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Abstract

This paper analyses the trade-off between the incentive effects of
increased uncertainty and the welfare benefits of risk-sharing in the
design of optimal tax schedules. We use numerical methods to charac-
terise the tax schedule and to give comparative static results of chang-
ing risk aversion, uncertainty and the cost of effort. Increased un-
certainty may increase effort for precautionary reasons, but leads to
greater risk sharing in the optimal tax schedule. Similarly, a reduced
cost of effort leads to greater risk sharing. Incentives to work are in-
duced through punishment at low output realisations if risk aversion
is high, and through reward of high output if risk aversion is low. We
also consider introducing extra randomisation into the tax schedule to
further incentivise individuals. This is only optimal if the form of the

tax schedule is constrained, for example to be linear.
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Executive Summary

e Uncertainty can make individuals work longer hours for precautionary
reasons, and so social insurance which reduces this uncertainty can
lead to lower labour supply and hence less output in the economy.
However, social insurance provides risk sharing benefits and so there
is a trade-off between increasing uncertainty to incentivise people and
reducing uncertainty to provide risk-sharing. This paper analyses the
extent to which this trade-off should be exploited by the government

in providing social insurance.

e Marginal tax rates increase with gross income if risk aversion is high,
but decrease with gross income if risk aversion is low. Further, incen-
tives to work are induced through punishment at low output realisa-
tions if risk aversion is high, and through reward of high output if risk

aversion is low.

e Increases in the degree of uncertainty about income may increase effort
for precautionary reasons, but leads to greater risk sharing in the op-
timal tax schedule. Similarly, a reduced cost of effort leads to greater

risk sharing.

e We also consider introducing extra uncertainty (through randomisa-
tion in the tax schedule) to further incentivise individuals. If the gov-
ernment is unconstrained in the choice of tax schedule, extra randomi-
sation is not optimal. Introducing extra uncertainty can be optimal if

the form of the tax schedule is constrained, for example to be linear.



1 Introduction

The aim of this paper is to analyse the trade-off between incentives and risk-
sharing in the design of optimal tax schedules. Redistributive tax schemes
reduce the variance of net income, providing risk sharing benefits. However,
such schemes may reduce the expected marginal returns from effort and,
since uncertainty may induce people to increase effort for precautionary
reasons, risk sharing itself may have a further blunting effect on incentives.
The first contribution of this paper is to provide a method of setting up
principal-agent problems of this form and to use this method to characterise
the trade-off between uncertainty and risk sharing, partly through numeri-
cal solutions. The second contribution is to show the value of introducing
additional randomisation into payoffs under different assumptions about the
complexity of the tax system.

This issue underlies a number of questions in the literature. For example,
Varian (1980) addressed the question of how much risk sharing should be
provided through the tax system: progressive taxation provides insurance by
reducing the variance of net income, but this insurance reduces the incentive
to self-insure through saving. Varian presents some comparative static re-
sults, but these are only approximations holding endogenous variables fixed.
A second question, first raised by Stiglitz (1982b), is whether the tax sched-
ule should be subject to randomisation. One interpretation of randomising
the tax schedule is that it is a way of introducing additional uncertainty to
incentivise individuals at the cost of some risk sharing benefits. The notion
that risk increases effort for precautionary reasons is analogous to the pre-
cautionary saving behaviour analysis of Kimball (1990). Holmstrom (1979,
1982) also discusses introducing noise into the payoffs of a principal-agent
model and concludes that it is only beneficial to condition an agent’s com-
pensation on a random variable if that random variable provides information

on the agent’s effort. This result arises because the principal does not face



a budget constraint.

The formulation in this paper follows the framework of Varian (1980)
in solving for the general solution to the tax schedule. Comparative static
results on this tax schedule require the complete solution of the optimisa-
tion problem and we use numerical methods to derive comparative static
results on the extent of risk sharing, varying risk aversion, the cost of ef-
fort and uncertainty. The trade-off at the heart of the model is between
inducing particular individuals to exert greater effort by making their in-
come uncertain and providing risk sharing benefits for all individuals to
increase social welfare. In this model, individuals are ex-ante identical and
so the individuals who exert greater effort are also benefiting from the risk
sharing. The key results of the comparative statics are: first, increases in
the amount of exogenous uncertainty have a direct effect leading to greater
effort for precautionary reasons with a given tax schedule. However, the
optimal tax schedule changes to provide greater risk sharing because less
information on effort is learnt from a given output level, and this leads to
reduced effort. Second, a greater cost of effort leads to reduced effort. This
leads to reduced risk sharing as the tax schedule tries to provide greater in-
centives to work to compensate for this reduced effort. Third, as individuals
dislike of uncertainty increases (increasing risk aversion and increasing con-
vexity of marginal utility), they will exert greater effort, thus the incentive
effects of uncertainty are sharper. Offsetting this, the social welfare benefit
of risk sharing is greater and so the effect on risk sharing through the tax
schedule is ambiguous. When individuals are very risk averse, individuals
are incentivised through penalties at low output, with significant risk shar-
ing elsewhere. When individuals are less risk averse, they are incentivised
through rewards for high output, with significant risk sharing elsewhere.

The framework in the paper can also be used to address the question of

whether the tax schedule should be subject to randomisation because im-



posed randomisation is analogous to a reduction in risk sharing in the tax
schedule. We show that introducing such randomisation is optimal only if
the tax schedule is constrained, for example to be linear. If the tax schedule
is unconstrained and income is already uncertain, then it is never optimal to
introduce additional randomisation. This is because the incentive effects of
randomisation can already be exploited through limiting the amount of in-
surance against income shocks. This has implications for the size of “groups”
where the tax schedule is chosen to distribute output within the group. The
implication of the no-randomisation result is that we should not restrict
group size: restricting group size introduces aggregate risk, which is analo-
gous to randomisation, and so is only welfare increasing if we are constrained
in the set of tax instruments we can use. This conclusion can, however, be
viewed in the opposite way: if we are constrained to use linear taxation, re-
stricting group size or introducing randomisation may be ways of exploiting
the incentive effects of uncertainty.

Section 2 presents the model with fully diversifiable risk. This section
also describes a general way of characterising the problem which rules out
the possibility of Mirrlees penalties. Section 2.3 then provides a numerical
characterisation of the tax schedule for a range of parameter values. Section
3 demonstrates the non-optimality of randomisation if the tax schedule is
unconstrained and section 4 shows the situations in which randomisation

can be welfare increasing. Section 5 concludes.

2 The model

We consider a simple principal-agent model in which there is a continuum
of agents. Each agent produces an output that depends on his or her own
effort and an idiosyncratic shock. All output risks are potentially fully di-
versifiable, although it will not be optimal to do so because of incentive

problems.



Agents are indexed by ¢ € [0,1]. Agent i’s output, z;, is a function of
effort, e;, and a random shock. Let F'(z; | e;) be the distribution function
of z; if effort e; is expended; we assume that this is continuously distributed
with continuously differentiable p.d.f. f(x;|e;). The outputs of agents
are independently distributed. All agents have identical utility functions,
which are additively separable in effort and income; let u (y) be the utility
of income y and g (e) be the disutility of effort e. We assume that u and g
are twice continuously differentiable.

We consider optimal mechanisms for redistributing output between agents.
We focus on mechanisms that preserve the veil of ignorance, in that they do
not identify any particular individual. Formally, this means that the allo-
cation mechanism should yield the same income for each agent even if the
agents are relabelled (i.e. the indices ¢ are permuted). Thus a mechanism
may condition an agent’s income on that agent’s output and the distribu-
tion of all agents’ outputs, but may not condition on any particular agent’s
output. In the case of an infinite number of agents with uncorrelated output
shocks, the law of large numbers implies that in equilibrium the distribution
of all agents’ outputs is non-stochastic. Therefore, we only need to consider
mechanisms in which each agent’s income may be written as a function s ()
of that agent’s output = alone.!

We require that the sharing rule, s (z), must be feasible, so that the total
payment to agents is no more than total output in any contingency. We also
assume that the rule only implements Pareto optimal distributions (to avoid
the problem of ex-post renegotiation), so that total payments exactly equal
total output. Even without the possibility of ex-post renegotiation, it is

optimal to redistribute all output. If a suggested tax schedule withheld part

'Tn order to consider the incentive compatibility of the optimal sharing rule, we will
need to consider hypothetical changes in effort by a single agent. Even under such hypo-
thetical deviations we need only consider the dependency of the sharing rule on an agents’

own output and may supress any dependency on other agents’ outputs.



of the output, an alternative schedule could allocate the surplus to the top
earner and increase welfare without worsening incentives.

The optimal sharing rule is found by solving the optimisation problem:
max [ u(s (@) dF (2] =) )

s.t. e" eargmax /u(s (x)) dF (x| e) — g (e) (2)

e

/s(m) dF(:[:|e*):/:1:dF(a:|e*). (3)
where equation (2) is the incentive compatibility constraint and equation (3)
is the adding-up condition. This framework follows the standard principal-
agent framework first used by Mirrlees (1974). As discussed further below,
we restrict the class of distributions F'(z | €*) such that the first order ap-
proach is valid and so the incentive compatibility constraint can be replaced

by a first order condition:

/ u(s(2) dF, (x| &) = ¢’ (€). (4)

Therefore, the Lagrangian of this problem (2) can be written
L = /[u (s () + p — ps(x)| dF (x| €7) — g (e7) (5)
+)\{/u(s (2)) dF. (z | ¢*) — ¢ (e)}

where A is the Lagrange multiplier on the incentive compatibility constraint
and p that on the adding-up condition; both p and A should be positive
(Mirrlees, 1974; Varian, 1980). Then s(-) must be chosen to maximise the

integral

At @) = ps@)] £ 0) + A (s a) fe (o | )}

pointwise maximisation of which gives the first order condition

u' (s (@) [f (x| e) + Me (x| e)] = pf (x| €) =0.



This gives a solution for s(-) in terms of three real variables e, A and pu:

/ _ p _ fe(z]e)
u (s(z)) = @l where h(z|e) = Tlale) (6)

The unknown real variables in equation (6) are determined by the first-order

condition with respect to effort,

/ (s (@) + (2 — 5 (@) fo (2| ) da

2 [0 @) fee ] )dn =g (€)= Ng" (¢) =0 (7)
the adding-up constraint (3) and the incentive compatibility constraint (4).
Although it is possible to give an analytic expression for s(x) in terms of
the unknown variables, it is not possible to solve analytically for the actual
solution to these unknowns.

Solution (6) corresponds to the solution in Varian (1980). The first
point to note is that if the incentive compatibility condition were not to
bind (i.e. A = 0) then the sharing rule is constant and there is complete risk
sharing. The incentive problem means that some risk-sharing will be lost to
induce greater effort. Whether an individual does better or worse than under
complete risk sharing depends on the sign of the term A (x | e). This term is
the likelihood ratio (Holmstrom, 1979): the derivative of the log-likelihood
function of output with respect to (unobservable) effort. Given an observed
x, it provides information on whether the individual exerted effort e. If this
derivative is close to zero, the choice of effort by the individual makes little
difference to the probability of observing x and so there is little incentive
benefit to be gained from varying s (z) rapidly according to x. However,
as the derivative deviates from zero, additional effort can be more reliably
identified and it is optimal for the sharing rule to provide less risk-sharing.
For any particular x, a large positive value of h (x| e) means it is more
likely that the individual put in higher effort; in equation (6), this means

that u' (s (x)) will be small and so the share corresponding to this z will



be large. Similarly, a large negative value for the derivative means that the
probability of observing a with high effort is low, and so the individual will
receive a lower share.

This raises the issue, discussed by Milgrom (1981), of how the likelihood
ratio changes as x increases. If we want the sharing rule to be increasing
in z, then h(z | e) must be increasing in x (the monotone likelihood ratio
property).? Additionally, we wish to rule out the possibility that it is possi-
ble to make perfect, or asymptotically perfect, inferences about effort from
observing output. Without such a restriction, the optimal solution may in-
volve large fines on agents (Mirrlees, 1974). This means that i (x | ) must
be bounded on the support of output. If the likelihood ratio is unbounded,
then effort can be identified almost perfectly in certain cases. It is well
known that this requirement rules out a number of obvious candidates for
specifying distributions of output. For example, it is not possible to use
additive shocks (z = 6 + e), multiplicative shocks (z = fe) or transforms
of either (e.g. x = U (0 +e) or x = ¥ (fe)) without running into solutions
with Mirrlees-style penalties. Each of these formulations leads to the well
known result that we can come arbitrarily close to the first best by putting
a very large penalty on the worst outcome, while allowing full risk sharing
for any other realisation of x. This solution invalidates the interior solution

(6) because the sharing rule is discontinuous.

2.1 The deformation method

The approach we take in this paper is to specify the family of distributions
of output as the solution to a partial differential equation representing a
continuous deformation of the output distribution as effort changes. In

particular, we assume that output is distributed over a finite domain and

?The MLRP is sufficient for the sharing rule to be increasing in z only if utility is

additively separable between effort and output.



that the family of density functions f (x| e) satisfies the PDE

el e) = = (r (xe) f (ale)), 0
where the distribution of output at zero effort f(z |0) is specified as a
boundary condition. We call 7 the transition function and interpret it in
the following way: 7 (x | e) measures the marginal effectiveness of effort in
shifting the distribution of output to the right. In particular, if an agent
increases his or her effort by de, then a proportion 7(z | e)f (x| e)de of
the probability mass at output x flows to the right. The change in the
probability of a particular output level if effort is increased is given by the
combination of probability mass flowing in from lower output levels and the

probability mass flowing out to higher output levels. Therefore,
(f (z[e+be) — f(a]e)) bx = — (7 (x + bxle) f (x + bxfe) — 7 (x[e) f (z]e)) be

which in the limit gives (8).
This formulation has a number of highly convenient properties, as demon-
strated in propositions 1 and 2 (which are proved in the appendix). First

we impose some minor restrictions. We assume that:

1. output at zero effort is distributed over a compact support [z, Z[;

2. 7 takes the multiplicatively separable form 7 (z | €) = a(x) b (e), where

a and b are continuously differentiable; and

3. a(x) - 0asz— z,7.

The first assumption is made to avoid problems with almost perfect infer-
ences about effort that can arise with infinite or semi-infinite domains. The
second assumption is made for convenience as it permits a simple solution
of the PDE; it may well be that this assumption could be relaxed. The third

assumption is to ensure that when the distribution of output is deformed as

10



effort increases, no probability mass ‘leaks’ outside the domain [z, 7] so that

the solution of (8) is a well-defined probability density for all e.

Proposition 1 If a(x) ((f“ )) is bounded on [x,T], then the likelihood ratio

h (x| e) is bounded on [x,T| for any given e.

Proposition 2 Ifd (z)+a(z) % is monotone decreasing in x, then the
MLRP is satisfied.

The value of this method of specifying a family of distributions of output
at different effort levels is that it gives a tractable example that can be solved

by the use of numerical techniques.

2.2 A simple parameterisation

The solution (6) raises a number of key questions, for example: how progres-
sive is the tax schedule; how does this progressivity change as uncertainty
increases or as we change the degree of risk aversion or the cost of effort?
We cannot answer these questions without solving explicitly for the optimal
level of effort and the value of the two Lagrange multipliers. Varian (1980)
does provide some answers to these comparative static questions but his
answers assume that the values of the endogenous variables remain fixed as
the model parameters change. As he recognises, this is at best an approxi-
mation.

Since the model is analytically intractable in its general form, we restrict
the analysis to a particular, yet flexible parameterisation. The numerical so-
lution requires a utility function and the relationship between output and
effort to be specified. We assume that the utility of consumption and disu-

tility of effort have the forms

1—ry
u(c):f_7,7>1 and g(e)=¢€", n>1.
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Comparative statics are then performed on v and 7. In our numerical results,
effort is always less than 1 and so increases in 7 mean a reduced utility cost
of effort. Similarly the effect of changing + on the utility of consumption
depends on the level of consumption. Consumption lies between 0 and 1
in our simulations and so an increase in y means the marginal utility of
consumption increases. Further, prudence and risk aversion both increase
with . The different properties of utility functions are tied together in this
formulation, and both are determined by the value of . It is not clear, how-
ever, what intuition could be given for increasing prudence without changing
risk aversion. We interpret an increase in v as indicating individuals have
a greater dislike of uncertainty and so will be willing to give up effort to
increase consumption. A higher v also means that the social welfare cost of
uncertainty over utility is greater.

We specify the family of distributions of output and the effect of effort
on the distribution using the deformation method described in section 2.1
and construct a family of output distributions with support on [0,1]. We

suppose output at zero effort has a Beta-distribution:
F(2[0) = CDF [B,, (@)

which is characterised by two parameters g and r.

The parameters g and r are chosen so that the distribution is symmetric
at zero effort, but as effort increases, probability mass moves to the right,
and the distribution becomes right skewed. Underlying this choice for the
distribution is the recognition that we are dealing with agents of identical
abilities, and so the relevant distribution is the distribution of income for
people of the same ability. It is hard to disentangle this distribution from
observed income distributions which reflect differences in ability as well as
differences in effort. The characterisation used here means that effort can
help move income up the income distribution given the individuals’ ability.

This movement in the distribution as effort increases means that effort leads

12



to increases in the average value of output. Further, the increase in effort
leads to a reduction in the variance of output.

Using this formulation, we solve numerically for e*, A and p using the
first-order condition (7), and the constraints (3) and (4). We solve for a
solution using the first order condition for incentive compatibility, but then
check numerically that the first order approach is in fact valid. Parameters

used are given in table 1.

Table 1: Parameters for Numerical Solution

Parameter | Baseline Alternatives
v 1.5 1.2,3.5, 5.0
o? 0.028 0.017, 0.056
i 3.0 2.0, 4.0

Values of the variance are for the distribution at 0 effort. Changes in the
value of the variance are introduced through changing the parameters of the
Beta Distribution (g and r), keeping the mean constant.

2.3 Characterising the Tax Schedule

The key question we now address is the extent to which the tax schedule
provides risk sharing benefits. This is reflected in the way the average tax
rate changes with income: if the average tax rate rises with income, this
means the tax schedule is progressive and reduces the variance of net income,
thus providing insurance. There is no presumption that the tax schedule
should be progressive and it is not even necessary that marginal taxes be
positive: it may, for example, be optimal to introduce greater uncertainty
over payoffs than the degree of uncertainty under autarky and this can be
done through having negative marginal tax rates at the top of the income

scale paid for by high marginal tax rates at low income.
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In each of the scenarios below, we present results on the average and
marginal tax rates across the income distribution and also the optimal shar-
ing rule. In presenting the marginal tax rates, it is necessary to be clear that
these tax rates determine how much of any additional output accrues to the
individual but that this is different from the expected marginal benefit of
extra effort. The expected marginal benefit of effort is reduced by higher
marginal taxes (changing the average return to extra effort), but the ex-
pected marginal benefit is also affected by the degree of risk sharing, which
changes the variance of the return to extra effort. In other words, the in-
centive costs of taxation come from two sources: first, the expected return
from a marginal increase in effort may be reduced by taxation and second,

the variance of the return to effort may be reduced.

Tax Progressivity: increasing risk aversion

Before describing the optimal tax schedule in detail, it is instructive to
analyse the individual’s optimal choice of effort as we increase the coefficient
of relative risk aversion, . In the absence of taxation, individuals choose
their effort levels knowing that they will have to consume their own output.
This effort incurs the marginal utility cost, ne”~!, and has some expected
marginal utility benefit which is determined by the distribution of shocks
and by the coefficient of relative risk aversion, . If there was no uncertainty,
the parameters v and 7 determine the “technology” for translating disutility
of effort into the utility of consumption. If an increase in v means that effort
becomes more productive in this sense, then there are two initial effects: a
given amount of effort will lead to greater consumption utility (an income
effect) and the return to higher effort will increase (a substitution effect).
The income effect leads to reduced effort, the substitution effect leads to
increased effort. Further, when output is uncertain, effort will change not

only the mean of the distribution, but it may also change the variance,
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skewness and other moments. If effort reduces the variance, then as we
increase v (making individuals dislike uncertainty more) this effect will lead
to greater effort (a risk-reducing effect). These effects suggest that effort is
unlikely to change monotonically as 7 increases even in the absence of any
taxation.

Allowing for the optimal tax schedule introduces the further complication
that the optimal schedule will change as 7y increases: an increase in 7 means
individuals are more prudent and so a given amount of uncertainty induces
greater effort. In other words, a higher value of « increases the incentive
effects of uncertainty. However, in terms of social welfare, a higher value of
v means a given amount of uncertainty has a greater welfare cost because
individuals are more risk averse. The first effect suggests the tax schedule
should display less risk sharing, whereas the second effect suggests it should
display greater risk sharing. These ambiguities are reflected in the numerical

solutions given in figure 1 and tables 2 and 3.

. P .
Table 2: Marginal Tax Rates (1 — 88(;)) Varying v

F(zle)
Model | Effort | 0.01 0.1 0.25 0.5 0.75 0.90 0.99

vy=12] 061 | 0.8 077 074 0.71 0.67 0.63 0.58
vy=15] 040 | 0.71 0.69 067 0.65 0.63 0.61 0.58
vy=35| 045 | 0.60 0.66 0.69 070 0.71 0.71 0.71
vy=50]| 060 | 056 068 072 074 074 0.75 0.75

Other parameters: ¢ = 4,7 =4, and n = 3.0

Effort first decreases as « increases and then starts to increase as -y

15



Figure 1: Sharing Rule Varying ~

0.8}
S(X) ]
y =15 |y=12 =
06 —+— > =TT
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"™y =50
/
0.2]
0.2 0.4 0.6 0.8
X
Other parameters: ¢ = 4,7 =4, and n = 3.0
Table 3: Average Tax Rates (1 — @) Varying v
F(z|e)
Model | Effort | 0.01 0.1 0.25 0.5 075 090 0.99
vy=121] 061 |-1.19 -0.32 -0.09 0.06 0.15 0.19 0.23
vy=151| 040 |-1.26 -0.36 -0.12 0.04 0.13 0.18 0.23
vy=35| 045 |-1.18 -0.36 -0.12 0.04 0.14 0.20 0.26
v=50]| 060 |-1.07 -0.33 -0.11 0.05 0.14 0.20 0.26

Other parameters: ¢

=4,r=4, and n = 3.0.

16



becomes sufficiently large. This behaviour of effort as 7 changes mirrors
behaviour in the absence of a tax system, although the level of effort differs.
If there were no uncertainty, we could interpret this as the income effect of
“more productive” effort dominating the substitution effect as v increases
at low values, but the substitution effect dominating at higher values. With
uncertainty over income, the increase in effort as - increases will also be due
to increased prudence.

As v becomes high (e.g. 3.5 or 5.0), the sharing rule becomes concave
(marginal tax rates increase with x), in contrast to the convex rules for lower
values of 7 (marginal tax rates decrease with x). When ~ is high individ-
uals are incentivised through penalties at low output, with significant risk
sharing elsewhere; however, when individuals are less risk averse, they are
incentivised through rewards for high output, with significant risk sharing
elsewhere. Further, the effect of increasing v on marginal tax rates is depen-
dent on the point in the income distribution: marginal tax rates are lower
with higher values of v at the bottom of the distribution, but higher with
higher values of v at the top of the distribution.

Tax Progressivity: increasing cost of effort

Increasing 7 is somewhat analogous to changing v because it changes the
rate of transformation of disutility of effort into the utility of consumption.
A lower value of 1 means the utility cost of effort is greater because effort
is less than 1. Thus, an increase in n will lead to increased effort for a given
tax schedule. This generates extra revenue which results in changes to the
optimal tax schedule: the extra revenue is partially spent on increased risk-
sharing, offsetting the increase in effort. Further, risk sharing has less of an
incentive cost with a higher 7 because individuals can easily be induced to

supply effort. Thus, risk sharing and effort are both greater when n = 4.0.
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Figure 2 shows the sharing rule, and tables 4 and 5 show the marginal and

average tax rates for different values of 7.

Figure 2: Sharing Rule Varying the Cost of Effort n

n=40

0.2 | n=20

0.2 0.4 X 0.6 0.8
Other parameters: ¢ = 4,r =4, and 7= 1.5

Tax Progressivity: increasing the variance of shocks

Increasing the variance of the underlying shocks in the absence of tax-
ation has the unambiguous effect of increasing effort if the marginal utility
of consumption is convex. This arises because the expected marginal utility
of consumption will increase with the variance, leading to an increase in
effort in order to satisfy the Euler equation. In other words, precautionary
motives for effort increase. However, if we allow the optimal tax schedule to

vary, then the schedule will change according to the level of uncertainty. For
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Table 4: Marginal Tax Rates (1 — %}l) Varying 7

F(z|e)
Model | Effort | 0.01 0.1 0.25 0.5 0.75 0.90 0.99
n=20| 018 | 0.54 0.55 0.56 0.56 0.56 0.56 0.56
n=30| 040 | 0.71 0.69 0.67 0.65 0.63 0.61 0.58
n=4.0| 050 | 0.80 0.77 0.75 0.73 0.70 0.68 0.65
Other parameters: ¢ =4,7r =4, and vy =1.5
Table 5: Average Tax Rates (1 — @) Varying 7
F(z|e)
Model | Effort | 0.01 0.1 0.25 0.5 0.75 0.90 0.99
= 0.18 |-1.22 -0.38 -0.14 0.01 0.11 0.17 0.22
3.0 040 |-1.26 -0.36 -0.12 0.04 0.13 0.18 0.23
= 0.50 |-1.30 -0.37 -0.11 0.05 0.15 0.20 0.25

Other parameters

:qg=4,7=4,and y=1.5.
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example, an increase in uncertainty is likely to lead to greater risk sharing
because a given realisation of x gives less information about the amount of
effort incurred. This greater risk sharing reduces effort, offsetting the direct
effect of uncertainty increasing effort. In the range considered here, this
indirect effect through the sharing rule dominates and effort falls and risk
sharing increases as uncertainty increases. This means that the total output
available to redistribute falls as uncertainty increases. The overall effects on

the sharing rule and the tax rates are shown in figure 3 and tables 6 and 7.

Figure 3: Sharing Rule Increasing the Variance of Shocks

0.8
S(X) 0'2 = 0056 :
™ /02:0'028 B ///////;N; =
04 4
0'2:0017
0.2
02 0.4 o -

The baseline case with ¢ = 4 and 7 = 4 is where 02 = 0.028. Values of the
variance are for the distribution at 0 effort. Parameters ¢ and r are altered
to give the different values of the variance, holding the mean constant.
Other parameters: n =3.0 and vy = 1.5
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ds(x)

Table 6: Marginal Tax Rates (1 — =2

) Increasing the Variance

Model
02 =0.017
o2 =0.028
o2 = 0.056

Effort

0.47
0.40
0.20

0.01

0.57
0.71
0.88

0.1 0.25
0.55 0.53
0.69 0.67
0.88 0.87

F (z|e)

0.5 0.75
0.50 0.48
0.65 0.63
0.87 0.86

0.90

0.46
0.61
0.86

0.99

0.42
0.58
0.85

The baseline case with ¢ = 4 and r = 4 is where o2 = 0.028. Other
parameters: 7 = 3.0 and v = 1.5

Table 7: Average Tax Rates (1 — S(I—m)) Increasing the Variance

F (z|e)

Model Effort | 0.01 0.1 0.25 0.5 075 090 0.99
02=0.017 | 047 |-0.52 -0.18 -0.06 0.02 0.08 0.11 0.15
02=0.028 | 040 |-1.26 -0.36 -0.12 0.04 0.13 0.18 0.23
02=0.056 | 0.20 |-7.25 -1.28 -0.38 0.05 025 0.34 0.40

The baseline case with ¢ = 4 and r = 4 is where ¢ = 0.028. Other
parameters: 7 = 3.0 and v =1.5
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3 Non-Optimality of Random Taxes

In this section we show that it is never optimal to introduce additional ran-
domisation to the tax schedule given that the tax schedule is unconstrained
optimal. In the next section, we discuss why constraints on the choice of
tax schedule mean randomisation will sometimes be Pareto improving.

This result on the non-optimality of randomisation is similar to the suf-
ficient statistic result of Holmstrom (1979). The sufficient statistic result
states that if a random variable does not reveal information about the agent’s
effort, then the sharing rule should be independent of that random variable.
In other words, introducing randomisation to the sharing rule is never opti-
mal. However, that result does not hold in models where the principal faces
an adding up condition and so the proof given by Holmstrom (1979) does not
apply in the current paper because the government faces an adding-up con-
straint in our model. In this case, the question arises of whether the incentive
effects of risk could make randomisation desirable. If randomisation leads to
increased effort, it increases the amount of output available for distribution
between agents, thus relaxing the adding up constraint. Randomisation has
no value when the principal does not face the adding up constraint because
the principal is concerned only with monitoring how much effort a particular
agent has made and not with aggregate output.

Stiglitz (1982a, 1982b) and further papers by Brito et al. (1991, 1995)
present two alternative arguments in favour of randomisation: the first is
that randomisation helps with self-selection when there is an adverse se-
lection problem. The second result is more relevant to the current paper.
Stiglitz (1982b) argues that if individuals have to choose their labour supply
prior to knowing their (linear) income tax rate, they will choose a higher
labour supply than if they knew they would face the average expected tax
rate for certain. This means that a lower average tax rate can be used to

meet a given revenue requirement. A higher labour supply arises if risk in-
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creases labour supply (which requires marginal utility to be convex in the
wage): in other words, if individuals have precautionary motives. Individ-
uals are worse off because they face the risk arising from the random tax,
but they are better off because they face a lower average tax. This re-
sult is analogous to the result on optimal redistribution discussed in Varian
(1980) and extended above: uncertainty increases labour supply because of
prudence and so increases total output, but there is a risk sharing cost as-
sociated with this. This trade-off is exploited in the Varian (1980) model
using the uncertainty due to shocks to income, whereas in Stiglitz (1982b)
the trade-off is exploited by introducing randomisation into a model with
no uncertainty and a linear income tax. Further, this trade-off can help
explain the lack of complete risk-sharing in villages in the developing world
documented by Townsend (1994).

This discussion raises the question of whether introducing randomi-
sation is welfare increasing in the model presented in the current paper
which already has exogenous uncertainty. Randomisation incentivises peo-
ple through extra risk, but the uncertainty over gross income means indi-
viduals already face risk. If the government has the ability to set an entire
income tax schedule, there is no benefit from randomising taxes. Any incen-
tive benefits of risk may be fully exploited through the appropriate design of
the tax schedule, since the shape of this schedule may be adjusted to alter
the degree to which an agent is insured against output risk and the extent
to which the agent is incentivised by uncertainty. This result is shown in

proposition 3 below.

Proposition 3 If the choice of tax schedule is unconstrained, introducing

randomisation of the tax schedule is welfare reducing.

Proof: Suppose that we have a “random” sharing rule. We represent this
in a general manner as a stochastic process S (x) giving the net income of

an individual with gross income w. It is not necessary that S (z1) and S (x2)
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are independent for x1 # x9, but for the adding up rule to be satisfied, it

must be the case that

We show that such a rule cannot be optimal. Define a new sharing rule 5 (z)
by
u(s(2)) = E(u(S(2),

where the expectation is taken over possible values of S (z) for a given
gross income x. Given any particular effort level, an agent will receive
the same expected utility under the deterministic sharing rule 5 as under
the stochastic sharing rule S. Therefore it follows that if S was incentive
compatible, so was 5. Moreover, expected utility is the same under sas
under S.

Now since w is strictly concave, it follows that
5(z) < E(S())
for any z. Therefore, if S (x) satisfied the adding-up condition

JES@ r@l0= [

then
0<D:/xf(x|e)—/§(:c)f(x|e).

Therefore there exists an alternative sharing rule § (x) that is incentive com-
patible, allocates the surplus output, D, and gives strictly higher expected
utility than 5 and hence S. For example, define § equal to § for all x except
the highest possible gross income Z, where §(Z) = 3(T) + D. Since the
marginal return from effort at any effort level is at least as high under 3,
optimal effort is at least as great under § as under s. Therefore, § dominates

the stochastic sharing rule S.H
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The property necessary for the conclusion that randomisation is welfare
reducing is that the social planner must have sufficient flexibility in deter-
mining how post-tax income depends on output (pre-tax income). In the
case that the social planner is able to choose any function mapping pre-tax
into post-tax income, we find that randomisation is never optimal.

In the next section we consider the possibility of limits on the complexity
of the sharing rule. In particular, if the sharing rule is linear, then it may
in some cases be optimal to randomise taxes. We derive a condition for
randomisation to be optimal and show this is related to the prudence of the
individual. It is interesting to consider intermediate cases, where there may
be some limits on the complexity of the tax system, but these limits are fairly
weak. For example, suppose that post-tax income may be a piece-wise linear
function of pre-tax income, with n pieces. Then as n becomes large, this
piecewise linear schedule increasingly approximates the unrestricted optimal
tax system, and by continuity it follows that randomisation is not desirable.
Thus we may conclude that, in this model, the desirability of random taxes
requires two conditions to be satisfied: that agents are sufficiently prudent;
and that there is some limit on the complexity of the tax system (for example
a limit, or a cost, to the number of tax bands that may be used).

It is also interesting to consider, in this context, optimal team size. By
the size of the “team” we mean the size of the group of people who are
risk sharing. Holmstrom (1982) considers the case of joint production where
problems of free-riding occur and cases when relative performance evaluation
is possible. If we abstract from these issues, however, restricting team size
is a means of introducing extra randomisation into payoffs through making
the total output available stochastic. Therefore, according to proposition 3,
restricting team size cannot increase welfare. Returning to the issue of why
risk sharing in the developing world (Townsend, 1994), the analysis above

suggests the key point is not why we observe only partial risk sharing within
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villages, but why we observe limited attempts to insure against village-wide
risk. Clearly monitoring of the output of other villages is more costly than

monitoring within the village.

4 Linear Tax Schedules

The aim of this section is to present results on the choice of tax schedule
when the social planner is constrained to use a linear tax. We first show that
randomisation may be desirable: randomisation with a linear tax schedule
can mimic some of the benefits of having a nonlinear tax schedule. We
then present a numerical example showing how the tax rate and benefit of
randomisation change with prudence.

Consider a linear sharing rule of the form s; (z) = Zj a;jxj + b; where
the a’s and the b’s are constants. The adding-up constraint requires that
> i 2 @i+ bi = Y, a; for all possible output vectors = (21,22, ..., Zn) .

It is easy to show that this condition is satisfied if and only if
ZbZ:O and Vj Zaijzl.
i i

If we additionally impose the condition that fines are not possible, i.e.
si(x) > 0, then this is satisfied if and only if a;; > 0 for all 4,5 and b; = 0
for all 7. If we also impose symmetry in that the permutations of the identi-
ties of agents should leave the contract unchanged, then we must have that
a;; = a;, for any j,k # i. Thus there is just one form of symmetric linear

sharing rule, namely one of the form
1
S; (.%‘) = Bx; + n——lf Z$] (9)
J#i
For the ‘no-fines’ condition to be satisfied, we must have that [ € [0, 1].

In this section, we specify output to be additive in shocks, i.e. x = e+6.

The restriction to linear sharing rules means that the additive nature of
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shocks will not lead to a violation of the first-order approach. We also
assume, for simplicity, that n = co.

The optimisation problem faced by the social planner is therefore,

IQV%X/U(eJrﬁ@)f(@)d@—g(e)

subject to?
8 [ e+56) 1 0) a0 g (6) 20 (10)

The adding-up constraint is included through the definition (9).
The Lagrangian for this problem is

L= /u(e+ﬂ9)f(9)d9—g(e)+A{ﬁ /u (c+50) £ (0)d0 — ¢ <e>} (11)

giving first-order conditions,

g_g = [ [0( (e + 30) + ABu" (e + 30)) + Xt (e + BO)] £(0)dO =0 (12)
?9_5 _ / W (e + B0)  (0)dO+ A3 / W (e + 30) £ (6)dO = g (¢) + Ag" ()

(13)

Before specifying functional forms to yield an explicit solution for 3 and

e, we define the condition necessary for randomisation to be optimal. Since
[ is endogenous, we need to solve the model explicitly to see if this noise
criterion is satisfied and further, to establish comparative static properties
such as whether the criterion is more likely to be satisfied with a higher

degree of risk aversion.

Definition 1 If the “noise criterion” is positive, then randomisation is wel-

fare improving. If the tax schedule is constrained to be linear, the noise

3The second order condition requires restrictions on the utility and distribution func-

tions such that
5 [ e+ 00) £ (0)d0 g () < O

which is satisfied if utility is concave in consumption and convex in effort.
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criterion is defined as:

[ (e+p6)f(6)do

I J " (e+30)(0)d0
1—-08 g'(e) _ [u'(etpO)f(0)do
gle) ~ Tu(e+B0)f(0)do

(14)

This criterion is derived by introducing randomisation to the tax sched-
ule by adding small amounts of individual specific noise, z distributed as
® (z | 0) with mean zero for each 6. We consider the introduction of noise
at the margin by using the parameter . We then wish to know how the

optimised value of the following problem changes as « is increased from 0.

max //u (e + B0+ az)d®(z | 0)dF (0) — g (e)

s.t. ﬁ//u' (e+ 0+ az)d® (2| 0) dF () = ¢’ (e) (15)
The Lagrangian of this problem is
L(a) = //u(e+ﬁ0+az)¢(z | ) f(0)dzdd — g (e)
T\ {ﬁ//u (e+ 30+ az)é(z | 0) f(0)dzdb— ¢ (e)}

We proceed by taking a second-order Taylor expansion of the Lagrangian

. . oL
around a = 0. Since noise has mean zero, B&a)

= 0 and so the sign of
a=0

L (o) — L(0) is determined by the second-order term,

0L ()
Oa

. [ e+ 80 00z 16) £ (6) azas

+23 // 20" (e + 30) ¢ (2 | 0) f(0)dzdb

Hence, the “noise criterion” is defined by this term being positive. Rear-

ranging gives,

// 22 (2] 0) dz {u" (e + B0) + \Bu" (e + 30)} f (9) dO
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If the distribution ¢ (z | ) is independent of 6, then the noise criterion

becomes
/u" (e+0) f(0)do + )\ﬁ/u"' (e+0) f(0)do (16)
The Lagrange multiplier, A, can be substituted out of this criterion by divid-

ing the first-order conditions with respect to e equation (13) by the incentive

compatibility constraint (10) to give

) <g" (¢) _ Ju"(e+/30) () de>‘1
B \gle) [u(e+p0)f(@)do

which, on substitution into equation (16) and rearranging, gives the noise

criterion (14) in the definition.

4.1 A numerical example

To give some indication of when the noise criterion is likely to be satisfied
and to perform comparative statics, we specify a numerical example. Shock
are assumed to be log-normally distributed, In@ ~ N (—%2, 02) and utility
is as in section 2.3,

ct=

U(C):E77>O and g(e)=¢€l, n>1

We first show some comparative statics on the choices of 3 and e as we
change o,y and 7. A lower value of 3 means greater risk sharing because net
income is less sensitive to the particular individual’s output. Figures 4 and
5 show the optimal choice of 3 as ¢ increases for different values of v and
7. These comparative statics are fairly intuitive when 7 = 1: increases in y
or in ¢ mean there is greater risk sharing. When n = 2, the degree of risk
sharing increases with  if o is sufficiently large, but decreases with ~ if o
is very small.

We now address the question of when the noise criterion will be satisfied

and hence, extra randomisation will be welfare improving. If there is already
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a large amount of uncertainty in the model, then introducing randomisation

is less likely to be optimal. This leads to the following proposition:

Proposition 4 The value of the noise criterion decreases as the variance
of the shocks, o, increases. This means that for any values of v and n, there
is a value & such that randomisation is welfare increasing if o < &, but

randomisation is welfare reducing if o > &.

It is difficult to show this analytically because ( is a function of o.
Instead, the value of the noise criterion was calculated for o between 0.0
and 3.0, for the values of v and 7 given above, and there was a unique value
o (dividing the o domain into 1000 values). Table 8 shows the values of &

for a range of values of v and 7.

Table 8: Values of ¢ Varying n and ~y

n=1 n=2
v=05 | 091 0.72
v=0.75| 0.92 0.73
y=15 | 133 1.25
v=20 | 1.64 1.79
v=30 | 2.35 3.00

When o is less than the value of & given in the table, local randomisation will
be welfare increasing.

As 7 increases, the ratio of prudence to risk aversion falls which means
that adding noise to the tax schedule is beneficial even with a high variance
of effort shocks. The most noteworthy point shown by this table is that the
noise criterion is satisfied in a wide range of scenarios. Large output shocks

are required before adding extra noise fails to increase welfare.
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5 Conclusions

This paper provides a way of specifying principal-agent problems that per-
mits tractable numerical solutions. This technique is used in characterising
the optimal tax schedule under uncertainty: risk-sharing clearly increases
social welfare, but risk-sharing reduces worker effort by firstly reducing the
average marginal product of effort and secondly weakening precautionary
motives for effort. Therefore, there is an optimal amount of risk-sharing.
We characterise the nature of this trade-off numerically, and show com-
parative static results. The advantage of using numerical methods here is
that we are able to characterise complete changes rather than only taking
approximations holding endogenous variables fixed.

There are two, interrelated extensions that are of interest. First, we have
only considered idiosyncratic shocks here. Allowing for aggregate shocks is
somewhat analogous to introducing randomisation of the tax schedule and
this will change the optimal sharing rule. This leads to the question of how
the sharing rule should change across time and across the business cycle.
This relates to the second extension which is to allow differences in ability:
if we allow the tax schedule to vary across time, then it may be optimal to
condition on past output and use past output to reveal information about
ability. This clearly raises a number of additional problems, such as time

inconsistency.

6 Appendix: The Deformation Method

This appendix describes a general way of constructing a family of distribu-
tions which ensures that the likelihood ration is bounded and increasing. We
assume that output is distributed over a finite support [z, Z] . We suppose
that as effort increases we can think of the probability distribution of = shift-

ing toward higher values. Consider the probability mass on a small range of
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outcomes (z,x + 6x), which is approximately f (x|e)éx, and then suppose
that effort increases by de. Probability mass moves to the right, with the
proportionate rate of movement being given by 7 (z|e) de. Thus, the range
(x,x + 0x) receives an inflow of probability from the left of 7 (x| e) f (z]e) de
and produces an outflow to the right of 7 (x 4 éz|e) f (z + éz|e) be. There-

fore,
(f (zle+be) = f(ale)) bx = — (1 (v + bx|e) f (x+ bx|e) — 7 (x]e) f (z]e)) be

which defines the change in probability mass in the region (x,z + éx) fol-

lowing an increase in e. Taking the limits of éx and ée,
0
fe(zle) = =z (7 (a]e) f (a]€)) (17)
In order for f (z|e) to be a properly defined family of density functions,
we need to ensure that the total density sums to 1. Since we are simply
reallocating probability mass within the domain of f, this will be true pro-
viding that we ensure that no mass flows out of the edges of the support.
We require 7 (z,e) = 7 (Z,e) = 0. Then

%/:f(x|e)dx = /xfe(x|e)dx

T

= 7(z|e)f(z|e)—T(T]|e)f(Z]e)
= 0.

Thus, suppose e = 0 is the lowest possible effort level, if
/ F@|0)de=1

then we have that

/ f(z|e)de=1 for alle.

The partial differential equation (17) for the family of probability distri-

butions f can be explicitly solved in certain simple cases. First, integrating
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(17) with respect to x gives that
[ rGlods=-f@loriale

and so introducing the cumulative distribution F' we obtain that
Fo=—-F,1 (18)

This PDE can be solved explicitly if we assume that 7 takes the separable
form
T(z|e)=a(x)b(e)

where a (z) = a(Z) = 0. In this case we can separate (18) to obtain
Fe
—% =Fy(z|e)a(x).

This has an ‘almost additive’ general solution of the form
F(z|e)=¢(A(x) + B(e))

where ¢ is any function and
1
A/ = B/ = —b -
@)= () = ~b(e)
Thus the general solution of (18) is
T q e
Fa:e:qzﬁ[/ —ds—/bsds] 19
@lo=o| [ =i [ b (19)

where z* is some fixed point in the domain (z,z). The function ¢ is de-

termined by providing a boundary condition, for example specifying the

distribution of output at zero effort, i.e.

F(m|0):¢[/:$ds]

Notice that ¢ has the whole real line as its domain. Since a goes to zero at

x and Z we have that

A(x)z/jﬁdSzﬁLoo and A@):/f L s = oo
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We can now derive sufficient conditions for J;fg]g to be bounded, thus

proving proposition 1. Differentiating (19) gives that

f(z|e)=¢ {/;ﬁds—/oeb(s)ds] a(lw)

fol]e) = —¢" [/:ﬁdS—/:b(s)ds] bgl?)

& |[5 s — J5 b(s) ds|
¢ | Ji shyds — 5 b(s) ds|
Thus, k(x| €) is bounded if ¢ (y) /¢’ (y) is bounded.

We now need sufficient conditions for this. Since ¢ is defined in terms

and so

Thus

h(x|e)=— b(e) (20)

of @ and the boundary condition F (x| 0), we need to impose conditions on

these functions. Now

=[] | ] 4

and so

Thus we obtain
fo(w]0)
f(z]0)

Now we have both a and a’ tending to zero at the boundaries of the domain,

— =d (z) +a(x) (21)

so @’ and a are bounded above and below on (z, Z) . Thus provided that

e (x]0)
a(x) =¥———=
D@10
is bounded for all x in the domain, then & (x | e) is bounded, proving propo-

sition 1. This is a matter of ensuring that a (z) f;((;‘l(%) tends to a constant

asr — x,T.
In addition, it follows directly from equation (20) that h(x | e) will be
monotone increasing in z and the MLRP satisfied providing that ¢" (z) /¢’ (x)
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is monotone decreasing in z. From equation (21) it follows that a necessary

and sufficient condition for the MLRP is that o' (z) +a (x) ];Z”((;'L%) is decreas-

ing in z. This expresses the MLRP in terms of the transition function a and

the boundary condition, proving proposition 2.

The easiest way to specify an example which satisfies these conditions
is to define the mapping A (z) : (x,Z) — R such that x goes to —oo and Z
goes to +00. We do this in the numerical solution in section 2.3 by setting

x=0,z=1,

B(e) = —e ble) =1 (22)

For the boundary condition, we specify the distribution of output at zero

effort as having a Beta Distribution. In other words,

*

flo) = o | [ 5] s =@

Note that the domain of ¢ is the real line, whereas the domains of F' (x| 0)
and 3, , (x) are the interval [0, 1] . Therefore,

fo]e) = ¢’[/:$ds—/:b(s)ds—}a(lx)

B exp (A (I) + B (6))
- 5‘1:7" |:1 + exp (A (:1:) +B(€)):|

where the transform of A (x) + B (e) is to map from the real line back into
[0,1].
With this formulation, we have that
fo(x|0) g 7

Flo) = of [ o] =oor (s, @)

f(x]0) =z 1-=x

fe (210)

@) F 10

=q(l—z)—rz
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which is bounded on [0, 1], implying that the likelihood ratio A is bounded.

Also

a'($)+a(m)‘];f($|0) =1+q—2+4+q+r)z

(z [ 0)

which is monotone decreasing in z, implying that the MLRP is satisfied.
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