes related costs, such as for uniforms, shoes or books. Conversely, children might be fed in school, which would also have an impact on the budget share of food and its components. It is thus necessary to control for schooling of children, over and above controlling for household composition. However, it could be that unobserved taste for school is correlated with unobserved taste for certain foods, so that schooling could be endogenous in the demand system. To allow for this possibility, we instrument schooling with an indicator for the existence of a secondary school and distance from secondary school if it is not in the village (and zero if it is in the village). The average distance to a secondary school is 2.2 kilometers, with a maximum distance of 14 kilometers. In only about 25% of villages is there a secondary school.

The assumption that we are making is that the distance to a secondary school affects schooling decisions but does not affect the structure of expenditures between foods, conditional on the size of the village and the other controls.
in the demand system. As is always the case, it is not possible to test the identification restriction that we are using. One possible worry, for instance, is that the presence of a school in a nearby village proxies for other variables (such as the presence of a market) that might affect demand. However, we feel that conditional on village size and the other variables (including prices) we are considering, the information on the distance to a secondary school can be excluded from the demand system.

Primary school is not considered as endogenous in the demand system. Primary school attendance is high (over 90%) and not affected by the programme. However, we follow previous literature on PROGRESA in that we condition on the number of children attending primary school in the demand system, for the reasons mentioned above.

5.5 Additional issues

There are two additional methodological issues worth mentioning briefly. The first one has to do with separability in the collective model. When considering the collective model, assuming that individual preferences are separable between food and the rest is not sufficient to get a household demand system for food components that does not depend on non-food relative prices. To obtain such a specification, we need to make an additional assumption, namely that the sharing rule or Pareto weights of the individuals in the household welfare function do not depend on the prices of non-food items. This is true if the household decides on the allocation of the total between food and non food, and then on the allocation between foods. Following this argument, the Pareto weight, or the sharing rule for this problem will depend on the prices of the foods, and the total expenditure on the same, and the distribution factors if any.

The second methodological issue is the possible endogeneity of prices. Suppose that tastes shocks are correlated within villages. In this case, it could be that in a village where people like meat a lot, the price of meat will be high and yet, there will be a high demand for meat. One way around this would be to instrument prices with supply conditions (number of shops, distance from big markets, etc...). We do not have this information, and we therefore make the assumption that this effect is absent. We should also note that our main interest is in the effect that the introduction of PROGRESA has on the demand
system and that studies that have looked at the effect of PROGRESA on prices (such as Angelucci and DeGiorgi, 2009) have not found any effects.

6 Empirical results

We divide this section in three parts. First, we present results for the first stage regressions we estimate to deal with the endogeneity of total food consumption and school enrolment. We then discuss our estimates of the demand systems and informally compare the predictions implied by the model for the impact of the grant on consumption shares. Finally, we present the formal tests of the restrictions of the collective model.

6.1 First stage regressions

As we discussed in the previous section, there are two potentially endogenous variables in the demand system: total expenditure on food and number of children in secondary and "preparatoria" school. Table 5 shows the first stage regressions for the log of total expenditure and the number of children in secondary school and "preparatoria" school. These regressions include both the instruments and the other conditioning variables that enter the second stage. In the first two columns of the table, the instrument for total expenditure is the village average agricultural wage, whilst in the last two columns, it is household income. The other instruments we use (for secondary school enrolment) are an indicator of the presence of a secondary school and the distance to the secondary school.

The results reported in Table 5 refer to the entire sample, which includes both treatment and control localities. Results on the control sample, for which we report estimates of the demand system in the next section, are substantially similar and are available upon request.

The instruments have the expected effects in the first stage regressions. In the equation for log total expenditure, we find that both village median agricultural wage and income have power in explaining total food expenditure and that both the linear and the quadratic terms are important. As for the equation for secondary school enrolment, we find that distance to secondary school influences the number of children attending secondary school in the expected direction.
Table 5: First stage regression for total expenditure and schooling

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument</td>
<td>Village wage</td>
<td>Income</td>
<td>Village wage</td>
<td>Income</td>
</tr>
<tr>
<td>ln(instr)</td>
<td>-0.37</td>
<td>0.15</td>
<td>-0.15</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>(0.09)</td>
<td>(0.07)</td>
<td>(0.065)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>ln(instr)^2</td>
<td>0.18</td>
<td>-0.003</td>
<td>0.0016</td>
<td>-0.005</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.009)</td>
<td>(0.005)</td>
<td>(0.018)</td>
</tr>
<tr>
<td>Receipt of PROGRESA</td>
<td>0.10</td>
<td>0.10</td>
<td>0.001</td>
<td>-0.02</td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.009)</td>
<td>(0.014)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>Family network size</td>
<td>-0.024</td>
<td>-0.026</td>
<td>-0.005</td>
<td>-0.011</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.013)</td>
<td>(0.018)</td>
<td>(0.04)</td>
</tr>
<tr>
<td>Distance high school</td>
<td>-0.00</td>
<td>0.057</td>
<td>0.00</td>
<td>0.045</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.003)</td>
<td>(0.004)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>Indicator high school</td>
<td>-0.000</td>
<td>0.078</td>
<td>0.04</td>
<td>0.067</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.016)</td>
<td>(0.014)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>Children in primary school</td>
<td>0.08</td>
<td>0.07</td>
<td>0.07</td>
<td>0.067</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.005)</td>
<td>(0.004)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>Townsize</td>
<td>-0.001</td>
<td>-0.001</td>
<td>-0.001</td>
<td>-0.00</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
<td>(0.00)</td>
</tr>
<tr>
<td>Nb. young, children.</td>
<td>0.02</td>
<td>-0.035</td>
<td>0.023</td>
<td>-0.037</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.004)</td>
<td>(0.003)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Educ. spouse</td>
<td>-0.018</td>
<td>0.004</td>
<td>-0.018</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.008)</td>
<td>(0.006)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>Head indigenous</td>
<td>-0.079</td>
<td>-0.004</td>
<td>-0.063</td>
<td>-0.008</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.015)</td>
<td>(0.011)</td>
<td>(0.016)</td>
</tr>
<tr>
<td>Head age</td>
<td>0.001</td>
<td>0.009</td>
<td>0.002</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Educ. head</td>
<td>-0.000</td>
<td>0.014</td>
<td>-0.007</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.008)</td>
<td>(0.006)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>Relatives eat in</td>
<td>0.007</td>
<td>-0.01</td>
<td>0.003</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.007)</td>
<td>(0.006)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>Hhld member eat out</td>
<td>0.012</td>
<td>0.049</td>
<td>-0.012</td>
<td>0.059</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.03)</td>
<td>(0.023)</td>
<td>(0.033)</td>
</tr>
<tr>
<td>R2</td>
<td>0.14</td>
<td>0.07</td>
<td>0.13</td>
<td>0.08</td>
</tr>
</tbody>
</table>

N 12155 9364
F(2,12134) 24.90 7.53 22.26 6.91
F(2,9343) 0.00 0.00 0.00 0.00
p-value 0.00 0.00 0.00 0.00

Prices of foods and a constant are also included. Standard errors in parenthesis.

The first stage results are also conditional on the distribution factors we
consider: namely an indicator for the receipt of PROGRESA and the relative family network size ratio. The first stage results obtained with the alternative measure of relative family network, based on consumption, as well as those obtained with the perceived power index, are not different from those presented in Table 5.

6.2 Demand System

The QUAIDS allows both linear and quadratic terms in the log of total consumption of food. This variable and schooling are treated as endogenous and we use a control function approach to deal with this issue. Specifically, we add to the equations we estimate a second degree polynomial in the residuals of the first stage regressions reported in Table 5. The significance of first stage regression residuals in the demand system indicates a strong rejection of exogeneity of both total expenditure on food and secondary school enrolment in the structure of the food budget. In what follows, we present the results obtained with the agricultural wage as an instrument for total consumption of food. The results obtained with income as instrument are qualitatively similar to those obtained with the wage, but they are less precise.

6.2.1 Demand system without distribution factors

We first estimate the demand system without considering any distribution factors. This system, which corresponds to equation (8) above, includes demographic variables (household head age, the number of young children, an indicator for indigenous head, education of the head of household and the spouse, townsize, and information about household members eating out and relatives eating with the household considered). It also controls for the number of children in secondary and primary school (with the former being considered as endogenous), and prices. In Table 6, we report only the coefficients on the linear and quadratic log total expenditure terms; the coefficients on the other variables are available upon request.

The first three columns of Table 6 are obtained using information from households in the control villages only. The first two columns contain the estimates of the coefficients (and their standard errors) on total consumption of food and its square for the five food components we consider in the demand system. In
the third column, we give the value of the χ^2 test of joint significance of the two income terms in the equation of each good (and its p-value).

From the results in the first three columns of table 6, we see that the income effects estimated in control villages differ significantly from zero for starches, fruit, meat and other foods. The estimated coefficients indicate that starch is a necessity over most of the range of total food expenditure, while fruit and meat are luxuries over most of the range. The category "other foods" appears to be a necessity at low levels of total expenditure and a luxury at high levels of total food consumption. The relationship between pulses and total food consumption is not precisely estimated and we cannot reject the hypothesis that the coefficients on log consumption and its square are jointly zero, indicating that the share of expenditure on pulses does not change with total food consumption.

Table 6: Income effects, demand system with no distribution factors

<table>
<thead>
<tr>
<th></th>
<th>(1) Control villages</th>
<th>(2) Control and treatment villages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tot. Food</td>
<td>Tot. Food 2</td>
</tr>
<tr>
<td>Starch</td>
<td>5.08</td>
<td>-0.56</td>
</tr>
<tr>
<td></td>
<td>(2.30)</td>
<td>(0.24)</td>
</tr>
<tr>
<td>Pulses</td>
<td>-0.35</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>(1.13)</td>
<td>(0.12)</td>
</tr>
<tr>
<td>Fruit</td>
<td>-1.66</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>(1.07)</td>
<td>(0.11)</td>
</tr>
<tr>
<td>Meat</td>
<td>-0.96</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>(1.60)</td>
<td>(0.17)</td>
</tr>
<tr>
<td>Other foods</td>
<td>-2.11</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>(1.32)</td>
<td>(0.14)</td>
</tr>
<tr>
<td>Nb obs</td>
<td>5485</td>
<td>14769</td>
</tr>
</tbody>
</table>

The demand system is as in equation 8 and controls are included for children in primary school, children in secondary school, nb of young children, town size, education of head and spouse, age of head, indigenous head dummy, relatives eating in, and household, members eating out, as well as homogenous prices. Average agricultural wage as instrument for total expenditure; indicator for the presence of a school and distance to school as instrument for children in secondary school.

Bootstrap clustered by village, 500 replications.

The next exercise consists in re-estimating the same demand system, pooling control and treatment households. The results of coefficients on log total food consumption (and its square) are shown in columns 4 and 5 of table 6, while we report the χ^2 test of the joint significance of these coefficients in Column 6.
The treatment consists in the injection of (relatively) large amounts of cash in the budget of treated households. As the treatment was allocated randomly, if the structural model we estimated was well specified, including the treated households in the estimation sample should not make much difference to the point estimates of the income effects, but should increase their precision. What we find, however, is different. Rather than increasing precision, increasing the sample size by incorporating poor households from the treated villages leads to changes in the values of the estimated coefficients. We interpret this lack of stability as indicating that the model is not able to capture the relationship between total expenditure and the structure of the budget following the cash transfers.

We further substantiate our interpretation of these results, by using the estimates from Table 6 and the estimated experimental impact on total food consumption (and schooling) to predict the impact of the PROGRESA grant on the shares of the five commodities that we are considering. We do this in Tables 7 and 8, respectively for October 1998 and May 1999.

In the first column of the tables, we report the average impact of the program as estimated comparing treatment and control communities. We will be referring to this impact as the ‘actual’ impact, as it is based on experimental evidence. As discussed in section (3.5), what is most notable about the actual impacts of the cash transfers on the structure of the budget is how small they are. The budget share of starch is 2.30 percentage point lower in treated households than it is in control households in May 1999. This is consistent with the fact that starch has been found to be a necessity. The share of pulse also decreases significantly at both dates, albeit not dramatically. The shares of fruits and especially of meat increase.

In the second column of Tables 7 and 8, we use the estimates of the demand system estimated using only data from control villages (and reported in the first two columns of Table 6) to predict the impacts of the program on expenditure shares. In the third column of Tables 7 and 8, we use the estimates of the demand system obtained from both treatment and control villages. In terms of point estimates, the predictions are of poor quality for all the goods at both dates. However, note that since the actual impacts are mostly zero, we are trying to predict zero, which can arise also through lack of precision.
In the last two columns of Tables 7 and 8, we test the hypothesis that the ‘actual’ impacts of the programme on expenditure shares, as reported in the first column of the two tables, are statistically different from those predicted in columns 2 and 3, respectively. The standard errors of these differences are obtained bootstrapping the estimates of the actual impacts, those of the demand system and of the predictions. The standard errors are clustered at the village level.

We find that we cannot reject the hypothesis that these predictions are the same as the actual impacts. This result, however, is mainly due to the low precision of our estimates based on the demand system, whose variability reflects both the variability of the estimates of the impact on total consumption and that of the coefficients of the demand system.

<table>
<thead>
<tr>
<th></th>
<th>Actual impact</th>
<th>Predicted impacts</th>
<th>Diff. btw actual. impact and controls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>on controls</td>
<td>pooling treated and controls</td>
<td>on controls</td>
</tr>
<tr>
<td>Starch</td>
<td>-0.21</td>
<td>-1.97</td>
<td>-3.80</td>
</tr>
<tr>
<td></td>
<td>(0.72)</td>
<td>(1.15)</td>
<td>(1.84)</td>
</tr>
<tr>
<td>Pulses</td>
<td>-0.80</td>
<td>0.20</td>
<td>-0.92</td>
</tr>
<tr>
<td></td>
<td>(0.39)</td>
<td>(0.36)</td>
<td>(0.46)</td>
</tr>
<tr>
<td>Fruit</td>
<td>0.38</td>
<td>0.99</td>
<td>2.17</td>
</tr>
<tr>
<td></td>
<td>(0.43)</td>
<td>(0.51)</td>
<td>(1.00)</td>
</tr>
<tr>
<td>Meat</td>
<td>1.16</td>
<td>1.51</td>
<td>2.43</td>
</tr>
<tr>
<td></td>
<td>(0.64)</td>
<td>(0.73)</td>
<td>(1.01)</td>
</tr>
<tr>
<td>Other foods</td>
<td>-0.53</td>
<td>-0.73</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>(0.49)</td>
<td>(0.52)</td>
<td>(0.46)</td>
</tr>
</tbody>
</table>

Predictions are obtained from 1998 data. Bootstrap clustered by villages; 500 replications. Bootstrap standard errors in parentheses.
Table 8: Actual and predicted effects of the program on the budget structure

<table>
<thead>
<tr>
<th>No Distribution factors - May 1999</th>
<th>Actual impact</th>
<th>Predicted impacts on controls</th>
<th>Diff. btw actual. impact on controls</th>
<th>Predicted impacts pooling treated and controls</th>
<th>Diff. btw actual. impact pooling treated and controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starch</td>
<td>-2.30</td>
<td>-6.36</td>
<td>-5.14</td>
<td>-4.06</td>
<td>-2.83</td>
</tr>
<tr>
<td></td>
<td>(0.81)</td>
<td>(1.80)</td>
<td>(2.25)</td>
<td>(1.73)</td>
<td>(2.45)</td>
</tr>
<tr>
<td>Pulses</td>
<td>-0.79</td>
<td>0.59</td>
<td>-1.71</td>
<td>1.37</td>
<td>-0.92</td>
</tr>
<tr>
<td></td>
<td>(0.35)</td>
<td>(0.75)</td>
<td>(0.74)</td>
<td>(0.80)</td>
<td>(0.83)</td>
</tr>
<tr>
<td>Fruit</td>
<td>0.97</td>
<td>2.85</td>
<td>2.84</td>
<td>1.88</td>
<td>1.87</td>
</tr>
<tr>
<td></td>
<td>(0.30)</td>
<td>(0.74)</td>
<td>(1.07)</td>
<td>(0.73)</td>
<td>(1.03)</td>
</tr>
<tr>
<td>Meat</td>
<td>2.54</td>
<td>3.76</td>
<td>4.24</td>
<td>1.23</td>
<td>1.71</td>
</tr>
<tr>
<td></td>
<td>(0.65)</td>
<td>(1.18)</td>
<td>(1.35)</td>
<td>(1.07)</td>
<td>(1.30)</td>
</tr>
<tr>
<td>Other foods</td>
<td>-0.42</td>
<td>-0.85</td>
<td>-0.24</td>
<td>-0.43</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>(0.59)</td>
<td>(0.91)</td>
<td>(0.78)</td>
<td>(0.98)</td>
<td>(1.00)</td>
</tr>
</tbody>
</table>

Predictions are obtained from 1999 data. Bootstrap clustered by villages; 500 replications. Bootstrap standard errors in parentheses.

These estimates are obtained taking the estimated demand system (without distribution factors) as a structural relationship and inputing into it the impact that the programme has on total food consumption and schooling. However, it might be the case that the demand system is not a structural relationship, if other features of the programme are relevant, such as the fact that the transfer is put in the hands of women. We will now investigate whether this is the case by introducing distribution factors in the demand system.

6.2.2 Demand system with distribution factors

We now re-estimate the demand system allowing the expenditure shares to be affected by two distribution factors: the receipt of the PROGRESA transfer and the relative size of wife and husband family networks that we discussed above. The consumption shares we estimate correspond to equation (8) and include the same demographic variables used when estimating the demand system reported in Table 6. We enter the first distribution factor as an indicator which equals to one if the household lives in a village targeted by PROGRESA (and therefore receives the programme).14

The second distribution factor is crucial for the test of the collective model that we report below. We therefore investigate the possibility that it enters non-linearly the consumption shares equations. Allowing for the presence of

14Unlike in urban areas, take up of the programme among eligible is virtually universal.
quadratic (or higher order) terms is important for two reasons. First, the theory is silent about the specific form in which this (or any other) distribution factors enters the share equations. Second, the test of the collective model we propose requires that there is at least one commodity for which one of the distribution factors enters monotonically, so that the relationship can be inverted.

In Table 9, we report the estimates of the coefficients on the PROGRESA indicator and on the family network size and its square that we obtain on the whole sample, using the agricultural average wage as an instrument for total food consumption. This set of results is representative and robust across different specifications. The main finding is that, while the coefficient on the PROGRESA indicator is significantly different from zero in four out of five share equations, the coefficient on the quadratic terms of the family size network is never significantly different from zero15. The results were virtually identical when we used the index based on the relative wealth of husband and wife’s networks. We also tried higher polynomial for the relative network variable and we could not identify any significant higher order terms. We also notice that, in the case of Meat, not only the coefficient on the quadratic term is not significantly different from zero, but the point estimates of the two coefficients imply an increasing relationship between the share and the relative network size variable.

<table>
<thead>
<tr>
<th>Table 9: Effect of distribution factors on the consumption shares</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Starch</td>
</tr>
<tr>
<td>Treatment</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Family network size</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Family network size^2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Nb obs</td>
</tr>
</tbody>
</table>

Instrument for total food is village average wage. Bootstrap clustered by villages, 500 replications. Standard errors in parentheses.

Given these findings, we decided to use a specification of equation (8) that

15When we estimate the demand system on single mothers, we find that the treatment indicator is not significant in any of the foods, thus confirming that it is a valid distribution factor, since it plays a role when there are two decision makers, but not when there is only one. These results, that are available on request, confirm the finding of Shady and Rosero (2008).
is linear in relative network size. In Table 10, we report the estimates we obtain for the coefficients on the two distribution factors and for the linear and quadratic log total food consumption. Several comments are in order. First, both distribution factors are strongly significant. The PROGRESA indicator is significantly different from zero at standard levels in four of the five share equations. The relative size of family networks is also significantly different from zero in three of the five shares equations. Notice that under the unitary model, neither of these variables should enter the demand system. The linearity of the relationship between shares and the relative size of the family networks implies that we can use any of these relationships to perform the inversion described in Section 2.3 and construct the \textit{z-conditional} demands.

Table 10: Effect of distribution factors on the budget, inst:wage

<table>
<thead>
<tr>
<th></th>
<th>Starch</th>
<th>Pulses</th>
<th>Fruit</th>
<th>Meat</th>
<th>Other foods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>0.035</td>
<td>0.0022</td>
<td>-0.017</td>
<td>-0.019</td>
<td>-0.0015</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.006)</td>
<td>(0.004)</td>
<td>(0.008)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>Family network size</td>
<td>-0.015</td>
<td>0.00</td>
<td>0.01</td>
<td>0.009</td>
<td>-0.004</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.002)</td>
<td>(0.0025)</td>
<td>(0.0037)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>ln Tot. Exp.Food</td>
<td>-8.96</td>
<td>0.037</td>
<td>4.26</td>
<td>3.39</td>
<td>1.27</td>
</tr>
<tr>
<td></td>
<td>(2.52)</td>
<td>(1.09)</td>
<td>(1.06)</td>
<td>(1.89)</td>
<td>(1.65)</td>
</tr>
<tr>
<td>ln Tot. Exp.Food^2</td>
<td>0.88</td>
<td>-0.01</td>
<td>-0.42</td>
<td>-0.32</td>
<td>-0.14</td>
</tr>
<tr>
<td></td>
<td>(0.26)</td>
<td>(0.001)</td>
<td>(0.11)</td>
<td>(0.20)</td>
<td>(0.17)</td>
</tr>
<tr>
<td>Nb obs</td>
<td>12361</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Estimates of some of the coefficients of Equation (8).
Bootstrap clustered by village

As for the coefficients on total log food consumption, the quadratic effects are strongly significant in three of the five foods. Starches, as before, are a necessity over most of the range of food consumption, as are pulses and other foods, while meat and fruit are luxuries.

In the next sub-section, we present the formal test of the restrictions implied by the collective model. One more informal but informative way to check whether our specification fits the data generated by the PROGRESA experiment, which explicitly changed the control of resources within the family in a controlled way, is to check whether the specification of the demand system in equation (8) is able to predict the changes in consumption shares reported in Table 4. We, therefore, re-do the exercise reported in Tables 7 and 8, but using the coefficients of the demand system that includes the distribution factors we have considered. The results of this exercise are reported in Table 11 and
In column (1) of these tables we report again the ‘experimental’ average impact. In column (2) the prediction of the demand system that incorporates the distribution factors and, in column (3) the difference between the two. As in Tables 7 and 8, the standard errors of all these estimates are computed by bootstrapping all the relevant components, with clustering at the village level.

The results we obtain now are much different from those in Tables 7 and 8. All predicted impacts are of the same sign as the observed changes in consumption shares. Most importantly, they are considerably closer to the actual experimental impacts and the difference is never statistically different from zero.

Table 11: Actual and predicted impacts of the program on the commodity shares with distribution factors October 1998

<table>
<thead>
<tr>
<th>Impact</th>
<th>Actual</th>
<th>Predicted</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starch</td>
<td>-0.21</td>
<td>-0.33</td>
<td>-0.11</td>
</tr>
<tr>
<td></td>
<td>(0.72)</td>
<td>(1.75)</td>
<td>(1.59)</td>
</tr>
<tr>
<td>Pulses</td>
<td>-0.80</td>
<td>-0.39</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>(0.39)</td>
<td>(0.47)</td>
<td>(0.36)</td>
</tr>
<tr>
<td>Fruit</td>
<td>0.38</td>
<td>0.32</td>
<td>-0.06</td>
</tr>
<tr>
<td></td>
<td>(0.43)</td>
<td>(0.86)</td>
<td>(0.74)</td>
</tr>
<tr>
<td>Meat</td>
<td>1.16</td>
<td>0.49</td>
<td>-0.67</td>
</tr>
<tr>
<td></td>
<td>(0.64)</td>
<td>(1.13)</td>
<td>(0.89)</td>
</tr>
<tr>
<td>Other foods</td>
<td>-0.53</td>
<td>-0.10</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>(0.49)</td>
<td>(0.51)</td>
<td>(0.50)</td>
</tr>
</tbody>
</table>

Predicted impacts computed using the model in Table 10. Bootstrap clustered by villages, 500 replications.

Table 12: Actual and predicted impacts of the program on the commodity shares with distribution factors May 1999

<table>
<thead>
<tr>
<th>Impact</th>
<th>Actual</th>
<th>Predicted</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starch</td>
<td>-2.30</td>
<td>-1.88</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td>(0.81)</td>
<td>(1.83)</td>
<td>(1.98)</td>
</tr>
<tr>
<td>Pulses</td>
<td>-0.79</td>
<td>-0.91</td>
<td>-0.13</td>
</tr>
<tr>
<td></td>
<td>(0.35)</td>
<td>(0.45)</td>
<td>(0.38)</td>
</tr>
<tr>
<td>Fruit</td>
<td>0.97</td>
<td>1.00</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>(0.30)</td>
<td>(0.84)</td>
<td>(0.80)</td>
</tr>
<tr>
<td>Meat</td>
<td>2.54</td>
<td>2.45</td>
<td>-0.09</td>
</tr>
<tr>
<td></td>
<td>(0.65)</td>
<td>(1.12)</td>
<td>(0.88)</td>
</tr>
<tr>
<td>Other foods</td>
<td>-0.42</td>
<td>-0.66</td>
<td>-0.24</td>
</tr>
<tr>
<td></td>
<td>(0.59)</td>
<td>(0.57)</td>
<td>(0.66)</td>
</tr>
</tbody>
</table>

Predicted impacts computed using the model in Table 10. Bootstrap clustered by villages, 500 replications.
We interpret this evidence as indicating that there is scope, in the context of the PROGRESA programme, for investigating the role played by features of the programme which cannot be rationalised within the standard framework of unitary household choices, but need to be accounted for. In the next subsection, we turn to the formal test of the collective model. We will not comment here on other aspects of the estimation of the demand system. Interested readers are referred to Attanasio, Di Maro, Lechene and Phillips (2009 and 2013) for in depth analysis of income and price responses and welfare analysis in this context.

6.3 Test of Efficiency

Testing for collective rationality requires that we observe at least two goods and two distribution factors. One aspect which is crucial in the analysis is that the distribution factor and the conditioning good have a statistically significant link, otherwise the test has no power. This is not a problem here, since the family network variable is significant in the demands for three goods out of five (cf Table 10).16

The conditioning good we use for the test of collective rationality is animal protein, or meat, fish and dairy. Both distribution factors influence the demand for animal protein significantly, and the relationship between demand and family network size is monotonic.

Table 13 gives the results of test of collective rationality using z-conditional demand with animal proteins as the conditioning good and relative family network size as the distribution factor used to invert the demand for meat. To deal with the endogeneity of the conditioning good, we use a control function approach, where the identifying instrument, consistently with the collective model, is the distribution factor that is used to invert the demand for the conditioning good. In the Table, we only report the coefficient on the PROGRESA indicator and, in the case of the conditional demands, the coefficient on meat and the coefficient on the residual for the first stage regression for meat, denoted with u_{meat}. For each good in the table, we also report the results for the unconditional estimation.

16Similar considerations apply to the results that we obtain with the reported power and the alternative measure of relative networks.
The results are striking: in the unconditional demand system, the treatment indicator is significant for three goods. In the \textit{z-conditional} demand system, it is nowhere significant. Moreover, it is not only because of an increase in the standard errors that the estimates of the treatment indicator become statistically insignificant: rather the point estimates drop, for three of the four commodities, dramatically. There results imply that we cannot reject the collective model. We should note that the test of the collective model based on \textit{z-conditional} demands is equivalent to a test of the proportionality restrictions.

<table>
<thead>
<tr>
<th></th>
<th>Starches</th>
<th>Pulses</th>
<th>Fruit</th>
<th>Other foods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Uncond.</td>
<td>(z-\text{cond.})</td>
<td>Uncond.</td>
<td>(z-\text{cond.})</td>
</tr>
<tr>
<td>Treat</td>
<td>0.035</td>
<td>0.004</td>
<td>0.0022</td>
<td>-0.017</td>
</tr>
<tr>
<td>(0.01)</td>
<td>(0.027)</td>
<td>(0.006)</td>
<td>(0.038)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>Meat</td>
<td>-1.61</td>
<td>0.007</td>
<td>1.07</td>
<td>-0.47</td>
</tr>
<tr>
<td>(1.57)</td>
<td>(2.43)</td>
<td></td>
<td>(3.76)</td>
<td></td>
</tr>
<tr>
<td>(u_{\text{meat}})</td>
<td>0.92</td>
<td>-0.13</td>
<td>-1.11</td>
<td></td>
</tr>
<tr>
<td>(1.57)</td>
<td>(2.43)</td>
<td></td>
<td>(3.76)</td>
<td></td>
</tr>
<tr>
<td>(u_{\text{meat}}^2)</td>
<td>0.15</td>
<td>0.00</td>
<td>-0.05</td>
<td>-0.10</td>
</tr>
<tr>
<td>(0.06)</td>
<td>(0.027)</td>
<td>(0.035)</td>
<td></td>
<td>(0.04)</td>
</tr>
</tbody>
</table>

7 Conclusions

The unitary model has been rejected a number of times. In this paper, we go beyond this rejection and test some of the implications of one of the main alternatives to the unitary model, the so-called collective model that postulates that, however intrahousehold allocations are achieved, they are such that there is no waste of resources and they are therefore efficient.

We implement a test of the collective model that has been recently proposed by Bourguignon et al (2009) which requires the analysis of the demand for at least two commodities and at least two distribution factors. The idea is relatively simple: an important implication of the collective model and efficiency is that distribution factors only affect demand through the Pareto weights that defines the efficient allocation. If this is the case, then two or more distribution factors have to enter demand proportionally or, equivalently, if the relationship
between the demand for one good and a distribution factor is monotonic, one can condition on that commodity and ‘explain away’ all other distribution factors.

We apply this test to the context of rural Mexico, on the data set collected to evaluate the conditional cash transfer program PROGRESA. This data set is ideal for a variety of reasons. First, the programme is targeted to women with the explicit purpose of changing the balance of power within the households that receive it. The programme itself, whose allocation is randomized across localities within the evaluation sample, is an ideal distribution factor. Second, the fact that the evaluation factor is a census within each village gives us the opportunity to map out the family network and allows us to construct an additional distribution factor, the relative size of husband and wife family networks. This measure is continuous and turns out to be an important determinant of the demand for food.

We use the PROGRESA data to estimate a state of the art demand system both with and without distribution factors. We first confirm that the demand system we estimate without distribution factors is not stable and is unable to predict the impact of the programme on consumption shares. The distribution factors we consider are not only significant, but enter in a fashion which is not inconsistent with the implications of the collective model. Moreover, we are able, with these distribution factors, to predict the impacts of the programme much better than the standard unitary model.

In the process of testing the collective model, our results also offer an explanation for a phenomenon that has been observed in the context of a number of conditional cash transfer programs, namely the fact that in the face of the large change in total consumption that follows the injection of cash implied by these programs, the structure of consumption, that is how total consumption is allocated to different commodities, changes in ways that are hard to reconcile with perceived wisdom or even with estimates of state of the art unitary demand systems. We suggest that this might be due to a violation of the unitary model and to the fact that the cash transfers delivered by these programmes are targeted to women. Furthermore, we show that the deviations from the standard model are not inconsistent with the collective model.

Our results are important because they constitute the first test of this nature of the collective model in a context where the intrahousehold allocation
of resources is especially salient, as witnessed by the government’s attempt to change it. Moreover, the fact that we do not reject the implications of the collective model is important because it points to a specific model of intrahousehold resources that can be used to study household behaviour and establish the consequences of different policies.

There are two parts to our approach to ‘test’ of the collective model. First, we show how that, unlike a unitary model, the collective model, once we consider explicitly the two distribution factors that we described (and, obviously, in particular the first one) can predict the impact of PROGRESA upon budget shares. Of course the impacts will be estimated with some error and one may argue that the failure to reject the collective model is a lack of power that comes both from the imprecision of the impact estimates and the imprecision with which we estimate the model’s coefficients.

The second part of our approach takes a different tack and constitutes very powerful evidence in favour of the collective model. We start from a rejection: the fact that the coefficient on the PROGRESA indicator is strongly significant while (within the unitary model) it should not be. This effect is strong and it has been documented in many papers, both by us and others (see, for instance, Schady and Rosero (2008), and Angelucci and Attanasio (2012)). Conditional cash transfers targeted to women seem to shift Engel curves (rather than causing a movement in the demand of different commodities along an Engel curve). We show that within the framework of the z-conditional demands that use a distribution factor completely unrelated to PROGRESA (the relative size of spouses networks), we can explain this shift. In other words, the test of Bourguignon et al. (2009) which we implement and that uses the second distribution factor to construct the z-conditional demands is able to account for the shift in Engel curves induced by the program. The coefficient on PROGRESA does not just become insignificant, but it goes down in size. That is, by considering the conditional demand system we are not just adding noise, we are actually explaining the shift in the Engel curves.

Notice that the consideration of two distribution factors is crucial for our analysis. If PROGRESA was the only distribution factor, we could not go further than the rejection of the unitary model and the collective model would saturate the data. Instead we are testing the hypothesis that under the collective
model all distribution factors are channelled through a unique index (the Pareto weight or the sharing rule). This imposes a considerable amount of structure on the data and could in principle be rejected. Traditional household surveys might not contain information on distribution factors, so that it might not be possible, in general, to replicate the exercise we are able to conduct here. We show that, in our data where information on two plausible distribution factors is available, the collective model cannot be rejected, while the unitary model is. Therefore, the value of the exercise is to highlight the need for a representation of household behaviour that allows for negotiation, and even possibly conflicting objectives; as well as the need for different data, capturing exogenous variation in variables that determine the relative power within the household. In future work, we plan to test additional restrictions of the collective model, and in particular those on the demand price elasticities.

References

