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Abstract

In this paper we apply a sensitivity analysis regarding two types of prior informa-
tion considered within the Bayesian estimation of a standard hybrid New-Keynesian
model. In particular, we shed a light on the impact of micro- and macropriors on
the estimation outcome. First, we investigate the impact of the transformation of
those model parameters which are bounded to the unit interval, in order to allow for
a more diffuse prior distribution. Second, we combine the Moment-Matching (MM;
Franke et al. (2012)) and Bayesian technique in order to evaluate macropriors. In this
respect we define a two-stage estimation procedure – the so-called Moment-Matching
based Bayesian (MoMBay) estimation approach – where we take the point estimates
evaluated via MM and consider them as prior mean values of the parameters within
Bayesian estimation. We show that while (transformed) micropriors are often used in
the literature, applying macropriors evaluated via the MoMBay approach leads to a
better fit of the structural model to the data. Furthermore, there is evidence for in-
trinsic (degree of price indexation) rather than extrinsic (autocorrelation in the shock
process) persistence — an observation which stands in contradiction to the results
documented in the recent literature.
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1 Introduction

It is well known that the estimation outcome within the Bayesian approach is sensitive
to the choice of prior knowledge. In the majority of studies each parameter of interest
is assumed to be independently distributed a priori. The associated sufficient statistics
of these so-called micropriors are taken from microeconomic evidence. For example an
overwhelming amount of empirical studies report a value of the quarterly discount factor
β being equal to 0.99 mostly based on descriptive statistics and without consideration
of other (deep) parameters. Lombardi and Nicoletti (2012, pp. 294; LN henceforth)
claim that for some parameters this kind of information is ambiguous due to different
estimation outcomes across several studies (e.g. for the Calvo parameter of price setting)
while for others it is simply rare (e.g. for the first and second moments of shock processes).
Furthermore, they mention that the property of micropriors to be independent put a
restriction on the dynamics of the model variables a priori after a shock occurs. In order to
avoid these shortcomings the evolution of macroeconomic variables based on econometric
time series analysis, e.g. the moments of observable variables, is considered.

Taking this information into account will lead to the formulation of so-called macropri-

ors, which can be then used as prior information within the Bayesian approach. LN extract
macropriors from IRFs and state that this kind of priors help to clarify how the observables
react to a specific shock a priori without explicit consideration of a data-based pre-sample.
Similarly, Del Negro and Schorfheide (2008; DNS henceforth) formulate macropriors based
on the second moments of the data. Furthermore DNS (p. 1193) emphasize that the prob-
lem of choosing micropriors is given by “the mechanical use of identical prior distribution
for alternative model specifications”.

The question arises to what extent the choice of micro- or macropriors has an influence
on the estimation outcome. In particular, how sensitive will the estimation results be to a
change in the functional form of the micropriors? Is the moment-matching (MM; Franke
et al. (2012)) approach able to identify sufficient macropriors, i.e. prior information which
leads to higher values of the (logarithmic) marginal likelihood within Bayesian estimation
as in the case of micropriors? In order to answer these questions, in this paper we apply a
sensitivity analysis regarding the prior information. Then we compare the corresponding
outcome (in terms of the goodness of fit) to the one when the standard prior information,
which is in line with the recent literature and documented in Castelnuovo (2010), is taken
into account.

We account mainly for two things. First, we investigate the impact of the transforma-
tion of those model parameters which are bounded to the unit interval as discussed in the
paper by LN. The idea is to allow for a more diffuse prior distribution of the parameters of
interest through transformation (e.g. assuming a Gamma instead of a Beta distribution).
Hence, we compare the estimation outcome under three alternative sets of micropriors,
namely a baseline estimation, which is called ’BR’, where the prior information is taken
from Castelnuovo (2010) and can be found in Table 4 given in the Appendix. Furthermore,
two specifications, which differ with respect to the transformation of the price indexation
parameter are considered. Second, we shed a light on the investigation of a combination of
both MM and Bayesian (maximum likelihood) techniques. Since our parameter estimates
obtained via MM account for the second moments of the underlying time-series they can
be identified as macropriors for Bayesian estimation. In this respect we define a two-stage
estimation procedure: we take the point estimates from the MM estimates for the GI
and GM periods, respectively, and consider them as prior mean values of the parameters
within Bayesian estimation. For a robustness check, we vary the priors with respect to
the standard deviation of the persistence parameters α, χ, and ρπ in order to allow for a
more diffuse prior information.

The remainder of this paper is organized as follows. In the following section we present
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the transformation rules for the parameters, which are either bounded below by zero or on
the unit interval. In addition, we introduce the two-stage estimation procedure, where the
prior mean values for Bayesian estimation are given by the estimates obtained from MM.
Finally, we compare all estimation outcomes relative to the ones from Bayesian estimation,
where standard prior information from the literature is considered. In section 6.3 we
contrast our estimation outcomes for the endo- and exogenous persistence parameters (by
applying the two-stage estimation procedure as described above) to the results taken from
the literature. Section 6.4 concludes. The Appendix contains the Tables regarding the
prior information for the GI and GM periods, respectively. Furthermore, the graphical
representations of the posterior densities for all parameters to be estimated across all
specifications are presented here.

2 The Baseline New-Keynesian model in Gap Notation

We consider a hybrid version of the New-Keynesian model in gap notation:

xt =
1

1+χ
Et xt+1 +

χ

1+χ
xt−1 − τ (r̂t − Et π̂t+1) + εx,t (1)

π̂t =
β

1 + αβ
Et π̂t+1 +

α

1 + αβ
π̂t−1 + κxt + vπ,t (2)

r̂t = φr r̂t−1 + (1−φr) (φπ π̂t + φx xt) + εr,t (3)

vπ,t = ρπ vπ,t−1 + επ,t. (4)

The time unit is to be thought of as one quarter. The three (mutually uncorrelated) shocks
εz,t are normally distributed around zero with variances σ2

z (z = π, x, r). All of the param-
eters are nonnegative. Specifically, β is the discount factor, κ a composite parameter that
depends on the degree of price stickiness and assumptions on the production technology
of firms, the coefficient α represents the degree of price indexation (0 ≤ α ≤ 1), and the
persistence in the supply shocks is given by the autocorrelation ρπ (0 ≤ ρπ < 1). In the IS
equation, χ is the representative household’s degree of habit formation (0 ≤ χ ≤ 1) and τ a
composite parameter containing its intertemporal elasticity of substitution. In the Taylor
rule, φr determines the degree of interest rate smoothing (0 ≤ φr < 1), and φx and φπ

are the policy coefficients that measure the central bank’s reactions to contemporaneous
output and inflation.

The empirical data on which the estimations of the system (1) to (4) are carried
out derive from real GDP, the GDP price deflator, and the Federal Funds Rate. Their
exogenous trend rates should be moderately flexible and are therefore specified by the
convenient Hodrick-Prescott filter (as usual, although debatable, the smoothing parameter
is λ=1600). The total sample period covers the time from 1960 to 2007.

Despite concentrating on trend deviations instead of levels, one has to be aware that
there are still great changes over these years in the variances of the three variables and
partly also in the entire pattern of their cross covariances. This makes it expedient to
subdivide the period into two subsamples, which are commonly referred to as the periods
of the Great Inflation (GI) and the Great Moderation (GM). We define the former by the
interval 1960:1 – 1979:2 and the latter by 1982:4 – 2007:2; the time in between is excluded
because of its idiosyncrasy (Bernanke and Mihov (1998). To give an immediate example
for the need of the subdivision, the standard deviation of the annualized inflation gap in
GI is 1.41% versus 0.77% in GM; for the output gap it is 1.77% in GI versus 1.15% in
GM.
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3 The Baseline NKM in Gap Notation

In both experiments we seek to answer the question which kind of prior information is
most reliable in order to ensure the best fit of the structural model to the data measured by
the (logarithmic) marginal likelihood Υ. We also report the posterior probability Π(BR),
where the reference model is given by the Bayesian estimation of the model using the
standard prior information.

4 Micro- versus Macropriors

4.1 Micropriors: The Impact of Transformation

We follow LN (p. 299) and transform the parameters which are either bounded below
by zero or on the unit interval. This is especially of interest in such cases presented
here, where we find the price indexation parameter α ≈ 0 based on standard, i.e. non-
transformed priors (BR) and α = χ = 1, ρπ = φx = σr = 0 based on MM in the GI period
(cf. estimation A provided in Franke et al. (2012)).

For the GM period we find α > 0, τ ≈ 0 via BR and ρπ = 0, κ ≈ 0 and even χ = ∞
via MM (cf. estimation C provided in Franke et al. (2012)). It goes without saying, that
in both cases we choose the MM estimation outcome associated to the lowest value of J .
By applying the transformation rules presented below within the Bayesian estimation, we
are able to avoid narrow restrictions on those parameters of interest due to a change in
their functional form. In this respect transformation means that e.g. a Gamma instead of
a Beta distribution is assumed, where the former covers the range from a lower boundary
point to unity, while the latter is bounded on the unit interval. In other words, we allow
for differences in the micropriors in order to search for the posterior mean values over a
broader region of the parameter space relative to the standard prior information we had
considered so far. In the end we perform a model comparison exercise.

First, we consider the following relationship:

k̃ = f(k) =
1

1− k
with k = {χ, ρπ, φr} (5)

where k̃ = {χ̃, ρ̃π, φ̃r} represents the transformed counterparts of χ, ρπ and φr. The
corresponding functional form of the priors is given by k̃ ∼ Γ(2, 0.99, 1,∞).1 Given the
posterior mean of k̃, the value of the original parameters can be easily computed:

k = f−1(k̃) =
k̃ − 1

k̃
. (6)

Note that, although all three original parameter values are bounded on the unit interval,
their transformed counterparts are not. To see this consider both polar cases where the
posterior mean values of k̃ are either equal to one or an arbitrary high number (even close
to infinity), which is possible under the assumption of the Gamma distribution. According
to the transformation rule (6), k becomes then zero or one, respectively.

In contrast τ and κ are bounded below by zero only. The relationship between the
original parameters z = {τ, κ} and their transformed counterparts z̃ = {τ̃ , κ̃} reads

z̃ = f(z) =
1

z
(7)

1According to this expression the priors χ̃, ρ̃π and φ̃r follow a Gamma distribution with a mean value of 2,
a standard deviation of 0.99 and are bounded between unity and infinity.

4



where z̃ ∼ Γ(2, 0.99, 0,∞) holds. Accordingly, the corresponding transformation rule is
given by

z = f−1(z̃) =
1

z̃
. (8)

Suppose that the posterior mean values of z̃ are zero, infinity, one or less than one. After
transformation z becomes infinity, zero, one or greater than one, respectively, according
to (8).

Regarding the parameter of price indexation α, we distinguish between two specifica-
tions based on the transformation rules (6) and (8):

T1: α =
α̃− 1

α̃
, α̃ ∼ Γ(2, 0.99, 1,∞) (9)

T2: α =
1

α̃
, α̃ ∼ Γ(2, 0.99, 0,∞) (10)

Allowing for two different transformations of α is motivated by our findings in the Franke
et al. (2012). In the first case T1 we stick to the economic rationale for the price index-
ation parameter bounded on the unit interval. In the second case T2 we account for our
observation from Franke et al. (2012) where we report evidence for a stronger backward-
looking behavior in the New-Keynesian Phillips Curve (NKPC), i.e. α > 1. Finally, we
are going to investigate, what kind of specification leads to a better fit of the model to the
data relative to the other one. Therefore, specification T1 makes use of the transformed
micropriors given by (5), (7) and (9) while for specification T2 we consider (5), (7) and
(10). Accordingly, we report the posterior point estimates and their corresponding stan-
dard deviations, which are computed by applying the transformation rules (6) and (8).
Note that we set all prior mean values equal to 2 which (regardless of the type of trans-
formation) leads to a moderate value of the parameters equal to 0.5 a priori. Across both
specifications the functional forms of φπ, φx, σπ, σx and σr remain unchanged as motivated
by LN (p. 300).

The estimation outcomes for T1 and T2 are reported in the third and forth column of
the Tables 1 (GI) and 2 (GM). For each period we compare our results to the one in the
second column where for the BR case the prior information given by Castelnuovo (2010)
is used. We find strong evidence for the superiority of BR for the GI period relative to T1
and T2. Even though it can be seen that the marginal likelihood Υ is higher in the BR
case, in addition, the posterior probability Π(BR) is also strictly in favor of the use of the
standard prior information: a value of unity indicates that the probability that the null
hypothesis is true — i.e. the reference model BR is superior in describing the data relative
to the alternative models T1 and T2 — is given by hundred percent. Furthermore, the
value of the loss function J of BR is (slightly) below the ones of T1 and T2. Moreover, the
number of moments that missed the confidence intervals of the empirical moments (MCI)
is significantly higher for T1 and T2. Note that here we calculate J according to equation
(Franke et al. (2012)):

θ̂ = arg min
θ∈Θ

J(θ;memp
T ,W ) := arg min

θ∈Θ
[m(θ)−m

emp
T ]′ W [m(θ)−m

emp
T ].(11)

nθ denotes the parameters to be estimated, which are considered in a vector θ ∈ Θ ⊂ Rnθ ,
where Θ is the admissible parameter set. Since we are going to match second-moments,
i.e. autocovariances, we make their dependence on the particular values of θ explicit by
writing m = m(θ) for them. On the other hand, let T be the length of the sample period
and m

emp
T ∈ Rnm the vector of these empirical moments. The distance between the vectors

of the model-generated and sample moments is measured by the quadratic loss function
given by 11 that is characterized by an (nm×nm) weighting matrix W (which has to be
estimated, too, cf. Franke et al. (2012)). Accordingly, the model is estimated by the set of
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GI Bayesian Prior Information MM Prior Information

BR T1 T2 V0 V1 V2 V3

α 0.074 0.300 0.137 0.790 0.783 0.610 0.580

0.000-0.156 0.194-0.700 0.000-0.307 0.625-0.984 0.615-0.983 0.375-0.863 0.324-0.849

κ 0.209 0.202 0.222 0.044 0.044 0.037 0.038

0.125-0.290 0.141-0.353 0.156-0.395 0.010-0.075 0.010-0.076 0.005-0.066 0.005-0.068

ρπ 0.570 0.410 0.543 0.052 0.064 0.103 0.135

0.452-0.693 0.012-0.555 0.230-0.665 0.000-0.111 0.000-0.137 0.000-0.225 0.000-0.286

σπ 0.694 0.867 0.801 0.771 0.767 0.760 0.753

0.524-0.864 0.659-1.073 0.592-1.013 0.674-0.871 0.670-0.868 0.653-0.863 0.646-0.866

χ 0.767 0.852 0.853 0.955 0.956 0.948 0.949

0.689-0.850 0.751-0.894 0.743-0.894 0.908-0.999 0.909-0.999 0.895-1.000 0.896-0.999

τ 0.048 0.135 0.136 0.085 0.085 0.082 0.082

0.030-0.067 0.105-0.185 0.107-0.189 0.053-0.118 0.052-0.118 0.050-0.115 0.049-0.114

σx 0.552 0.617 0.625 0.481 0.481 0.482 0.483

0.465-0.637 0.504-0.721 0.511-0.735 0.420-0.541 0.418-0.538 0.420-0.538 0.421-0.540

φπ 1.387 1.430 1.433 1.265 1.263 1.262 1.260

1.124-1.644 1.142-1.707 1.143-1.704 1.147-1.385 1.145-1.384 1.142-1.381 1.141-1.384

φx 0.759 0.639 0.649 0.211 0.209 0.213 0.211

0.314-1.193 0.301-0.993 0.285-0.993 0.039-0.371 0.037-0.366 0.043-0.373 0.034-0.365

φr 0.742 0.663 0.668 0.586 0.584 0.587 0.586

0.668-0.816 0.546-0.730 0.556-0.735 0.511-0.665 0.507-0.661 0.511-0.665 0.511-0.668

σr 0.745 0.786 0.781 0.788 0.787 0.786 0.785

0.643-0.841 0.675-0.900 0.672-0.892 0.678-0.899 0.676–.894 0.675-0.898 0.675-0.895

Υ -341.129 -349.755 -347.690 -337.356 -337.944 -337.205 -337.633

Π(BR) 0.500 1.000 1.000 0.023 0.039 0.020 0.030

J 213.512 237.934 222.343 99.280 100.291 131.282 134.565

MCI missed 23 32 26 3 4 9 11

Table 1: Bayesian estimation: sensitivity analysis regarding the prior information (GI).

Note: The results for T1 and T2 are computed by applying the formulas (6) and (8)

given the transformed posterior point estimates and their corresponding standard devia-

tions. Υ denotes the logarithmic marginal likelihood evaluated via the Laplace approxi-

mation. The posterior probability of the null hypothesis (i.e. the reference model BR is

the true model) is given by Π(BR) =
ΞBR,i

1+ΞBR,i
with ΞBR,i = exp(ΥBR − Υi) ·

ΛBR

Λi
and

i = {T1, T2, V 0, V 1, V 2, V 3}. By construction ΞBR,BR = exp(ΥBR −ΥBR) ·
ΛBR

ΛBR
= 1 holds,

which leads to Π(BR) =
ΞBR,BR

1+ΞBR,BR
= 0.5.

parameters θ̂ that minimize this distance over the admissible set Θ. As we turn to a closer
look of the point estimates it can be seen that most of them remain almost unchanged
across specifications — remarkable differences can be observed regarding α (significantly
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greater than zero in T1), τ (nearly three times larger in T1 and T2 compared to BR) and
σπ (larger in T1 and T2 compared to BR).

The results above are confirmed for the GM period. Based on the values for Π(BR), the
Bayesian estimation of the model using the standard prior information still outperforms
the ones using transformed parameters, i.e. the null hypothesis that the reference model
BR is the true model can not be rejected. Like for the GI period there are no remarkable
differences in the point estimates across specifications with only a few exceptions (see
above) — in particular for ρπ (significantly lower in T1 and T2 compared to BR), while
τ remains nearly unchanged. To sum up, in all cases the evidence is in favor of this kind
of micropriors which are used in the reference model BR. In other words, the marginal
likelihood Υ does not increase when a transformation (i.e. a change in the functional form)
of the parameters as in T1 and T2 is applied. This holds independently for the assumption
regarding the economic rationale for the price indexation parameter, i.e. if it is assumed
to be true (T1: 0 ≤ α ≤ 1) or not (T2: α > 1).2

4.2 Macropriors: An Investigation via MoMBay

In our second experiment we describe a two-stage estimation approach. At the first stage,
the parameters of interest are estimated via MM. Then the resulting point estimates are
adopted as prior mean values within the Bayesian estimation. Since these point estimates
are the result of the matching of the second moments of the structural model to its
empirical counterparts, they can be identified as macropriors. The prior mean values
(obtained via MM) can be seen as appropriate starting values which might help to reduce
the uncertainty in the researcher’s choice of the prior information. We call this procedure
a Moment-M atching based Bayesian estimation approach or simply MoMBay for short.

In order to judge the reliability of MoMBay, we compare the outcome of this approach
to the one when using micropriors reported in BR based on Castelnuovo (2010) evalu-
ated via the (logarithmic) marginal likelihood Υ and the posterior probability Π(BR).
Obviously, we have to determine the functional form of the priors first. The prior mean
values are equal to the results of the parameter estimates from the MM estimation A
for the GI and the GM period (cf. the corresponding Tables provided in Franke et al.
(2012)), respectively. Regarding the prior distributions of the parameters we adopt the
one from BR. Due to the fact that as an outcome of the A estimations some parameter
values are close to or even hit their boundary points (i.e. α, κ, ρπ, χ, φx and σr in the GI
case as well as κ, ρπ, χ and τ in the GM case), within Bayesian estimation the prior mean
values are set to 0.1 and 0.9, respectively. For the sake of uniformity all corresponding
prior values of the standard deviations are set to 0.08. 3 We call this specification V0.
Furthermore we consider three additional specifications where we account for more diffuse
prior information regarding the extrinsic (ρπ) and intrinsic (α and χ) persistence param-
eters. Within specification V1 we increase the prior mean and the standard deviation of
ρπ to 0.2 and 0.15 respectively. Within specification V2 ρπ ∼ β(0.2, 0.15) together with
the intrinsic persistence parameters α, χ ∼ β(0.8, 0.15) hold. Finally, in specification V3,
ρπ ∼ β(0.3, 0.2) together with α, χ ∼ β(0.8, 0.15) is applied. The functional forms of all
other parameters remain the same as specified in V0. An overview of all prior densities
are given in the Tables 5 (GI) and 6 (GM) in the Appendix.

2It is indeed the case as we consider T2 as the reference model, the posterior probability (Υ(T2) versus
Υ(T1)) is given by Π(T2) = 0.887 for the GI and even Π(T2) = 0.974 for the GM period. Hence, allowing
for a (non-plausible) value of α greater than 1 leads to a better goodness of fit. However, these observations
are pure hypothetical since — as we discussed above — both estimations (T1 and T2) are inferior relative
to estimation BR.

3This procedure ensures that the inverse Hessian matrix of the second derivatives (evaluated at the posterior
mode) will be positive-definite which is a requirement for applying the Random-Walk Metropolis-Hastings
algorithm.
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GM Bayesian Prior Information MM Prior Information

BR T1 T2 V0 V1 V2 V3

α 0.033 0.224 0.057 0.502 0.501 0.285 0.279

0.000-0.071 0.160-0.366 0.000-0.120 0.364-0.639 0.362-0.641 0.144-0.424 0.137-0.419

κ 0.163 0.155 0.178 0.026 0.026 0.030 0.030

0.103-0.221 0.119-0.224 0.134-0.267 0.004-0.046 0.004-0.046 0.007-0.052 0.006-0.053

ρπ 0.389 0.103 0.218 0.030 0.035 0.059 0.066

0.274-0.510 0.000-0.201 0.000-0.340 0.000-0.064 0.000-0.078 0.001-0.123 0.000-0.143

σπ 0.517 0.635 0.644 0.528 0.526 0.567 0.563

0.420-0.611 0.535-0.730 0.512-0.768 0.460-0.593 0.460-0.594 0.486-0.646 0.482-0.644

χ 0.825 0.880 0.881 0.961 0.960 0.943 0.945

0.759-0.891 0.804-0.913 0.808-0.913 0.917-1.000 0.917-1.000 0.874-0.999 0.879-1.000

τ 0.017 0.081 0.080 0.015 0.015 0.012 0.012

0.009-0.025 0.066-0.103 0.065-0.100 0.004-0.026 0.003-0.026 0.000-0.021 0.000-0.021

σx 0.346 0.437 0.435 0.347 0.347 0.347 0.347

0.296-0.399 0.366-0.504 0.363-0.504 0.307-0.386 0.309-0.386 0.308-0.386 0.307-0.386

φπ 1.181 1.258 1.243 1.595 1.596 1.596 1.594

1.001-1.383 0.965-1.510 0.962-1.505 1.465-1.727 1.467-1.729 1.465-1.727 1.459-1.725

φx 1.014 0.944 0.917 1.038 1.040 1.035 1.037

0.602-1.419 0.587-1.230 0.558-1.254 0.909-1.166 0.910-1.167 0.912-1.168 0.910-1.166

φr 0.814 0.731 0.728 0.861 0.861 0.861 0.861

0.762-0.867 0.659-0.778 0.656-0.774 0.821-0.900 0.822-0.900 0.822-0.898 0.825-0.902

σr 0.449 0.537 0.538 0.491 0.491 0.489 0.491

0.395-0.502 0.466-0.604 0.467-0.601 0.436-0.544 0.438-0.546 0.437-0.543 0.438-0.554

Υ -299.756 -327.730 -324.108 -287.655 -288.385 -283.164 -283.719

Π(BR) 0.500 1.000 1.000 0.000 0.000 0.000 0.000

J 170.098 246.827 243.162 154.373 154.873 152.265 153.968

MCI missed 15 25 27 14 13 16 16

Table 2: Bayesian estimation: sensitivity analysis regarding the prior information (GM).

Note: The results for T1 and T2 are computed by applying the formulas (6) and (8)

given the transformed posterior point estimates and their corresponding standard devia-

tions. Υ denotes the logarithmic marginal likelihood evaluated via the Laplace approxi-

mation. The posterior probability of the null hypothesis (i.e. the reference model BR is

the true model) is given by Π(BR) =
ΞBR,i

1+ΞBR,i
with ΞBR,i = exp(ΥBR − Υi) ·

ΛBR

Λi
and

i = {T1, T2, V 0, V 1, V 2, V 3}. By construction ΞBR,BR = exp(ΥBR −ΥBR) ·
ΛBR

ΛBR
= 1 holds,

which leads to Π(BR) =
ΞBR,BR

1+ΞBR,BR
= 0.5.

This procedure is motivated by the observation that given the BR estimation results,
the dynamics in inflation is explained heavily by extrinsic rather than intrinsic persistence,
i.e. α ≈ 0 and ρπ ≫ 0 hold (while χ is high). In this respect we try to investigate if this
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result still holds, when MoMBay is applied or if there is evidence just for the opposite, as
reported in the MM case given the marginal likelihood. In other words, we seek to answer
the question if, as an outcome of MoMBay, the posterior means of the three persistence
parameters tend to depart from their prior mean values (taken from MM; see above) to the
left (α and χ) and right (ρπ) of the posterior distribution. In such a case the results from
Bayesian estimation are confirmed under consideration of macro- rather than micropriors
- if, of course, the value of the posterior probability will be in favor of MoMBay.

The results for V0 till V3 are reported in the fifth to eighth columns of Table 1 (GI) and
2 (GM). It turns out that the posterior probability Π(BR) is in favor for all specifications
where macropriors are considered. Independently of the underlying sample period the
following observation holds: Given the values of Π(BR) the probability that BR is the
true model varies between 2 to 3.9 percent in the GI case and be even 0 percent in the GM
case. This leads to the conclusion that the specifications V0 to V3 are able to describe the
data well. Moreover, applying macro- rather than micropriors within Bayesian estimation
results in a slight (GI) and distinct (GM) improvement in the goodness of fit in terms of
Υ.4

Four observations are also worth mentioning. First, although the values of the marginal
likelihoods Υ do not differ strongly across V0 to V3 and especially in contrast to BR (when
looking at GI; see the corresponding entries in Table 1), the effect on Π(BR) is indeed
remarkable. Hence, even a ’small’ difference in the marginal likelihood across models
(e.g. for GI: |Υ(BR)| − |Υ(V 2)| = |3.924|) leads to strong changes in the reliability of
the null hypothesis measured by Π(BR). Second, the goodness of fit of V0 to V3 is
also confirmed when looking at the corresponding indices known from the MM approach:
higher values of Υ correspond with lower values for J and MCI. This means that the
matching of the simulated to the empirical moments is — at least in the GI case —
very good when macropriors are considered (given J together with MCI). Third, some
of the point estimates of the parameters evaluated via MoMBay differ significantly from
the ones of the BR model (see below). However, the point estimates remain unchanged
the more we choose relative diffuse priors for the persistence parameters, i.e. as we go
from V0 to V3. Exceptions are given by the values for α and ρπ: The price indexation
parameter is estimated to be roughly 30 (78) percent bigger in V0 and V1 compared to V2
and V3 in the Great Inflation (Moderation) period. Regarding the shock persistence this
previous observation is mirror inverted, since the parameter is estimated to be roughly 51
to 53 percent lower in VO and V1 compared to V2 and V3 in the GI and GM period,
respectively. Finally, these observations support the analysis undertaken by LN who claim
that prior knowledge is sensitive to the use of macropriors, i.e. the moments of observable
variables. In the following we will discuss the results for the GI and GM period separately
in greater detail.

According to Table 1 specification V0 provides a higher value for Υ (-337.356) relative
to BR (-341.129) in the GI case. Although the marginal likelihood for V2 (-337.205) is
slightly higher than for V0, we claim that V0 is the most appropriate candidate within
MoMBay since the values of J and MCI are the lowest. As we turn to a comparison of
the point estimates between BR and V0, differences can be identified. The results for α

(0.790) and ρπ (0.052) reflect our observations from Franke et al. (2012). In this respect
using point estimates evaluated via MM as prior information within Bayesian estimation,
this leads to distinct evidence for intrinsic rather than extrinsic persistence in the baseline
NKM. Hence, concerning the source of persistence, the outcome of the plain MM approach
(estimation A given in Franke et al. (2012)) is confirmed through MoMBay. More precisely,

4Of course, the expressions ‘slight’ and ‘distinct’ seem to be a little bit broad in this context. The com-
putation of the posterior probability given a V -specification, i.e. V0 to V3, as being the reference model
could help to get things straight. For a clear arrangement we do not apply such kind of analysis, which
can be motivated by our observations discussed in section 5.
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the Bayesian approach largely confirms the MM prior information, which is approved by
the values of Υ and Π(BR). Furthermore, the monetary policy parameter φx as well
as the standard deviation of the interest rate shock σr are estimated to be significantly
greater than zero (as reported in Franke et al. (2012) for GI based on the corresponding
estimation A). While the difference in V0 compared to the reference MM estimation A
for φx is moderate (0.211), the value of σr is quite high (0.788). Not surprisingly, these
results depend heavily on the fact that the macropriors are non-diffuse, i.e. small standard
deviations are applied for all parameters within specification V0. Nevertheless, recall that
all measurements for the goodness of fit presented here prove that the reliability of V0
over BR in describing the data is unambiguous.

The outcome for the GM case is depicted in Table 2. Here we claim that specification
V2 is superior over BR in terms of the log marginal likelihood (-283.164 vs. -299.756) and
the values for J (152.265 vs. 170.098). However, it must be emphasized that the matching
seems not to be a good one since the values for J are quite high compared to the reference
estimation A (J = 54.1; cf. Franke et al. (2012)). This can also be seen by looking at the
values for MCI: the number of moments missed the confidence interval of the empirical
moments is higher for V2 (16) than for BR (15). The lowest values is actually given for the
specification V1 (13). A reason for this can probably be found in the steep initial decline
in the auto-covariance profile in the inflation gap as discussed in Franke et al. (2012).
Concerning the discussion of the point estimates one observation is worth mentioning. As
we compare the estimates of α in V2 (0.285) to the reference estimation A (0.816) and
BR (0.033), we come to the conclusion that, first, allowing for more diffuse macropriors
(as in V2), α tends towards a lower value than 0.5 and second, there is a low degree
of (intrinsic, extrinsic and inherited) persistence in the inflation gap, even though the
standard deviation in the shock σπ is quite large.5 While the other parameter estimates
remain nearly the same for V2 in contrast to the reference estimation A (and BR), the
low estimated value of α sheds a new light on the issue of backward-looking behavior
in the NKPC. In particular, persistence plays a minor role in describing the dynamics
in the inflation gap as indicated by evidence from Bayesian (MoMBay) as well as MM.
This observation is even more surprising as Π(BR) is strictly in favor of specification V2.
Nevertheless, it is an open question if this result still holds if e.g. the level of inflation
instead of the gap is considered. We leave this to further research.

5 Comparison with other Empirical Studies

Next, we seek to compare our results to the most prominent studies from the literature. In
DNS three different groups of model parameters are considered, which describe the steady-
state relationships, exogenous processes and (roughly speaking) the degree of persistence.
Prior information on these three groups is either given by micro- or macropriors. In
the former case standard priors from the literature are used. In contrast, macropriors
(primarily for the parameter of the exogenous processes) are constructed based on a quasi-
likelihood function where the second-moments of an auxiliary vector autoregression (VAR)
model are taken into account.6 A similar procedure is also adopted in LN. In addition, the

5Note that the prior mean value of α is set from 0.816 to 0.8 across the alternative specifications (see the first
row in Table 6 given in the Appendix). As it can be seen by the graphical comparison of the corresponding
prior to the posterior distribution in Figure 13 which is provided in the Appendix, the posterior mean
value of α indeed tends to the left when applying the Bayesian approach.

6A quasi-likelihood function shows similar properties to the standard log likelihood function except for the
specification of the parameters’ distribution. Instead a quasi-likelihood function consists on a relationship
between the variance and the mean of the observations only (see Wedderburn (1974) for a detailed descrip-
tion of this approach). A quasi-likelihood function is most often used in connection to an auxiliary model
for the purpose of estimation. The corresponding procedure is known as Indirect Inference (II). While
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authors introduce an estimation approach where the macropriors are constructed through
the minimization of IRFs — which is indeed similar to the matching of second order
moments presented here. Following DNS (p. 1196), the authors then divide the vector
of structural parameters into two blocks of parameters, which represent the steady state
relationships among observable variables and the law of motion of the exogenous processes,
respectively. These two blocks can be either related or non-related to each other. In both
studies the regular algorithm within Bayesian estimation is modified in order to account
for the macropriors as discussed above.

We emphasize that MoMBay is located in between both methods presented in DNS and
LN. Obviously, like in DNS the second-moments of observables are considered while as in
LN IRFs are matched. In comparison to DNS, we apply our estimation procedure directly
(i.e. without use of an auxiliary model) under consideration of the MM approach, which
is close to the GMM estimation approach (instead of a specific likelihood function) like
in LN. Both studies report evidence for differences in the posterior estimates with respect
to the underlying prior information. Although, these studies are closely related to our
experimental setting presented here, the interpretation of the results must be done with
some caution. First, DNS investigate a small-scale NKM with sticky prices and wages.
Furthermore, in their paper they report the outcome of three so-called Low Rigidities,
High Rigidities and Agnostic scenarios with respect to micro- and macropriors. Across
these scenarios the prior information for the Calvo parameter of price and wage stickiness
becomes more diffuse. Note that in our study we consider the baseline NKM with sticky
prices only while the slope of the NKPC is characterised by the composite parameter
κ. Hence, we do not control directly for the Calvo parameter of price stickiness within
our estimation. LN also work with the baseline NKM but assume a purely forward-
looking dynamic IS curve while there exists only a non-autocorrelated (one-off) shock in
the hybrid NKPC. However, besides price indexation, persistence is brought into inflation
by considering an autocorrelated preference and technology shock. Needless to say, that
in both studies the levels (given as demeaned values) rather than the (time-dependent)
gaps of the variables are taken into account. Table 3 summarizes the differences of the
discussed estimation procedures.

Although there exist structural differences in the setting of our experiments compared
to the ones in DNS and LN, the results help to motivate a fruitful discussion on micro-
vs. macropriors. For the sake of clarity (and in order to ensure the comparability with
our results), we focus on the outcome for the price indexation parameter (here: α, LN : ω,
DNS : ιp) and the persistence parameter in the cost-push/mark-up shock (here: ρπ, LN :
none, DNS : ρλ) only. The estimated values for DNS are given in Table 6 of their paper,
where they discuss the results using micropriors (denoted as ℘s) and macropriors (denoted
as ℘QL) expressed by (Low Rigidities/Agnostic/High Rigidities). In LN their Table B2
(micropriors) and Table B3 together with Table B4 (macropriors) given in their Appendix
B are primarily of interest.

DNS report significant differences in the estimation results (in terms of posterior mean
values and the goodness of fit) with respect to both types of priors. While across all
scenarios in the case of micropriors the values of ιp are low (0.19/0.19/0.20), using macro-
priors the observation becomes ambiguous (0.47/0.14/0.08). Note here, that the confidence
bands are quite wide and include zero except for the Low Rigidities scenario. Hence, at
least for the latter it can be stated that there exists evidence for (a moderate degree of)
price indexation if macropriors are considered. One explanation for the low value of ιp in
the case of micropriors is given by the associated high values of ρλ where (0.86/0.56/0.41)

this approach allows endogenizing the choice of moments (rather than chosen arbitrarily by the researcher
within MM), it becomes an open question which kind of auxiliary model will be a good approximation to
a DSGE model (LN (p. 298, fn. 9)). An overview of the II approach is provided by Carrasco and Florens
(2002).

11



Characteristics DNS LN MoMBay

Moments (Auto)Covariances IRFs (Auto)Covariances

Matching Auxilary VAR, Minimum Distance Minimum Distance

Procedure Likelihood Maximization

Structural Hybrid NKM Partly forward-looking NKM Hybrid NKM

Model (sticky wages and prices) (sticky prices only) (sticky prices only)

Sample 1982:4–2005:4 1960:1–2001:4 1960:1–1979:2

Period(s) 1982:4–2007:2

Data Level Level Gap

(demeaned) (demeaned) (time-dependent)

Price ιp ω α

Indexation

→֒ Micro: 0.19 / 0.19 / 0.20 0.77 0.074 / 0.033

→֒ Macro: 0.47 / 0.14 / 0.08 0.76 0.790 / 0.285

Persistence ρλ — ρπ

Parameter

→֒ Micro: 0.86 / 0.56 / 0.41 — 0.570 / 0.389

→֒ Macro: 0.89 / 0.88 / 0.68 — 0.052 / 0.059

Table 3: Construction of macropriors.

Note: The results using micro- and macropriors are given in the corresponding rows ‘Micro’

and ‘Macro’, respectively. The estimated values for DNS are given in Table 6 of their paper

where they discuss the results using micropriors (denoted as ℘s) and macropriors (denoted as

℘QL) expressed by so-called (Low Rigidities/Agnostic/High Rigidities) scenarios. For LN the

Table B2 (micropriors) and Table B3 together with Table B4 (macropriors) are considered.

With respect to the results from MoMBay, the first entry in the row ‘Micro’ denotes the

value for GI and the second for GM based on the Bayesian estimation BR. The first entry

in the row ‘Macro’ denotes the value for GI and the second for GM based on the estimations

V 0 and V 2, respectively.

holds - a result which is confirmed by our study (cf. both BR estimates for the GI and
GM period). Interestingly, the corresponding vector in the macroprior case is given by
(0.89/0.88/0.68) where the first entry indicates that a high value for ρλ coincides with a
high value of ιp. Hence, there exists both intrinsic and extrinsic persistence in inflation
where the latter one is more distinctive.

An explanation for this phenomenon is not easy to reveal because in their paper DNS
focus on a discussion of price and wage rigidity only. Nevertheless, the authors show that
the lowest values in both types of rigidities as well as a quite low level of habit formation
(which is denoted by h in their paper) can be found in the Low Rigidities scenario. Since
a low degree of price rigidity leads to a high value of the slope of the NKPC, inherited
persistence plays a major role in explaining the dynamics in inflation.7 It follows from that,

7Recall from DNS (p. 1195, equation (9)) that under price indexation, the slope of the NKPC is given

by
(1−ζpβ)(1−ζp)

ζp(1+ιpβ)
where – for a given value of the discount parameter β and price indexation ιp – this

expression increases as price rigidity ζp decreases. See also our discussion on the frequency-dependent
inherited persistence (FIP) effect in Sacht (2014a,b).
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although inherited persistence is important, the persistence in the output gap is not high
enough in order to explain the volatility in inflation. In other words, if there is empirical
evidence for persistence in inflation while the habit formation parameter is estimated to
be low, intrinsic as well as extrinsic inflation persistence must be significantly higher than
zero – in order to account for inertia in the corresponding times series. Hence, both values
of ιp and ρλ have to be unequal to zero if h is low. Again, these observations must be
interpreted with some caution: DNS (p. 1207) notice that probably the time series they
use be not informative enough to analyze different scenarios since some posterior estimates
mimic their prior values. Our study does not face this kind of problem — with only two
exceptions. In particular, for the policy parameters φπ and φx the corresponding prior
distribution does not differ from its posterior counterpart. This holds only in the GM
case and across the specifications V0 to V3 (cf. Figures 11 to 14 given in the Appendix).
Here it seems that the posterior distribution is driven by the data. Since the policy
parameters are not primarily of interest in our study we judged this observation not to
be severe. However, further investigations on the influence of non-informative times series
within Bayesian estimation are always a necessary task to be undertaken in general. In
particular, micropriors might be imposed on φπ and φx in order to check if the problem
remains and if the goodness of fit changes.

LN show that no differences in the estimations for the parameter (ω) of interest can be
found. Both in the micro- and macroprior (first and second block) case, price indexation is
around a high value of 0.77. Although the cost push shock is characterized by an iid-shock,
we already stated above that persistence might come into play through the autoregression
parameter in the preference and technology shocks, respectively, which have a (in)direct
influence on the inflation dynamics (cf. the Appendix A in LN). The corresponding values
are estimated around 0.83 to 0.85 (ρa) and 0.89 (ρg) across all specifications regarding
the prior information. The only changes in the parameter estimates can be found in
the values for price rigidity, the elasticity of labor and in the standard deviation of the
technology and mark-up shock. The authors argue that this problem might be explained
by the misspecification of the model described by a high cross-correlation of the shocks.
Under consideration of artificial data they show that this indeed holds with exception of
preference shocks. According to our Tables 1 and 2, we see that in our experiment there
exist no differences in the standard deviations of the shock at all. However, we do not
discard the possibility of misspecification completely since the phenomena might help to
explain the changes in the composite parameter κ where the parameter of price rigidity is
incorporated. In this respect we call for an explicit consideration of the slope of the NKPC
in greater detail — although the number of parameters to be estimated will increase in
that case, simply by adding the parameters for various elasticities (cf. the expression(s)
for the NKPC in Part One of this thesis).

We sum up that the results presented in DNS and LN mimic those from the literature,
where the degree of price indexation is high in the absence of persistence in the cost
push (mark-up) shock. If both sources of persistence are considered, the autocorrelation
parameter is estimated to be dominant, i.e. being greater than the parameter of price
indexation - where the latter can also be insignificant. Moreover, both studies indicate
that there exist changes in the parameter estimates if macro- instead of micropriors are
applied as prior information. Our experiments (partly) confirm these observations, i.e.
we provide evidence for the domination of the persistence parameter if micropriors are
considered. The opposite holds under consideration of macropriors, which leads to a
better goodness of fit within Bayesian estimation compared to the BR case. Therefore,
we claim that the MoMBay approach can be identified as a point of departure for further
research.
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6 Conclusion

The estimation outcome within the Bayesian approach is sensitive to the choice of prior
knowledge. In the majority of studies each parameter of interest is assumed to be indepen-
dently distributed a priori. The associated sufficient statistics of these so-called micropriors
are taken from microeconomic evidence. In contrast, prior information based on econo-
metric time series analysis leads to the formulation of so-called macropriors. We show that
while micropriors are often used in the literature, applying MM-based macropriors leads
to a better fit of the structural model to the data. Therefore, the advantages of Bayesian
(sufficiency) and MM estimation (transparency) can be unified within a two-stage estima-
tion procedure called MoMBay, where the macroprior information for Bayesian estimation
is evaluated via MM.

The MoMBay approach can be seen as an alternative approach for estimation and
evaluation of macroeconomic models in conjuncture with the Bayesian approach. The
reason for this is that MoMBay reduces the parameter space from which appropriate
starting values (or better: prior mean values) for the optimization within the Bayesian
approach are taken. We show that this indeed leads to a change in the estimates of some
parameters. Similar observations are also made by Del Negro and Schorfheide (2008) as
well as Lombardi and Nicoletti (2012) who also found differences in the posterior values
under consideration of macropriors. Problems are stemming from the existence of less or
even non-informative time series and misspecification of the model. A deeper investigation
on these topics might be fruitful in further research.

7 Appendix

7.1 Prior Densities of the BR Estimations

α κ ρπ σπ

β(0.3, 0.2) Γ(0.4, 0.1) β(0.6, 0.1) IΓ(1.0, 8.0)

χ τ — σx

β(0.5, 0.1) Γ(0.037, 0.0125) — IΓ(0.25, 2.0)

φπ φx φr σr

N(1.3, 0.2) Γ(1.2, 0.8) β(0.5, 0.28) IΓ(1.0, 8.0)

Table 4: Prior densities of the BR estimations.

Note: β, N , Γ and IΓ denotes a Beta, Normal (Gaussian), Gamma and Inverse

Gamma distribution, respectively.
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7.2 Prior Densities of the MoMBay Estimations

GI

V0 V1 V2 V3

α β(0.900, 0.080) β(0.900, 0.080) β(0.800,0.150) β(0.800,0.150)

κ Γ(0.100, 0.080) Γ(0.100, 0.080) Γ(0.100, 0.080) Γ(0.100, 0.080)

ρπ β(0.100, 0.080) β(0.200,0.150) Γ(0.200,0.150) Γ(0.300,0.200)

σπ IΓ(0.614, 0.080) IΓ(0.614, 0.080) IΓ(0.614, 0.080) IΓ(0.614, 0.080)

χ β(0.900, 0.080) β(0.900, 0.080) β(0.800,0.150) β(0.800,0.150)

τ Γ(0.105, 0.080) Γ(0.105, 0.080) Γ(0.105, 0.080) Γ(0.105, 0.080)

σx IΓ(0.519, 0.080) IΓ(0.519, 0.080) IΓ(0.519, 0.080) IΓ(0.519, 0.080)

φπ N(1.324, 0.08) N(1.324, 0.08) N(1.324, 0.08) N(1.324, 0.08)

φx Γ(0.100, 0.080) Γ(0.100, 0.080) Γ(0.100, 0.080) Γ(0.100, 0.080)

φr β(0.314, 0.080) β(0.314, 0.080) β(0.314, 0.080) β(0.314, 0.080)

σr IΓ(0.100, 0.080) IΓ(0.100, 0.080) IΓ(0.100, 0.080) IΓ(0.100, 0.080)

Table 5: Prior densities of the MoMBay estimations (GI).

Note: For specification V0 we adopt the point estimates of the MM estimation A (cf. the

corresponding Tables in Franke et al. (2012)) as prior means within Bayesian estimation. If

MM parameter estimates hit the boundary points, the corresponding prior means are set to

0.1 or 0.9, respectively. The same prior distributions as in the BR case are considered (cf.

Table 4). For the sake of uniformity all corresponding prior values of the standard deviations

are set to 0.08. All changes across the specifications V1 to V3 relative to V0 are given in

bold type.

GM

V0 V1 V2 V3

α β(0.816, 0.080) β(0.816, 0.080) β(0.800,0.150) β(0.800,0.150)

κ Γ(0.100, 0.080) Γ(0.100, 0.080) Γ(0.100, 0.080) Γ(0.100, 0.080)

ρπ β(0.100, 0.080) β(0.200,0.150) β(0.200,0.150) β(0.300,0.300)

σπ IΓ(0.200, 0.080) IΓ(0.200, 0.080) IΓ(0.200, 0.080) IΓ(0.200, 0.080)

χ β(0.900, 0.080) β(0.900, 0.080) β(0.800,0.150) β(0.800, 0.150)

τ Γ(0.047, 0.080) Γ(0.047, 0.080) Γ(0.047, 0.080) Γ(0.047, 0.080)

σx IΓ(0.532, 0.080) IΓ(0.532, 0.080) IΓ(0.532, 0.080) IΓ(0.532, 0.080)

φπ N(1.626, 0.08) N(1.626, 0.08) N(1.626, 0.08) N(1.626, 0.08)

φx Γ(1.031, 0.080) Γ(1.031, 0.080) Γ(1.031, 0.080) Γ(1.031, 0.080)

φr β(0.776, 0.080) β(0.776, 0.080) β(0.776, 0.080) β(0.776, 0.080)

σr IΓ(0.472, 0.080) IΓ(0.472, 0.080) IΓ(0.472, 0.080) IΓ(0.472, 0.080)

Table 6: Prior densities of the MoMBay estimations (GM).

Note: See Table 5.
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7.3 Graphical Results – Prior versus Posterior Densities

Figures 1 to 14 show the graphical results from optimization for the GI and GM period
discussed in the sections 4.1 and 4.2. In these standard graphical outputs provided by
DYNARE, the dashed/dotted green line represents the posterior mode (calculated from
the posterior kernel) associated with the posterior distribution (black line; as a result of
the Random-Walk Metropolis-Hastings procedure). The red/grey line stands for the prior
distribution (collected in the vector p(θ)). It can be stated that all posterior distributions
are close to being normal and that the deviations of the posterior means from the modes
are negligible low i.e. the dashed/dotted green line is close to the maximum of the posterior
distribution. Hence the goodness of the optimization is confirmed: convergence checks by
Brooks and Gelman (1998) which are summarized in the uni- and multivariate diagnostics
(which are, again, provided upon request) are considered. In the majority of the cases
the posterior distributions are not driven by the prior distributions i.e. the shape of the
distributions differ and they are not close to each other. Hence, the information from the
data is sufficient to ensure that the estimation of the posterior distribution is independent
from the priors. The only few exceptions are given by the monetary policy parameters
φπ and φx in the GM case and across the specification V0 (Figure 11) till V3 (14). Here
the sample is not informative enough in order to identify a discrepancy between prior and
posterior distribution.
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Figure 1: Posterior density estimates for BR (GI).

Note: The dashed/dotted green line represents the posterior mode (calculated
from the posterior kernel) associated with the posterior distribution (black
line; generated by the Random-Walk Metropolis-Hastings procedure). The
red/grey line represents the prior distribution (see text for more information
regarding the vector of prior information p(θ)). This note equally applies to
all of the following Figures.
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Figure 2: Posterior density estimates for T1 (GI).

Note: See Figure 1. The parameter ιii with ii ∈ {α, χ, ρπ , φr, τ, κ} denotes the
transformed parameters according to the corresponding rules given in section
4.1.
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Figure 3: Posterior density estimates for T2 (GI).

Note: See Figure 1. The parameter ιii with ii ∈ {α, χ, ρπ , φr, τ, κ} denotes the
transformed parameters according to the corresponding rules given in section
4.1.
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Figure 4: Posterior density estimates for V0 (GI).

Note: See Figure 1.
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Figure 5: Posterior density estimates for V1 (GI).

Note: See Figure 1.
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Figure 6: Posterior density estimates for V2 (GI).

Note: See Figure 1.
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Figure 7: Posterior density estimates for V3 (GI).

Note: See Figure 1.
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Figure 8: Posterior density estimates for BR (GM).

Note: See Figure 1.
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Figure 9: Posterior density estimates for T1 (GM).

Note: See Figure 1. The parameter ιii with ii ∈ {α, χ, ρπ , φr, τ, κ} denotes the
transformed parameters according to the corresponding rules given in section
4.1.
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Figure 10: Posterior density estimates for T2 (GM).

Note: See Figure 1. The parameter ιii with ii ∈ {α, χ, ρπ , φr, τ, κ} denotes the
transformed parameters according to the corresponding rules given in section
4.1.
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Figure 11: Posterior density estimates for V0 (GM).

Note: See Figure 1.
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Figure 12: Posterior density estimates for V1 (GM).

Note: See Figure 1.
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Figure 13: Posterior density estimates for V2 (GM).

Note: See Figure 1.
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Figure 14: Posterior density estimates for V3 (GM).

Note: See Figure 1.
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