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Summary

This paper make straightforward extensions to Anderson’s (1996) nonparametric sta-
tistical tests of stochastic dominance criteria to bivariate distributions. These test are
applied to a time series of cross-section datasets on household level total expenditure
and non labour market time in the UK.

• The paper presents stochastic dominance criteria up to third order for bivariate
distributions.

• The paper presents estimators for the distributions of interest evaluated at a
finite grid of points. These estimators are shown to be linear transformations
of the differences in cell probabilities between two comparison distributions.
This is distributed normally with mean zero and this allows the corresponding
variance-covariance matrices to be derived in a simple way.

• Tests for differences in distributions are based upon nonparametric analgoues
of Pearson goodness-of-fit tests suggested by Anderson (1996) for univariate
distributions. This is extended to bivariate distributions.

• These ideas are applied to the joint distribution of real equivalised house-
hold spending and non-labour market time using a time-series of cross-section
datasets in the UK.

• It is shown that considering each of the covariates in isolation may sometimes
give strongly contrasting evidence on the changes in social welfare over time and
that it may therefore be important to adopt the multivariate approach. Further,
it is shown that even when the null of no dominance could not be rejected in one
or other marginal distribution, dominance of various order could be established
with respect to the joint distribution.

• The empirical results indicate that for the population overall, social welfare
increased towards the end of the period with 1995 first order dominating 1975,
1985 and 1990 indicating unanimous ranking by all functions increasing in these
argument. There is also evidence of increased social welfare between 1975 and
1980 for concave functions. Results by date-of-birth cohort indicate that most
of the increases in welfare were felt by the 1939 to 1950 cohort. The youngest
cohort (born in 1950 and after) show some indications of reduced welfare (for
concave utility functions) in the earlier years but a gain in 1995 over 1985.
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1. Introduction

There are probably many economic and social attributes which combine to determine
an individual’s and a society’s overall welfare. However, most of both the theoret-
ical and applied literature on the measurement of economic and social welfare has
been concerned with uni-dimensional indicators of economic status (often equivalised
net or gross income). This paper makes straightforward extensions to Anderson’s
(1996) work on nonparametric statistical tests of stochastic dominance to allow tests
of differences in social welfare based upon bivariate distributions of economic factors.
One approach to the problem of how to assess multi-dimensional distributions is to

aggregate them into a single index. For example, a vector of household demands and
demographic characteristics is typically aggregated using market prices as weights for
the marketed goods and adjusted by an equivalence scale to reflect demographic dif-
ferences such that the household’s total budget multiplied by the relative equivalence
scale1 serves as a measure of its welfare. This is the standard way of performing real
income comparisons2. Assuming that the relative equivalence scale can be calculated,
this approach still only works if the relevant prices are observed, if they correctly
indicate consumers’ relative valuations of the goods which enter their utility function,
and if they do not vary across households. Even assuming that prices are observed,
one set of problems arise for instance if households are rationed (e.g. with respect to
their consumption of public goods, or by involuntary unemployment). In this case,
the appropriate price is not the market price but the price plus a term reflecting the
dis-utility of the ration3. Another set of problems occur if the prices faced by different
households vary (e.g. regionally or because of differences in productivity4 or attitudes
to risk). Finally, even when household utilities can be aggregated in the traditional
way using market prices, it may still be desirable to allow for non-utility information
such as life-span, health etc5. In each of these cases a multi-dimensional approach
may be more appropriate.
The notion of stochastic dominance in multivariate distributions has been sug-

gested in this context by Atkinson and Bourguignon (1982). Stochastic dominance
criteria are essentially conditions linking differences in the empirical joint distributions
of the arguments of social welfare, with the ranking of different distributions in terms
of social welfare. The benefit of this approach is that it allows us to work directly with
the distributions of covariates rather than requiring that they first be aggregated into
some welfare indicator. The drawback is that the requirements placed on the com-
parison distributions such that welfare ranking can be made are typically strong but
these can be weaken by placing restrictions on the class of utility functions consid-
ered. A statistical basis for this approach has been provided by Anderson (1996) who
describes a simple nonparametric framework for comparing univariate distributions
directly. This allows straightforward tests of stochastic dominance to be formulated.
This paper extends Anderson’s method to the bivariate dominance criteria set out in
Atkinson and Bourguignon (1982).
The plan of the paper is as follows. Section 2 briefly sets out stochastic dominance

criteria for bivariate distributions. These conditions have been described for first and
second order dominance by Atkinson and Bourguignon (1982) and this paper simply

1Blundell and Lewbel, (1991).
2See Sen (1979a) or Deaton and Muellbauer (1980).
3Hicks (1940), Rothbath (1941), Neary and Roberts (1980)
4Ulph (1978).
5Atkinson and Bourguignon (1982).
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extends the criteria to third order dominance (the highest order typically discussed in
the inequality literature) for the joint distribution. Section 3 describes test of dom-
inance for all of the functions of interest of the underlying joint distribution. These
are based on Anderson’s (1996) procedures which are themselves straightforward non-
parametric analogues of Pearson’s goodness of fit tests. Section 4 applies these tests
to the joint distribution of expenditure and non labour market time in the UK using
household level data budget survey data from 1975, 1980, 1985, 1990 and 1995. This
contrasts the welfare inferences which might be drawn from looking solely at one or
other of the univariate (marginal) distributions with those which consider the joint
distribution. Section 5 draws some conclusions.

2. Stochastic Dominance Criteria

Suppose that social outcomes can be represented by a joint cumulative distribution
function F (x1, x2) and a joint density function f (x1, x2) defined by

f (x1, x2) =
∂2F (x1, x2)

∂x1∂x2
.

If we want to be able to rank distributions in terms of social welfare then we need a
way of ranking distributions drawn from the set of all possible distributions F where

F = ©F : <2 → [0, 1] ; F nondecreasing and continous; F (0, 0) = 0; F (a1, a2) = 1
ª

where the range space of xi is assumed to be [0, ai] . It is assumed that the social
welfare functional is drawn from the general class ω where

ω =

½
W (F ) |W (F ) =

Z Z
ψ (x1, x2) dF (x1, x2)

¾
(2.1)

where ψ
¡
xh

1 , x
h
2

¢
: <2 → < is the contribution to social welfare from each household.

This restricts the social welfare functional to be sum-ranking but is still quite general
in that this is a large set with much room for disagreement over the ranking of
different social states. For example, if we define ψ (x1, x2) ≡ u (x1, x2) then we have a
utilitarian social welfare function. In this case the disutility of inequality is generated
by the concavity of the household utility functions. However, this formulation also
covers ψ (x1, x2) ≡ ψ (u (x1, x2)) where ψ is an increasing transformation of u. If the
transformation is concave then this introduces concerns for inequality directly into the
social welfare function. If a specific choice of ψ can be arrived at, then all social states
can be ranked and the differences between them quantified. This may be very useful
but the act of choosing any particular cardinal representation of social welfare will
rule out other maybe equally plausible/reasonable functions which may give different
rankings. Another approach is to look for conditions under which all ψ’s with similar
canonical properties will unanimously rank social states.
Stochastic dominance criteria have been suggested as a way of ranking distri-

butions. The ideas are parallel to those for ranking uncertain choices in decision
theory and have been extended up to second order dominance to comparisons of
multi-dimensional distributions by Atkinson and Bourguignon (1982). For exam-
ple, suppose we wish to rank the joint distributions of x1 and x2: FA (x1, x2) and
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FB (x1, x2). This is ranking is based upon the difference between social welfare in
each distribution as defined by equation 2.1

∆W =

Z a1

0

Z a2

0

ψ (x1, x2)∆f (x1, x2) dx2dx1 (2.2)

where ∆f (x1, x2) = fA (x1, x2) − fB (x1, x2). Following the notation in Atkinson
and Bourguignon (1982) let F1 (x1) and F2 (x2) denote the marginal distributions
of F (x1, x2), let K (x1, x2) ≡ − [F (x1, x2) − F (x1) − F (x2)], let H (x1, x2) =R x1

0

R x2

0
F (s, t) dsdt, letHi (xi) =

R xi

0
Fi (s) ds and let L (x1, x2) =

R x1

0

R x2

0
K (s, t) dsdt.

2.1. First Order Dominance

First order dominance corresponds to dominance of monotonic social welfare functions
(i.e. those for which ψ1,ψ2 ≥ 0). This set is denoted by Ψ = {ψ : ψi ≥ 0}. In
the bivariate case there are two subsets according to the assumed sign of the cross-
partial: Ψ− =

©
ψ : ψi ≥ 0 and ψij ≤ 0

ª
and Ψ+ =

©
ψ : ψi ≥ 0 and ψij ≥ 0

ª
. Both

subsets require ∆F1 (x1) ,∆F2 (x2) ≤ 0 (that is, first order dominance in the marginal
distributions).

∀ x1 and x2, F
A
1 (x1)− FB

1 (x1) ≤ 0 and FA
2 (x2)− FB

2 (x2) ≤ 0 (2.3)

Dominance for the class Ψ− additionally requires ∆F (x1, x2) ≤ 0;

∀ x1 and x2, F
A (x1, x2)− FB (x1, x2) ≤ 0 (2.4)

(Hadar and Russel (1974))6.
Dominance for the class Ψ+ additionally requires ∆K (x1, x2) ≤ 0;

∀ x1 and x2,K
A (x1, x2)−KB (x1, x2) ≤ 0 (2.5)

(Levy and Paroush (1974)).

2.2. Second Order Dominance

Second order dominance corresponds to a preference for mean-preserving inequality
reducing changes in the distribution function. For extensions of the classesΨ− andΨ+

denoted by Ψ−− and Ψ++ and defined below, both require ∆H1 (x1) ,∆H2 (x2) ≤ 0
(that is, second order dominance in the marginal distributions).

∀ x1 and x2,H
A
1 (x1)−HB

1 (x1) ≤ 0 and HA
2 (x2)−HB

2 (x2) ≤ 0 (2.6)

The conditions forΨ−− are those forΨ− plus ψ11,ψ22 ≤ 0 and ψ112,ψ122 ≥ 0;ψ1122 ≤
0. This additionally requires ∆H (x1, x2) ≤ 0;

∀ x1 and x2,H
A (x1, x2)−HB (x1, x2) ≤ 0 (2.7)

(Atkinson and Bourguignon (1982).
The conditions forΨ++ are those forΨ+ plus ψ11,ψ22 ≤ 0 and ψ112,ψ122 ≤ 0;ψ1122 ≥
0. This additionally requires ∆L (x1, x2) ≤ 0;

∀ x1 and x2, L
A (x1, x2)− LB (x1, x2) ≤ 0 (2.8)

(Atkinson and Bourguignon (1982).
6∆F1 (x1) ≤ 0 and ∆F2 (x2) ≤ 0 are both implied by ∆F (x1, x2) ≤ 0.

5



2.3. Third Order Dominance

Third order dominance corresponds to a preference for inequality reducing changes
in the lower end of the distribution function. The class of ψ functions considered
here are straightforward extensions of Ψ−− and Ψ++. These are denoted by Ψ−−−

and Ψ+++ and are defined below. First let J (x1, x2) =
R x1

0

R x2

0 H (s, t) dsdt, let
Ji (xi) =

R xi

0 Hi (s) ds and letM (x1, x2) =
R x1

0

R x2

0 L (s, t) dsdt. For Ψ−−− and Ψ+++

both require ∆J1 (x1) ,∆J2 (x2) ≤ 0 (that is, third order dominance in the marginal
distributions).

∀ x1 and x2, J
A
1 (x1)− JB

1 (x1) ≤ 0 and JA
2 (x2)− JB

2 (x2) ≤ 0 (2.9)

The conditions for Ψ−−− are those for Ψ−− plus ψ1112,ψ1122 ≥ 0 and ψ11122,ψ11222 ≥
0;ψ111222 ≤ 0. This additionally requires ∆J (x1, x2) ≤ 0 :

∀ x1 and x2, J
A (x1, x2)− JB (x1, x2) ≤ 0 ; (2.10)

The conditions for Ψ+++ are those for Ψ++ plus ψ1112,ψ1122 ≥ 0 and ψ11122,ψ11222 ≥
0;ψ111222 ≥ 0. This additionally requires ∆M (x1, x2) ≤ 0

∀ x1 and x2,M
A (x1, x2)−MB (x1, x2) ≤ 0 (2.11)

Given these conditions linking social welfare rankings to characteristics of the
underlying distributions, the general approach is to construct estimates of ∆Fi (.),
∆F (.), ∆K (.), ∆Hi (.), ∆H (.), ∆L (.), ∆Ji (.), ∆J (.) and ∆M (.), and to check
conditions (2.3) to (2.11) to see if stochastic dominance can be established and of what
order, and to check the class of social welfare functions for which such dominance is
established.

3. Statistical tests of Stochastic Dominance

Let the joint rangespace of x1 and x2 be partitioned into s and t mutually exclusive
and exhaustive categories respectively7. Denote by nij the number of observations
falling into the ijth category and denote the total number of observations by n. The
probability of falling into the ijth cell is

pij = Prob
n
x ∈ {xi−1

1 , xi
1] ∩ {xj−1

2 , xj
2]
o

where these probabilities are defined by the unknown distribution F (x1, x2) (i.e.
pij = F (xi, xj)− F (xi, xj−1)− F (xi−1, xj) + F (xi−1, xj−1)).
Let bn be the (s× t) matrix of empirical cell counts. This empirical frequency

matrix is asymptotically distributed N (µ,Ω) (Kendall and Stewart (1979)) where

1

n
µ =


p11 p12 . . . p1t

p21 p22 . . . p2t

...
...

. . .
...

ps1 ps2 . . . pst


7There are two ways to proceed: either choose partition points and allow the cell frequencies to

be determined by the unknown distribution, or choose the cell frequencies and allow the intervals
between the partition points to be determined.
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1

n
Ω =


p11 (1− p11) −p11p12 . . . −p11pst

−p12p11 p12 (1− p12) . . . −p12pst

...
...

. . .
...

−pstp11 −pstp12 . . . pst (1− pst)

 .
Now suppose we wish to compare two distributions. Let the sample sizes be nA

and nB. Let the matrices of empirical frequencies be bnA and bnB and the estimated
cell probabilities be bpA =

¡
nA
¢−1 bnA and bpB =

¡
nB
¢−1 bnB. Denote the difference

between the estimated cell probabilities by

bv = ¡bpA − bpB
¢
.

Under the null assumption of common distributions then

bv a∼ N (0,mΩ)

where

m =
nA + nB

nAnB
.

If the objects of interest i.e. ∆Fi (.), ∆F (.), ∆K (.), ∆Hi (.), ∆H (.), ∆L (.),
∆Ji (.), ∆J (.) and ∆M (.) can be written as linear transformations of the (normally
distributed) differences in cell probabilities, then nonparametric tests (analogous to
Pearson goodness of fit tests but in which F (.) need not be specified) of stochastic
dominance can be derived in a straightforward manner. This is shown in Anderson
(1996) who then provides a framework for statistical tests of dominance in univariate
distributions up to third order. Ibbott (1998) describes a test for first order dominance
in bivariate distributions. The following describes tests for first, second and third
order dominance in bivariate distributions (the treatment of first order dominance is
different to that in Ibbott (1998)).
Let Lr be a r dimension lower triangular matrix of ones, let ιr be a vector of ones

of length r, letWr be an (r × (r + 1)) matrix of zeros and ones such that

Wr =


1 1 0 · · · 0 0
0 1 1 · · · 0 0
...
...
...

...
...
...

0 0 0 · · · 1 1

 ,
let Tr be an ((r+1)× r) matrix consisting of an (1× r) row vector of zeros vertically
concatenated above an Ir.Let δ1 be a (1× s) row vector of interval widths defined on
the partition of x1, and let δ2 be a (1× t) row vector of interval widths defined on
the partition of x2.

3.1. First Order Dominance

The estimates of ∆F1 (x1) and ∆F2 (x2) at the partition points are given byd∆F1 = Lsbvιtd∆F2 = ι
0
sbvL0t (3.1)

and ∆F (x1, x2) can be estimated at the partition points byd∆F = LsbvL0t. (3.2)
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Similarly ∆K (x1, x2) can be estimated at the partition points by

d∆K = −
·
Is
...− Is

...− Is
¸ LsbvL0t

ιsι
0
sbvL0t

Lsbvιtι0t
 . (3.3)

3.2. Second Order Dominance

Using the trapezoidal/linear interpolation rule for approximating integrals8 , approx-
imations of ∆H1 (x1) and ∆H2 (x2) can be estimated at the partition points by9

d∆H1 = Ls (0.5δ1 ¯ Is)WsTsLsbvιtd∆H2 = ι
0
sbvL0tT0tW0

t (0.5δ2 ¯ It)L0t
(3.4)

and an approximation of ∆H (x1, x2) can be estimated at the partition points by

d∆H = Ls (0.5δ1 ¯ Is)WsTsLsbvL0tT0tW0
t (0.5δ2 ¯ It)L0t. (3.5)

Similarly an approximation of ∆L (x1, x2) can be estimated at the partition points
using d∆L = Ls (0.5δ1 ¯ Is)WsTs

µ
−
·
Is
...− Is

...− Is
¸¶

 LsbvL0t
ιsι

0
sbvL0t

Lsbvιtι0t
T0tW0

t (0.5δ2 ¯ It)L0t.
(3.6)

3.3. Third Order Dominance

Approximations of ∆J1 (x1) and ∆J2 (x2) can be estimated at the partition points by

c∆J1 = Ls (0.5δ1 ¯ Is)WsTsLs (0.5δ1 ¯ Is)WsTsLsbvιtc∆J2 = ι
0
sbvL0tT0tW0

t (0.5δ2 ¯ It)L
0
tT

0
tW

0
t (0.5δ2 ¯ It)L0t

(3.7)

and an approximation of ∆J (x1, x2) can be estimated at the partition points by

c∆J = Ls (0.5δ1 ¯ Is)WsTsLs (0.5δ1 ¯ Is)WsTsLsbv
L0tT0tW0

t (0.5δ2 ¯ It)L0tT0tW0
t (0.5δ2 ¯ It)L0t.

(3.8)

Similarly an approximation of ∆M (x1, x2) can be estimated at the partition points
using

d∆M = Ls (0.5δ1 ¯ Is)WsTsLs (0.5δ1 ¯ Is)WsTs

µ
−
·
Is
...− Is

...− Is
¸¶

 LsbvL0t
ιsι

0
sbvL0t

Lsbvιtι0t
T0tW0

t (0.5δ2 ¯ It)L0tT0tW0
t (0.5δ2 ¯ It)L

0
t.

(3.9)

8The quality of the approximation depends on the shape of the unknown cumulative distribution
function and the location and number of nodes. However, locating partitions at equal quantile points
will improve the approximation by linearising the CDF.

9Note that ¯ denotes the Hadamard product (element-by-element multiplication) operation on
two matrices of the same dimensions.
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Since all of these estimators are linear with the general form:

d∆Y = AbvB
where bv a∼ N (0,mΩ), it is reasonably straightforward to construct estimates of the
variance-covariance matrix of d∆Y using the fact that bv is mean-zero and so

V ar(AbvB) = E ¡(vec (AbvB)) (vec (AbvB))0¢
and can be written as10

V ar(AbvB) = (B0 ⊗A)V ar (bv) (B⊗A0)

For example
V ar

³d∆F´ = Lt ⊗ LsmΩL
0
t ⊗ L0s

Forming these estimates and dividing through element-by-element by their standard
errors forms the basis of a test of the null (common distribution) and alternative
(dominance) hypotheses given in table (3.1).

Table 3.1: Bivariate dominance criteria, null and alternative hypotheses.

Null Alternative Class of Ψ
1st Order dominance
H0 : ∆Fi (.) ,∆F (.) = 0 H1F : ∆Fi (.) ,∆F (.) ≤ 0 Ψ−

H0 : ∆Fi (.) ,∆K (.) = 0 H1K : ∆Fi (.) ,∆K (.) ≤ 0 Ψ+

H0 : ∆Fi (.) ,∆F (.) ,∆K (.) = 0 H1 : H1F and H1K Ψ− ∪Ψ+

2nd Order dominance
H0 : ∆Hi (.) ,∆H (.) = 0 H2H : ∆Hi (.) ,∆H (.) ≤ 0 Ψ−−

H0 : ∆Hi (.) ,∆L (.) = 0 H2L : ∆Hi (.) ,∆L (.) ≤ 0 Ψ++

H0 : ∆Hi (.) ,∆H (.) ,∆L (.) = 0 H2 : H2H and H2L Ψ−− ∪Ψ++

3rd Order dominance
H0 : ∆Ji (.) ,∆J (.) = 0 H3J : ∆Ji (.) ,∆J (.) ≤ 0 Ψ−−−

H0 : ∆Ji (.) ,∆M (.) = 0 H3J : ∆Ji (.) ,∆M (.) ≤ 0 Ψ+++

H0 : ∆Ji (.) ,∆J (.) = 0,∆M (.) = 0 H3 : H3J and H3M Ψ−−− ∪Ψ+++

For example, using the convention adopted in Anderson (1996) and in Bishop,
Chakraborti and Thistle (1989) the hypothesis test of H0 : ∆Fi (.) ,∆F (.) = 0 versus
H1F : ∆Fi (.) ,∆F (.) ≤ 0 is essentially that

∀ x1 and x2, FA (x1, x2)− FB (x1, x2) ≤ 0
10Magnus and Neudecker (1988)
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and
∃ x1 and x2, FA (x1, x2)− FB (x1, x2) < 0

i.e. no element of the matrix d∆F is significantly greater than zero, and that at
least one element is significantly less than zero11.
Note that the marginal distributions (d∆F1, [∆F2, d∆H1,d∆H2, c∆J1,c∆J2), and the

test statistics based on them, correspond exactly to Anderson’s tests of first, sec-
ond and third order dominance in the univariate (marginal) distributions. The null
and alternative hypotheses for dominance in the univariate distributions are given
in table (3.2). The relevant classes of univariate functions (denoted by Ψ) are Ψ
for all functions which increase monotonically (Ψ = {ψ : ψi ≥ 0}) with respect to
their single argument, Ψ− which is the subset of Ψ with diminishing first deriva-
tives (Ψ−= {ψ : ψi ≥ 0,ψii ≤ 0}) and Ψ−− which is the subset of Ψ− with negative
third derivatives (Ψ−−= {ψ : ψi ≥ 0,ψii ≤ 0,ψiii ≤ 0}).

Table 3.2: Univariate dominance criteria, null and alternative hypotheses.

Null Alternative Class of Ψ
1st Order dominance
h0 : ∆Fi (.) = 0 h1 : ∆Fi (.) ≤ 0 Ψ
2nd Order dominance
h0 : ∆Hi (.) h2 : ∆Hi (.) ≤ 0 Ψ−

3rd Order dominance
h0 : ∆Ji (.) h3 : ∆Ji (.) ≤ 0 Ψ−−

Whilst each element of these matrices can be tested using pointwise procedures,
the overall test for the whole matrix will, in each case, involve multiple comparisons
of differences in means. Under the null hypothesis (no dominance/common distri-
butions) this involves the use of the critical values from the studentised maximum
modulus (SMM) distribution (Stoline and Ury (1979)) with degrees of freedom equal
to the number of cells. Note that these tests are symmetric. For example if we find
that we cannot reject H0 in favour of H1F then, while we cannot establish first order
dominance (for Ψ−) of FA over FB, at the same time we know that we will able to
reject the null in favour of first order dominance of FB over FA for the same general
class of functions.
11 In principle there is a further alternative hypothesis, one of indeterminacy. For example in the

case of first order dominance

H1F : ∆Fi (.) ,∆F (.) £ ∧ ¤ 0⇒ indeterminate

For H1F not to be rejected requires that there exist both significantly positive and significantly
negative elements of d∆F (Anderson (1996)).
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4. Empirical Application

This section applies the ideas outlined above to the analysis of dominance in the joint
distribution of household total expenditure and non labour market time12. Stochastic
dominance criteria may be a fruitful way of approaching welfare measurement defined
over these arguments because of the particular problems involved in determining
the price of non-market time when this may depend on unobserved cross-sectional
productivity differences, or the incidence of cyclical or sector-specific involuntary un-
employment.
Goodman and Webb (1995) have shown that inequality in real equivalised total

household expenditure grew over the 1980’s and levelled of in the early 1990’s. This
increase in inequality was less marked than the increase in income inequality over the
same period. They also show that whilst real incomes amongst the poorest tenth of the
population were flat over the period, real expenditure amongst this group grew. Gregg
andWadsworth (1996) show that, over roughly the same period, whilst employment in
general moved cyclically, the number of households with zero hours work rose steeply
in the early 1980’s but the employment growth (in large part an increase in part-time
work) which occurred subsequently was largely confined to households which already
had positive hours of work. This resulted, by the end of the period, in a situation
in which there were many more multi-worker households and roughly twice as many
households with no workers.
In this section each households’ contribution to social welfare is defined to be a

time separable and increasing function of equivalised current real expenditure13 (ex)
and a decreasing function of current hours of work (t), that is14

ψh = ψ
¡exh,−th¢

is the contribution (or the utility function if ψ
¡exh,−th¢ = u

¡exh,−th¢) of the hth
household, where ψh

x ≥ 0 and ψh
−t ≥ 0 or equivalently ψh

t ≤ 0. The assumption of
time separability means that a comparison of social welfare between periods depends
only upon difference in the within-period distributions. The arguments of social
welfare are chosen to be observable analogues of consumption and leisure although
both are far from perfect proxies. If first order dominance can be established then
there is no need to specify the signs of second derivatives and cross partials. If first
order dominance cannot be established, then the tests of second order dominance
will concentrate on functions drawn from Ψ−− and Ψ++ (i.e. concave functions). If
second order dominance cannot be established further restrictions are placed on the
set of admissible functions and third order dominance is examined.

4.1. Data

The data are from the Family Expenditure Survey (FES) for the years 1975, 1980,
1985, 1990 and 1995. The FES is an annual random cross section survey of around
12 Ibbott (1998) looks at first order dominance criteria for this joint distribution amongst Canadian

households.
13Note that this includes any expenditures related to the fixed and variable costs of being in work

which (all other things being equal) may not be welfare increasing.
14Household expenditures are normalised by the McClement’s equivalence scale and deflated by a

common Törnqvist price index with weights taken from the all items Retail Prices Index (1997=1).
Hours of work have not been normalised on the basis that the marginal (dis)utility of an hour’s work
is not affected by typical normalisation schemes where leisure is measured by the household’s total
time endowment less the number of hours worked.
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7,000 households (this represents a response rate of around 70% for most of the
period). The FES records data on household structure, employment, income and the
spending over the course of a two week diary period. In the FES the information is
aggregated to the household level and averaged across the two week period to give
weekly expenditure figures for over 300 different goods and services. In what follows
the data on total expenditure is defined in the FES as total (weekly) household
expenditure plus the imputed value of free school milk and school meals. This is then
deflated to 1999 values and equivalised as described above. Hours of work are total
usual weekly hours excluding breaks and overtime for the household.

Figure 4.1: Estimated cell probabilities and distribution function, 1975

Figure 4.2: Estimated cell probabilities and distribution function, 1985.

Figures 4.1, 4.2 and 4.3 illustrate bp, and bF for 1975, 1985 and 1995 15. These
15Similar figures for the other years studied are available (grudgingly) from the author.
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Figure 4.3: Estimated cell probabilities and distribution function, 1995.

figures use all of the available data from each year. All the years indicate mass points
in the non-market time distribution at 0, -40 and -80 hours roughly corresponding to
zero hours work and to full-time work for one and two adults in a household. However
these mass points grow less pronounced over time with increased frequency of obser-
vations elsewhere indicating the growth in part-time work. In the real (equivalised)
expenditure dimension there is evidence of an increased number of observations in the
upper tail over time.

4.2. Results

This section reports the results of tests of dominance in the joint distribution of
real equivalised total household expenditure, and non labour market time for all for
the years considered. The joint distribution is partitioned into 10×10 cells with the
partitions in each dimension placed at the nine decile points. The tests reported below
are at 95% for both univariate and bivariate distributions (the critical values from the
SMMdistribution are 2.8 for the univariate results and 3.47 for the bivariate results16).
The aim is to contrast the different welfare implications drawn when considering each
of the univariate distributions in isolation, with the those which focus on the joint
distribution.

4.2.1. Full sample results

Table 4.1 gives descriptive statistics for the covariates for the entire sample. Mean
real expenditure grew year-on-year over the period, as did inequality in real spending
as measured by its variance also grew up until 1990. However, between 1990 and 1995
the variance of real expenditure fell. Mean non labour market time increased every
year and its variance fell.
The first two blocks of table 4.2 reports the results of the dominance tests in

each of the univariate distributions. The entries indicate the dominace hypothesis

16Stoline and Ury (1979).
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which rejects the relevant null for the row-year over the column-year. For example
h1 in the row for 1980 and the column for 1975 in the first block indicates that the
null of common distributions is rejected in favour of dominance of 1980 over 1975
for all ψ

¡exh
¢
in Ψ. In the case of non labour market time later years always first

order dominate earlier ones, perhaps unsurprisingly given data on increase means and
reduced variances over the period. The univariate results for real expenditure follow
a roughly similar pattern with first order dominance established for 1980 over 1975,
for 1990 over 1985 and for 1995 over all years except for 1980.
The bivariate results for these data are reported in the third block in table 4.2

and are similar to those in the univariate table. Indeed they should be as rejection of
univariate dominance in the marginal distributions would also reject dominance in the
joint distribution. First order dominance is established for 1990 over 1985 and for 1995
over all years except for 1980. However, 1980, which first order dominated 1975 with
respect to both marginal distributions only first order dominates 1975 for functions
within the class Ψ+ (positive cross partials). Second order dominance, however, is
established for Ψ− and hence for Ψ++ ∪Ψ−−.

Table 4.1: Descriptive statistics, all households.

exh −th
Mean Std.Dev Min Max Mean Std.Dev Min Max n

75 197.22 128.15 29.25 3365.54 -45.12 38.25 -270 0 7203
80 207.05 129.00 21.10 2793.25 -41.43 37.06 -240 0 6944
85 220.36 155.49 10.67 2912.98 -35.62 36.22 -276 0 7012
90 246.47 198.88 20.12 5287.11 -34.38 34.95 -218 0 7046
95 261.24 183.75 26.78 3514.31 -31.79 34.01 -244 0 6759

Table 4.2: Dominance results, all households.

ψ
¡exh

¢
ψ
¡−th¢ ψ

¡exh,−th¢
75 80 85 90 95 75 80 85 90 95 75 80 85 90 95

75
80 h1 h1 H1(K)H2(H)

85 h1 h1

90 h1 h1 h1 h1 H1

95 h1 h1 h1 h1 h1 h1 h1 H1 H1 H1

4.2.2. Date-of-birth cohort results

In the section the data are split by date-of-birth cohort17 . The first set of results are
for the pre 1930 cohort. The youngest of these households would have been 46 in 1975
and 76 by 1995. The number of observations in this cohort drops from 3,539 in 1975
to 1,456 in 1995 partly through mortality and partly because of higher non-response

17The split is based upon mean date of birth for all adults in the household.
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rates in the FES for older households and because people in retirement homes are not
surveyed. The mean age in the cohort will therefore be dropping over time.

Table 4.3: Descriptive statistics, households with mean adult d.o.b pre 1930.

exh −th
Mean Std.Dev Min Max Mean Std.Dev Min Max n

75 180.60 135.98 29.25 3365.54 -27.44 32.35 -164 0 3539
80 182.66 132.84 21.10 2793.25 -18.79 26.29 -168 0 2892
85 184.75 146.76 34.61 2912.98 -8.84 18.50 -115 0 2487
90 189.74 172.66 20.12 2036.30 -3.92 12.32 -112 0 2057
95 180.66 155.12 26.78 3514.31 -1.32 6.55 -83 0 1456

Table 4.3 reports descriptive statistics and shows increase real spending up until
1990 followed by a drop, possibly related to retirement in this cohort. Real ex-
penditure inequality measured by its variance falls between 1975 and 1980 but rises
afterwards until 1990. In the 1995 the variance of spending drops. Non market time
in this cohort increases every year with mean hours of work reaching very low levels
by 1995. Its variance falls year-on-year.

Table 4.4: Dominance results, households with mean adult d.o.b. pre 1930.

ψ
¡exh

¢
ψ
¡−th¢ ψ

¡exh,−th¢
75 80 85 90 95 75 80 85 90 95 75 80 85 90 95

75 h1 h1 h1 h1

80 h1 h1 h1 h1 H2

85 h1 h1 h1

90 h1 h1 h1

95 h3 h2 h1 h1 h1 h1 H2

The dominance results are summarised in table 4.4. The univariate results in-
dicate that earlier years tend to first order dominate later ones in the expenditure
distribution, with the reverse being true for the non market time distribution. In
other words considering each argument on it’s own would give strongly contrasting
pictures of the changes in social welfare. The exception in the case of spending is the
year 1995 which second order dominates 1990 and third order dominates 1985. Given
that the univariate results run (for the most part) in opposite directions the lack of
bivariate dominance results is not surprising. There is little indication of increased
welfare for this cohort; second order dominance, however, is establish for 1995 over
1990, and for 1980 over 1975.
Table 4.5 report the descriptive statistics for households with a mean date-of-birth

between 1929 and 1940. Mean real spending grows over the period whilst it variance
also grows but not year-on-year: the variance is lower in 1980 than 1975 for example
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and in 1995 compared to 1990. Non labour market time increases over the period and
the variance drops.

Table 4.5: Descriptive statistics, households with mean adult d.o.b 1930 to 1939.

exh −th
Mean Std.Dev Min Max Mean Std.Dev Min Max n

75 219.18 126.78 54.25 2483.55 -68.73 35.90 -204 0 1516
80 229.02 123.53 55.52 1323.36 -60.24 32.25 -164 0 1016
85 249.86 163.20 33.58 1963.46 -44.39 29.71 -152 0 849
90 262.64 202.94 48.76 2060.69 -33.51 27.42 -136 0 836
95 266.12 195.60 46.81 1952.59 -16.12 22.80 -110 0 880

The univariate dominance results reported in table 4.6 for non labour market time
are clear cut with first order dominance established for every year over preceding
ones. There is less of a patterns in the real expenditure (marginal) distribution. The
bivariate results in the third block in table 4.6 follow the univariate ones in this case
with first order dominance established for the three comparisons for which first order
dominance in both the univariate distributions is established.

Table 4.6: Dominance results, households with mean adult d.o.b.1930 to 1939.

ψ
¡exh

¢
ψ
¡−th¢ ψ

¡exh,−th¢
75 80 85 90 95 75 80 85 90 95 75 80 85 90 95

75
80 h1 h1 H1

85 h1 h1

90 h1 h1 h1 h1 H1

95 h1 h1 h1 h1 h1 H1

The next date-of-birth cohort is made up of households with mean date-of-birth
between 1939 and 1950. Descriptive statistics for this subsample are reported in
table 4.7. This shows increase mean real expenditure for this cohort year-on-year
throughout the period and increase inequality with the now typical exception of 1995
in which the variance of real spending fell compared to 1990. Mean non labour market
time falls to begin with but then increases and its variance follows a similar pattern.

The univariate results in table 4.8 show a broadly similar pattern for both real
spending and non market time, with later years generally dominating. An exception
is 1995 in the spending distribution. Interestingly in the real spending distribution
1990 second order dominates 1995, whilst 1995 dominate 1990 in the non market time

16



Table 4.7: Descriptive statistics, households with mean adult d.o.b 1940 to 1949.

exh −th
Mean Std.Dev Min Max Mean Std.Dev Min Max n

75 208.02 113.20 57.50 1625.56 -57.94 35.94 -270 0 1631
80 223.94 124.21 29.17 1531.69 -61.13 38.30 -236 0 1856
85 246.07 157.79 10.67 2096.67 -56.19 35.73 -207 0 1572
90 287.27 201.06 40.09 2866.13 -52.16 32.77 -162 0 1169
95 293.84 189.29 32.69 1808.40 -36.48 30.78 -138 0 903

distribution. Despite this first order dominance is established for 1995 over 1990 in
the bivariate distribution. In general, later years first order dominate in the joint
distribution up until 1990 with more mixed results for 1995. 1980 only second order
dominates 1975 however. Note that the fact that 1995 first order dominates 1990,
and 1990 first order dominates all 1980 and 1985 implies that if social preferences are
transitive then 1995 dominates these years as well. This provides reasonable evidence
of increased welfare for this group.

Table 4.8: Dominance results, households with mean adult d.o.b 1940 to 1949.

ψ
¡exh

¢
ψ
¡−th¢ ψ

¡exh,−th¢
75 80 85 90 95 75 80 85 90 95 75 80 85 90 95

75 h1

80 h1 H2

85 h1 h1 h1 h1 H1 H1

90 h1 h1 h1 h2 h1 h1 H1 H1 H1

95 h1 h1 h1 h1 h1 H1 H1

The final set of results are for cohorts born after 1949 (tables 4.9, and 4.10).
Mean real spending increases throughout the period and there is also an increase in
non market time. The variance for both covariates generally increase although not
year-on-year.

Table 4.9: Descriptive statistics, households with mean adult d.o.b. 1950 and after.

exh −th
Mean Std.Dev Min Max Mean Std.Dev Min Max n

75 212.96 104.15 70.00 838.52 -56.58 30.77 -197 0 515
80 221.36 121.62 39.81 1352.86 -49.72 30.80 -240 0 1180
85 231.47 152.78 37.84 2909.97 -48.41 36.06 -276 0 2102
90 265.19 205.47 21.67 5287.11 -48.66 34.38 -218 0 2982
95 285.17 180.60 28.43 1923.85 -47.15 33.82 -244 0 3517
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Table 4.10: Dominance results, households with mean adult d.o.b. 1950 and after.

ψ
¡exh

¢
ψ
¡−th¢ ψ

¡exh,−th¢
75 80 85 90 95 75 80 85 90 95 75 80 85 90 95

75 h2 h2 H2(L)

80 h2 h1 H2

85 h1 h1 h1

90 h1 h1 H2

95 h1 h1 h1 h1 H2

The univariate results are mixed. In the real spending distribution all years first
or second order dominate 1985, however in the non market time distribution 1985
dominates every other except for 1995. The bivariate results reflect this mixed pic-
ture with only second order dominance established for four comparisons out of ten
(and only for functions drawn from Ψ++ for dominance of 1975 over 1980). Again
transitivity of social preferences implies that 1995 second order dominates 1990 and
the 1975 second order dominates 1985. This give weak evidence of decreasing welfare
for this cohort in the earlier years and increasing welfare between 1990 and 1995.

5. Conclusions

This paper has extended the test procedures in Anderson (1996) to bivariate distri-
butions. These tests were applied to UK data on real equivalised household spending
and non labour market time. It was shown that it was possible to establish dom-
inance of various orders using these techniques. It is also shown that considering
each of the covariates in isolation may sometimes give strongly contrasting evidence
on the changes in social welfare over time and that it may therefore be important
to adopt the multivariate approach. Further, it was shown that even when the null
of no dominance could not be rejected in one or other marginal distribution, dom-
inance of various order could be established with respect to the joint distribution.
The empirical results indicate that for the population overall, social welfare increased
towards the end of the period with 1995 first order dominating 1975, 1985 and 1990
indicating unanimous ranking by all functions increasing in these argument. There is
also evidence of increased social welfare between 1975 and 1980 for concave functions.
Results by date-of-birth cohort indicate that most of the increases in welfare were felt
by the 1939 to 1950 cohort. The youngest cohort (born in 1950 and after) show some
indications of reduced welfare (for concave utility functions) in the earlier years but
a gain in 1995 over 1985.
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