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1. Introduction

Recent developments in behavioral economics and decision theory have led to

a series of increasingly general models of decision making under risk and uncer-

tainty, e.g., Choquet expected utility (Schmeidler, 1989), maxmin expected utility

(Gilboa and Schmeidler, 1989), cumulative prospect theory (Tversky and Kahne-

man, 1992), biseparable preferences (Ghirardato, Maccheroni, and Marinacci, 2004),

smooth ambiguity (Klibanoff, Marinacci, and Mukerji, 2005), variational preferences

(Maccheroni, Marinacci, and Rustichini, 2006), subjective expected uncertain utility

(Gul and Pesendorfer, 2008), vector expected utility (Siniscalchi, 2009), and uncer-

tainty averse preferences (Cerreia-Vioglio et al., 2011), to name a few.1 This paper

addresses the issue of testability in two of the most prominent of these models: vari-

ational preferences and smooth ambiguity.

More precisely, we adopt the revealed preference approach pioneered by Samuel-

son (1938, 1948) and Afriat (1967). We derive necessary and sufficient conditions for

data sets composed of state-contingent prices and consumption to be consistent with

variational preferences (Maccheroni, Marinacci, and Rustichini, 2006) and smooth

ambiguity (Klibanoff, Marinacci, and Mukerji, 2005). We then characterize multi-

plier preferences (Hansen and Sargent, 2001), maxmin expected utility (Gilboa and

Schmeidler, 1989), and subjective expected utility (Savage, 1954) as special cases.2

These models of decision making under uncertainty are central in a wide range of

economic applications.

Let us contrast our approach with more traditional methods in applied econo-

metrics and experimental economics, e.g., in Ahn et al. (2011), and Hey and Pace

(2012). To check whether the observed choices are consistent with a particular model

of decision making, the more conventional approach consists of postulating specific

functional forms, deriving optimal choices, and estimating an econometric specifi-

cation assuming that observed choices are optimal subject to errors. For instance,

when considering the multiple prior model, Hey and Pace (2012) assume that the

Bernoulli utility function is either CRRA or CARA, that the set of priors is a trunca-

tion from below of the probability simplex, and that errors are normally distributed

with zero mean and constant variance. These specifications may fail to rationalize the

1 See Gilboa and Marinacci (2011) and Wakker (2010) for recent surveys.
2 Note that mean-variance preferences (Markowitz, 1952, 1959; Tobin, 1958) are also nested.
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observed choices. This does not imply, however, that other specifications of multiple

prior preferences cannot rationalize the data. In sharp contrast, our tests are fully

nonparametric and exact, i.e., if the observed choices fail to satisfy our tests, then

they cannot be consistent with the maximization of multiple prior preferences.

We illustrate the problem further with the help of a simple example, inspired by

the experiment in Ahn et al. (2011). There are three states of the world, s1, s2,

and s3, and a single consumption good (say, money) in each state. The probability

of state s1 is known to be 1/3, while the probabilities of the other two states are

unknown. An individual must choose a contingent consumption plan, (x1, x2, x3),

where xi refers to consumption of the good in state si, from two different budget sets.

The first budget set is B := {(x1, x2, x3) : x1 + (4/5)x2 + 2x3 ≤ 1}, while the second

is B′ := {(x1, x2, x3) : 2x1 + 2x2 + x3 ≤ 3}. Suppose that we observe the individual

choosing (1, 0, 0) from budget set B and (0, 1, 1) from budget set B′. Notice that

(0, 1, 1) is chosen when (1, 0, 0) is affordable, while (0, 1, 1) is not affordable when

(1, 0, 0) is chosen. The choices therefore obey the Generalized Axiom of Revealed

Preference (GARP), and by Afriat’s Theorem there exists a monotonic preference

ordering that rationalizes the data. The question we address in this paper is whether

these observations are consistent with a particular form of preference maximization.

For example, are they consistent with subjective expected utility? Or with an am-

biguity averse preference like maxmin expected utility? In other words, can we find

particular preferences that exactly generate the observed choices? Conversely, can

we rule out particular preferences?

Let us return to the example. We first argue that the data set is inconsistent with

the individual maximizing some subjective expected utility. Notice that (0, 1, 0) is in

B and that (1, 0, 1) is in B′. So it must be that (1, 0, 0) is preferred to (0, 1, 0) and that

(0, 1, 1) is preferred to (1, 0, 1). Moreover, assuming that preferences are monotonic,

(1, 0, 0) is strictly preferred to (0, 1, 0).3 Therefore, we have that (1, 0, 0) is strictly

preferred to (0, 1, 0), while (0, 1, 1) is preferred to (1, 0, 1). This is a violation of the

sure-thing principle,4 and therefore the data set cannot be consistent with subjective

3 Notice that (1/19, 1 + 1/19, 1/19) � (0, 1, 0) is in B. Consequently, if the decision maker

is indifferent between (1, 0, 0) and (0, 1, 0), we would have that (1/19, 1 + 1/19, 1/19) is strictly

preferred to (1, 0, 0) by monotonicity, a contradiction.
4 When choosing between (1, 0, 0) and (0, 1, 0) in B, consuming 0 in state s3 is a sure thing;

similarly, consuming 1 in state s3 is a sure thing when choosing between (0, 1, 1) and (1, 0, 1) in B′.

If the agent strictly prefers ((1, 0), 0) to ((0, 1), 0), then ((0, 1), 1) cannot be preferred to ((1, 0), 1).
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expected utility. There is no utility function and probability distribution over states

that rationalizes the observed choices.

We next argue that the data set is consistent with the individual maximizing

some maxmin expected utility. To see this, consider the utility function u(x) = x

and the set of priors Π = [0, 2/3], where π ∈ Π is the probability of state s3. It

is straightforward to verify, using linear programming techniques, that (1, 0, 0) is a

solution to the optimization problem maxx∈B minπ∈Π(1/3)x1 + (2/3 − π)x2 + πx3,

while (0, 1, 1) is a solution to the optimization problem maxx∈B′ minπ∈Π(1/3)x1 +

(2/3− π)x2 + πx3.

In this simple example, we are able to explicitly reject the hypothesis that the

data set is consistent with subjective expected utility.5 At the same time, we cannot

rule out the hypothesis that the data set is consistent with maxmin expected utility.

In general, however, we would need to consider all utility functions and all sets of

priors, to derive all sets of optimal choices, and then to determine whether or not

the observed data are contained in these sets. Clearly, this is not feasible. Instead,

we follow the Afriat approach and derive fully nonparametric tests for consistency in

the presence of finite data.

2. Ambiguity Revealed

2.1 Preliminaries

Consider an economy with commodity space X = R`
+ and finite state space S,

with generic elements x and s, respectively. Trading takes place before the realization

of a state in a complete market. Let x(s) denote consumption of the ` goods in state

s, with corresponding state-contingent price vector p(s) ∈ R`
++. Let ∆(S) denote the

set of probability distributions over S, with generic element π. In such an economy,

the choice of a consumer corresponds to the choice of an act x : S → X. Let X

denote the set of all acts, and let <⊆ X × X be the consumer’s preference ordering

over acts.

5 Notice that our example makes use of consumption plans which correspond to the acts con-

stituting the decision maker’s choice set in the classic three-color Ellsberg (1961) experiment. In

our case, however, the agent chooses from a standard (convex) budget set and therefore can hedge

away ambiguity completely by choosing plans where x2 = x3. This setting makes it possible to draw

richer conclusions than in the classical setting where the decision maker is not free to choose convex

combinations.
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Suppose that we observe the consumer’s choices over a finite number of periods,

that is, we have the data set (xt, pt)t∈T . The main question we address is whether the

data set is consistent with some form of preference maximization. In other words,

does there exist a preference relation < such that xt < x for all x ∈ B(xt, pt) := {x :

pt · x ≤ pt · xt}, the budget set at (xt, pt), for all t ∈ T?

Naturally, without further assumptions, any data set is consistent with preference

maximization. To see this, simply assume that the consumer is indifferent between

all acts. Throughout the paper, we make a series of assumptions on the consumer’s

preferences: completeness, transitivity, continuity, monotonicity, and non-degeneracy

(i.e., axioms A.1, A.3, A.4, and A.6 in Gilboa and Schmeidler, 1989).6 These assump-

tions are standard and imply that the data set (xt, pt)t∈T is consistent with preference

maximization if and only if it satisfies the Afriat inequalities, namely, if and only if

there exist (Ut, λt)t∈T , with (Ut, λt) ∈ R×R++, such that Ut′ ≤ Ut+λtpt ·(xt′−xt) for

all (t, t′) ∈ T ×T .7 Consequently, if the data set satisfies the Afriat inequalities, then

there exists a utility function U : X→ R that rationalizes the observed choices. The

purpose of this paper is to establish revealed preference characterizations for specific

functional forms of U , e.g., when there exists a Bernoulli utility function u : X → R

and a prior π ∈ ∆(S) such that U(x) =
∑

s π(s)u(x(s)) for all x ∈ X.

2.2 Variational Preferences

The class of variational preferences (Maccheroni, Marinacci, and Rustichini, 2006)

is a broad class that incorporates ambiguity and generalizes multiple prior preferences

(Gilboa and Schmeidler, 1989).8 It also includes, as special cases, multiplier prefer-

ences (Hansen and Sargent, 2001) and mean-variance preferences (Markowitz, 1952,

1959; Tobin, 1958), two prominent models in macroeconomics and finance.

6 More precisely, we assume two axioms of monotonicity. The first axiom is classical in decision

theory and states that if x(s) < y(s) for all s ∈ S, then x < y; the act x(s) (resp., y(s)) is the

constant act that gives x(s) (resp., y(s)) in all states. The second axiom is specific to consumer

theory and states that if x(s)� y(s), then x(s) � y(s).
7 See Afriat (1967), Diewert (1973, 2012), Varian (1982), and Fostel, Scarf, and Todd (2004) for

proofs of Afriat’s Theorem. The revealed preference approach has been adopted in a variety of set-

tings, for example, firm production (Hanoch and Rothschild, 1972; Varian, 1984), consumer demand

(Varian, 1983a), investor behavior (Varian, 1983b), risk (Green and Srivastava, 1986; Varian, 1988),

intertemporal choice (Browning, 1989; Crawford, 2010), collective decision making (Cherchye, De

Rock, and Vermeulen, 2007), and the demand for characteristics (Blow, Browning, and Crawford,

2008), to name a few.
8Multiple prior preferences are also known as maxmin expected utility.

5



A decision maker with variational preferences evaluates the act x ∈ X as

min
π∈∆(S)

∑
s∈S

π(s)u(x(s)) + c(π),

where u : X → R is a utility function and c : ∆(S) → R+ ∪ {+∞} is a grounded,

lower semi-continuous, and convex function. The function c can be viewed as an

index of ambiguity aversion: the lower is c(π), the higher is the aversion towards

ambiguity. Multiple prior preferences and multiplier preferences then correspond to

specific choices of c, namely, the indicator function of a closed convex set and a

relative entropy measure, respectively.

The axioms of weak certainty independence and ambiguity aversion are central

for the representation of variational preferences. The weak certainty independence

axiom is a weakening of the classical independence axiom and essentially requires in-

dependence only when acts are mixed with constant acts for fixed mixing coefficients.

Ambiguity aversion states that if a decision maker is indifferent between two acts,

then he prefers mixtures of these two acts over either of them. This reflects the desire

of the decision maker to hedge against ambiguity.

Accordingly, we say that the data set (xt, pt)t∈T is consistent with the maxi-

mization of variational preferences if there exist an increasing and concave utility

function u : X → R and a grounded, lower semi-continuous, and convex func-

tion c : ∆(S) → R+ ∪ {+∞} such that minπ∈∆(S)

(∑
s∈S π(s)u(xt(s)) + c(π)

)
≥

minπ∈∆(S)

(∑
s∈S π(s)u(x(s)) + c(π)

)
for all x ∈ B(xt, pt), for all t ∈ T . It is worth

stressing that we assume a concave utility function to reflect risk aversion. While

this assumption is standard, it is not without loss of generality, as we show in the

conclusion.

Theorem 1 Let (xt, pt)t∈T be the data set. The following statements are equivalent:

1. The data set (xt, pt)t∈T is consistent with the maximization of variational pref-

erences.

2. There exist (ut, πt, ct, λt)t∈T , with (ut, πt, ct, λt) ∈ R|S| ×∆(S) × R+ × R++ for

each t ∈ T , such that

ut′(s
′) ≤ ut(s) + λt

pt(s)

πt(s)
(xt′(s

′)− xt(s)), (V.1)
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for all (s, s′, t, t′) ∈ S × S × T × T , and

ct′ ≥ ct −
∑
s∈S

ut(s)(πt′(s)− πt(s)), (V.2)

for all (t, t′) ∈ T × T .

The intuition behind Theorem 1 is simple. If the data set (xt, pt)t∈T is consistent

with the maximization of variational preferences, then it must be that xt is a solution

to the problem maxx∈B(pt,xt) minπ∈∆(S)

∑
s π(s)u(x(s)) + c(π). From Fan’s minimax

theorem, there exists πt ∈ ∆(S) such that (xt, πt) is a saddle point, i.e.,∑
s∈S

π(s)u(xt(s)) + c(π) ≥
∑
s∈S

πt(s)u(xt(s)) + c(πt) ≥
∑
s∈S

πt(s)u(x(s)) + c(πt),

for all x ∈ B(pt, xt), for all π ∈ ∆(S). The first inequality directly implies condition

(V.2). As for the second, it implies that xt maximizes the consumer’s expected utility

given the belief πt, and therefore condition (V.1) follows from classical optimality

conditions for convex problems. Conversely, if the conditions (V.1) and (V.2) are

satisfied, then we can construct an increasing, continuous, and concave utility function

u and a grounded, continuous, and convex function c such that (u, c) rationalize the

data, as in Afriat (1967).

The conditions (V.1) and (V.2) exhaust the observable implications of maximizing

variational preferences. To test whether a data set satisfies (V.1) and (V.2) requires

that we make use of nonlinear programming techniques, which are computationally

difficult. To circumvent this difficulty, we can fix a set {πt : t ∈ T}, solve for

(ut, λt, ct)t∈T given the set {πt : t ∈ T}, and then perform a grid or random search over

the space ∆(S)|T |. This simplifies the computational problem to a linear program,

the techniques for which are well established. However, we hasten to stress that the

computational difficulties remain formidable, as we will see in the implementation

section.

We next consider the special cases of multiple prior preferences and multiplier

preferences. To obtain multiple prior preferences, we specify the ambiguity index c

to be the indicator function of a non-empty, closed, and convex set Π ⊆ ∆(S) of

priors, i.e., c(π) = 0 if π ∈ Π and c(π) = +∞ if π /∈ Π. It immediately follows that a

data set (xt, pt)t∈T is consistent with the maximization of multiple prior preferences if

and only if there exist (ut, πt, ct, λt)t∈T , with (ut, πt, ct, λt) ∈ R|S|×∆(S)×R+×R++

7



for each t ∈ T , such that (V.1) and (V.2) are satisfied, with the additional requirement

that ct = 0 for all t ∈ T .

Notice that when (V.1) and (V.2) are satisfied with ct = 0 for all t ∈ T , the

set of priors Π that we construct to rationalize the data is the convex hull of {πt :

t ∈ T}. This suggests that if there is a unique prior π that satisfies (V.1), then the

data set is consistent with the maximization of Savage preferences, i.e., subjective

expected utility. And indeed it is the case: the data set (xt, pt)t∈T is consistent with

the maximization of Savage preferences if and only if there exist (ut, πt, λt)t∈T , with

(ut, πt, λt) ∈ R|S| × ∆(S) × R++ for each t ∈ T , such that (V.1) holds, with the

additional requirement that πt = πt′ for all (t, t′) ∈ T × T .9

To obtain multiplier preferences, we specify the ambiguity index c to be a positive

multiple of the relative entropy of π with respect to some prior π∗, i.e., c(π) =

θR(π||π∗) with θ > 0, π∗ ∈ ∆(S), and R(π||π∗) =
∑

s∈S π(s)[ln π(s) − lnπ∗(s)].

We have that a data set (xt, pt)t∈T is consistent with the maximization of multiplier

preferences only if there exist (ut, πt, λt)t∈T , with (ut, πt, λt) ∈ R|S|×∆(S)×R++ for

each t ∈ T , and (θ, π∗) ∈ R++ ×∆(S), such that (V.1) holds and

πt(s) =
π∗(s)e−

ut(s)
θ∑

s̃∈S π
∗(s̃)e−

ut(s̃)
θ

,

for all (s, t) ∈ S × T .10 We next show that this implies that the data set is consis-

tent with the maximization of subjective expected utility. To see this, define λ∗t as

(1/θ)λt
∑

s̃ π
∗(s̃)e−

ut(s̃)
θ so that condition (V.1) reads

ut′(s
′) ≤ ut(s) +

λ∗t
π∗(s)

θ

e−
ut(s)
θ

pt(s)(xt′(s
′)− xt(s)).

Multiplying by −1/θ and taking the exponential of both sides, we obtain

ût′(s
′) ≥ ût(s) exp

(
− λ∗t
π∗(s)

1

ût(s)
pt(s)(xt′(s

′)− xt(s))
)

≥ ût(s)

(
1− λ∗t

π∗(s)

1

ût(s)
pt(s)(xt′(s

′)− xt(s))
)
,

with ût̃(s̃) = e−ut̃(s̃)/θ, where the second inequality follows from convexity of the

exponential function. Finally, defining u∗t (s) as −e−ut(s)/θ, we obtain

u∗t′(s
′) ≤ u∗t (s) +

λ∗t
π∗(s)

pt(s)(xt′(s
′)− xt(s)).

9 Green and Srivastava (1986) derive a similar condition for von Neumann-Morgenstern expected

utility.
10 This follows directly from the minimization with respect to π.
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The data set is therefore consistent with the maximization of subjective expected

utility (the prior is π∗). It is easy to see that the converse is also true, so that a data

set is consistent with the maximization of multiplier preferences if and only if it is

consistent with the maximization of Savage preferences. This result is not entirely

new and has already been observed by Maccheroni, Marinacci and Rustichini (2006)

and Strzalecki (2011). We have chosen this more indirect proof to illustrate how

seemingly different Afriat inequalities may actually be equivalent.

2.3 Smooth Ambiguity

Smooth ambiguity (Klibanoff, Marinacci, and Mukerji, 2005) is another important

class of preferences for decision making under uncertainty. This model assumes that a

decision maker may form a range of predictions about future events and is uncertain

about these predictions. As a concrete example, monetary authorities frequently

use an array of models to predict future inflation and form assessments about the

likelihood of each being the true model. A critical feature of smooth ambiguity is

that it relaxes the reduction axiom of first and second order probabilities. According

to this model, a decision maker evaluates an act x ∈ X as

∑
π

φ

(∑
s

π(s)u(x(s))

)
µ(π),

where u : X → R is a utility function, π is a probability measure over S, µ is

a probability measure over ∆(S), and φ : R → R is a real-valued function. We

may interpret µ(π) as the decision maker’s subjective belief that the true model is π.

Much in the same way that the function u captures the attitude of the decision maker

towards risk, the function φ captures the attitude towards ambiguity. In particular, a

concave φ characterizes ambiguity aversion. Smooth ambiguity includes, as a limiting

case under infinite ambiguity aversion, the maxmin expected utility model of Gilboa

and Schmeidler (1989).

We say that the data set (xt, pt)t∈T is consistent with the maximization of smooth

preferences if there exist an increasing and concave function u : X → R, an in-

creasing and concave function φ : R → R, a finite set of probability distributions

Π ⊆ ∆(S), and a measure µ ∈ ∆(Π), such that
∑

π∈Π φ
(∑

s∈S π(s)u(xt(s))
)
µ(π) ≥∑

π∈Π φ
(∑

s∈S π(s)u(x(s))
)
µ(π) for all x ∈ B(xt, pt), for all t ∈ T .

Theorem 2 Let (xt, pt)t∈T be the data set. The following statements are equivalent:

9



1. The data set (xt, pt)t∈T is consistent with with the maximization of smooth pref-

erences.

2. There exist a non-empty finite set N , Π := {πn : n ∈ N} ⊂ ∆(S), µ ∈ ∆(Π),

and (ut, φt, ρt, λt)t∈T , with (ut, φt, ρt, λt) ∈ R|S| × R|N | × R|N |++ × R++ for each

t ∈ T , such that

ut′(s
′) ≤ ut(s) + λt

pt(s)∑
n∈N πn(s)ρt(n)µ(n)

(xt′(s
′)− xt(s)), (S.1)

for all (s, s′, t, t′) ∈ S × S × T × T , and

φt′(n
′) ≤ φt(n) + ρt(n)

∑
s∈S

(πn′(s)ut′(s)− πn(s)ut(s)), (S.2)

for all (n, n′, t, t′) ∈ N ×N × T × T .

The intuition behind Theorem 2 is again simple. If the data set (xt, pt)t∈T is

consistent with the maximization of smooth preferences, then xt is a solution to

the problem maxx∈B(pt,xt)

∑
π∈Π φ

(∑
s∈S π(s)u(x(s))

)
µ(π), and consequently (S.1)

results from standard optimality conditions for convex problems. As for (S.2), it

simply results from the concavity of φ, with the interpretation that ρt(n) is the

“derivative” of φ at
∑

s u(xt(s))πn(s), the expected utility of xt given the belief πn.

Conversely, if the conditions (S.1) and (S.2) are satisfied, we construct increasing,

continuous, and concave functions u and φ such that (u, φ,Π, µ) rationalize the data,

as in Afriat (1967).

Note that if we define the probability πt as

πt(s) :=

∑
n∈N πn(s)ρt(n)µ(n)∑

s∈S
∑

n∈N πn(s)ρt(n)µ(n)
,

for all (s, t) ∈ S × T , and for all t ∈ T , let

λ∗t =
λt∑

s∈S
∑

n∈N πn(s)ρt(n)µ(n)
,

then (S.1) is identical to (V.1), so that the observational differences between smooth

ambiguity and variational preferences are given solely by the conditions (V.2) and

(S.2). Moreover, if the parameters ρt are independent of t (and thus the parameters πt

defined above are independent of t), then (V.2) and (S.2) hold trivially. This special

case corresponds to the maximization of Savage preferences.

In general, suppose that we have found parameters that satisfy (S.1) (and hence

(V.1)) and (S.2). This implies that there exist (φt)t such that φt′ ≤ φt + χtπt(ut′ −
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ut) for all (t, t′).11 From Green and Srivastava (1986), a necessary and sufficient

condition for the existence of such (φt)t is that for any sequence (t0 = t, . . . , tn+1 = t),∑n+1
i=1 χti+1

πti+1
(uti −uti+1

) ≥ 0. Now, to satisfy (V.2) requires that we find (ct)t such

that ct′ ≥ ct − (πt′ − πt)ut for all (t, t′). Again, from Green and Srivastava, this is

equivalent to
∑n

i=0(πti+1
− πti)uti ≥ 0 for all sequences (t0 = t, . . . , tn+1 = t). Noting

that
∑n

i=0(πti+1
− πti)uti ≥ 0 is equivalent to

∑n+1
i=1 πti+1

(uti − uti+1
) ≥ 0, it follows

that if we find parameters that satisfy (S.1) and (S.2) with the additional property

that
∑n+1

i=1 (χti+1
−1)πti+1

(uti−uti+1
) ≤ 0 for all sequences (t0 = t, . . . , tn+1 = t), then

we have found parameters that satisfy (V.1) and (V.2). Therefore, we have sufficient

conditions for a data set consistent with the maximization of smooth preferences to

also be consistent with the maximization of variational preferences.

3. Implementation

This section provides a small implementation of our tests using laboratory data

from a portfolio choice experiment.12 The primary objective is to demonstrate the

revealed preference approach using both real and simulated data. A secondary objec-

tive is to contribute to the empirical literature on decision making under uncertainty,

and in particular, to explore the observable implications of ambiguity aversion (see,

for example, Ahn et al. (2011) and Hey and Pace (2012) for earlier empirical contri-

butions in this direction).

3.1 Experimental Design

The experiment took place at the Adelaide Laboratory for Experimental Eco-

nomics at the University of Adelaide. Seventy one subjects participated in the exper-

iment, each completing ten decision problems. There were three states of the world

and three Arrow-Debreu securities, one for each state. The likelihood of each state

was fixed across problems, and this was emphasized to the subjects. In each decision

problem, a subject was given a budget to purchase Arrow-Debreu securities. It was

not possible to transfer resources across problems,13 nor was any new information

11 To see this, define χt :=
∑

s∈S
∑

n∈N πn(s)ρt(n)µ(n), and φt :=
∑

n φt(n)µ(n), multiply

inequalities (S.2) by µn and sum over n.
12 For complete details related to the implementation, which include the instructions given to

subjects, a typical live screenshot, and all data and programs, see the supplementary online appendix

available at http://www2.le.ac.uk/departments/economics/people/mpolisson.
13 In fact, the interface required subjects to bind their budgets in each problem.
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Problem # 1 2 3 4 5 6 7 8 9 10

Price Asset 1 15 30 20 10 25 10 40 20 30 45

Price Asset 2 15 25 15 20 25 20 30 25 25 40

Price Asset 3 20 40 25 15 35 20 30 30 35 45

Budget 325 350 450 450 500 425 325 350 300 325

Table 1: Decision Problems

provided from one decision to the next. Lastly, subjects were paid according to their

choices across all decision problems.

Compared with previous experiments, our design had two distinctive features.

Firstly, unlike previous designs inspired by Ellsberg’s thought experiment, we did not

provide the subjects with any prior information about the likelihoods of the states.

In particular, we did not fix the probability of any state. Secondly, subjects were paid

according to their choices across all decision problems. This contrasts with previous

experiments in which a problem has been chosen at random and subjects have been

paid according to the choices made in that particular problem.14

3.2 Data Analysis

Each subject in the experiment faced the same set of ten problems. The prices of

the Arrow-Debreu securities and the budgets facing each subject are shown in Table

1. The average quantities of assets purchased across the sample of 71 subjects are

shown in Table 2. Roughly speaking, the higher the price of an asset, the lower is the

quantity purchased. However, these averages mask a great deal of heterogeneity. For

example, across all ten choice problems, Subject 38 consumed only the second asset,

Subject 41 equalized quantities purchased across assets, and Subject 42 equalized

expenditures across assets.

As previously mentioned, in order to test whether a given data set satisfies the

restrictions derived in the previous section requires that we make use of nonlinear

programming techniques, which are known to be computationally hard. To circum-

vent these difficulties, we simplify each problem to a linear program by performing a

grid search over the space of variables that enter the inequalities nonlinearly.

14 Kuzmics (2012) proves that in such settings one cannot distinguish between subjective expected

utility and the other models of interest.
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Problem # 1 2 3 4 5 6 7 8 9 10

Quantity Asset 1 7.5 3.7 6.3 16.1 7.1 16.4 2.1 7.0 2.9 1.9

Quantity Asset 2 7.6 5.9 12.1 7.3 7.7 6.6 4.2 4.5 5.3 3.3

Quantity Asset 3 5.0 2.3 5.6 9.6 3.7 6.4 3.8 3.2 2.3 2.4

Table 2: Average Quantities

More precisely, the algorithm we adopt is as follows. Firstly, we fix a finite

grid Π ⊂ ∆(S) of beliefs over the states. Secondly, for each t ∈ T , we fix πt ∈

Π. Thirdly, for the fixed (πt)t∈T , we test for the existence of (ut, ct, λt)t∈T such

that (ut, πt, ct, λt)t∈T satisfies the conditions (V.1) and (V.2). If a feasible solution

(ut, ct, λt)t∈T is found, the algorithm stops. If no feasible solution is found, we consider

another vector of (πt)t∈T . The process is repeated until either a solution is found or

all choices of (πt)t∈T ∈ Π|T | have been considered.

There are several remarks worth making. Firstly, for a fixed vector of (πt)t∈T , the

conditions (V.1) and (V.2) are linear in the variables (ut, ct, λt)t∈T . The techniques

for solving linear programming problems are well established and computationally

efficient. Secondly, the maximal number of loops (equivalently, the number of linear

programs to solve) is |Π||T |. For instance, if the grid Π has 10 points (a relatively

small grid), the maximal number of loops is already 1010. To get a sense of the

computational burden, notice that each linear program has 1000 inequalities and 50

unknowns.15 It takes ALICE, the high performance computing facility at the Univer-

sity of Leicester, about 7 minutes to solve 105 linear programs of this size. To solve

1010 linear programs therefore takes about 486 days, and this is for a single obser-

vation (xt, pt)t. However, we have a sample of 71 subjects (hence, 71 observations)

and need to simulate thousands of artificial observations to compute the power of our

tests. While we have been able to make considerable use of parallel computing, pro-

cessing time was still a major issue; this led us to focus on sub-samples of the data, as

we will see shortly. Thirdly, if we want to consider special cases of variational prefer-

ences, we must impose additional restrictions. For instance, for subjective expected

utility, we need to impose that πt = π for each t. Fourthly, the algorithm we adopt

establishes lower bounds on consistency. In other words, if the algorithm fails to find

15 Since there are 3 states and 10 periods, there are (3×10)2 inequalities (V.1) and 102 inequalities

(V.2), and there are 50 unknowns: 30 ut(s), 10 λt, and 10 ct. (Recall that the πt’s are fixed.)
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a feasible solution, a feasible solution might still exist. An open issue is to design a

more efficient algorithm.

A first look at the results in Table 3 shows that across the ten decision problems,

66 out of 71 subjects, or about 93 percent, satisfy GARP and are therefore consis-

tent with some form of utility maximization. We now explore the consistency with

maximization of Savage preferences (SEU).

With a grid width of 1/450, we find that 7 out of 71 subjects, or about 10 percent,

are consistent with subjective expected utility.16 To gauge success, it is often useful

to draw a comparison with a natural alternative hypothesis of random choice, a

convention established by Bronars (1987) and Beatty and Crawford (2011). As shown

in Table 3, among 100,000 simulated data sets, we observe 76,356 that are consistent

with some form of utility maximization and none that are consistent with subjective

expected utility.17 In other words, the probability of passing GARP when choosing

randomly uniformly is approximately 0.76, compared to zero for subjective expected

utility.18 This suggests that subjective expected utility is highly restrictive across ten

decision problems, and therefore it is perhaps a remarkable result that as many as

7 subjects satisfy these restrictions. Nevertheless, we argue that predictive success

is greater in the more general model since it outperforms randomness to a larger

extent.19

We now turn our attention to multiple prior preferences (MEU) and, more gener-

ally, to variational preferences (VAR). As previously explained, our strategy involves

fixing a grid Π and then performing a grid search over Π|T | to check whether the con-

ditions (V.1) and (V.2) are satisfied. Ideally, we would like the grid to be as fine as

possible and to consider the entire sample. However, due to the high computational

burden, we had to trade off between the width of the grid and the size of the subsets

16 The grid width of 1/450 corresponds to a grid containing 100,576 elements, including the belief

that all states are equally likely. Therefore, to implement the test for the maximization of Savage

preferences, the algorithm may have to solve up to 100,576 linear systems, each containing 900

inequalities and 40 unknowns.
17 To simulate a data set, we draw portfolios uniformly at random from the budget planes.
18 From the Azuma-Hoeffding inequality for martingales, it follows that with 100,000 random

draws, the empirical estimates are within 0.01 of their true values with probability at least 0.98.
19 Selten (1991) and Beatty and Crawford (2011) axiomatize a measure of predictive success for

set theories which predict a subset of the feasible outcome space. This measure satisfies natural

monotonicity and equivalence properties, and furthermore, it is aggregable across a heterogeneous

sample. This means that in order to estimate predictive success, we can take the simple difference

between the sample pass rate and the estimated probability of consistency when choosing randomly

uniformly.
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10 Problems 5 Problems 2 Problems

GARP SEU GARP VAR MEU SEU GARP VAR MEU SEU

Pass 0.93 0.10 0.93 0.25 0.23 0.23 0.97 0.89 0.85 0.75

Power 0.76 0.00 0.78 0.00 0.00 0.00 0.86 0.38 0.27 0.24

Success 0.17 0.10 0.15 0.25 0.23 0.23 0.11 0.50 0.58 0.51

Width 1/450 1/6 1/27

Table 3: Results

of data. We have chosen to explore two options: sub-samples of five observations with

a grid width of 1/6 (i.e., 10 beliefs in Π), and sub-samples of two observations with

a grid width of 1/27 (i.e., 325 beliefs in Π). Sub-samples are chosen from among the

set of all sub-samples of a given size in order to minimize the probability of passing

GARP when choosing randomly, i.e., to maximize the power of the test in a Bronars

(1987) sense.

As Table 3 shows, with a grid width of 1/6 and across five decision problems, 66

out of 71 subjects satisfy GARP, again about 93 percent of the sample, compared

to 77,606 out of 100,000 simulated data sets, or about 78 percent. The results for

subjective and maxmin expected utility are completely identical, with 16 out of 71

subjects, or about 23 percent, satisfying both sets of restrictions, compared to a neg-

ligible 6 out 100,000 simulated data sets. Lastly, 18 out of 71 subjects, or about 25

percent, are consistent with variational preferences, compared to a meager 7 out of

100,000 simulated data sets. Our measure of predictive success suggests that varia-

tional preferences provide the best fit for the observed data, though only marginally

better than maxmin or subjective expected utility, which are indistinguishable from

one another. This exercise shows yet again that across only five choice problems, the

structure we impose on preferences is very demanding.

Lastly, with a grid width of 1/27 and across two decision problems, 69 out of

71 subjects, about 97 percent, are consistent with GARP, compared to 86,149 out

of 100,000 simulated data sets, about 86 percent; 53 out of 71 subjects, about 75

percent, are consistent with subjective expected utility, compared to 24,033 out of

100,000 simulated data sets, about 24 percent; 60 out of 71 subjects, about 85 per-

cent, are consistent with maxmin expected utility, compared to 26,561 out of 100,000

simulated data sets, about 27 percent; and 63 out of 71 subjects, about 89 percent,
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are consistent with variational preferences, compared to 38,318 out of 100,000 sim-

ulated data sets, about 50 percent. By our measure of predictive success, maxmin

expected utility performs the best, followed by subjective expected utility and then

variational preferences. All of these models outperform the classical model of prefer-

ence maximization (à la Debreu).

To conclude, testing whether a data set is consistent with the maximization of

variational, multiple prior, or even Savage preferences has proven to be computation-

ally challenging. We have not even been able to implement the tests for the model

of smooth ambiguity due to the size and complexity of the space over which we must

perform a grid search. An open issue is to develop better (both more efficient, and

ideally, exact) algorithms to test these theories.

4. Concluding Remarks

This paper provides necessary and sufficient conditions for data sets composed of

state-contingent prices and consumption to be consistent with two prominent models

of decision making under uncertainty: variational preferences and smooth ambiguity.

The revealed preference conditions for subjective expected utility, maxmin expected

utility, and multiplier preferences are characterized as special cases. We implement

our tests on data from a portfolio choice experiment, and we find evidence that favors

making allowances for ambiguity, though subjective expected utility performs better

than one might expect. We conclude with a series of brief remarks.

Concavity. We have assumed throughout that the Bernoulli utility function

is concave. This is not without loss of generality. To see this, consider again the

introductory example, but assume now that B := {(x1, x2, x3) : x1+(4/5)x2+x3 ≤ 1},

i.e., the price of the consumption good in state s3 has changed to 1. As in the

introduction, the data set is inconsistent with a model of subjective expected utility.

We further argue that it is also inconsistent with a model of maxmin expected utility

if the utility function u is assumed to be concave. Without loss of generality, we

normalize u(0) to 0. Recall that since (1, 0, 0) is chosen from B, we must have that

(1/3)u(1) ≥ minπ∈Π(1/3)u(x1)+(2/3−π)u(x2)+πu(x3) for any (x1, x2, x3) such that

x1 + (4/5)x2 + x3 = 1, for some closed interval Π ⊆ [0, 2/3]. By monotonicity and

concavity of u, for (5/14, 5/14, 5/14), we have that u(5/14) > u(1/3) ≥ (1/3)u(1),

and we obtain a contradiction. However, the data set is consistent with maxmin

expected utility if we relax the concavity assumption. To see this, consider the
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piecewise linear utility function u(x) = (9/10)x if x ≤ 5/9 and u(x) = (9/8)x − 1/8

if x > 5/9. It is straightforward to verify, using linear programming techniques,

that (1, 0, 0) is a solution to the maximization problem maxx∈B minπ∈Π(1/3)u(x1) +

(2/3 − π)u(x2) + πu(x3), while (0, 1, 1) is a solution to the maximization problem

maxx∈B′ minπ∈Π(1/3)u(x1) + (2/3 − π)u(x2) + πu(x3). An open issue is to derive

necessary and sufficient conditions without specific assumptions on the Bernoulli

utility function u (beyond monotonicity, of course).

Errors. The conditions (V.1) and (V.2) and (S.1) and (S.2) are exact tests and

they do not allow for measurement errors, optimization errors, or computational

limitations.20 If a test fails, a simple method to evaluate the seriousness of the

violations consists of finding the largest subsets of the data that are consistent and

comparing their cardinality with the cardinality of the data set. Another method,

suggested by Varian (1985), is to assume that the observed data set (xt, pt)t∈T is

the true data set (x∗t , p
∗
t )t∈T perturbed by classical error terms (εxt , εpt)t∈T , i.e., x∗t =

xt + εxt and p∗t = pt + εpt for each t ∈ T , and to minimize

1

σ2

∑
t∈T

||x̂t − xt||2 + ||p̂t − pt||2,

subject to (x̂t, p̂t)t∈T satisfying conditions (V.1) and (V.2) (resp., (S.1) and (S.2)),

where σ2 is the variance of the error terms.21 If the true data set (x∗t , p
∗
t )t∈T is

consistent with (V.1) and (V.2) (resp., (S.1) and (S.2)), i.e., the null hypothesis,

then the resulting value of the minimization problem is a lower bound for the ‘true’

statistic (1/σ2)
∑

t∈T ||x∗t − xt||2 + ||p∗t − pt||2, and therefore provides a conservative

test.22

General Choice Sets. In this paper, the decision maker chooses from classical

(linear) budget sets. However, the analysis is not limited to budget sets and extends

to more general choice sets. More precisely, suppose that the data set consists of

(xt, Xt)t∈T , where xt ∈ Xt, and Xt is a non-empty and convex subset of R` for each

t. From standard arguments in convex analysis, condition (V.1) becomes

ut′(s
′) ≤ ut(s) + gt(xt)(xt′(s

′)− xt(s)),
20 See Echenique, Golovin, and Wierman (2011) for a revealed preference approach to computa-

tional complexity.
21Here, || · || denotes the Euclidean norm.
22 Since we assume classical error terms, the statistic has a chi-squared distribution.
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with gt(xt) an element of the normal cone of Xt at xt, while (V.2) remains the same.

We refer the reader to Forges and Minelli (2009) for more on this issue.

Axioms of Revealed Preference. This paper derives Afriat inequalities for a

data set to be consistent with variational preferences and smooth ambiguity. However,

these inequalities are not stated purely in terms of observables, i.e., state-contingent

prices and consumption. An open issue is to find testable implications that only

involve observables, as in the generalized axiom of revealed preference.

Appendix

A.1 Proof of Theorem 1

Proof: We first show that (1) =⇒ (2). Suppose that the data set (xt, pt)t∈T

is consistent with a model of variational preferences. Since u is increasing, this is

equivalent to xt being a solution to the following constrained optimization program:

maxx∈X
(
minπ∈∆(S)

(∑
s∈S π(s)u(x(s)) + c(π)

))
subject to pt · x ≤ ωt for some ωt ≥ 0

for each t ∈ T (choose ωt = pt ·xt). For any x ∈ X, let U(x) denote the minimum over

π ∈ ∆(S) of
∑

s∈S π(s)u(x(s))+c(π), i.e., U(x) := minπ∈∆(S)

(∑
s∈S π(s)u(x(s)) + c(π)

)
,

and let Πmin(x) denote the set of minimizers. Notice that Πmin(x) 6= ∅ for all

x ∈ X and that U is concave. Note that the maximization program is equivalent

to maxx∈X U(x) − 1B(pt,xt)(x), where 1B(pt,xt) is the indicator function of the non-

empty, convex and closed set B(pt, xt). Let ∂U(x) be the super-differential of U at

x. From the optimality of xt, it follows that there exist a scalar λt > 0 and a vector

δt ∈ R`|S|
+ such that λtpt− δt ∈ ∂U(xt) for each t ∈ T , with δlt(s) = 0 if xlt(s) > 0 (i.e.,

if the quantity consumed of the l-th good in state s is strictly positive).

For each s ∈ S, define us : X → R with us(x) = u(x(s)). (Remember that

u : X → R.) We have that U(x) =
∑

s∈S us(x)π(s) + c(π) with π ∈ Πmin(x). From

Theorem 4.4.2 in Hiriart-Urruty and Lemaréchal (2004, p. 189), we have that

∂U(x) = co

{∑
s∈S

π(s) · gs(x) : gs(x) ∈ ∂us(x), π ∈ Πmin(x)

}
,

where ∂us(x) denotes the super-differential of us at x. Note that each element of the

super-differential of us at x is a `|S|-dimensional vector. It follows that λtpt(s) −

δt(s) ∈ {πt(s) · g(xt(s)) : g(xt(s)) ∈ ∂u(xt(s)), πt ∈ Πmin(xt)}. Concavity of u then

implies that

u(xt′(s
′)) ≤ u(xt(s)) + λt

pt(s)

πt(s)
(xt′(s

′)− xt(s)),
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for all (s, s′, t, t′) ∈ S × S × T × T, with πt an element of Πmin(xt) at xt. Lastly,

since πt is an element of Πmin(xt) at xt, we have that
∑

s∈S πt(s)u(xt(s)) + c(πt) ≤∑
s∈S πt′(s)u(xt(s)) + c(πt′) for all (t, t′) ∈ T × T . Letting ut(s) := u(xt(s)) for any

(s, t) ∈ S × T and ct := c(πt) for any t ∈ T completes the first part of the proof.

We now show that (2) =⇒ (1). Assume that there exist (ut, πt, ct, λt)t∈T ∈

R|S| ×∆(S)× R+ × R++, such that (V.1) and (V.2) are satisfied. Define u : X → R

as follows:

u(x) := min
(s,t)∈S×T

(
ut(s) + λt

pt(s)

πt(s)
(x− xt(s))

)
. (1)

Note that u is increasing and concave. Also, we have that u(xt(s)) = ut(s) for each

(s, t) ∈ S × T. Clearly, we have that u(xt(s)) ≤ ut(s). Assume that ut(s) > u(xt(s)).

Since u(xt(s)) = ut∗(s
∗) +λt∗

pt∗ (s∗)
πt∗ (s∗)

(xt(s)−xt∗(s∗)) for some (s∗, t∗) ∈ S×T, we have

a contradiction with (V.1). Similarly, define c : ∆(S)→ R as follows:

c(π) := max
t∈T

(
ct −

∑
s∈S

ut(s)(π(s)− πt(s))

)
. (2)

Note that c is convex and continuous. Also, we have that c(πt) = ct for each t ∈

T. Clearly, we have that c(πt) ≥ ct. Assume that c(πt) > ct. Since c(πt) = ct∗ −∑
s∈S ut∗(s)(πt(s) − πt∗(s)) for some t∗ ∈ T, we have a contradiction with (V.2).

To ground c, subtract minπ∈∆(S) c(π), which is well-defined by continuity of c and

compactness of ∆(S). With a slight abuse of notation, we also denote by c the

grounded function.

Finally, we want to show that for each t ∈ T , if pt · xt ≥ pt · x, then

min
π∈∆(S)

(∑
s∈S

π(s)u(xt(s)) + c(π)

)
≥ min

π∈∆(S)

(∑
s∈S

π(s)u(x(s)) + c(π)

)
.

We have that for each t ∈ T ,

min
π∈∆(S)

(∑
s∈S

π(s)u(x(s)) + c(π)

)
≤
∑
s∈S

πt(s)u(x(s)) + c(πt) (3)

≤
∑
s∈S

πt(s)ut(s) + c(πt)

+ λt
∑
s∈S

pt(s)(x(s)− xt(s)) (4)

≤
∑
s∈S

πt(s)ut(s) + c(πt) (5)

=
∑
s∈S

πt(s)ut(s) + ct (6)
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≤ min
π∈∆(S)

(∑
s∈S

π(s)ut(s) + c(π)

)
(7)

= min
π∈∆(S)

(∑
s∈S

π(s)u(xt(s)) + c(π)

)
. (8)

Inequality (3) follows from minimization; inequality (4) follows from the definition of

u in (1); inequality (5) follows from the assumption that for each t ∈ T, pt ·xt ≥ pt ·x,

which is equivalent to
∑

s∈S pt(s)(x(s)− xt(s)) ≤ 0, and λt > 0; equality (6) follows

from the previous argument that c(πt) = ct for each t ∈ T ; inequality (7) follows since

the definition of c in (2) implies that
∑

s∈S πt(s)ut(s) + ct ≤
∑

s∈S π(s)ut(s) + c(π)

for all π ∈ ∆(S) and t ∈ T ; and equality (8) follows from the previous argument that

ut(s) = u(xt(s)) for each (s, t) ∈ S × T. This completes the proof. QED

A.2 Proof of Theorem 2

Proof: We first show that (1) =⇒ (2). Suppose that the data set (xt, pt)t∈T is

consistent with the smooth ambiguity model. Since u and φ are increasing, this is

equivalent to xt being a solution to the following constrained optimization program:

maxx∈X
(∑

π∈Π φ
(∑

s∈S π(s)u(x(s))
)
µ(π)

)
subject to pt · x ≤ ωt for some ωt ≥ 0 for

each t ∈ T (choose ωt = pt·xt). Let Uπ(x) :=
∑

s∈S π(s)u(x(s)) for each x ∈ X and π ∈

Π. Since u is concave, Uπ is also concave for each π ∈ Π. Since φ is concave, it follows

that the super-differential of φ◦Uπ at x is given by {ρ·g : ρ ∈ ∂φ(Uπ(x)), g ∈ ∂Uπ(x)}.

(See Theorem 4.3.1 in Hiriart-Urruty and Lemaréchal (2004, p. 186).) From the

optimality of xt, it follows that there exist λt > 0 for each t ∈ T, g(xt(s)) ∈ ∂u(xt(s))

for each s ∈ S and t ∈ T, and ρπ(xt) ∈ ∂φ(Uπ(xt)) for each π ∈ Π and t ∈ T,

such that λtpt(s) = g(xt(s))
∑

π∈Π π(s)ρπ(xt)µ(π) for each s ∈ S and t ∈ T . (Here,

we implicitly assume that xt >> 0. The general case is treated as in the proof of

Theorem 1.) Concavity of u then implies that

u(xt′(s
′)) ≤ u(xt(s)) + λt

pt(s)∑
π∈Π π(s)ρπ(xt)µ(π)

(xt′(s
′)− xt(s)),

for all (s, s′, t, t′) ∈ S × S × T × T. Similarly, concavity of φ implies that

φ(Uπ′(xt′)) ≤ φ(Uπ(xt)) + ρπ(xt)(Uπ′(xt′)− Uπ(xt)),

for all (n, n′, t, t′) ∈ N ×N × T × T. Letting ut(s) := u(xt(s)) for any (s, t) ∈ S × T,

πn(s) := π(s) for any (π, s) ∈ Π× S, φt(n) := φ(Uπ(xt)) and ρt(n) := ρπ(xt) for any

(π, t) ∈ Π× T, and µ(n) := µ(π) for any π ∈ Π completes the first part of the proof.
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Conversely, we next show that (2) =⇒ (1). Assume that there exist Π :=

{πn}n∈N ⊂ ∆(S), µ ∈ ∆(Π), and (ut, φt, ρt, λt)t∈T ∈ R|S| × R|N | × R|N |++ × R++, such

that (S.1) and (S.2) are satisfied. Define u : X → R as follows:

u(x) := min
(s,t)∈S×T

(
ut(s) + λt

pt(s)∑
n∈N πn(s)ρt(n)µ(n)

(x− xt(s))
)
. (9)

Note that u is increasing and concave. Also, we have that u(xt(s)) = ut(s) for each

(s, t) ∈ S × T. Clearly, we have that u(xt(s)) ≤ ut(s). Assume that ut(s) > u(xt(s)).

Since u(xt(s)) = ut∗(s
∗) + λt∗

pt∗ (s∗)∑
n∈N πn(s∗)ρt∗ (n)µ(n)

(xt(s) − xt∗(s∗)) for some (s∗, t∗) ∈

S × T, we have a contradiction with (S.1). Similarly, define φ : R→ R as follows:

φ(U) := min
(n,t)∈N×T

(
φt(n) + ρt(n)

(
U −

∑
s∈S

πn(s)ut(s)

))
. (10)

Note that φ is increasing and concave. Also, we have that φ
(∑

s∈S πn(s)ut(s)
)

=

φt(n) for each (n, t) ∈ N × T. Clearly, we have that φ
(∑

s∈S πn(s)ut(s)
)
≤ φt(n).

Assume that φt(n) > φ
(∑

s∈S πn(s)ut(s)
)
. Since φ

(∑
s∈S πn(s)ut(s)

)
= φt∗(n

∗) +

ρt∗(n
∗)
(∑

s∈S(πn(s)ut(s)− πn∗(s)ut∗(s))
)

for some (n∗, t∗) ∈ N×T, we have a contra-

diction with (S.2). Finally, we want to show that for each t ∈ T, when pt ·xt ≥ pt ·x, it

then follows that
∑

π∈Π φ
(∑

s∈S π(s)u(xt(s))
)
µ(π) ≥

∑
π∈Π φ

(∑
s∈S π(s)u(x(s))

)
µ(π).

We have that for each t ∈ T,

u(x(s))− u(xt(s)) ≤ λt
pt(s)∑

n∈N πn(s)ρt(n)µ(n)
(x(s)− xt(s)), (11)

which follows from the definition of u in (9) and the previous argument that u(xt(s)) =

ut(s) for each (s, t) ∈ S × T. We have that for each n ∈ N and t ∈ T,

φ

(∑
s∈S

πn(s)u(x(s))

)
≤ φ

(∑
s∈S

πn(s)u(xt(s))

)
+ ρt(n)

∑
s∈S

πn(s)(u(x(s))− u(xt(s))), (12)

which follows from the definition of φ in (10) and the previous arguments that

u(xt(s)) = ut(s) for each (s, t) ∈ S × T and φ
(∑

s∈S πn(s)ut(s)
)

= φt(n) for each

(n, t) ∈ N × T. Together, (11) and (12) imply that

φ

(∑
s∈S

πn(s)u(x(s))

)
≤ φ

(∑
s∈S

πn(s)u(xt(s))

)

+ λt
∑
s∈S

πn(s)ρt(n)∑
n∈N πn(s)ρt(n)µ(n)

pt(s)(x(s)− xt(s)), (13)
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for each n ∈ N and t ∈ T. Multiplying both sides of (13) by µ(n) and summing over

n ∈ N, we obtain

∑
n∈N

φ

(∑
s∈S

πn(s)u(x(s))

)
µ(n) ≤

∑
n∈N

φ

(∑
s∈S

πn(s)u(xt(s))

)
µ(n)

+ λt
∑
s∈S

pt(s)(x(s)− xt(s)). (14)

Finally, if for each t ∈ T, pt·xt ≥ pt·x, which is equivalent to
∑

s∈S pt(s)(x(s)−xt(s)) ≤

0, then from (14) we have

∑
n∈N

φ

(∑
s∈S

πn(s)u(x(s))

)
µ(n) ≤

∑
n∈N

φ

(∑
s∈S

πn(s)u(xt(s))

)
µ(n). (15)

Letting µ(πn) := µ(n) for each n ∈ N and Π := {πn}n∈N in (15) completes the proof.

QED
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