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Abstract

In this paper we analyze a hybrid small-scale New-Keynesian model with an ar-
bitrary frequency of the agents’ synchronized decision making. We study the impact
of various demand and supply shocks on the dynamics of the model variables. We
show that the corresponding impulse-response functions of high-frequency versions of
the model can qualitatively as well as quantitatively be fairly dissimilar from their
quarterly counterparts. This can be explained by the decrease in the effectiveness of
monetary policy responses to these shocks and the overall increase of inertia in the
model variables. In particular, different kinds of frequency-dependent persistence ef-
fects occur, which dampen the pass-through of output gap movements into inflation
rate dynamics as the period length decreases. The main conclusion is that DSGE
modelling may be more sensitive to its choice of the agents’ decision interval.

Keywords: Hybrid New-Keynesian model; high-frequency modelling; monetary policy;
frequency-dependent persistence.

JEL classification: C63, C68, E32, E52.

∗Kiel Institute for the World Economy, Hindenburgufer 66, 24105 Kiel & Department of Eco-
nomics, Christian-Albrechts-University Kiel, Olshausenstrasse 40, 24118 Kiel, Germany. Email:
stephen.sacht@ifw-kiel.de or sacht@economics.uni-kiel.de

I thank Hans-Werner Wohltmann for valuable discussions and comments. This paper is based on
Chapter 2 of my doctoral thesis High-Frequency Analysis and Moment-Matching Estimation of the

Baseline New-Keynesian Model (2014). This working paper version is preliminary.

1



1 Introduction

In this paper we are concerned with an elementary methodological issue in the macroeco-
nomic modelling of DSGE models. These models are usually formulated in discrete time.
As an approximation to reality, they assume that decisions are taken discontinuously and
that all transactions of a certain class occur in the same synchronized rhythm. There is,
however, no argument that would allow one to identify a uniform natural decision period.
If the models, especially in numerical studies, invoke a definite period, which is mostly a
quarter, the choice is entirely determined by convention or the frequency of the available
data.

However, over the last years researchers seek to develop new procedures in order to
collect and analyze high-frequency data. Various research projects have benefited from
rapid advances in information and communication technologies during the last two decades.
As a prominent example, the Billion Prices Project at the MIT Sloan provides daily
inflation data based on scraped price indices, i.e. indices calculated from prices which are
available online. Ahrens and Sacht (forthcoming) we show that such kind of data can be
used for the estimation of a New-Keynesian Phillips Curve (NKPC) since the risk of a
small sample bias and structural breaks are reduced. The former is based on the fact that
just a small amount of observations are available on a quarterly (or even annual) frequency.
In order to circumvent this problem a long time span of several months (or years) must
be considered with a high probability of structural breaks included. For instance, when
estimating a model based on US data, the sample is split into two sub-samples, i.e. the GI
and GM period, respectively. This can be motivated by a rapid decline in the volatility of
inflation at the beginning of the 1980’s. As Ahrens and Sacht (forthcoming) show under
consideration of daily data over an interval of roughly two years, they are able to provide
significant parameter estimates for the degree of price stickiness (in Argentina).

As information on high frequent adjustments in the economic indicators become avail-
able, this calls for a modification of the DSGE model with respect to the period length.
In particular, a reduction of the period length is tantamount to more frequent decisions
and transactions within a given calendar time unit. A model version with a shorter period
than in the original formulation is thus a high-frequency economy. If the period of the
benchmark model serves as the time unit, which is fixed, and a high-frequency economy
is constituted by a period of length 0 < h < 1, the latter will also be designated an h-
economy. In this paper we are going to analyze various shocks in a baseline 3-equations
NKM under explicit consideration of the period length. In particular, we compare IRFs
based on these shocks across different frequencies of decision making. Furthermore, we
give an explanation for how the transmission channel of monetary policy is affected in
transition from one h-economy to the other. In order to transform the model into its
high-frequency equivalent we apply specific transition rules on the frequency-dependent
variables and parameters.

Modeling the impact of different period lengths on the dynamics of the current workhorse-
model used for monetary and fiscal policy evaluation, the NKM with sticky prices (and
wages), has been done by Flaschel et al. (2008) and Anagnostopoulos and Giannitsarou
(2010b) in the first place. These studies are mainly concerned with analyzing the impact
of the change in the period length on the determinacy of the model. While Flaschel et al.
(2008) indicate that determinacy turns out to pose no problem in a NKM, Anagnostopou-
los and Giannitsarou (2010a, pp. 11ff) show that determinacy may depend on the length
of the adjustment period (jointly with a tax rate on labour). This is confirmed for high-
frequency versions of RBC models (Benhabib and Farmer (1994)). Hintermaier (2005)
discusses a set of numerical parameters such that, for instance, the quarterly economy is
determinate but not its weekly version. Posch et al. (2011) present a numerical solution
technique based on Chebychev polynomials in order solve a NKM formulated entirely in
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continuous time. Besides theoretical work, empirical investigations on the role of the fre-
quency in DSGE models is even more rare. For example, one might think of a calibration
or estimation procedure, which takes explicit account of different decision intervals on the
part of the economic agents and tries to let the data decide on an appropriate period. We
only know of two examples of such work in the literature, namely Christiano (1985) and
Aadland (2001).

Our work is quite closely related to Sacht and Wohltmann (2013), Sacht (2014) and
Franke and Sacht (forthcoming). The latter show that by diverging from the standard
assumption of the baseline period length to be one quarter this leads to distinct changes
in the dynamic properties of the model. In particular, the authors state that while deter-
minacy of the model remains unaffected, the IRFs can differ in a quantitative and qual-
itative significant way just by increasing the frequency of decision making (i.e. assuming
a monthly, weekly or daily length of the period). While Franke and Sacht (forthcoming)
also provide an elaborate analytical discussion of the polar case of a decision interval given
in continuous-time (where h is approximately zero), in this paper we are concerned with
the investigation of the IRFs based on different values of h only. Therefore, we also in-
clude a nominal interest rate shock in our study but also consider a technology as well as
a cost-push shock. Most importantly, we fill the gap in the paper by Franke and Sacht
(forthcoming) by giving an explicit (economic) explanation for the observed changes in
the IRFs across frequencies.

Sacht and Wohltmann (2013) study analytically and numerically the high-frequency
optimal monetary policy responses to a (deterministic and stochastic) cost-push shock.
They show that the welfare loss changes (in relation) across different optimal monetary
policy regimes under variation of the period length. In particular, the monetary authority
faces a decrease in their effectiveness to dampen the increase in the inflation rate. Overall,
the welfare loss increases as the period length decreases together with an amplification
of the policy trade-off in case of a cost-push, i.e. a more pronounced stagflation scenario
occurs. While in their elaborate analytical work mainly the derivation of the loss func-
tions under different monetary policy regimes and frequencies are presented, an intensive
investigation of the corresponding IRFs is also done in Sacht (2014). Here, the author
also seeks to identify the economic rationale which leads to the results. Furthermore, we
provide a sensitivity analysis with respect to the degree of price stickiness, the inflation
targeting regime and the persistence in the autocorrelated shock process.

The remainder of this paper is structured as follows. In the next section we discuss the
concept of a h-economy and provide transition rules for the frequency-dependent variables
and parameters. In section 3 we provide economic explanations for the upcoming results
based on the change in the (frequency-dependent) intrinsic, extrinsic and inherited persis-
tence in the model. Section 4 contains the numerical analysis of a nominal interest rate,
technology and cost-push shock based on IRFs under consideration of different frequen-
cies. Section 5 concludes. The microfoundations of the h-economy model, the solution of
the shock process on a higher frequency, the representation of the reduced-form solutions
of the model variants as well as all Figures can be found in the Appendix.

2 The Concept of a High-Frequency Economy

In a NKM the underlying period length is assumed to be a quarter. Here, we stick to this
convention by defining a quarter as the benchmark period length, although the latter is
arbitrary and can be e.g. a month or a year instead. In particular, in order to compare
two economies with different frequencies of the synchronized actions, we fix the time unit
as a quarter and generally allow the agents to make their decisions and carry out the
corresponding transactions every subperiods, i.e. h quarters. The period length relative to
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a quarter is then defined by

0 < h =
1

f
< 1 (1)

where f denotes the frequency of decision making. We assume that the frequency changes
homogeneously. This means that all decisions and transactions of the representative house-
hold, firm and the central bank occur in the same, synchronized rhythm, e.g. on a quarterly
(f = 1), monthly (f = 3), weekly (f = 12) or even daily (f = 90) frequency. As mentioned
above, such a high-frequency economy is simply called an h-economy.

As a general assumption we claim that the transactions in quarterly magnitudes are
spread symmetrically over the corresponding subperiods in an h-economy. For illustration,
a nominal interest rate of, for example, 1.50% per quarter means that, in an h-economy,
hundred dollars earn h·1.50 dollars over the period [t, t+h). The time preference rate of the
representative household is to be interpreted analogously.1 This procedure can not only be
found in Flaschel et. al (2008), Anagnostopoulos and Giannitsarou (2010a,b), Franke and
Sacht (forthcoming) and Sacht and Wohltmann (2013) with respect to standard NKMs,
but also in the modelling of search and matching processes (Rogerson et al. (2005, p. 963)).

In order to transform a model under consideration of a benchmark period length into
an h-economy, Franke and Sacht (forthcoming) formulate specific transition rules. These
rules can be summarized in the following three steps:

(1) To start with, the baseline model with h = 1 must be formulated. Hence, given a
discrete time specification, h is then considered explicitly. As a main assumption,
we claim that the functional form of the model, i.e. the system equations, remain
unchanged across different frequencies. As an example, the dynamic IS equation in
a NKM describes the consumption decision of a representative household based on
consumption smoothing. This holds independently on a low- or high-frequency as
we show in the Appendix.

(2) For the transformation into an h-economy framework, the frequency-dependent com-
ponents of the model have to be suitably adjusted. In particular, the frequency-
dependent variables and parameters are going to be changed under consideration
of h. Regarding the parameters, e.g. the discount rates and probabilities, those
differ across all subperiods relative to the benchmark period length as 0 < h < 1
holds, while fractions remain unaffected. With respect to the variables, growth rates
exhibit a certain time dimension and therefore have to be divided by h, while con-
temporaneous adjustment rates have no time dimension. Throughout this paper we
will discuss these issues in greater detail.

(3) For a direct comparison of several h-economies, the stock variables are uniformly
expressed as normalised, e.g. quarterized (given the baseline model under h = 1 is
formulated in quarterly) magnitudes. Given that the modified h-economy specifica-
tion of the model after step (2) is applied, this means, that all frequency-dependent
variables are divided by h in order to ensure conformity across different period
lengths. In this respect, note that a variable without time-dimension like the output
gap are not quarterized. Alternatively, normalization (quarterization) can be seen
as nothing else than a specific aggregation technique applied on the high-frequency
stock variables relative to the benchmark period length. In particular, different kinds
of aggregate schemes exist in (econometric) literature. In our study we apply the
so-called systematic/skip sampling aggregation scheme based on the deviation of the
corresponding variables by h. Once again, throughout this paper we will discuss this
issue in greater detail.

1While this treatment introduces a compound interest effect, it is confirmed that this effect is certainly not
strong enough to explain the differences over the first few quarters.
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In this paper we consider the following standard NKM in its hybrid representation.
In the first step we adopt the specifications presented in Smets and Wouters (2003),
Christiano et. al (2005) and Gaĺı (2008, his Chapter 3) in order to formulate the model,
while the underlying period length is a quarter (h = 1):

yt =
1

1 + χ
Etyt+1 +

χ

1 + χ
yt−1 − δ1(it − Etπt+1 − ī) + δ2v

y
t (2)

πt =
β

1 + αβ
Etπt+1 +

α

1 + αβ
πt−1 + κyt + vπt (3)

it = ī+ φππt + φyyt + vit (4)

vzt = ρzvzt−1 + εzt , z = {y, π, i} (5)

with

δ1 =
1− χ

σ(1 + χ)
(6)

δ2 =
(1− χ)(1 + η)(ρy − 1)

(1 + χ)(σ + η)
(7)

β =
1

1 + ν
(8)

κ =
(1− θ)(1− θβ)

θ(1 + βα)
(σ + η) (9)

Et denotes the mathematical expectation operator conditional on information up to period
t. Equation (2) describes a hybrid dynamic IS curve and results from the standard utility
maximization approach of a representative household. In this case the current output
gap depends negatively on the real interest rate (it − Etπt+1), i.e. it is stemming from
intertemporal optimization of consumption and saving, which then results in consumption
smoothing. The constant natural rate of interest is denoted by ī. The parameters σ ≥ 0
and η ≥ 0 denote the inverse intertemporal elasticity of substitution and the substitution
elasticity of labor, respectively. Intrinsic persistence is imposed on this demand equation
by the degree of the households’ external habit formation denoted by 0 ≤ χ ≤ 1. Equation
(3) is known as the hybrid NKPC where the output gap (yt) is the driving force of inflation
due to monopolistic competition and the Calvo price-setting scheme. The parameter β
denotes the discount factor, where ν > 0 serves as the time preference rate, i.e. 0 < β < 1
holds. The price indexation parameter α displays the degree of intrinsic persistence in the
inflation rate dynamics. The slope of the NKPC, which measures the degree of inherited
persistence with respect to yt, is given by the composite parameter κ ≥ 0. The latter
consists on the discount parameter, the degree of price indexation and the Calvo (1983)
parameter of price setting, where the probability of resetting the price of a representative
firm on a given frequency is denoted by 0 ≤ θ ≤ 1. According to the interest rate
rule of Taylor (1993) type (cf. equation (4)), the monetary authority reacts directly to
movements in the output gap (φy ≥ 0) and the inflation rate (φπ ≥ 0). We assume that
the exogenous driving forces in the model variables are given by a technology shock vyt , a
cost-push shock vπt and a nominal interest shock vit, respectively (cf. equation (5)). These
shocks follow an autocorrelated process under consideration of an exogenous persistence
parameter 0 ≤ ρz < 1 with z = {y, π, i}. Accordingly, the dynamics of the system are
set in motion by one-time impulses denoted by εz,t in time t = 0. Note that we consider
a deterministic impulse only, i.e. the corresponding standard deviations of the shocks are
assumed to be zero.2

2In direct comparison to the work of Franke and Sacht (forthcoming), we allow also for a serially correlated
technology and cost-push in addition to a nominal interest rate shock. Furthermore, backward-looking
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In the second step we adjust the frequency-dependent variables and parameters of
the NKM in quarterly magnitudes (described by the equations (2) to (9)) by h in order
to transform the system in an h-economy. Note that now 0 < h < 1 holds. It is not
necessary to spell out the details here that lead from the microfoundations to the structural
NKPC and dynamic IS equation in an h-economy.3 However, for completeness these
microfoundations can be found in the Appendix. In turns out that, let’s say, direct ad-hoc
adjustments of the variables and parameters by h coincide with those obtained through
microfoundation.

First, we discuss the representation of the NKPC in an h-economy, which is given by:

∆pt = pt − pt−h =
β(h)

1 + αβ(h)
Et∆pt+h +

α

1 + αβ(h)
∆pt−h + κ(h)yt + hvπt (10)

with

β(h) =
1

1 + hν
(11)

κ(h) =
[1− θ(h)][1 − θ(h)β(h)]

θ(h)[1 + αβ(h)]
(σ + η) =

h2(1− θ)(1 + ν − θ)

(1− h(1− θ))(1 + hν + α)
(σ + η) (12)

and ∆pt+h = pt+h − pt as well as ∆pt−h = pt−h − pt−2h.
4 The second part of equation

(12) can be derived under consideration of the explicit expressions for θ(h) and β(h).
The values of two of the structural parameters, which enter the NKPC, are dependent
on the frequency of decision-making. First, the time preference rate ν becomes hν in
an h-economy since the household is less discounting future changes in the utility over a
subperiod with length 0 < h < 1. From this it follows that the discount factor turns into
β = β(h) = 1/(1 + hν). Second, the price stickiness θ also has to be adjusted. As in a
period of length h the probability for resetting the price of the firm will be h(1 − θ). We
have θ(h) = 1 − h(1 − θ) if the pure symbol θ is retained for the constituent stickiness
parameter from the quarterly setting. The stickiness remains the same in the sense that
on average a firm is allowed to reset the price every 1/[1−θ(h)] periods of length h, which,
independently of h, means every

h/[1− θ(h)] = h/[1 − 1 + h(1 − θ)] = 1/(1 − θ)

quarters. Under consideration of β(h) and θ(h), the slope of the NKPC turns into κ(h). As
we will discuss later, it can be shown that the slope becomes flatter on a higher frequency,
i.e. as the period length decreases. Again, since the output gap exhibits no time dimension,
κ(h) is multiplied by h, therefore consider the term h2 in equation (12). The parameters
σ and η are not frequency-dependent since elasticities also exhibit no time-dimension.
Note furthermore that according to the concept of price indexation, a fraction of firms
show their willingness or ability to re-optimize their price in a point in time. Hence the
parameter α, which denotes this fraction, is not frequency-dependent, either.

Making use of the previous expression for the high-frequency NKPC and the fact
that the (natural) nominal interest rate is expressed by high-frequency magnitudes by

behavior in the inflation rate dynamics is incorporated by the assumption of price indexation (Christiano
et. al (2005) instead of rule-of-thumb price-setting (Gaĺı et. al (2001)). The reason for this is that we claim
that price indexation is the dominant procedure in the modeling of a hybrid NKMs in the literature.

3The Calvo setting is helpful in this respect, whereas markup pricing together with Taylor’s staggered wage
contracts would be more difficult to treat (see Christiano (1985)).

4Franke and Sacht (forthcoming) show that the solution path of ∆pt (and yt; see below) turns into a specific
differential equation in transition to a continuous time specification of the model. More precisely, it can be
shown that, under our numerical parameter scenario given here, the IRFs of the model variables converge
towards finite values if the period length h tends to zero. Therefore, we refer to the ‘Observations’ (or better:
‘Lemmata’) 1 to 3 (together with the associated Appendix) presented in Franke and Sacht (forthcoming).
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multiplying with h, the Taylor rule for the h-economy reads

hit = hī+ φπ∆pt + hφyyt + hvit. (13)

It is worth mentioning that the monetary policy parameter with respect to the inflation
rate (φπ) remains unaffected by a change in the period length, while this does not hold for
the policy reaction to the output gap denoted by φy. The reason is that the inflation rate is
defined as a growth and the output gap as an adjustment rate. For the latter note that the
output gap is defined as the difference in the actual level of output to the actual natural
level of output (i.e. the level of output in the absence of nominal rigidities) and therefore
has no time-dimension. Instead, φy is multiplied by h. This procedure can be found in an
overwhelming amount of numerical studies, where the parameter φy is calibrated based
on, e.g. an annual nominal interest rate. In this case φy is divided by 4 in order to express
the monetary authorities reaction to changes in the output gap in quarterly magnitudes,
while φπ remains the same (an example is given in Gaĺı (2008, p. 56)).

The output gap as a ratio of two flow magnitudes needs not to be transformed since
yt is defined as a contemporaneous adjustment rate:

yt =
1

1 + χ
Etyt+h +

χ

1 + χ
yt−h − δ1(h)(it − Etπt+h − ī) + δ2(h)v

y
t (14)

with

δ1(h) = h
1− χ

σ(1 + χ)
(15)

δ2(h) = h
(1− χ)(1 + η)(ρ(h)y − 1)

(1 + χ)(σ + η)
. (16)

The only frequency dependent components of the dynamic IS equation are the variables
it, Etπt+h and ī, which are all multiplied by h and the persistence parameter ρy, which
has to be reformulated into ρ(h)y = 1 − h(1 − ρy) (see the derivation below). ρ(h)y is
part of the composite parameter δ2(h) due to the existence of the technology shock vyt in
the (hybrid) dynamic IS equation. Equivalent to the price indexation parameter α, the
habit formation parameter χ stands for a fraction. In more detail, in the quarterly model
current consumption ckt of household k and past aggregate consumption Ct−1 (scaled to
the household’s consumption level) enter the utility function as the difference ckt −χCt−1.
This expression requires χ to be dimensionless, as in the h-economy it simply becomes
hckt − χhCt−h, if the consumption variables are quarterized, too. Note that in a DSGE
model, the goods market is cleared in every period, i.e. yt = ct holds. Again, further
details regarding the microfoundation of the high-frequency (hybrid) dynamic IS equation
can be found in the Appendix.

Finally, we are going to transform the AR(1) shock processes (5). Therefore, we express
the law of motion as a contraction rate

vzt − vzt−1 = (ρz − 1)vzt−1 + εzt . (17)

Accordingly, over the subperiod h we get

vzt − vzt−h = h(ρz − 1)vzt−h + εzt (18)

which, after simple re-arrangement, leads to

vzt = ρ(h)zvzt−h + εzt (19)

where
ρ(h)z = 1− h(1− ρz) (20)
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and z = {y, π, i} holds (see also Franke and Sacht (forthcoming) as well as Sacht and
Wohltmann (2013)). Note that the term (ρz − 1) can be interpreted as the contraction
persistence. This contraction persistence refers to the nature of the AR(1) process itself
since 0 ≤ ρz < 1 holds, i.e. the shock dies out over a finite amount of periods. By
multiplying this contraction rate with h, the shock is spread over the corresponding amount
of subperiods. In this case the contraction rate is given by equation (20) and, hence, now
becomes frequency-dependent. A more elaborate discussion on the effects of a change in the
shock process with respect to h is given in the next section. It goes without saying, that the
deterministic impulse εz becomes part of the agents’ information after the shock occurs.
Due to the assumption of rational expectations, the shock hits the economy surprisingly
on impact, while the dynamics of the variables are perfectly predictably afterwards.

In the third and final step we quarterize all frequency-dependent variables in order
to ensure the comparability across different h-economies. Note that here we apply the
systematic/skip sampling aggregation scheme in order to compare different h-economies.
This means that we take into consideration the value of the inflation rate in the h-economy
and its corresponding counterpart in the quarterly economy on the given quarter. For a
direct comparison it is necessary to divide the associated variable(s) by h. This concept
is taken directly from the econometrics literature. Silvestrini and Veredas (2008, p. 459)
state that the systematic/skip sampling aggregation scheme has to be applied on stock
variables like the inflation and the nominal interest rate. The reason is that decisions
based on stocks depend on the recent realized values of these variables.5 Based on that,
denoting the log price prevailing over the same time interval by pt, the quarterized inflation
rate is given by

π
(h)
t =

∆p
(h)
t

h
(21)

with ∆p
(h)
t = pt − pt−h. The superscript (h) indicates the difference in the variable of the

baseline (h = 1) relative to the h-economy (0 < h < 1) model. Note that in the former

case π
(1)
t = ∆p

(1)
t /1 = pt − pt−1 holds. For clarification, in the following, we omit this

superscript (except in cases where a direct comparison is necessary). Therefore the NKPC
(10) and the Taylor rule (13) for 0 < h < 1 are divided by h itself, while the dynamic IS
equation remains unaffected. The quarterized h-economy version of the NKM is finally
given by

yt =
1

1 + χ
Etyt+h +

χ

1 + χ
yt−h − δ1(h)(it − Etπt+h − ī) + δ2(h)v

y
t (22)

πt =
β(h)

1 + αβ(h)
Etπt+h +

α

1 + αβ(h)
πt−h + κ̃(h)yt + vπt (23)

it = φππt + φyyt + vit. (24)

vzt = ρ(h)zvzt−h + εzt (25)

with (11), (15) and (16) as expressions for the composite parameters β(h), δ1(h) and δ2(h),

5A large body of conflicting literature on this kind of time aggregation exists. For a survey see, again, Sil-
vestrini and Veredas (2008). Hassler (2011) is being named as a representative of the literature, who points
out that due to the existence of competing methods of aggregation, i.e. temporal aggregation (cumulation
of flows), systematic/skip sampling (specific value at a point in time) or simply averaging, it is unclear
which of these different schemes to choose. Drost and Nijman (1993) show that temporal aggregation and
systematic/skip sampling might produce different outcomes. The reason is that information will be lost
through aggregation - depending on what kind of aggregation method is applied. In Sacht and Wohltmann
(2013) temporal aggregation is applied on the inflation rate, which is based on a specific economic inter-
pretation. However, by direct comparison of the qualitative and quantitative observations in both studies,
it turns out that there exist just minor quantitative differences in the results.
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respectively. According to equation (12), κ(h) is now redefined as

κ̃(h) =
κ(h)

h
=

h(1− θ)(1 + ν − θ)

(1− h(1 − θ))(1 + hν + α)
(σ + η). (26)

Since we assume deterministic shocks only, we omit the expectation operator Et. The
dynamic system above is our point of departure for our analytical and numerical analysis
undertaken in the following sections.

We close this section with a brief discussion on the stability of an h-economy, i.e. as
0 < h < 1 holds. Therefore, we consider the purely forward-looking case (χ = α = 0) only.
It is well-known (for h = 1) that within this model environment, the dynamic system is
determinate and saddlepoint stable if the following condition is true:

(1− β(h))φy + κ̃(h)(φπ − 1) > 0. (27)

Note that this expression is the same as shown in the seminal paper by Bullard and Mitra
(2002, p. 1115) except for the frequency-dependent parameters β and κ, which have to be
substituted by β(h) = 1/(1 + ρh) and κ̃(h) = κ(h)/h. It goes without saying that in the
case h = 1, this stability condition is fulfilled if the Taylor principle holds, which requires
φπ > 1 to be true since all (composite) parameters are assumed to be equal or greater
than zero. It is obvious that in the purely forward-looking h-economy model variant, the
Taylor principle also serves as a sufficient condition for the existence of a unique solution,
which holds for any value of 0 ≤ h < 1. For a more elaborate discussion on determinacy
— especially concerning the hybrid specification of the high-frequency model — we refer
to Flaschel et. al (2008) and Franke and Sacht (forthcoming).6

3 The Impacts of Frequency-Dependent Persistence

To explain the results presented here, it is important to analyze the underlying driving
forces which cause the adjustments in the model under the variation of the period length
h. To begin with, the structure of the shock and, in particular, the exogenous persistence
process must be investigated. From equation (20) it can be seen that, when compared to its
equivalent in the baseline model given by (5), the shock process under this specification for
the high-frequency model differs from the one in the quarterly model due to the existence
of h. In particular, vzt = ρzvzt−1 + εzt is reformulated into vzt = ρ(h)zvzt−h + εzt with
ρ(h)z = 1 − h(1 − ρz) where z denotes the three different shocks. As a consequence,
the history of the shock process is changed if the baseline model is reformulated into an
h-economy framework. To see this, consider the expectation value of AR(1) process vzt
given by the solution with respect to the initial shock in t = 0 (cf. equation (20); see the
Appendix for a proof):

E0v
z
t = [ρ(h)z ]tεz0, (28)

where E0 denotes the expectation operator conditional on the information given in the
initial period t = 0. As we turn to an investigation on a higher frequency relative to the
baseline period length, the dynamics in the shock process are spread over all subperiods.7

This observation is mapped into an increase of the weight on the previous realization of
the shock as h (vzt−h) declines. From this it follows that less of the impact of the initial

6Note that, given a hybrid specification of the NKM, a check on determinacy is not straightforward since
an intensive analysis of the (in)stable Eigenvalues is strictly required in this case.

7Obviously, the shock process vzt displays the exogenous impact on the system in every subperiod up to
t, e.g. for every month, week or day. In Sacht and Wohltmann (2013), sh = t is assumed which leads to
s = 0, 1, . . . , t/h. Here, vzt displays the value of the shock in the h-economy relative to every benchmark
period (which is assumed also to be a quarter in their study). We consider this specification explicitly as
we compute the value of the loss (relations) in Sacht (2014).
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impulse (εz0) has vanished relative to the baseline period length in the transition from one
subperiod to another. More precisely, the difference in vzt − vzt−h becomes smaller as h
decreases since ρ(h)z > ρz holds for 0 < h < 1 and all values of ρz. Due to the fact
that the contraction persistence ρ(h)z is decomposed in a regular (1−ρz) and a frequency
dependent (h) term, it can be denoted as the frequency-dependent ’contraction’ persistence
(FCP). According to equation (28) this kind of updating-process of the system’s exogenous
driving force, applied in every period, must lead to higher persistence in an h-economy
environment due to the increase in the ‘life span’ of the shock itself.

By investigating the dynamics in case of various shocks, inherited persistence must also
be taken into account. This kind of persistence displays the cross-relationship between the
movements in the output gap and the inflation rate. It is measured by the slope of the
NKPC, i.e. the frequency-dependent composite parameter κ̃(h). Note that this parameter
is crucial for the implementation of a(n optimal) monetary policy strategy induced by the
central bank. The latter has direct control over the nominal interest rate, which therefore
serves as its primary policy instrument. However, the inflation rate can only be influenced
indirectly by changing the output gap via consumption smoothing (see the next sections for
a detailed analysis of the corresponding transmission channel(s)). Hence, the effectiveness
of monetary policy relies entirely on κ̃(h): the impact of the change in the output gap
depends on the slope of the NKPC. A high value of the latter might lead to a stronger
stabilization effect on the inflation rate as a shock occurs. For clarification we decompose
κ̃(h) into

κ̃(h) = λ̃(h)(σ + η) (29)

with

λ̃(h) =
h(1− θ)(1 + ν − θ)

(1− h(1 − θ))(1 + hν + α)
, (30)

since the elasticities σ and η do not depend on h and account just for scale effects. Based
on equation (30) we are able to discuss the change in the slope with respect to an increase
in the degree of price stickiness and indexation as well as the period length. Applying the
total differential on λ̃(h) this leads to

dλ̃(h) =
∂λ̃(h)

∂α
dα+

∂λ̃(h)

∂θ
dθ +

∂ ˜λ(h)

∂h
dh.

Since all parameters in λ̃(h) are bounded between 0 and 1, it can be easily checked that
the following results regarding the sign of the partial derivatives hold, respectively:8

∂λ̃(h)

∂α
=

h(θ − 1)(1 − θ + ν)

[1 + h(θ − 1)](1 + α+ hν)2
< 0 (31)

∂λ̃(h)

∂θ
=

h2(θ − 1)− h[2(1 − θ) + ν]

[1 + h(θ − 1)]2(1 + α+ hν)
< 0 (32)

∂λ̃(h)

∂h
= −

(θ − 1)(1 − θ + ν)[1 + α+ h2ν(1− θ)]

[1 + h(θ − 1)]2(1 + α+ hν)2
> 0. (33)

Note that the sign of these derivations remains unaltered in quarterly magnitudes, i.e. for
h = 1 and dh = 0. According to the above expressions, the change in the slope is now
decomposed into three terms, which measure the impact of the change in α, θ and h. Due
to the consideration of h in λ̃(h), equation (33) indicates a frequency-dependent ’inherited’
persistence (FIP) effect.

8Note that for the Calvo parameter in quarterly magnitudes 0 ≤ θ ≤ 1 holds. Hence, this results in
(θ − 1) ≤ 0 and [1 + h(θ − 1)] > 0 for all values of h over its admissible range.
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With respect to the expression (31), an increase in the fraction of firms, which set
their actual price level equal to the previous one, strengthens the importance of backward-
looking behaviour in the price adjustment process. This means that changes in the real
marginal product (approximated by the output gap) become less considered the higher
the non-frequency dependent intrinsic persistence will be. In other words, the more firms
are indexing their prices to past realisations of the same, the more the impact of economic
activity on the price-setting scheme is dampened.

Equivalently, according to the expression (32), the higher the probability of not setting
the prices the lower the impact of the change in the output gap induced by the central
bank. From an economic point of view, a high degree of price stickiness makes it difficult
for the policy maker to influence inflation rate dynamics. The reason is that the price-
setting scheme becomes increasingly degenerated from the movement in the real marginal
cost the higher the likelihood for sticky prices will be. As a result the volatility in inflation
increases with a higher degree of price stickiness.

An equivalent observation holds according to the expression (33): the higher the fre-
quency of decision making, i.e. the lower the period length h, the flatter the slope of the
NKPC will be. This result can be explained by the direct FIP effect on inflation relative
to α and θ. Economically speaking the central bank must change its instrument variable
more often to incorporate the higher frequency of reallocations and transactions. Once the
monetary authority decided to influence economic activity they become bounded. This
means that the central bank has to consider the circumstance that this intervention affects
different fractions (about the same size) of agents over a corresponding amount of points
in time (which depends directly on the period length). Hence, only a small fraction of
firms is able to reset their prices on a single market day. As a result, ceteris paribus, the
response of the inflation rate to a change in the output gap is lower on a higher frequency.

Given the expressions (31) to (33) it can be seen that the policy maker faces a
(frequency-dependent) trade-off along several dimensions. For example, a decrease in
the price stickiness can be offset by a decrease in the period length. This means that even
under a high degree of flexible prices, the stabilization of the inflation rate might become
hindered if the transactions are spread over more market days relative to the quarterly
case. This effect is weakened as the degree of price indexation decreases. The reason
is that the change in the real marginal costs (output gap) is more pronounced the more
forward-looking the NKPC will be. In this case, the decrease in h can be offset or even
over-compensated by the compound effect induced by the decrease in α and θ. More pre-
cisely, in this specific case the central bank faces a situation where its policy strategy is
more effective the more the dynamics in inflation depend on economic activity – even on a
higher frequency. The question arises if even in the polar case of a purely forward-looking
NKM with almost perfect price flexibility, monetary policy can be effective on a nearly
continuous time scale, i.e. as α = 0, θ ≈ 0, h ≈ 0 hold.9 We are going to investigate
numerically related questions in the next section. Independently of the FIP effect, the
volatility in the economic variables is always increasing as h decreases due to the FCP
effect, i.e. the increase in the persistence of the shock process.

For a deeper understanding of both kinds of frequency-dependent persistence effects,
we discuss this issue in greater detail. From an economic point of view both effects result
from the change in economic activity depending on the period length, i.e. it reflects the
higher frequencies in transactions and adjustments. In particular, households and firms
are re-optimizing their plans automatically after a shock occurs in order to meet the
basic assumption of general equilibria on the goods and labor market in every period.

9Note that such an scenario is superfluous if θ = h = 0 holds due to model dichotomy. For θ = 0 this means
that monetary policy is of no use as price are fully flexible since the nominal variables adjust one to one
with the price level as a shock occurs. For the analysis of h-economy model in continuous time (h = 0) see
Franke and Sacht (forthcoming) as well as Posch et al. (2011).
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In a baseline NKM all reallocation processes are made by all agents within a quarter
on a specific market day. However, as already stated, in an h-economy framework these
reallocations are spread over the entire quarter, i.e. a h fraction (about the same size)
of agents are re-optimizing on a specific market day within a month (h = 1/3), week
(h = 1/12) or day (h = 1/90) respectively.10

Month

h · (1− θ)

h · (1− θ)

h · (1− θ)

h · (1− θ)

(1− θ)

(1 − θ)

Quarter
0 1 2 3 4 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 1: Frequency of price adjustments in the quarterly NKM versus an h-economy (h = 1/3).

Note: This graph shows an example for the relationship between the amount of market
days and price adjustments. The arrows at the top denote the frequency of price
adjustments in a quarterly economy and the arrows at the bottom denote the (selected)
frequency of price adjustments in a monthly economy.

Figure 1 describes this issue in detail by considering the following example. Let us
assume that the representative firm is able to adjust its nominal price level only every
three quarters. Hence, if we consider only a quarterly model with θ = 2/3 and h = 1, the
firms are able to adjust their prices in January, April, July or October respectively (so only
four market days exist at all), with probability h(1 − θ) = (1− 2/3) = 1/3. In a monthly
economy the probability to adjust the price changes to h(1 − θ) = 1/3(1 − 2/3) = 1/9,
which means that the probability is lower in every month relative to a quarter as long
as the shock process does not vanish. In the case of a weakly economy (h = 1/12) the
probability declines further and so on.

This example shows how the FCP and FIP effects have an impact on the transition
from a low to a high-frequency economy. For example, under consideration of the price
stickiness some but not all firms are able to react to additional news which arrive during
the period (e.g. at the beginning of the next month). Hence the corresponding proportion
of firms which is able to adjust on each single market day (month) must obviously be
smaller than in the baseline case (quarter). From that it follows, that the duration of
price adjustments increases with a decrease in the period-length h. The same argument
also holds for transactions on the goods market. The reason is that the volatility in the
economy increases due to the optimization behavior of firms and households (expressed
by the change in their optimization plans). Hence the corresponding time spans lead
to a higher shock persistence, i.e. the change in the variables becomes smoother over
time. In addition, later on, we might observe stronger impact effects at time t = 0 as the
period length decreases. A general intuition for that is if the future is one month or one
day ahead it has a greater impact on today’s choices than if it is one quarter away (cf.

10It is assumed that the reallocation process takes place in a point of time. In this respect, it is irrelevant if
we refer in particular to a begin- or end-of-the-period concept.
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Anagnostopoulos and Giannitsarou (2010a, p. 12)).
It can be stated that the consideration of the period length sheds a different light on

the discussion of monetary policy in (baseline) NKMs. In fact, a decrease in h might
dampen the influence of the central bank to stabilize the economy. Our discussion in
this section also fill the gap in the work by Franke and Sacht (forthcoming) which lacks
on an economic rationale for explaining the results reported in their paper. In order to
examine the quantitative and qualitative observations with respect to a variation in the
period length and the FCP as well as FIP effects, we are going to analyze IRFs in the next
section. Furthermore, the FCP and FIP effects also play an important role in explaining
the observations made with respect to optimal monetary policy in Sacht (2014).

4 Numerical Analysis of the Baseline NKM

In the following we are going to analyse the impact of all three shocks on the dynamics
of the model for various kinds of h-economies. Therefore, we compare the corresponding
IRFs with those of the baseline NKM for h = 1. Within this investigation we allow for two
different specifications in which the underlying structure of the (high-frequency) model
consists either on backward- and forward-looking elements (0 ≤ χ ≤ 1, 0 ≤ α ≤ 1) or
forward-looking elements only in which we omit habit formation in consumption and price
indexation (χ = α = 0). In the first case we refer to the hybrid and in the latter case to
the purely forward-looking NKM. While it is well-known that the hybrid NKM accounts
for persistence in the economic indicators, we show that inertia is indeed a significant
characteristic of the IRFs in a high-frequency environment of the purely forward-looking
NKM – even in the case of a non-autocorrelated shock (ρz = 0) due to the FCP effect.
The state-space representation of the dynamic system (22) to (25) can be expressed by

0 = AXTR
t +BXTR

t+h +C XTR
t−h + DVt (34)

Vt = NVt−h + Ξt (35)

with XTR
t = (yTR

t , πTR
t )′, Vt = (vit, v

y
t , v

π
t )

′ and Ξt = (εit, ε
y
t , ε

π
t )

′. The system matrices
A,B,C,D and N comprise all corresponding frequency-dependent (deep) parameters of
the model.11 The solution to (34) together with (35) is given by

XTR
t = ΩXTR

t−h +ΦVt (36)

where Ω ∈ R
3×3 and Φ ∈ R

2×3 are the solution matrices. In case of a purely forward-
looking model (where C = 0 holds, which results in Ω = 0) we obtain

XTR
t = ΓVt. (37)

Hence, the dynamics in the output gap yTR
t and the inflation rate πTR

t for 0 < h < 1 are
described by the reduced solutions (36) and (37) for the hybrid and purely forward-looking
case, respectively. A detailed description of the numerical derivation of the solution ma-
trices Ω, Φ and Γ can be found in the Appendix. In particular, the solution matrices are
computed numerically by applying the method of undetermined coefficients (also known
as the “guess-and-verify method”; McCallum (1983)) and the brute force iteration proce-
dure (Binder and Pesaran (1995, p. 155, fn. 26)). As an advantage over the analytical
solution based on a the Schur- or Jordan decomposition method (for the hybrid NKM), we
claim that the numerical solution exhibits a better manageability since the corresponding

11The superscript TR indicates that here we study the dynamics under consideration of an ad-hoc nominal
interest rule of Taylor type. We make this reference in order to distinguish this non-optimal monetary
policy regime from the optimal ones discussed in Sacht (2014).
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computer codes are easy to implement.12 However, it is confirmed that the numerical and
analytical solution procedures (presented in Sacht and Wohltmann (2013)) lead to the
same results for Ω, Φ and Γ.13 All of the upcoming figures presented here also show the
dynamics in the nominal interest rate, the real interest rate and the price level. There-
fore, we plug the reduced-form solutions of yTR

t and πTR
t in the Taylor rule (24). The

real interest rate is then given by the difference iTR
t − πTR

t−h and the price level is simply

computed by pTR
t =

∑t
k=0 π

TR
k .

ν Households’ time preference rate 0.010

σ Inverse intertemporal elasticity of substitution in consumption 1.000

η Intertemporal elasticity of substitution of labour 1.000

θ Calvo degree of price stickiness 0.667

α Degree of Price Indexation 0.500

χ Habit-formation parameter in consumption 0.500

i Natural Interest Rate 0.000

φπ Weight on inflation in the Taylor rule 1.500

φy Weight on the output gap in the Taylor rule 0.125

ρz Persistence in the shock process 0.500

εz Impulse associated with the shock process 1.000

Table 1: Numerical parameter scenario.

Note: In the purely forward-looking NKM the parameters χ and α are set to
0. In case of a non-autocorrelated shock ρz is set to 0. The parameters of the
shock process ρz and εz are identical across all shocks z = {y, π, i}.

The numerical setting in our simulations of the model relies on parameter values
adopted from Franke and Sacht (forthcoming). They are collected in Table 1, where
the frequency-dependent coefficients are based on the quarterly time unit. A value of
household’s discount rate ν of about 1%, log utility (σ=1), and a unitary Frisch elasticity
of labour supply (η=1) are standard. The policy coefficients φπ and φy are the classical
values which can be found in Taylor (1993). A standard price rigidity of θ = 0.667 implies
an average price duration of three quarters. These parameters are borrowed from Gaĺı
(2008, p. 52). The values for α and χ are in line with those in literature and, in particular,
χ is close to the one taken from Smets and Wouters (2003,p. 1143). We simply assume that
i = 0 holds. Finally, the initial shock εz is calibrated on a moderate value of 1. Note that
all different shocks (indicated by the superscript z) exhibit the same size of persistence and
initial disturbance. Furthermore, it goes without saying that in the purely forward-looking
NKM the parameters χ and α are set to zero. In the following we put emphasis on the
analysis of one-off (impulse) shocks only, i.e. ρz = 0 holds. However, we briefly compare
the results to the ones obtained in case of an autocorrelated shock 0 < ρz < 1. Hereby, the
value of ρz = 0.5 is associated with moderately persistent monetary policy shocks. For a

12The MATLAB codes, which are used to produce the numerical results in this paper, can be downloaded
from the authors’ webpage at http://www.makro-vwl.uni-kiel.de/de/team/dipl.-vw.-stephen-sacht.

13As a drawback of the numerical solution approach presented here, this procedure might demand a specific
amount of main memory and time for execution. While this problem does not appear when computing all
IRFs presented here, for the evaluation of the (so-called) welfare functions in Sacht (2014) the associated
analytical solutions being more appropriate to use in that case. For a detail discussion we refer to Sacht
(2014).
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clear arrangement, all corresponding Figures can be found in the Appendix. The analysis
of all kind of shocks considered here have been heavily discussed for a quarterly economy
(h = 1). We just name Gaĺı (2008, his Chapter 3) and Walsh (2010, his Chapter 8) as
being representative studies.

4.1 Nominal Interest Rate Shock

We start with analysing the impact of a nominal interest rate shock under variation of the
period length. The corresponding IRFs for the purely forward-looking model are shown in
Figure 2.14 On quarterly magnitudes (h = 1) an increase in the nominal interest rate by
the central bank leads to an increase in the real interest rate due to the Taylor principle
(φπ > 1). As a result the output gap and the inflation rate decline on impact, while a
permanent decrease in the price level can be observed. The transmission channel can be
explained as follows. In general, the household decides either to purchase consumption
goods or bonds. The latter being held for one period and therefore can be indentured
as a(n indirect) saving option. Since the household receives an interest payment when
selling the bonds in the next period, an increase in the corresponding real interest rate
increases the attractiveness for holding bonds. Hence, the demand for goods must decline
at the same proportion as the amount of bonds increases. This effect is well-known as
the intertemporal consumption smoothing effect, which can be explained by the Euler
consumption equation (see equation (43) given in the Appendix). Under consideration of
the Calvo (1983) price setting scheme, the firms which are able to set the price, decrease
the latter as demand drops. The remaining firms face no price adjustment probability
and, therefore, reduce the supply of goods. Hence, the goods market becomes cleared
again after the shock occurs.

As we reduce the period length to a monthly (h = 1/3) and even a weekly (h = 1/12)
magnitude, several observations are worth mentioning. First, although the shock is a non-
autocorrelated one, all economic indicators exhibit a moderate degree of persistence. This
is caused by the FCP effect, which leads to a smooth monotonic movement in the variables
compared to a rapid jump from the initial period to the next in the case h = 1. Note that
inflation inertia amplifies the pressure on the price level: the shorter the period length, the
stronger the (negative) effect on the price level will be. Second, with respect to the impact
effects, we observe a slightly stronger reaction in the real interest rate and the output gap,
while the decrease in the inflation rate is less pronounced in an h-economy framework.
However, the quantitative magnitude is quite small, i.e. the values of the inflation rate on
impact are hard to distinguish in transition from a low to a high frequency. As we interpret
a nominal interest rate shock as being a possible monetary policy strategy of the central
bank, a nearly non-existing impact on the inflation rate seems to be appropriate for the
monetary authority. It is meant by that the inflation rate becomes less destabilized on a
higher frequency on impact. This observation is grounded on the FIP effect: the change
in the output gap is transmitted less into inflation dynamics since the slope of the NKPC
becomes flatter as h decreases. Nevertheless, the permanent drop in the price level is much
stronger on a higher frequency - this can be seen as a severe problem of the central bank,
i.e. as the prevention of permanent strong changes in the price level being one of its policy
objectives.

14We have to indicate, that the time scale is adjusted for all values of h in order to allow for a graphical
comparison of the IRFs for different frequencies. The interested reader might study the corresponding
computer codes, used to reproduce the following Figures, for more information. Furthermore, it must be
stated that possible intersections of different IRFs are hardly to be considered for an analysis. The reason
is that we have the more observations, the lower h will be. In the polar case of h = 1 only quarterly values
can be used for interpretation. Therefore, we do not draw a line in order to connect the quarterly values
but use a square as a marker instead.
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In Figure 3 the IRFs for a non-autocorrelated shock within the hybrid NKM are
displayed. It can be seen that under the standard calibration of the parameters applied
here, the dynamics of the output gap and the inflation rate in the h-economy models
become hump-shaped. In particular, troughs can be observed. In the quarterly model
we observe a monotonic movement of these variables back to the steady state. These
results mimic those reported in Franke and Sacht (forthcoming). The opposite holds for
the nominal and real interest rate, where we observe an undershooting in both variables in
the case h = 1 – and just slightly in a monthly but significantly not in a weekly economy.
The real interest rate responses stronger on impact to a decrease in h, which leads to
stronger decline in the output gap in period t = 0. However, the impact effects on the
output gap are quantitatively less pronounced for all values of h relative to the forward-
looking case. Again, the impact effects on the inflation rate are hard to distinguish across
different frequencies. This can be once more explained by the FIP effect, where less of
the change in the output gap is transmitted into the inflation rate on a higher frequency.
Interestingly, the values of nominal and real interest rate in the monthly economy lie below
the ones given in the weekly economy, roughly before time t = 1, where the opposite holds
after the first quarter. An exception are the dynamics in the output gap and the inflation
rate, where the IRFs for the case h = 1/12 are significantly below the one for h = 1/3.
This could probably be explained by the moderate degree of intrinsic persistence. As we
had shown in the previous section, an increase in α reduces the effectiveness of monetary
policy intervention, where this effect is amplified by the FIP one, i.e. as the period length
decreases. Most likely, at a specific value of h, the FIP effect dominates the intrinsic
persistence one and causes the, let’s say, asymmetric movements as we go from a monthly
to a weekly economy. Finally, the quantitative effects on the development in the price
level are stronger for all values of h compared to the forward-looking case. Hence, the
failure of the central bank for price level stabilization is more distinctive within a hybrid
specification of the NKM.

Figures 4 and 5 represent the IRFs for an autocorrelated shock in the purely forward-
looking and hybrid NKM, respectively. As we can see, the quantitative effects are not
surprisingly more pronounced if a moderate persistence in the shock is observed. This
holds especially for the price level (therefore consider the IRFs for h = 1/12) in both cases.
In the forward-looking case, a convergence/overlapping in the IRFs can be identified as
h decreases. This holds also in the hybrid NKM, where the now amplified FCP effects
(note that ρ(h)i increases due to an increase in ρi) might offset the dominance of the FIP
over the intrinsic persistence effect as described above for the non-autocorrelated case.
Furthermore, we observe over- and undershooting behaviour in the IRFs across different
values of h for the nominal and real interest rate. The result that no distinctive differences
in the impact effects of the inflation rate occur for different values of h, prevails in the
case ρi > 0. Both observations hold for both specifications of the model.

Hence, the ineffectiveness of monetary policy on inflation stabilization on impact is
independent of the FCP effect. However, the latter amplifies the quantitative effect on
the price level dramatically as discussed above. To sum up, in comparison to the non-
autocorrelated shock we observe quantitatively stronger destabilization effects in the out-
put gap and the inflation rate, while the results regarding the qualitative effects (due to
the existence of troughs) remain. With respect to the latter observation it can be said
that the impact of the intrinsic persistence together with the FCP effect strengthens the
humped-shaped movements in the h-economies.

4.2 Technology Shock

Figure 6 depicts the adjustments in the model variables in case of a non-autocorrelated
technology shock in the forward-looking NKM. As usual, first, we describe the transmis-
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sion channel based on the case h = 1. An increase in εy leads to an increase in the
efficiency of production. This affects potential output positively, while actual output re-
mains unaffected, where the latter reacts one-to-one to changes in private consumption
due to the assumption of a general equilibrium framework. As a result the output gap
declines on impact. On the demand side, households face a decrease in the gross natural
real interest rate. This means that the interest payment on bonds drops in the long run,
i.e. the desired amount of bonds held in the steady state declines (to see this consider,
again, the Euler consumption equation (43) given in the Appendix). Hence, the long-run
demand for goods increases and coincides with the higher level of steady state (potential)
output. Since the output gap drops, firms which are not able to set the price, lower the
supply of good, while the remaining firms lower its price. The central bank responses to
the decline in the output gap by lowering the nominal and, hence, the real interest rate in
order to boost actual output based on the consumption smoothing effect.

On a higher frequency we observe persistence in all variables due to the FCP effect.
Furthermore, less pronounced effects in all variables can be observed in this case. Espe-
cially with respect to the real interest rate, this variable rather increases than decreases
(for h = 1/12) on impact. The weaker impact effect on the output gap relative to the one
observed in the case of the nominal interest rate shock, can be explained by the (inverse)
elasticities of consumption σ and labour η. In order to see this, consider the relation in
front of the expression for the shock process vyt in the dynamic IS curve (see equation
(16)) given by

h[ρ(h)y − 1]
1 + η

σ + η
(38)

if no habit formation in the shock is assumed (χ = 0). Under consideration of our param-
eter scenario, where σ = η = 1 (ρy = 0) holds, the values of previous equation being |1|,
|2/9| and |11/144| in a quarterly, monthly and weekly economy, respectively. Hence, ceteris
paribus, the shorter the period length, the weaker the impact of the shock on the output
gap will be. The quantitative impact effects, therefore, depend on the corresponding elas-
ticities and the reinforced FCP effect, which is displayed by the existence in ρ(h)y in the
expression (38) and the shock process vyt itself. This reinforced FCP effect dominates the
FIP one: the associated impact effect on the inflation rate is also weak on a higher relative
to a lower frequency like for the output gap. In other words, although the effectiveness
of monetary policy is weakened as h increases, the corresponding relative strong boost in
technology feeds into inflation dynamics. The dominance of the (reinforced) FCP over the
FIP effect also leads to a less pronounced drop in the steady state price level on a higher
relative to a lower frequency. Due to the persistence in the inflation rate based on the
FCP effect, the central bank is able to maintain a higher level in the long-run relative to
the case h = 1.

As we turn to an analysis of the same shock within a hybrid specification of the NKM
(see Figure 7), overall weaker impact effects relative to the purely forward-looking case can
be observed. This can be explained by the distinctive troughs which display the interaction
between intrinsic persistence and the (reinforced) FCP effect: due to backward-looking
behaviour this induces rapid changes in economic activity. Hence, the future (non-)linear
movements of the inflation rate are transmitted into the real interest rate and, therefore,
dampen the decrease in the output gap. Note that the real interest rate in monthly
magnitudes remains roughly unchanged on impact. This effect is more pronounced on a
higher frequency because of ρ(h)y being considered in the expression for the composite
parameter given by (38) and the shock process vyt . Due to the higher persistence in the
inflation rate in the case h = 1 relative to both h-economies, the price level converges to
a higher steady state value in quarterly magnitudes. This is just the opposite result as
we observed in the purely forward-looking model. This is most likely stemming from the
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dominance of the FIP over the (reinforced) FCP effect since the FIP one is now amplified
by the increase in α. It follows that the central bank faces a greater destabilization of
the price level on higher frequency in case of backward-looking behaviour of agents being
considered.

Figures 8 and 9 present the IRFs for an autocorrelated shock in the purely forward-
looking and hybrid NKM, respectively. While obviously the persistence in all variables
increases, the qualitative results remain almost the same in comparison to the case ρy = 0;
note that the real interest rate in the hybrid case is now also positive on impact. Two
exceptions can be identified with respect to the steady state values of the price level. In
the purely forward-looking case, all IRFs converge to the same price level in the long-run.
Within the hybrid specification, the adjustments in the price level are of almost the same
magnitude in early periods, while there is a divergence in the IRFs for later periods. It
seems to be that the FCP and FIP effect are offsetting each other in the former case,
while in the latter the FIP effect probably dominates the FCP one. However, a clear
interpretation can be hardly obtained: while additional intrinsic persistence strengthens
the FIP effect, the FCP effect is also boosted by the fact that ρy > 0 holds. As a result, the
movements of the price level and, hence, a successful stabilisation policy of the monetary
policy on a low relative to a high frequency depends on the interaction of α and ρ(h)y in
this case.

4.3 Cost-Push Shock

Figure 10 depicts the adjustments in the model variables in case of a non-autocorrelated
technology shock in the forward-looking NKM. For all values of h, a cost-push shock leads
to an increase in the price level induced by firms, which are able to set the price. As
a result the inflation rate increases on impact. Since the central bank can influence the
inflation rate only indirectly via the output gap it faces a trade-off. In order to dampen
the boost in the inflation rate, monetary authority must rise the nominal and – due to the
Taylor principle – real interest rate. However, this leads to a decrease in the output gap
since now it is more attractive to consume more goods instead of purchasing bonds. In
other words, the households smooth their consumption due to a decrease in the interest
payments on bonds. The trade-off is now described by the fact that the output gap and
the inflation rate move into opposite directions. Note that in case of a cost-push shock in
order to target a lower level of the inflation rate after the shock occurs, the central bank
must allow for a negative output gap (on impact).

In transition to an h-economy environment, we observe stronger impact effects in all
variables. The persistence also increases due to the FCP effect. The quantitative change
in the impact effects implies the amplification in the policy trade-off. Since monetary
policy becomes less effective due to the FIP effect, the central bank must allow for a more
aggressive response of its policy instrument to the shock. More precisely, the real interest
rate increases on higher magnitude the shorter the period length will be. It follows that
a much stronger drop in the output gap, which is needed to affect the inflation rate. In
combination with the FCP, the FIP effect leads to a more destabilised scenario in an h-
economy relative to a quarterly one. This can also be seen by considering the massive
increase in the price level for h = 1/12.

As we turn to the hybrid specification of the NKM, which is depicted in Figure 11,
we observe again that troughs in the dynamics of the variables occur. Besides these
qualitative changes, the quantitative difference compared to the case ρ(h)y are distinctive.
The reason is that due to the (moderate) degree of intrinsic persistence more rapid changes
in the transactions on a higher frequency take place. Since the existence of backward-
looking behaviour in price setting amplifies the FIP effect, monetary policy becomes now
less effective in stabilizing the inflation rate as h decreases. Under consideration of an
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autocorrelated shock, the reported qualitative and quantitative effects are strengthened –
again, distinctive troughs emerge in the hybrid case. This can be seen by a brief inspection
of the corresponding IRFs for an autocorrelated shock in the purely forward-looking and
hybrid NKM, respectively, which are depicted in the Figures 12 and 13.

5 Conclusion

In this paper we study the differences in the purely forward-looking and hybrid specifi-
cation of the baseline NKM based on various shocks and under different frequencies of
decision making. Therefore, we show how the structural representation of the baseline
NKM (which is given in quarterly magnitudes by convention) must be adjusted by the
parameter which denotes the period length given by h. In order to explain our numerical
results we identify two frequency-dependent persistence effects. The first one consists on
the additional degree of persistence in the shock process, which comes into play as the
dynamics in the shock are spread over all subperiods as the period length declines. We
call this one the frequency-dependent contraction persistence (FCP) effect. It displays
the impact of the increase in the amount of market days on the dynamics of the model.
As a result the time of convergence to the steady state increases on a higher frequency
since the frequency of transactions and adjustments increases. The second one has an
impact on the pass-through of changes in the output gap into inflation dynamics via the
slope of the NKPC. As a result the central bank must intervene more often to the smaller
fraction of price setters on a higher frequency. We call this one the frequency-dependent
inherited persistence (FIP) effect. This effect can be amplified or reduced by the non-
frequency-dependent intrinsic persistence effect displayed by the degree of price stickiness
as well as the effect stemming from the change in the price stickiness. As the period
length decreases, the amount of transactions and reallocation processes are spread over
all subperiods, which is equivalent to the FCP with respect to the price setting scheme.
Hence, the driving force of the inflation rate, the output gap, explains less of the dynamics
of the former on a higher frequency.

Within our numerical study, we observe an overall increase in the persistence in all
variables – even in the case of a non-autocorrelated shock – due to the FCP effect. Across
all shocks, the interaction of both persistence effects causes differences in the impact
effects of the variables and more distinct hump-shaped adjustments in the hybrid NKM.
This holds especially if an autocorrelated shock process is assumed. Furthermore, strong
changes in the long-run steady state of the price level occur. The latter case indicates a
severe problem as price stability is the main target of the central bank. This problem is
much more obvious in case of a cost-push shock, where the monetary authority faces a
trade-off between inflation rate and output gap stabilisation. This trade-off is strengthened
on a higher frequency since the strong output gap reaction (on impact) does not feed into
the NKPC due to the FIP effect, while the inflation rate increases dramatically. We are
going to investigate this scenario in much more detail as we consider optimal monetary
policy strategies in Sacht (2014).

The results of our numerical exercises resuscitate the question, “which interval best
represents agents’ decision-making process?” (Aadland, 2001, p. 291). One answer is more
practically oriented: use calibration or estimation methods to find out if variations of the
period length can improve the matching of certain empirical moments or the value of an
objective function in general. However, research in this direction seems to be rare.15

15Christiano (1985) and Aadland (2001) may be recalled, again, as the only two references regarding this
question that we know. More modestly, in Ahrens and Sacht (forthcoming), the authors estimate a high-
frequency New-Keynesian Phillips curve on daily inflation data for Argentina. In particular, the results
for the Calvo price stickiness parameter are quite in line with microeconomic evidence.
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Future theoretical and empirical investigations might also consider an asymmetric dif-
ferentiation of the decision intervals of households and firms. Our numerical results show
that the more information on prices and output is available, the increase in the amount
of transactions and reallocation processes dampens the possibility of the central bank to
stabilize the economic indicators. This can be seen as being equivalent to the results by
Winkler and Wohltmann (2012), who show that an anticipated shock in an optimal mon-
etary policy scenario causes a higher welfare loss (relative to a non-anticipated one) due
of the adjustments of the economic indicators before the shock actually occurs. Due to
this as the central bank faces rapid changes in the output gap and the inflation rate, the
question arises, if this result prevails as we consider a heterogeneous approach regarding
the period length. It means that e.g. the central bank might react on lower frequency
compared to the other agents in the economy. We leave such kind of analysis to further
research.

According to Franke and Sacht (forthcoming), a theoretical answer returns to Foley’s
principle and requires robustness of the period on which one decides to settle down.16

Accordingly, a period might be called robust if it is an upper-bound on the length of the
decision intervals with, in our case, essentially similar IRFs. From this point of view,
the main conclusion is that, in the present modelling framework, the conventional quarter
cannot be claimed to be a robust period length. The more general message is that DSGE
modelling might be more sensitive to the possible “pitfalls of timing misspecification”
(Christiano (1985, p. 397)). In particular, it would be an important question how seriously
the structure of optimal monetary policy rules might be affected by changes in the length
of the period. As we stated above, we seek to answer this question in Sacht (2014).

6 Appendix

6.1 Microfoundations of the Baseline NKM in the Case 0 < h ≤ 1

The numerical results presented in this paper are derived under consideration of the an-
alytic solutions by Woodford (2003, his Chapter 6) and Gaĺı (2008, his Chapters 3 and
4), along with the specifications given in Smets and Wouters (2003) and Christiano et. al
(2005), who all provide explicit microfoundations of the (hybrid) version of the standard
NKM in quarterly magnitudes. Here, those results are adjusted towards the transition of
the model‘s structural equations into their h-economy counterparts. The definition of all
variables and parameters are (if not done here) given in the main text.

Households:

We consider a standard utility function of the representative household subject to the
underlying frequency given by17

Ut = Et

∞
∑

k=0

β(h)hk
[

1

1− σ
(Ct+hk − χCt+hk−h)

1−σ −
1

1 + η
N1+η

t+hk

]

(39)

where Ct+hk (Ct+hk−h) denotes the current (previous) level of (aggregate) consumption,
where the difference Ct+hk − χCt+hk−h displays habit formation in consumption of the

16Foley emphasises that “[n]o substantive prediction or explanation in a well-defined macroeconomic period
model should depend on the real time length of the period.” (1975, p. 310). While Franke and Sacht
(forthcoming) disprove this statement to be true based on an elaborate analytical and numerical analysis
of a nominal interest rate shock, we show in this paper that this obviously also holds in the cases of a
technology and a cost-push shock.

17Note that non log-linearized variables like e.g. the aggregate price level Pt are denoted in capital letters.
The logarithmic deviation of a variable from its steady state value, e.g. ĉt = log

(

Ct

C̄

)

, is denoted by lower
case letters. Later on we simply consider ĉt = ct only.

20



household. Nt+hk denotes employment in terms of hours worked. The Euler equation is
the result of the first order condition with respect to the amount of bonds Bt subjected
to the budget constraint

Ct+hk = −
Bt+hk

Pt+hk
+

Wt+hk

Pt+hk
Nt+hk + (1 + hit+hk−h)

Bt+hk−h

Pt+hk
+Πr

t+hk (40)

where Wt+hk and Πr
t+hk stand for the nominal wage and firms real profits, respectively.

The first order condition is then given by

∂Ut

∂Ct+hk

=
1

1− σ
(Ct − χCt−h)

−σ

(

−
1

Pt

)

+ β(h)h
1

1− σ
(EtCt+h − χCt)

−σ 1 + hit
EtPt+h

= 0

⇒
1

1− σ
(Ct − χCt−h)

−σ 1

Pt
= β(h)h

1

1− σ
(EtCt+h − χCt)

−σ 1 + hit
EtPt+h

⇒ (Ct − χCt−h)
−σ = β(h)h

1

1− σ
(EtCt+h − χCt)

−σ(1 + hit)Et

(

Pt

Pt+h

)

(41)

for k = 0 and k = 1. Given the Fisher (1930) equation

(1 + hit)Et

(

Pt

Pt+h

)

= 1 + hrt = Rt, (42)

equation (41) can be rewritten as

(Ct − χCt−h)
−σ = β(h)h

1

1− σ
(EtCt+h − χCt)

−σRt (43)

where rt is the real interest rate and Rt the gross real interest rate. Log-linearization of
the previous equation leads to

−σ log (Ct − χCt−h) = hlog β(h) − log
1

1− σ
+ σ log (EtCt+h − χCt) + logRt (44)

where hlog β(h) and log 1
1−σ

have to be crossed out since h is constant. By applying the
log-linearization technique (cf. Ascari and Ropele (2003), pp. 7) this leads to

−σ
c̄

(1− χ)c̄
ĉt + σ

χc̄

(1− χ)c̄
ĉt−h = −σ

c̄

(1− χ)c̄
Etĉt+h + σ

χc̄

(1− χ)c̄
ĉt +

R̄

R̄
r̂t (45)

where c̄ (R̄) denotes the steady state value in consumption (the gross real interest rate).
Hence, the actual level of private consumption in relation to its steady state value (given
in percent) is then expressed through

−σĉt + σχĉt−h = −σEtĉt+h + σχĉt + (1− χ)r̂t

⇒ (1 + χ)ĉt = χĉt−h + Etĉt+h −
1− χ

σ
r̂t

⇒ ĉt =
1

1 + χ
Etĉt+h +

χ

1 + χ
ĉt−h −

1− χ

σ(1 + χ)
r̂t. (46)

The rate of change r̂t is expressed through h(it − Etπt+h − ī). To see this consider (cf.
equation (42))

r̂t = log
Rt

R̄

⇒ r̂t = log

(

(1 + hit)Et

(

Pt

Pt+h

)

(1 + hī)

)

⇒ r̂t = log (1 + hit) + logEt

(

Pt

Pt+h

)

− log (1 + hī)

⇒ r̂t ≈ hit − (Et logPt+h − logPt)− hī. (47)
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Under the assumption of rational expectations EtPt = Pt holds. We set logEtPt+h −
logPt = hEtπt+h (therefore note that πt = (pt − pt−h)/h holds). In the long-run the
nominal interest rate equals the (non time-varying) natural rate of interest, i.e. hī holds.
Plugging (47) into the log-linearized Euler equation (46) under consideration of the goods
market clearing condition and adding the natural level of output (which equals the steady
state level of consumption) on both side leads to

yt =
1

1 + χ
Etyt+h +

χ

1 + χ
yt−h −

h(1 − χ)

σ(1 + χ)
(it − Etπt+h − r̃t) (48)

where the natural rate of the gross real interest rate is given by (cf. Gaĺı (2008), p. 49)

r̃t = ī+ σ

(

1 + η

σ + η

)

Et(v
y
t+h − vyt ) (49)

where vyt denotes a shock to technology, which measures the impact of an innovation on
the efficiency of the production process (cf. equation (18)). The corresponding law of
motion follows an AR(1) process with

vyt = ρ(h)yvyt−h + εyt ↔ vyt+h = ρ(h)yvyt + εyt+h (50)

and ρ(h)y = 1 − h(1 − ρy). As we consider an one-time (deterministic) impulse only,
εyt+h = 0 holds. Plugging (50) into (49) leads to

r̃t = ī+ σ

(

1 + η

σ + η

)

(ρ(h)y − 1)vyt . (51)

The hybrid dynamic IS equation for the h-economy is finally given by

yt =
1

1 + χ
Etyt+h +

χ

1 + χ
yt−h − δ1(h)(it − Etπt+h − ī) + δ2(h)v

y
t (52)

with

δ1(h) = h
1− χ

σ(1 + χ)

δ2(h) = h
(1− χ)(1 + η)(ρ(h)y − 1)

(1 + χ)(σ + η)
.

Note that (52) equals its representation in the baseline (quarterly) economy if h = 1 holds:

yt =
1

1 + χ
Etyt+1 +

χ

1 + χ
yt−1 − δ1(it − Etπt+1 − ī) + δ2v

y
t (53)

with

δ1 =
1− χ

σ(1 + χ)

δ2 =
(1− χ)(1 + η)(ρy − 1)

(1 + χ)(σ + η)
.

Furthermore under the assumption of a Walrasian labor market

−
∂Ut

∂Nt

∂Ut

∂Ct

=
Wt

Pt
(54)

holds. Under consideration of household’s utility function (39) it follows (in log-linearized
terms):

wt − pt = σct + ηnt. (55)
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Firms:

In the following we will derive the purely forward-looking NKPC. We show that when ap-
plying the transformation procedure for the h-economy framework (in particular the steps
(1) to (3) described in section 2), the adjustments of the frequency-dependent variables
and parameter will lead directly to the final high-frequency representation of the NKPC.
Hence, we will leave out the more time-consuming derivation of the hybrid NKPC (see e.g.
Christiano et al. (2005)) and spell out the change in the frequency-dependent components
for 0 < h ≤ 1 based on the solution for the purely forward-looking case only. According
to Walsh (2010, Chapter 5) the following loss function of firms has to be minimized:18

Vt =

∞
∑

k=0

β(h)hkEt(zt+hk − p∗t+hk)
2. (56)

It is the aim of a representative firm to minimize the expected price distortion (deviation
of the future log-price level zt+hk from the optimal log-price level p∗t+hk, i.e. the price firms
would set in period t+hk if there were no price rigidity) given above by changing its own
price zt+hk. Under consideration of price stickiness, zt+hk remains unchanged over time
with a probability θ(h). In this case (56) is reformulated into

Vt =
∞
∑

k=0

[θ(h)β(h)]hkEt(zt − p∗t+hk)
2. (57)

Hence,

dVt

dzt
= 2

∞
∑

k=0

[θ(h)β(h)]hkEt(zt − p∗t+hk) = 0

⇒

∞
∑

k=0

[θ(h)β(h)]hkEt(zt) =

∞
∑

k=0

[θ(h)β(h)]hkEt(p
∗

t+hk). (58)

As we taking into account that Et(zt) = zt holds and that the corresponding term is
given by the following expression of a geometric sum

∞
∑

k=0

[θ(h)β(h)]hk =
1

1− θ(h)β(h)
(59)

we get

zt = [1− θ(h)β(h)]

∞
∑

k=0

[θ(h)β(h)]hkEt(p
∗

t+hk). (60)

Equation (60) is the forward-solution of the dynamic equation for the optimal reset price
zt given by

zt = [θ(h)β(h)]Et(zt+h) + [1− θ(h)β(h)](µ +mct) (61)

where p∗t = µ + mct denotes the optimal price set by the firm under monopolistic com-
petition as the sum of the nominal marginal costs mct and the desired mark-up µ. The
aggregate price level pt is the weighted sum of the desired (lagged) price level under con-
sideration of the probability of h(1−θ) [θ(h)] that firms are [not] able to choose their reset
price zt:

pt = θ(h)pt−h + h(1− θ)zt. (62)

18The time preference rate for a period of length h is hν. Hence the transformation of β leads to β(h) =
1/(1 + hν). Furthermore recall that θ(h) = 1− h(1− θ) holds.
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Solving for zt and Et(zt+h) respectively leads to

zt =
1

h(1− θ)
(pt − θ(h)pt−h) and Et(zt+h) =

1

h(1− θ)
(Etpt+h − θ(h)pt). (63)

Substituting this into (61) gives

1

h(1 − θ)
(pt − θ(h)pt−h) =

[θ(h)β(h)]

h(1 − θ)
(Etpt+h − θ(h)pt) + [1− θ(h)β(h)](µ +mct). (64)

By adding (pt−h − pt−h) on the left-hand side and (pt − pt) on the right-hand side of
the previous equation this leads to

1

h(1− θ)
(pt − pt−h − θ(h)pt−h + pt−h) =

[θ(h)β(h)]

h(1 − θ)
(Etpt+h − pt − θ(h)pt + pt)

+ [1− θ(h)β(h)](µ +mct)

⇒
1

h(1 − θ)
(pt − pt−h + (1− θ(h))pt−h) =

[θ(h)β(h)]

h(1 − θ)
(Etpt+h − pt + (1− θ(h))pt)

+ [1− θ(h)β(h)](µ +mct)

⇒
1

h(1− θ)
(∆pt + (1− θ(h))pt−h) =

[θ(h)β(h)]

h(1 − θ)
(∆pt+h + (1− θ(h))pt)

+ [1− θ(h)β(h)](µ +mct)

⇒
1

h(1 − θ)
∆pt +

(1− θ(h))

h(1− θ)
pt−h =

[θ(h)β(h)]

h(1 − θ)
∆pt+h +

[θ(h)β(h)](1 − θ(h))

h(1− θ)
pt

+ [1− θ(h)β(h)](µ +mct)

⇒
1

(1− θ(h))
∆pt + pt−h =

[θ(h)β(h)]

(1− θ(h))
∆pt+h + [θ(h)β(h)]pt

+
h(1− θ)[1− θ(h)β(h)]

(1− θ(h))
(µ+mct) (65)

where ∆pt = pt − pt−h (∆pt+h = Etpt+h − pt) denotes the contemporaneous (one-period
ahead) inflation rate in the h-economy. Subtracting pt from both sides leads to

1

(1− θ(h))
∆pt + pt−h − pt =

[θ(h)β(h)]

(1− θ(h))
∆pt+h + [θ(h)β(h)]pt − pt

+
h(1− θ)[1− θ(h)β(h)]

(1− θ(h))
(µ +mct)

⇒

(

1

(1− θ(h))
− 1

)

∆pt =
[θ(h)β(h)]

(1− θ(h))
∆pt+h + ([θ(h)β(h)] − 1)pt

+
h(1− θ)[1− θ(h)β(h)]

(1− θ(h))
(µ +mct)

⇒
θ(h)

(1− θ(h))
∆pt =

[θ(h)β(h)]

(1− θ(h))
∆pt+h − [1− θ(h)β(h)])pt

+
h(1− θ)[1− θ(h)β(h)]

(1− θ(h))
(µ +mct). (66)
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The expression of the inflation rate in the h-economy is then given by

∆pt =
[θ(h)β(h)]

θ(h)
∆pt+h −

(1− θ(h))[1− θ(h)β(h)]

θ(h)
pt

+
h(1− θ)[1− θ(h)β(h)]

θ(h)
(µ +mct)

⇒ ∆pt = β(h)∆pt+h +
h(1− θ)[1− θ(h)β(h)]

θ(h)

(

µ+mct −
(1− θ(h))

h(1 − θ)
pt

)

⇒ ∆pt = β(h)∆pt+h +
[1− θ(h)][1− θ(h)β(h)]

θ(h)
(µ+mct − pt). (67)

Note that 1 − θ(h) = 1 − [1 − h(1 − θ)] = h(1 − θ) holds. To derive the NKPC in its
h-economy representation it is necessary to introduce the output gap into the inflation
equation above, what in fact does not change the structure of the NKPC concerning the
period length because the corresponding elasticities σ and η are independent of h. To see
this we claim that the representative firm uses labor Nt and technology At as input factors
such that its production function (assuming constant return of scales) is simply given by

X̂t = AtNt (68)

where X̂t denotes the actual level of output. Equation (68) is in log-linearized terms equals
to

yt = at + nt. (69)

Real marginal costs can be expressed through

mct − pt = mcrt = (wt − pt)−mpnt (70)

where mpnt denotes the marginal product of labor as the result of deviating (68) with
respect to Nt and linearizing it:

mpnt =
∂Yt

∂Nt
= at. (71)

After applying some algebra, using (55), (69) and (71), real marginal costs are given by

mcrt = (σ + η)xt − (1 + η)at (72)

Using the following expression for real marginal cost in the steady state

m̄cr = −µ = (σ + η)x̄t − (1 + η)at (73)

leads to the equation for the (time-varying) natural level of output:19

x̄t =
1 + η

σ + η
at −

µ

σ + η
. (74)

Finally the deviation of (72) from (73) gives

m̂crt = mcrt − m̄cr = (σ + η)yt. (75)

where yt = xt − x̄t denotes the output gap. Note that mcrt = m̂crt + m̄cr = m̂crt −µ holds.
Hence (67) can be reformulated into

∆pt = β(h)∆pt+h +
[1− θ(h)][1− θ(h)β(h)]

θ(h)
(σ + η)yt (76)

19Note that at can be interpreted as an autocorrelated technology shock and therefore equals vyt known from
the derivation of the (high-frequency) hybrid dynamic IS equation above.
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or more precisely after dividing equation (76) by h, the quarterized NKPC is finally given
by

π
(h)
t = β(h)Etπ

(h)
t+h +

[1− θ(h)][1− θ(h)β(h)]

hθ(h)
(σ + η)yt. (77)

It can be mentioned that in the benchmark case (h = 1) the previous equation will collapse
into the more familiar expression

π
(1)
t = βEtπ

(1)
t+1 +

(1− θ)(1− θβ)

θ
(σ + η)yt. (78)

It can be stated, that in case of the NKPC (and, of course, for the dynamic IS equation)
it is not necessary to spell out the details here, that lead from the microfoundation of
this equation in an h-economy. Instead — and as already mentioned — a high-frequency
representation of the NKPC can be achieved by adjusting the frequency-dependent com-
ponents directly with respect to h. We make use of this fact as we turn to the derivation
the hybrid NKPC (e.g. Christiano et al. (2005)) for 0 < h ≤ 1 (where an exogenous shock
is simply added under consideration of hvπt ):

∆pt =
β(h)

1 + αβ(h)
∆pt+h +

α

1 + αβ(h)
∆pt−h + κ(h)yt + hvπt (79)

with

β(h) =
1

1 + hν
(80)

κ(h) =
[1− θ(h)][1 − θ(h)β(h)]

θ(h)[1 + αβ(h)]
(σ + η) =

h2(1− θ)(1 + ν − θ)

(1− h(1− θ))(1 + hν + α)
(σ + η) (81)

and ∆pt−h = pt−h − pt−2h. Note that now the price indexation parameter α has to be
taken into account. Since α denotes the fraction of firms which set its actual price level to
the previous one, this parameter is not frequency-dependent. Furthermore, the quarterized
hybrid NKPC is given by

π
(h)
t =

β(h)

1 + αβ(h)
Etπ

(h)
t+h +

α

1 + αβ(h)
π
(h)
t−h + κ̃(h)yt + vπt (82)

where

κ̃(h) =
κ(h)

h
=

h(1− θ)(1 + ν − θ)

(1− h(1 − θ))(1 + hν + α)
(σ + η)

holds. For the baseline quarterly model (h = 1) we get

π
(1)
t =

β

1 + αβ
Etπ

(1)
t+h +

α

1 + αβ
π
(1)
t−h + κyt + vπt (83)

with

β =
1

1 + ν
(84)

κ =
(1− θ)(1− θβ)

θ(1 + βα)
(σ + η). (85)

6.2 Solution of the Shock Process in the Case 0 < h ≤ 1

According to the equations (17) to (19) given in section 2, the AR(1) shock process

vzt = ρ(h)zvzt−h + εzt (86)

26



with
ρ(h)z = 1− h(1− ρz)

and z = {i, y, π}, emerges when the updating of vzt in the AR(1) process is done every
0 < h ≤ 1 time units. The solution of (86) is then given by

E0v
z
t = [ρ(h)z ]tεz0. (87)

Note that we assume a deterministic impulse in all of the shock processes z such that

εzt =

{

εz0 for t = 0
0 for t > 0

(88)

holds. According to Sacht and Wohltmann (2013), equation (87) can be derived as follows.
For a clear arrangement, in the following we omit the superscript z. Based on (86) we get

vt−h = ρ(h)vt−2h + εt−h

vt−2h = ρ(h)vt−3h + εt−2h

...

vt−sh = ρ(h)vt−(s+1)h + εt−sh

with s ∈ {0, 1, 2, . . . , t}, where t denotes the subperiod with respect to h. The backward-
solution is given recursively by

vt = ρ(h)[ρ(h)vt−2h + εt−h] + εt

⇒ vt = ρ(h)2vt−2h + ρ(h)εt−h + εt

⇒ vt = ρ(h)2[ρ(h)vt−3h + εt−2h] + ρ(h)εt−h + εt

⇒ vt = ρ(h)3vt−3h + ρ(h)2εt−2h + ρ(h)εt−h + εt
...

⇒ vt = ρ(h)svt−sh + ρ(h)s−1εt−(s−1)h + ρ(h)s−2εt−(s−2)h + . . .

+ ρ(h)s−(s−1)εt−(s−(s−1))h + ρ(h)s−sεt−(s−s)h

⇒ vt = ρ(h)s[ρ(h)vt−(s+1)h + εt−sh] + ρ(h)s−1εt−(s−1)h + ρ(h)s−2εt−(s−2)h + . . .

+ ρ(h)εt−h + εt

⇒ vt = εt + ρ(h)εt−h + ρ(h)2εt−2h + ρ(h)3εt−3h + . . .+ ρ(h)sεt−sh + . . .

+ ρ(h)t−1εt−(t−1)h + ρ(h)tε0

⇒ vt =

t
∑

s=0

ρ(h)sεt−sh.

Finally, by taking expectations on the previous expression we get

E0vt =
t
∑

s=0

ρ(h)sE0εt−sh = ρ(h)tε0 (89)

since E0εs = 0 for s > 0. Hereby, E0 denotes the expectation operator conditional on the
information given in the initial period t = 0

6.3 Solution of the Baseline NKM in the Case 0 < h ≤ 1

In general, the state space representation of the NKM for 0 < h ≤ 1 is given by

0 = AXTR
t +BXTR

t+h +C XTR
t−h + DVt (90)

Vt = NVt−h + Ξt (91)
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with

A =

(

1 + δ1(h)φy δ1(h)φπ

−κ̃(h) 1

)

B =

(

− 1
1+χ

−δ1(h)

0 − β(h)
1+β(h)α

)

C =

(

− χ
1+χ

0

0 − α
1+β(h)α

)

D =

(

δ1(h) −δ2(h)(ρ(h)
y − 1) 0

0 0 −1

)

N =





ρ(h)i 0 0
0 ρ(h)y 0
0 0 ρ(h)c





and XTR
t = (yTR

t , πTR
t )′, Vt = (vit, v

y
t , v

π
t )

′ and Ξt = (εit, ε
y
t , ε

π
t )

′. The superscript TR
indicates that we consider a (high-frequency) forward-looking/hybrid NKM, where an
(non-optimal) ad-hoc Taylor rule is assumed.

Hybrid NKM:

Since the state space representation (90) exhibits forward-and backward-looking elements,
as stated in the text we apply the method of undetermined coefficients in combination with
the brute force iteration procedure in order to solve the model. First, we guess that the
law of motion which describes the analytical ‘solution’ is given by

XTR
t = ΩXTR

t−h +ΦVt (92)

where Ω ∈ R
3×3 and Φ ∈ R

2×3 are the corresponding solution matrices. The former is a
stable matrix as long as its determinant is not equal to zero, which ensures the invertibility
of Ω. In particular, stability of Ω requires the sufficient condition φπ > 1, i.e. the ‘Taylor
principle’, to be fulfilled (cf. the discussion with respect to equation (27)). We substitute
(92) into (90), which leads to

A(ΩXTR
t−h +ΦVt) +B(ΩXTR

t +ΦVt+h) + CXTR
t−h +DVt = 0.

This is equivalent to

A(ΩXTR
t−h +ΦVt) +B[Ω(ΩXTR

t−h +ΦVt) + Φ(NVt +Ξt+h)] + CXTR
t−h +DVt = 0.

The reduced-form solution can be rewritten as

(AΩ +BΩ2 +C)XTR
t−h + (AΦ+BΩΦ+BΦN +D)Vt = 0. (93)

Since Ξt consists on deterministic one-time impulse shocks, i.e. Ξt+h = 0 holds. Thus the
solution matrix Ω can be (uniquely) determined by

BΩ2 +AΩ+ C = 0. (94)

The previous expression turns out to be a quadratic matrix equation. Hence, an analytical
solution for Ω can be hardly obtained since the solution reads

Ω = −(BΩ+A)−1C. (95)
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Instead we are going to solve this quadratic matrix equation numerically. Therefore, we
apply the brute force iteration procedure. Hence an equivalent recursive relation of (95)
is given by

Ωn = −(BΩn−1 +A)−1C (96)

with an arbitrary number of iteration steps N , i.e. n = {1, 2, ..., N}. We define as the
initial value Ω0 = ςI with I being the identity matrix and 0 ≤ ς ≤ 1, where we set ς = 0.8.
The iteration process (96) proceeds until ||Ωn−Ωn−1|| < ̺ holds, where ̺ is an arbitrarily
small number (we set ̺ = (0.1)6). Given the solution for Ω, for the computation of Φ
applying the same recursive numerical solution method is required. This can be seen by
the ‘solution’ for Φ:

Φ = −(A+BΩ)−1(D +BΦN). (97)

In order to check if both matrices serve as necessary and sufficient conditions for describing
the model dynamics, Ω and Φ are plugged in the reduced-form solution (92), which then
has to be equal to zero.20 This is indeed true for all possible combination of the parameters,
including the numerical parameter set assumed throughout this paper (cf. Table 1).

Purely forward-looking NKM:

For completeness, in the following we report the computation of the solution matrix in
the purely forward-looking case, i.e. as χ = α = 0 holds. According to the equations (90)
with C = 0 and (92) with Ω = 0, respectively, we guess that the reduced-form solution is
given by

XTR
t = ΓVt (98)

where Γ ∈ R
2×3 is the corresponding solution matrix in the purely forward-looking case.

Inserting (98) into (90) results in

AΓVt +B ΓVt+h +DVt = 0

⇒ AΓVt +B Γ[N Vt + Ξt+h] +DVt = 0

⇒ (AΓ +B ΓN +D)Vt = 0.

Equivalent to Φ in the previous case, it is not possible to isolate Γ. Therefore, here we
also apply the brute fore iteration method. The solution for Γ can then being computed
recursively by

Γn = −A−1(D +BΓn−1N). (99)

It is obvious that equation (97) collapsed into equation (99) as Ω = 0 holds (and being
substituted by Γ).21 According to equation (98), under consideration of the solution for
the shock process for 0 < h ≤ 1 (cf. equation (89)), the reduced-form solution for the
output gap and the inflation rate in the purely forward-looking case are then given by

XTR
t = ΓVt = ΓE0





vit
vyt
vπt



 =

(

γ11 γ12 γ13
γ21 γ22 γ23

)





[ρ(h)i]tεi0
[ρ(h)y ]tεy0
[ρ(h)π ]tεπ0



 . (100)

20Furthermore, note that the solution by applying the brute force iteration procedure equals the one under
the Schur decomposition method. This is confirmed when comparing the outcome for (95) and (97) to the
ones, which are computed by using the numerical software programme MATLAB DYNARE (which makes
use of the Schur decomposition).

21In particular, we search for the steady states of Ωn and Γn according to (96) and (99), respectively, such
that ΩN = f(ΩN ) = −(BΩN + A)−1C and ΓN = f(ΓN ) = −A−1(D +BΓNN) hold.
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6.4 Impulse Response Functions (TR) in the Case 0 < h ≤ 1
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Figure 2: IRFs in case of a non-autocorrelated shock to the nominal interest rate in the forward-
looking NKM (TR).

Note: The quarterly (h = 1) and weekly (h = 1/12) realizations are marked
with squares and dots, respectively, while the dashed lines depict the IRFs in
monthly (h = 1/3) magnitudes. The time in quarters and the change in per-
cent(age points) are displayed on the horizontal and vertical axis, respectively.
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Figure 3: IRFs in case of a non-autocorrelated shock to the nominal interest rate in the hybrid
NKM (TR).

Note: The quarterly (h = 1) and weekly (h = 1/12) realizations are marked
with squares and dots, respectively, while the dashed lines depict the IRFs in
monthly (h = 1/3) magnitudes. The time in quarters and the change in per-
cent(age points) are displayed on the horizontal and vertical axis, respectively.
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Figure 4: IRFs in case of an autocorrelated shock to the nominal interest rate in the forward-
looking NKM (TR).

Note: The quarterly (h = 1) and weekly (h = 1/12) realizations are marked
with squares and dots, respectively, while the dashed lines depict the IRFs in
monthly (h = 1/3) magnitudes. The time in quarters and the change in per-
cent(age points) are displayed on the horizontal and vertical axis, respectively.
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Figure 5: IRFs in case of an autocorrelated shock to the nominal interest rate in the hybrid NKM
(TR).

Note: The quarterly (h = 1) and weekly (h = 1/12) realizations are marked
with squares and dots, respectively, while the dashed lines depict the IRFs in
monthly (h = 1/3) magnitudes. The time in quarters and the change in per-
cent(age points) are displayed on the horizontal and vertical axis, respectively.
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Figure 6: IRFs in case of a non-autocorrelated technology shock in the forward-looking NKM
(TR).

Note: The quarterly (h = 1) and weekly (h = 1/12) realizations are marked
with squares and dots, respectively, while the dashed line depicts the IRFs in
monthly (h = 1/3) magnitudes. The time in quarters and the change in per-
cent(age points) are displayed on the horizontal and vertical axis, respectively.
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Figure 7: IRFs in case of a non-autocorrelated technology shock in the hybrid NKM (TR).

Note: The quarterly (h = 1) and weekly (h = 1/12) realizations are marked
with squares and dots, respectively, while the dashed lines depict the IRFs in
monthly (h = 1/3) magnitudes. The time in quarters and the change in per-
cent(age points) are displayed on the horizontal and vertical axis, respectively.
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Figure 8: IRFs in case of an autocorrelated technology shock in the forward-looking NKM (TR).

Note: The quarterly (h = 1) and weekly (h = 1/12) realizations are marked
with squares and dots, respectively, while the dashed lines depict the IRFs in
monthly (h = 1/3) magnitudes. The time in quarters and the change in per-
cent(age points) are displayed on the horizontal and vertical axis, respectively.
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Figure 9: IRFs in case of an autocorrelated technology shock in the hybrid NKM (TR).

Note: The quarterly (h = 1) and weekly (h = 1/12) realizations are marked
with squares and dots, respectively, while the dashed lines depict the IRFs in
monthly (h = 1/3) magnitudes. The time in quarters and the change in per-
cent(age points) are displayed on the horizontal and vertical axis, respectively.
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Figure 10: IRFs in case of a non-autocorrelated cost-push shock in the forward-looking NKM
(TR).

Note: The quarterly (h = 1) and weekly (h = 1/12) realizations are marked
with squares and dots, respectively, while the dashed lines depict the IRFs in
monthly (h = 1/3) magnitudes. The time in quarters and the change in per-
cent(age points) are displayed on the horizontal and vertical axis, respectively.
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Figure 11: IRFs in case of a non-autocorrelated cost-push shock in the hybrid NKM (TR).

Note: The quarterly (h = 1) and weekly (h = 1/12) realizations are marked
with squares and dots, respectively, while the dashed lines depict the IRFs in
monthly (h = 1/3) magnitudes. The time in quarters and the change in per-
cent(age points) are displayed on the horizontal and vertical axis, respectively.

39



0 2 4 6 8 10
−15

−10

−5

0
Output Gap (TR)

 

 

Quarter (h=1)
Month (h=1/3)
Week (h=1/12)

0 2 4 6 8 10
0

5

10

15

20
Inflation Rate (TR)

0 2 4 6 8 10
0

5

10

15

20

25
Nominal Interest Rate (TR)

0 2 4 6 8 10
0

5

10

15

20

25
Real Interest Rate (TR)

0 2 4 6 8 10
0

100

200

300

400

500
Price Level (TR)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
Shock Process

Figure 12: IRFs in case of an autocorrelated cost-push shock in the forward-looking NKM (TR).

Note: The quarterly (h = 1) and weekly (h = 1/12) realizations are marked
with squares and dots, respectively, while the dashed lines depict the IRFs in
monthly (h = 1/3) magnitudes. The time in quarters and the change in per-
cent(age points) are displayed on the horizontal and vertical axis, respectively.
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Figure 13: IRFs in case of an autocorrelated cost-push shock in the hybrid NKM (TR).

Note: The quarterly (h = 1) and weekly (h = 1/12) realizations are marked
with squares and dots, respectively, while the dashed lines depict the IRFs in
monthly (h = 1/3) magnitudes. The time in quarters and the change in per-
cent(age points) are displayed on the horizontal and vertical axis, respectively.
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