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PANEL DATA WITH MEASUREMENT ERRORS:

INSTRUMENTAL VARIABLES AND GMM PROCEDURES

COMBINING LEVELS AND DIFFERENCES �)

by

ERIK BI�RN

Abstract

The estimation of linear, static regression equations from panel data with measurement er-

rors in the regressors is considered. If the latent regressor is autocorrelated or non-stationary,

several consistent instrumental variables (IV) and generalized method of moments (GMM)

estimators usually exist, provided some structure is imposed on the disturbances and mea-

surement errors. Applications of GMM procedures (i) on equations in di�erences with IV's

in levels and (ii) on equations in levels with IV's in di�erences { the di�erence transfor-

mations eliminating unobserved individual heterogeneity { are considered. The IV's may

be constructed from values of the regressors or the regressand. Some of the orthogonality

conditions delimiting the valid IV's are redundant. Illustrations based on data on inputs

and outputs from an eight year panel of manufacturing �rms are given.
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1 Introduction

A familiar and notable property of the Ordinary Least Squares (OLS) when there

are random measurement errors (errors-in-variables, EIV) in the regressors is that

the slope coe�cient estimator is inconsistent. In the one regressor case (or the mul-

tiple regressor case with uncorrelated regressors), under standard assumptions, the

estimator is biased towards zero, often denoted as attenuation. More seriously, un-

less some `extraneous' information is available, e.g. the existence of valid parameter

restrictions or valid instruments for the error-ridden regressors, slope coe�cients can-

not (in general) be identi�ed from standard data [see Fuller (1987, section 1.1.3)].1

This conclusion of lack of identi�cation in EIV models, however, relates to uni-

dimensional data, i.e., pure (single or repeated) cross-sections or pure time-series.

If the variables are observed as panel data, exhibiting two-dimensional variation, it

may be possible to handle the EIV identi�cation problem and estimate slope coef-

�cients consistently without extraneous information, provided that the distribution

of the latent regressors and the measurement errors satisfy certain weak conditions.

Brie
y and intuitively, the reason why the existence of variables observed along

two dimensions makes the EIV identi�cation problem more manageable, is partly

(i) the repeated measurement property of panel data { each individual and each

period is `replicated' { so that the measurement error problem can be reduced by

taking averages, which, in turn, may show su�cient variation to permit consistent

estimation2, and partly (ii) the larger set of other linear data transformations avail-

able for estimation. Such transformations, involving several individuals or several

periods, may be needed to take account of uni-dimensional `nuisance variables' like

unobserved individual or period speci�c heterogeneity, which are potentially corre-

lated with the regressor.

The focus of this paper is on the estimation of linear, static regression equations

from balanced panel data with additive, random measurement errors in the regres-

sors by means of methods utilizing instrumental variables (IV's). The panel data

available to an econometrician are frequently from individuals, �rms, or other kinds

1Note, however, (i) that identi�cation under non-normality of the true regressor is possible, by

utilizing moments of the distribution of the observable variables of order higher than the second,

[see Reiers�l (1950)] and (ii) that even under non-identi�cation, bounds on the parameters can be

established from the distribution of the observable variables [see Fuller (1987, p. 11)]. These bounds

may be wide or narrow, depending on the covariance structure of the variables; see Klepper and

Leamer (1984), Bekker et al. (1987), Erickson (1993), and Willassen (1998).
2The repeated measurement argument in relation to latent variables models is elaborated in

Aigner et al. (1984, section 3.10). See also Willassen (1979, section 3)
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of micro units, where not only observation errors in the narrow sense, but also de-

partures between theoretical variable de�nitions and their observable counterparts

in a wider sense may be present. The models we will consider superimpose the EIV

problem on the heterogeneity problem.

From the panel data literature disregarding the EIV problem we know that the

e�ect of, for example, additive (�xed or random) individual heterogeneity within a

linear model can be eliminated by deducting individual means, taking di�erences

over periods, etc. [see Hsiao (1986, Section 1.1) and Baltagi (1995, Chapter 2)].

Such transformations, however, may magnify the variation in the measurement er-

ror component of the observations relative to the variation in the true structural

component, i.e., they may increase the `noise/signal ratio'. Data transformations

intended to `solve' the latent heterogeneity problem may then aggravate the EIV

problem. Several familiar estimators for panel data models, including the �xed

e�ects within-group and between-group estimators, and the random e�ects General-

ized Least Squares (GLS) estimators will then be inconsistent, although to a degree

depending, inter alia, on the way in which the number of individuals and and/or

periods tend to in�nity and on the heterogeneity of the measurement error process;

see Griliches and Hausman (1986) and Bi�rn (1992, 1996) for a substantial number

of examples for one regressor models. Such inconsistency problems will not be dealt

with in the present paper.

If the distribution of the latent regressor vector is not time invariant and the

second order moments of the measurement errors and disturbances are structured

to some extent, a large number of consistent IV estimators of the coe�cient of

the latent regressor vector exist. The consistency of these estimators is robust to

potential correlation between the individual heterogeneity and the latent regressor.

A notable point is that serial correlation or non-stationarity of the latent regressor is

favourable from the point of view of identi�cation and estimability of the coe�cient

vector,3 but restrictions has to be imposed on the distribution of the measurement

errors and disturbances, although they do not need to be independently, identically

distributed (IID). Brie
y, there should not be `too much structure' on the second

order moments of the latent exogenous regressors across the panel, and not `too

little structure' on the second order moments of the errors and disturbances.

The procedures we will consider for static panel data EIV models in this paper

resemble, to some extent, procedures for autoregressive (AR) models for panel data

without measurement errors (mostly AR(1) equations with individual heterogeneity

3This point, in general terms, is made by Griliches (1986, pp. 1482 { 1483).
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and often with exogenous regressors added) discussed, inter alia, by Anderson and

Hsiao (1981, 1982), Holtz-Eakin et al. (1988), Arellano and Bond (1991), Arellano

and Bover (1995), Ahn and Schmidt (1995), Blundell and Bond (1995), and Sevestre

and Trognon (1996). Notable elements in this literature are (a) linear transforma-

tions of the AR equation, especially di�erencing, intended to remove individual

heterogeneity, (b) lagged level values of the predetermined variables used as instru-

ments for the lagged di�erence to `control for' its correlation with the di�erenced

disturbance, and (c) substantial attention devoted to the orthogonality conditions

(OC's) derived from the model's structure (including the initial condition of the AR

process) in the context of IV or Generalized Method of Moments (GMM) procedures.

The estimation procedures we will consider in the paper have two basic charac-

teristics: First, a mixture of level and di�erence variables are involved. Second, the

OC's derived from the EIV structure { involving levels and di�erences over one or

more than one periods { are not all essential, some are redundant. Our estimation

procedures are of two kinds: (A) The equation is transformed to di�erences to re-

move individual heterogeneity (the within individual estimator being inconsistent in

the presence of EIV), and is estimated by IV or GMM. As IV's we use level values

of the regressors and/or regressands for other periods. (B) The equation is kept in

level form, and is estimated by IV or GMM. As IV's we use di�erenced values of the

regressors and/or regressands for other periods. The conditions needed for consis-

tency of the (B) procedures under individual heterogeneity are stronger than for the

(A) procedures. Our (A) procedures extend and modify those proposed in Griliches

and Hausman (1986) (which may be considered a seminal contribution to this lit-

erature), Wansbeek and Koning (1991), Arellano and Bover (1995), Bi�rn (1992,

1996), and Bi�rn and Klette (1997a,b). Since levels are used as IV's for di�erences

or di�erences are used as IV's for levels, the correlation may be low, and the `weak

IV problem' to which increasing attention has been paid in recent literature on IV

and GMM estimation [see, e.g., Nelson and Startz (1990), Davidson and MacKin-

non (1993, pp. 217 { 224), and Staiger and Stock (1996, 1997)], also is a potential

problem in our setting.

The rest of the paper is organized as follows. In Section 2, we present our model,

with the joint occurrence of EIV and individual heterogeneity, not only the standard

case with EIV as white noise, but also autocorrelation, represented by a �nite mov-

ing average (MA) process or an error components structure. The implied OC's and

their potential redundancy are discussed. In Section 3, we consider estimators con-

structed from period means and their consistency when the number of individuals

3



goes to in�nity. In Section 4, several IV and GMM procedures are considered, with

regard to e�ciency and robustness to heteroskedasticity and autocorrelation of the

measurement errors and the disturbances. In Section 5, we present empirical illus-

trations, based on panel data on inputs and outputs from Norwegian manufacturing

�rms. Section 6 concludes.

2 Model and orthogonality conditions

2.a Model, notation, and basic assumptions

Consider a set of panel data with N (� 2) individuals observed in T (� 2) periods

and a relationship between y (observable scalar) and a (1�K) vector � (latent),

yit = c+ �it � + �i + uit; i = 1; : : : ; N ; t = 1; : : : ; T;(2.1)

where (yit; �it) is the value of (y; �) for individual i in period t, c is a scalar constant,

� is a (K � 1) vector and �i is a zero (marginal) mean individual e�ect, which

we consider as random and potentially correlated with �it, and uit is a zero mean

disturbance, which may also contain a measurement error in yit. We observe

xit = �it + vit; i = 1; : : : ; N ; t = 1; : : : ; T;(2.2)

where vit is a zero mean vector of measurement errors. Hence,

yit = c+ xit� + �it; �it = �i + uit � vit�; i = 1; : : : ; N ; t = 1; : : : ; T;(2.3)

or in vector form, arranged by individuals and by periods, as

yi� = eT c+X i�� + �i�; �i� = eT�i + ui� � V i� �; i = 1; : : : ; N;(2.4)

y�t = eN c+X �t � + ��t; ��t = �+ u�t � V �t �; t = 1; : : : ; T;(2.5)

where yi� = (yi1; : : : ; yiT )
0, X i� = (x 0

i1; : : : ;x
0
iT )

0, y�t = (y1t; : : : ; yNt)
0, X �t =

(x 0
1t; : : : ;x

0
Nt)

0, etc., em denoting the (m� 1) vector of ones and � = (�1; : : : ; �N)
0.

In the following, we refer to the �it's as composite errors/disturbances.

Let

dt� =

24 (1� T ) vector with
element t = 1, element � = �1;

and zero otherwise

35 ; t = 2; : : : ; T;

� = 1; : : : ; t�1;

so that we can write arbitrary di�erences as �yit� = yit � yi� = dt�yi�, �xit� =

xit � xi� = dt�X i�, etc., and let �yt� = [�y1t� � � ��yNt�]
0 = y�t � y�� , �X t� =
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[�x 0
1t� � � ��x 0

Nt�]
0 = X�t �X ��, etc. Premultiplying (2.4) by dt�, we get

4

�yit� = �xit� � +��it� ;(2.6)

�yt� = �Xt� � +��t�; i = 1; : : : ; N ; t; � = 1; : : : ; T;(2.7)

We will use both (2.3) and (2.6) for estimation of the coe�cient vector �, exploiting

appropriate moment conditions for the �it's, yit's, and xit's to be described below.

We assume that (�it; uit; vit; �i) are independent across individuals (which ex-

cludes random period speci�c components) and make the following basic orthogo-

nality assumptions:

Assumption (A):

8>><>>:
E(v 0itui�) = 0K1; E(� 0itui�) = 0K1;

E(� 0i� 
 vit) = 0KK ;

E(�ivit) = 01K ; E(�iuit) = 0;

i = 1; : : : ; N;

t; � = 1; : : : ; T;

where 0mn denotes the (m�n) zero matrix and
 is the Kronecker product operator.5

We also need some additional assumptions about the measurement errors and dis-

turbances. The �rst and strongest are:

Assumption (B1): E(v 0itvi�) = 0KK ; t 6= �;

Assumption (C1): E(uitui�) = 0; t 6= �;

which impose non-autocorrelation on both of them. Weaker assumptions are:

Assumption (B2): E(v 0itvi�) = 0KK ; jt� �j > �;

Assumption (C2): E(uitui�) = 0; jt� �j > �;

Assumption (B3): E(v 0itvi�) is invariant to t; �; t 6= �;

Assumption (C3): E(uitui�) is invariant to t; �; t 6= �;

of which (B2) and (C2) allow for a (vector) moving average (MA) structure up to

order � (� 1), and (B3) and (C3) allow for time invariance of the autocorrelation.

The latter will, for instance, be satis�ed if the measurement errors and the distur-

bances have individual components, say vit = v1i + v2it, uit = u1i+ u2it, where v1i,

v2it, u1i, and u2it are independent IID processes. Homoskedasticity of vit and/or uit

across i and t is not assumed, but may be imposed.

4Premultiplication by dt� is, of course, only one way of eliminating �i from (2.4). Any (1� T )

vector ct� such that ct�eT = 0, has this property, for example the rows of the within individual

transformation matrix IT � eT e
0

T =T , where IT is the T dimensional identity matrix.
5The last two assumptions are stronger than strictly needed; time invariance of E(�ivit) and

E(�iuit) is su�cient. For practical applications, this modi�cation seems to be of little importance.
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Our �nal assumptions relate to the distribution of the latent regressor vector �it.

We here consider:

Assumption (D1): E(�it) is invariant to t;

Assumption (D2): E(�i�it) is invariant to t;

Assumption (E1): E(� 0it�i�) has rank K for some t 6= �
and is not invariant to t; �;

Assumption (E2): rank(E[� 0ip(��it�)]) = K for some p 6= t 6= �;

Assumption (E3): rank(E[(��ipq)
0�it]) = K for some p 6= q 6= t:

Assumptions (D1) and (D2) hold when �it is stationary for all i [(D1) alone imposing

mean stationarity], but �it and �i do not need to be uncorrelated. Assumption (E1)

and the stronger versions (E2) and (E3) impose non-IID and some form of autocor-

relation or non-stationarity on �it. Assumption (E1) { (E3) exclude, for instance,

the case where �it has an individual component, so that �it = �1i + �2it, where �1i

and �2it are independent (vector) IID processes.6

2.b Identi�cation and the structure of the second order moments

The nature of the conditions that the distribution of (�it; uit; vit; �i) must satisfy to

make identication of � possible can be illustrated as follows. Assume, for simplicity,

that this distribution is the same for all individuals and that (A) holds, and let

C(�it; �i�) = �
��
t� ; E(�it�i) = �

��
t ; E(�2i ) = ���;

E(v 0itvi�) = �vv
t� ; E(uitui�) = �uut� ;

i = 1; : : : ; N;

t; � = 1; : : : ; T;

where C denotes the covariance matrix operator. It then follows from (2.1) and (2.2)

that the second order moments of the observable variables can be expressed as8>><>>:
C(xit;xi�) = �

��
t� +�vv

t� ;

C(xit; yi�) = �
��

t�� +�
��
t ;

C(yit; yi�) = � 0���
t�� +�

��
t � + � 0(���

� ) 0 + ��� + �uut� ;

(2.8)

i = 1; : : : ; N ; t; � = 1; : : : ; T:

6It might be possible, depending on the particular problem, to impose more structure on the

�rst and second order moments of the uit's, vit's, �it's and �i's { confer the `structural approach' to

EIV modelling. In this way we might obtain more e�cient (but potentially less robust) estimators

by operating on the full covariance matrix of the yit's and the xit's rather than eliminating the �i's

by di�erencing, as elaborated in the following sections. This alternative approach, which is more

in the spirit of the LISREL or LIML approach to simultaneous equation systems modelling and

estimation, will not be considered.
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The identi�ability of � from second order moments in general depends on whether

or not knowledge of C(xit;xi�), C(xit; yi�), and C(yit; yi�) is su�cient for obtaining a

unique solution for � from (2.8), given the restrictions imposed on the ���
t� 's, �

��
t 's,

�uut� 's, and ���. The answer in general depends on T and K. With no further in-

formation, the number of elements in C(xit;xi�) and C(yit; yi�) (all of which can be

consistently estimated from corresponding sample moments under weak conditions)

equal the number of unknown elements in �vv
t� and �uut� , which is KT (KT + 1)=2

and T (T +1)=2, respectively. Then ��� cannot be identi�ed and C(xit; yi�) contains

the only `additional information' available for identi�cation of �, ���
t� , and �

��
t .

Consider two (extreme) examples. If T = 1, i.e., cross-section data, and no

additional restrictions are imposed, we have an identi�cation problem for any K.

On the other hand, if T is arbitrarily large and all �it, uit, vit, �i are IID,

�it � IID(��;���); vit � IID(0T;1;�
vv); uit � IID(0; �uu); �i � IID(0; ���);

we also have lack of identi�cation in general.7 From (2.8) we then get8>><>>:
C(xit;xit) = ��� +�vv ;

C(xit; yit) = ����;

C(yit; yit) = � 0���� + ��� + �uu;

i = 1; : : : ; N;

t = 1; : : : ; T;
(2.9)

and 8>><>>:
C(xit;xi�) = 0K;K ;

C(xit; yi�) = 0K;1;

C(yit; yi�) = ���;

i = 1; : : : ; N;

t; � = 1; : : : ; T ; � 6= t;
(2.10)

and are basically in the same situation with regard to identi�ability of � when

T > 1 as when T = 1. The `cross-period' equations (2.10) serve no other purpose

than identi�cation of ���, and whether T = 1 or T > 1 realizations of C(xit;xit),

C(xit; yit), and C(yit; yit) are available in (2.9) is immaterial to the identi�ability

of �, ���, �vv , and �uu. In intermediate situations, identi�cation may be ensured

when T > 1.

Brie
y, these examples illustrate that in order to ensure identi�cation of the

slope coe�cient vector when panel data are available, there should not be `too much

structure' on the second order moments of the latent exogenous regressors across

the panel, and not `too little structure' on the second order moments of the errors

and disturbances.

7We get an essentially similar conclusion when �it is time invariant and IID across i.
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2.c Moment equations and orthogonality conditions

A substantial number of (linear and non-linear) moment conditions involving yit,

xit, and �it can be derived from the (A) { (E) assumptions made above.

Since (2.1) { (2.3) and (A) imply

E(x 0
itxi�) = E(� 0it�i�) + E(v 0itvi�);

E(x 0
ityi�) = E(� 0it�i�)� + E[� 0it(�i + c)];

E(yityi�) = c2 + E(�2i ) + � 0
E(� 0it�i�)�

+ � 0
E[� 0it(�i + c)] + E[(�i + c)�i�]� + E(uitui�);

E(x 0
it�i�) = E(� 0it�i)� E(v 0itvi�)�;

E(yit�i�) = � 0
E(� 0it�i) + E(�2i ) + E(uitui�);

we can derive the following moments equations involving observable variables in

levels and di�erences:8

E[x 0
ip(�xit�)] = E[� 0ip(��it�)] + E[v 0ip(�vit�)];(2.11)

E[x 0
ip(�yit�)] = E[� 0ip(��it�)]�;(2.12)

E[(�xipq)
0yit] = E[(��ipq)

0�it]� + E[(��ipq)
0(�i + c)];(2.13)

and moment equations involving observable variables and errors/disturbances:

E[x 0
ip(��it�)] = �E[v 0ip(�vit�)]�;(2.14)

E[yip(��it�)] = E[uip(�uit�)];(2.15)

E[(�xipq)
0�it] = E[(��ipq)

0�i]� E[(�vipq)
0vit]�;(2.16)

E[(�yipq)�it] = � 0
E[(��ipq)

0�i] + E[(�uipq)uit];(2.17)

t; �; p; q = 1; : : : ; T:

Not all of the equations in (2.11) { (2.17), whose number is substantial even for small

or moderate T , are, of course, independent. Depending on which (B), (C), and (D)

assumptions are valid, some of the terms on the right hand side of (2.14) { (2.17), or

all, will vanish. Note, with respect to (2.13), that (D1) implies E[(��ipq)
0c] = 0K1

for any c, and that (D2) implies E[(��ipq)
0�i] = 0K1, so that if both are satis�ed,

E[(�xipq)
0yit] = E[(��ipq)

0�it]�.

8Wansbeek (1996) has focused on the importance of including not only the moment conditions

involving the x's in panel data analyses of EIV models [as in Griliches and Hausman (1986)], but

also those involving the y's.
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Hence, for T > 2, (2.3), (2.6), and (2.14) { (2.17) imply the following moment

conditions on the observable variables and the composite errors/disturbances98>><>>:
When (B1), or (B3), holds and t 6= � 6= p;
or when (B2) holds and jt� pj; j�� pj > � , then

E[x 0
ip(��it�)] = E[x 0

ip(�yit�)]� E[x 0
ip(�xit�)]� = 0K1:

(2.18)

8>><>>:
When (C1), or (C3), holds and t 6= � 6= p;
or when (C2) holds and jt� pj; j�� pj > � , then

E[yip(��it�)] = E[yip(�yit�)]� E[yip(�xit�)]� = 0:

(2.19)

8>><>>:
When (B1), or (B3), (D1), and (D2) hold, and t 6= p 6= q;
or when (B2), (D1), and (D2) hold, and jt� pj; jt� qj > � , then

E[(�xipq)
0�it] = E[(�xipq)

0yit]� E[(�xipq)
0xit]� = 0K1:

(2.20)

8>><>>:
When (C1), or (C3), (D1), and (D2) hold, and t 6= p 6= q;
or when (C2), (D1), and (D2) hold, and jt� pj; jt� qj > � , then

E[(�yipq)�it] = E[(�yipq)yit]� E[(�yipq)xit]� = 0:

(2.21)

Furthermore, from (2.11) { (2.13) it follows for T > 2 that

When (E2) holds; rank(E[x 0
ip(�xit�)]) = K; rank(E[yip(�xit�)]) = 1:(2.22)

When (D1), (D2), and (E3) hold;(2.23)

rank(E[(�xipq)
0xit]) = K; rank(E[(�yipq)xit]) = 1:

2.d Essential and redundant orthogonality conditions

Before we proceed to IV or GMM estimation of � using OC's from (2.18) { (2.21) an

examination of the relationships between the 1
2KT (T�1)(T�2) OC's in (2.18) and

between the 1
2KT (T�1)(T�2) OC's in (2.20) is needed. Throughout, we assume that

T > 2. Some of these conditions are redundant, since they can be derived as linear

combinations of other conditions.10 Con�ning attention to the OC's constructed

from x's, we have11

9Modi�cations of (2.20) and (2.21) when the mean stationarity assumption (D1) is relaxed, so

that less structure is imposed on the distribution of �it, will be discussed in section 4.d.
10Essential and redundant moment conditions in the context of AR models for panel data are

discussed in Ahn and Schmidt (1995), Arellano and Bover (1995), and Blundell and Bond (1995),

A general treatment of redundancy of moment conditions in GMM estimation, although with no

reference to panel data models, can be found in Breusch et al. (1997).
11The OC's involving y's can be treated similarly.
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(�) When (B1), or (B3), and (C1), or (C3), are satis�ed, all OC's (2.18) can be

constructed from all admissible OC's relating to equations di�erenced over one

period and a subset of OC's relating to di�erences over two periods.

(�) When (B1), or (B3), and (C1), or (C3), are satis�ed, all OC's (2.20) can

be constructed from all admissible OC's relating to IV's di�erenced over one

period and a subset of IV's di�erenced over two periods.

(
) When (B2) and (C2) are satis�ed, all OC's (2.18) can be constructed from all

admissible OC's relating to equations di�erenced over one period and a subset

of OC's relating to di�erences over 2(�+1) periods.

(�) When (B2) and (C2) are satis�ed, all OC's (2.20) can be constructed from all

admissible OC's relating to IV's di�erenced over one period and a subset of

IV's di�erenced over 2(�+1) periods.

We denote the non-redundant conditions de�ned by (�) { (�) as essential OC's for

the speci�c cases. Since (2.18) and (2.20) are symmetric, we prove only (�) [and

(
)] and derive (�) [and (�)] by way of analogy.

Since x 0
ip��it� = x 0

ip(
Pt

j=�+1��ij;j�1), we see that if (hypothetically) all p =

1; : : : ; T combined with all t > � would give admissible OC's, (2.18) for di�erences

over 2; 3; : : : ; T�1 periods could have been constructed from the conditions relating

to one-period di�erences only. However, since (t; �) = (p; p � 1); (p + 1; p) are in-

admissible, and (when (B1), or (B3), holds) (t; �) = (p+ 1; p� 1) is admissible, we

have to distinguish between the cases where p is (I) strictly outside and (II) strictly

inside the interval (�; t).12 From the identities

(I) x 0
ip��it� = x 0

ip(
Pt

j=�+1��ij;j�1) for p = 1; : : : ; ��1; t+ 1; : : : ; T;

(II) x 0
ip��it� = x 0

ip(
Pp�1

j=�+1��ij;j�1 + ��i;p+1;p�1 +
Pt

j=p+2��ij;j�1)
for p = �+1; : : : ; t�1;

taking expectations, we then obtain

Proposition 1: When (B1) or (B3), and (C1) or (C3) are satis�ed,

(a) E[x 0
ip(��it;t�1)] = 0K;1 for p = 1; : : : ; t�2; t+1; : : : ; T ; t = 2; : : : ; T are

K(T�1)(T�2) essential OC's for equations di�erenced over one period.

(b) E[x 0
it(��it+1;t�1)] = 0K;1 for t = 2; : : : ; T�1 are K(T�2) essential OC's for

equations di�erenced over two periods.

(c) The other OC's are redundant: among the 1
2KT (T�1)(T �2) conditions in

(2.18) when T > 2, only a fraction of 2=(T�1), are essential.

12See also Cr�epon and Mairesse (1996, pp. 357 { 358).
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Symmetrically, from (2.20) we have

Proposition 2: When (B1), or (B3), and (C1), or (C3), are satis�ed,

(a) E[(�xip;p�1)
0�it] = 0K;1 for t = 1; : : : ; p� 2; p+1; : : : ; T ; p = 2; : : : ; T are

K(T�1)(T �2) essential OC's for equations in levels, with IV's di�erenced

over one period.

(b) E[(�xit+1;t�1)
0�it] = 0K;1 for t = 2; : : : ; T�1 are K(T�2) essential OC's for

equations in levels, with IV's di�erenced over two periods.

(c) The other OC's are redundant: among the 1
2KT (T�1)(T �2) conditions in

(2.19) when T > 2, only a fraction of 2=(T�1), are essential.

These propositions can be generalized to the case where �it is a MA(�) process.

For any �nite � = 0; 1; 2; : : : , we have

Proposition 1*: When (B2) and (C2) are satis�ed,

(a) E[x 0
ip(��it;t�1)] = 0K;1 for p = 1; : : : ; t���2; t+�+1; : : : ; T ; t = 2; : : : ; T are

essential OC's for equations di�erenced over one period.

(b) E[x 0
it(��it+�+1;t���1)] = 0K;1 for t = �+2; : : : ; T���1 are essential OC's for

equations di�erenced over 2(�+1) periods.

(c) The other OC's in (2.18) are redundant.

Proposition 2*: When (B2) and (C2) are satis�ed,

(a) E[(�xip;p�1)
0�it] = 0K;1 for t = 1; : : : ; p���2; p+�+1; : : : ; T ; p = 2; : : : ; T are

essential OC's for equations in levels, with IV's di�erenced over one period.

(b) E[(�xit+�+1;t���1)
0�it] = 0K;1 for t = �+2; : : : ; T���1 are essential OC's for

equations in levels, with IV's di�erenced over 2(�+1) periods.

(c) The other OC's in (2.20) are redundant.

These propositions can be (trivially) modi�ed to include also the essential and re-

dundant OC's in the y's or the �y's, given in (2.19) and (2.21).

3 Estimation by OLS on period means

In this section, we consider estimators of � constructed from period means, to

illustrate applications of the repeated measurement property of panel data.

Premultiplying (2.7) by e 0N=N and substituting � = t � s, we get the following

equation in di�erenced period means:

�s�y�t = �s�x�t� + �s���t; s = 1; : : : ; T�1; t = s+1; : : : ; T;(3.1)

11



where �y�t =
P

i yit=N , �x�t =
P

i xit=N , etc., and �s is the operator di�erencing over

s periods. Taking di�erences between period means and global means, we obtain

from (2.5)

(�y�t � �y) = (�x�t � �x)� + (���t � ��); t = 1; : : : ; T;(3.2)

where �y =
P

i

P
t yit=(NT ), �x =

P
i

P
txit=(NT ), etc.

Now, the (weak) law of the large numbers, when (A) is satis�ed, implies under

weak conditions, not including (B2), (B3), (C2), (C3), (D1), and (D2) [cf. McCabe

and Tremayne (1993, section 3.5)]13,

plim(���t) = 0; plim(�x�t � ���t) = 01K ; plim[�x 0�t���t] = 0K1;

even if plim[(1=N)
PN

i=1 x
0
it�it] 6= 0K1. Therefore, (3.1) and (3.2) imply

plim[(�s�x�t) 0(�s�y�t)] = plim[(�s�x�t) 0(�s�x�t)]�;(3.3)

plim[(�x�t � �x) 0(�y�t � �y)] = plim[(�x�t � �x) 0(�x�t � �x)]�:(3.4)

Hence, if E[(�s
���t)0(�s

���t)] and E[(���t���)0(���t���)] have rank K, which are variants

of assumptions (E1) { (E3), consistent estimators of � can be obtained by OLS on

(3.1) or on (3.2). This gives

b��s =
24 TX
t=s+1

(�s�x�t) 0 (�s�x�t)
35�124 TX

t=s+1

(�s�x�t) 0 (�s�y�t)
35 ; s = 1; : : : ; T�1;(3.5)

b�BP =

"
TX
t=1

(�x�t � �x) 0(�x�t � �x)

#�1" TX
t=1

(�x�t � �x) 0(�y�t � �y)

#
;(3.6)

provided that a su�cient number of degrees of freedom remains. The latter is the

`between period' (BP) estimator.

These estimators simply exploit the fact that averages of a large number of

repeated measurements of an error-ridden variable give under weak conditions an

error-free measure of the true average at the limit, provided that this true average

shows variation along the remaining dimension, i.e., across periods. This intuition

explains why the consistency of b��s and b�BP are at the same time robust to in-

dividual heterogeneity and utilize the average-of-repeated-measurements possibility

allowed by panel data. However, since they do not exploit any inter-individual vari-

ation in the data, their e�ciency may be low, because this kind of variation often

tends to dominate.
13Here and in the following plim always denotes probability limits when N goes to in�nity and

T is �nite.
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Basic to the above conclusions is the assumption that the measurement error

has no period speci�c component. This assumption is important, since if such a

component were present, it would not vanish when taking plims of period means, i.e.,

plim(�v�t) would no longer be zero, (3.3) and (3.4) would no longer hold, and so b��s
and b�BP would not be consistent. `Within period' transformations, e.g., di�erences

taken across individuals, would, however, eliminate this kind of measurement error

heterogeneity.14

4 Estimation by IV and GMM { di�erences vs. levels

In this section, we construct estimators of � by replacing the expectations in (2.18)

{ (2.21) by sample means taken over i and minimizing their distances from the zero

vector. There are several ways in which this idea can be operationalized; we can

(i) Estimate equations in di�erences, with instruments in levels, using (2.18)

and/or (2.19) for (a) one (t; �) and one p, (b) one (t; �) and several p, or

(c) several (t; �) and several p jointly.

(ii) Estimate equations in levels, with instruments in di�erences, using (2.20)

and/or (2.21) for (a) one t and one (p; q), (b) one t and several (p; q), or

(c) several t and several (p; q) jointly.

In cases (i.a) and (ii.a), we obtain an empirical distance equal to the zero vector, so

no minimization is needed. This corresponds, formally, to the situation with `exact

identi�cation' (exactly as many OC's as needed) in classical IV estimation. In cases

(i.b), (i.c), (ii.b), and (ii.c), we have, in a formal sense, `overidenti�cation' (more than

the necessary number of OC's), and therefore construct `compromise estimators' by

minimizing appropriate quadratic forms in the corresponding empirical distances.

4.a Simple IV estimators, one level or one di�erence

As a starting point, we consider the simplest cases, (i.a) and (ii.a).

Equation in di�erences, IV's in levels. The sample mean counterpart to

(2.18) for one (t; �; p) gives the estimator15

b�xp(t�) = [
PN

i=1x
0
ip(�xit�)]

�1[
PN

i=1 x
0
ip(�yit�)]:(4.1)

14See Bi�rn (1996, sections 10.3 and 10.5) for an elaboration of this.
15This kind of estimator is considered in Griliches and Hausman (1986, section 3) and Bi�rn (1996,

section 10.2.3). A closely related estimator for an AR(1) equation is proposed in Anderson and

Hsiao (1982, p. 59).
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If K = 1, the sample mean counterparts to (2.19) for one (t; �; p) gives

b�yp(t�) = [
PN

i=1 yip(�xit�)]
�1[
PN

i=1 yip(�yit�)]:(4.2)

If K > 1, the latter estimator is infeasible, but we may modify (4.1) by replacing

one element in xip by yip.

Equation in levels, IV's in di�erences. The sample mean counterpart to

(2.20) for one (t; p; q) gives the estimator

b�x(pq)t = [
PN

i=1(�xipq)
0xit]

�1[
PN

i=1(�xipq)
0yit]:(4.3)

If K = 1, the sample mean counterparts to (2.21) for one (t; p; q) gives

b�y(pq)t = [
PN

i=1(�yipq)xit]
�1[
PN

i=1(�yipq)yit]:(4.4)

If K > 1, the latter estimator is infeasible, but we may modify (4.3) by replacing

one element in �xipq by �yipq.

From (2.18) { (2.21) we note that

� Assumption (B1) or (B3) { non-autocorrelation or time invariant autocorrela-

tion of the (level) measurement errors (in the x's) { is necessary for consistency

of b�xp(t�) for all p 6= �; t and consistency of b�x(pq)t for all t 6= p; q.

� Assumption (C1) or (C3) { non-autocorrelation or time invariant correlation

of the (level) disturbances (including the measurement errors in the y's) { is

necessary for consistency of b�yp(t�) for all p 6= �; t and consistency of b�y(pq)t
for all t 6= q; p.

� Assumptions (D1) and (D2) { time invariance of E(�it) and E(�i�it) { are

necessary for consistency of b�x(pq)t and b�y(pq)t, but they are not necessary for

consistency of b�xp(t�) and b�yp(t�).16
If we replace (B1) and (C1) by the weaker assumptions (B2) and (C2), we must

ensure that the IV set has a lag or lead of at least � + 1 periods to the regressor to

`get clear of' the � period memory of the MA process:

� If jt � pj; j� � pj > � , (B2) and (E2) ensure consistency of b�xp(t�), and (C2)

and (E2) ensure consistency of b�yp(t�).
� If jp� tj; jq� tj > � , (B2), (D1), (D2), and (E3) ensure consistency of b�x(pq)t,
and (C2), (D1), (D2), and (E3) ensure consistency of b�y(pq)t.

16Modi�cations of b�x(pq)t and b�y(pq)t which retain consistency when (D1) is relaxed, will be

discussed in Section 4.d.
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Since the correlation between the regressors and the instruments, say between xip

and �xit� , may be low, (4.1) { (4.4) may su�er from the `weak instrument problem',

discussed in Nelson and Startz (1990) and Staiger and Stock (1997). Composite IV

or GMM estimates may be an answer to this problem.

4.b Composite IV estimators, one level or one di�erence

We next consider estimation of � in (2.6) for one pair of periods (t; �), utilizing as

IV's for �xit� all admissible xip's, and estimation of � in (2.3), i.e., for one period

(t), utilizing as IV's for xit all admissible �xipq's.
17

To formalize this, we de�ne the selection matrices

P t� =

24 ((T�2)� T ) matrix
obtained by deleting
from IT rows t and �

35 ; t; � = 1; : : : ; T;

and the stacked [(T � 2)� T ] di�erencing matrices

Dt =

2666666664

d21...
dt�1;t�2
dt+1;t�1
dt+2;t+1...
dT;T�1

3777777775
; t = 1; : : : ; T:

The latter are one-period di�erencing matrices, except that dt;t�1 and dt+1;t are

replaced by their sum, dt+1;t�1.
18 We use the notation

y
i(t�) = P t�yi�; X i(t�) = P t�X i�; xi(t�) = vec(Xi(t�))

0;

�y
i(t) = Dtyi�; �Xi(t) = DtXi�; �xi(t) = vec(�Xi(t))

0;

etc. Here Xi(t�) denotes the [(T � 2) �K] matrix of x levels obtained by deleting

rows t and � from Xi�, and �Xi(t) denotes the [(T � 2)�K] matrix of x di�erences

obtained by stacking all one-period di�erences between rows of X i� not including
period t and the single two-period di�erence between the columns for periods t + 1

and t � 1. The vectors yi(t�) and �y
i(t) are constructed from yi� in a similar way.

In general, we let subscripts (t�) and (t) on a matrix or vector denote deletion of

(t�) di�erences and t levels, respectively. Stacking y 0
i(t�), �y

0
i(t), xi(t�), and �xi(t),

17The former, for K = 1, is considered by Griliches and Hausman (1986). See also Bi�rn and

Klette (1997a,b).
18The two-period di�erence is e�ective only for t = 2; : : : ; T � 1.
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by individuals, we get

Y (t�) =

2664
y01(t�)
...

y0
N(t�)

3775 ;�Y (t) =

2664
�y01(t)

...

�y0
N(t)

3775 ;X(t�) =

2664
x1(t�)
...

x
N(t�)

3775 ;�X(t) =

2664
�x1(t)

...

�x
N(t)

3775 ;
which have dimensions (N � (T �2)), (N� (T �2)), (N � (T �2)K), and (N� (T �
2)K), respectively. These four matrices contain the IV's to be considered below.

Equation in di�erences, IV's in levels. Using X(t�) as IV matrix for �Xt�

in (2.7), we obtain the following estimator of �, speci�c to period (t; �) di�erences

and utilizing all admissible x level IV's,

b�x(t�) = �
(�X t�)

0X(t�)

�
X 0

(t�)X(t�)

��1
X 0

(t�)(�Xt�)

��1
(4.5)

�
�
(�Xt�)

0X(t�)

�
X 0

(t�)X(t�)

��1
X 0

(t�)(�yt�)

�
=

�hP
i(�xit�)

0x
i(t�)

ihP
i x

0
i(t�)xi(t�)

i�1hP
i x

0
i(t�)(�xit�)

i��1
�
�hP

i(�xit�)
0x

i(t�)

ihP
i x

0
i(t�)xi(t�)

i�1hP
i x

0
i(t�)(�yit�)

i�
:

It exists if X 0
(t�)X(t�) has rank (T�2)K, which requires N � (T�2)K. This GMM

estimator estimator utilizes the OC E[x 0
i(t�)(��it�)] = 0(T�2)K;1, which follows from

(2.18), and minimizes the quadratic form:

b�x(t�) = argmin

�
1

N
X 0

(t�)��t�

� 0� 1

N2
X 0

(t�)X(t�)

��1� 1

N
X 0

(t�)��t�

�
:

The weight matrix (N�2X 0
(t�)X(t�))

�1 is proportional to the inverse of the (asymp-

totic) covariance matrix of N�1X 0
(t�)��t� when ��it� is IID across i, possibly with

a variance depending on (t; �). The consistency of b�x(t�) relies on (B1), or (B3), and

the validity of (E2) for all p.

Two modi�cations of b�x(t�) exist:
(1) If var(��it�) = !it� varies with i and is known, we can increase the e�ciency of

(4.5) by replacing x 0
i(t�)xi(t�) by x

0
i(t�)!it�xi(t�), which gives an asymptotically

optimal GMM estimator.19 Estimation of
P

i x
0
i(t�)!it�xi(t�) for unknown !it�

is elaborated in Appendix A.

(2) Instead of using X(t�) as IV matrix for �Xt� in (2.7), we may either, if K = 1,

use Y (t�), or, for arbitrary K, Z(t�) = (X(t�)
...Y (t�)).

19For a more general treatment of asymptotic e�ciency in estimation with moment conditions,

see Chamberlain (1987) and Newey and McFadden (1994).
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Equation in levels, IV's in di�erences. Using �X(t) as IV matrix for X t

in (2.5) (omitting, for notational simplicity, the `dot' subscript on X �t and y�t) we
get the following estimator of �, speci�c to period t levels, utilizing all admissible x

di�erence IV's,

b�x(t) = �
X 0

t(�X(t))
�
(�X(t))

0(�X(t))
��1

(�X(t))
0X t

��1
(4.6)

�
�
X 0

t(�X(t))
�
(�X(t))

0(�X(t))
��1

(�X(t))
0yt

�
=

�hP
i x

0
it(�xi(t))

ihP
i(�xi(t))

0(�x
i(t))

i�1hP
i(�xi(t))

0xit
i��1

�
�hP

i x
0
it(�xi(t))

ihP
i(�xi(t))

0(�x
i(t))

i�1hP
i(�xi(t))

0yit
i�
:

It exists if (�X(t))
0(�X(t)) has rank (T�2)K, which again requires N � (T�2)K.

This GMM estimator utilizes the OC E[(�x
i(t))

0�it] = 0(T�2)K;1, which follows from

(2.20), and minimizes the quadratic form:

b�x(t) = argmin

�
1

N
(�X(t))

0�t

� 0� 1

N2
(�X(t))

0(�X(t))

��1� 1

N
(�X(t))

0�t

�
:

The weight matrix [N�2(�X(t))
0(�X(t))]

�1 is proportional to the inverse of the

(asymptotic) covariance matrix of N�1(�X(t))
0�t when �it is IID across i, possibly

with a variance depending on t. The consistency of b�x(t) relies on (B1), or (B3),

(D1), (D2), and the validity of (E3) for all (p; q).

Two modi�cations of b�x(t) exist:
(1) If var(�it) = !it varies with on i and is known, we can increase the e�ciency

of (4.6) by replacing (�x
i(t))

0(�x
i(t)) by (�x

i(t))
0!it(�xi(t)), which gives an

asymptotically optimal GMM estimator. Estimation of
P

i(�xi(t))
0!it(�xi(t))

for unknown !it is elaborated in Appendix A.

(2) Instead of using �X(t) as IV matrix for X t in (2.5), we may either, if K = 1,

use �Y (t), or, for arbitrary K, �Z(t) = (�X(t)
... �Y (t)).

If we �nd (B1) or (C1) too restrictive and replace them by (B2) or (C2), we

must ensure that the variables in the IV matrix have a lead or lag of at least � + 1

periods to the regressor, to `get clear of' the � period memory of the MA(�) process.

Formally, we then replace P t� and Dt by
20

P t�(�) =

2664
matrix obtained by
deleting from IT

rows � � �; : : : ; �+ �
and t� �; : : : ; t+ �

3775 ; t; � = 1; : : : ; T;

20The number of rows in these matrices depends, in general, on � .
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and

Dt(�) =

2666666664

d21...
dt���1;t���2
dt+�+1;t���1
dt+�+2;t+�+1...
dT;T�1

3777777775
; t = 1; : : : ; T:

and otherwise proceed as above. The matrix Dt(�) is a one-period di�erencing ma-

trix, except that dt��;t���1; : : : ;dt+�+1;t+� are replaced by their sum, dt+�+1;t���1.

4.c GMM estimators, all levels or di�erences

We �nally consider GMM estimation of � when we combine all essential OC's as

given in Proposition 1 and in Proposition 2.21

Equation in di�erences, IV's in levels. Consider (2.6) for all � = t� 1 and

all � = t � 2. These (T�1) + (T�2) equations stacked for individual i read266666666664

�yi21
�yi32...

�yi;T;T�1
�yi31
�yi42...

�yi;T;T�2

377777777775
=

266666666664

�xi21
�xi32...

�xi;T;T�1
�xi31
�xi42...

�xi;T;T�2

377777777775
� +

266666666664

��i21
��i32...

��i;T;T�1
��i31
��i42...

��i;T;T�2

377777777775
;(4.7)

or, compactly,

�yi = (�X i)� +��i:

21The procedures to be described below assume that (B1) and (C1) are satis�ed. If we �nd these

conditions too restrictive and replace them by (B2) or (C2), we must ensure once again that the

variables in the IV matrix have a lead or lag of at least �+1 periods to the regressor, to `get clear of'

the � period memory of the MA(�) process, cf. Propositions 1* and 2*. Otherwise, we can proceed

as described below.
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The IV matrix, according to Proposition 1,22 is the ((2T�3)�KT (T�2)) matrix23

Zi =

2666666666666666664

x
i(21) 0 � � � 0 0 0 � � � 0

0 x
i(32) � � � 0 0 0 � � � 0

...
...

. . .
...

...
...

...
...

0 0 � � � x
i(T;T�1) 0 0 � � � 0

0 0 � � � 0 xi2 0 � � � 0

0 0 � � � 0 0 xi3 � � � 0
...

...
...

...
...

...
. . .

...

0 0 � � � 0 0 0 � � � xi;T�1

3777777777777777775

:(4.8)

Let
�y = [(�y1)

0; : : : ; (�yN )
0] 0; �� = [(��1) 0; : : : ; (��N ) 0] 0;

�X = [(�X1)
0; : : : ; (�XN )

0] 0; Z = [Z 0
1; : : : ;Z

0
N ]

0:

The GMM estimator corresponding to (2.18), which we nowwrite as E[Z 0
i (��i)] =

0
T (T�2)K;1, minimizing [N�1(��) 0Z ](N�2V )�1[N�1Z 0(��)] for V = Z 0Z, can be

written as

b�Dx = h
(�X) 0Z(Z 0Z)�1Z 0(�X)

i�1 h
(�X) 0Z(Z 0Z)�1Z 0(�y)

i
(4.9)

=
h
[
P

i(�Xi)
0Zi] [

P
iZ

0
iZ i]

�1
[
P

iZ
0
i (�Xi)]

i�1
�
h
[
P

i(�Xi)
0Zi] [

P
iZ

0
iZi]

�1 [
P

iZ
0
i (�yi)]

i
:

If �� has a non-scalar covariance matrix, a more e�cient GMM estimator is

obtained for V = V Z(��) = E[Z0(��)(��)0Z], which gives

e�Dx = h
(�X) 0ZV �1

Z(��)Z
0(�X)

i�1 h
(�X) 0ZV �1

Z(��)Z
0(�y)

i
:(4.10)

We can estimate V Z(��)=N consistently from the residuals obtained from (4.9),c��i = �yi� (�X i)
b�Dx, by means of [see White (1984, sections IV.3 and VI.2) and

(1986, section 3)]

cV Z(��)

N
=

1

N

NX
i=1

Z 0
i(
c��i)(c��i) 0Zi:(4.11)

22It is possible to include not only the essential OC's in this kind of GMM estimation, but also the

redundant OC's. The singularity problems involved may be treated by replacing standard inverses

in the estimation formulae by Moore-Penrose inverses, see Bi�rn and Klette (1997a,b).
23Formally, we here use di�erent IV's for the (T �1)+(T �2) di�erent equations in (4.7), with �

as a common slope coe�cient. This kind of 
exibility is one of the attractions of GMM as compared

with standard two stage and three stage least squares; see Schmidt (1990).
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Inserting (4.11) in (4.10), we get the asymptotically optimal (feasible) GMM esti-

mator

e�Dx = h
[
P

i(�Xi)
0Zi][

P
iZ

0
i
c��ic�� 0iZ i]

�1[
P

iZ
0
i (�Xi)]

i�1
(4.12)

�
h
[
P

i(�Xi)
0Zi][

P
iZ

0
i
c��ic�� 0iZi]

�1[
P

iZ
0
i (�yi)]

i
:

These estimators can be modi�ed by extending all x
i(t;t�1) to (xi(t;t�1)

...y 0
i(t;t�1))

and all xit to (xit
...yit) in (4.8), which also exploit the OC's in the y's.

Equation in levels, IV's in di�erences. We next consider the procedures for

the equation in levels with the IV's in di�erences. The T stacked level equations for

individual i are [cf. (2.3)]264 yi1...
yiT

375 =

264 c
...
c

375+
264 xi1...
xiT

375� +

264 �i1...
�iT

375 ;(4.13)

or, compactly [cf. (2.5), omitting the `dot' subscript],

yi = eT c+X i� + �i:

The IV matrix, according to Proposition 2, is the (T � T (T � 2)K) matrix24

�Zi =

2664
�x

i(1) � � � 0
...

. . .
...

0 � � � �x
i(T )

3775 :(4.14)

Let
y = [y 0

1; : : : ;y
0
N ]

0; � = [� 01; : : : ; �
0
N ]

0;

X = [X 0
1; : : : ;X

0
N ]

0; �Z = [(�Z1)
0; : : : ; (�ZN )

0] 0:

The GMM estimator corresponding to (2.20), which we nowwrite as E[(�Zi)
0�i] =

0
T (T�2)K;1, minimizing [N�1� 0(�Z)](N�2V �)

�1[N�1(�Z) 0�] forV � = (�Z) 0(�Z),

can be written as

b�Lx = h
X 0(�Z)[(�Z) 0(�Z)]�1(�Z) 0X

i�1
(4.15)

�
h
X 0(�Z)[(�Z) 0(�Z)]�1(�Z) 0y

i
=
h
[
P

iX
0
i (�Zi)] [

P
i(�Zi) 0(�Zi)]

�1 [
P

i(�Zi) 0Xi]
i�1

�
h
[
P

iX
0
i(�Zi)] [

P
i(�Zi) 0(�Zi)]

�1 [
P

i(�Zi) 0yi]
i
:

24Again, we formally use di�erent IV's for di�erent equations, considering (4.13) as T di�erent

equations with � as a common slope coe�cient.
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If � has a non-scalar covariance matrix, a more e�cient GMM estimator is ob-

tained for V � = V (�Z)� = E[(�Z)0��0(�Z)], which gives

e�Lx = h
X 0(�Z)V �1

(�Z)�(�Z)
0X
i�1 h

X 0(�Z)V �1
(�Z)�(�Z)

0y
i
:(4.16)

We can estimate V (�Z)�=N consistently from the residuals obtained from (4.15),25b�i = yi �Xi
b�Lx, by

cV (�Z)�

N
=

1

N

NX
i=1

(�Zi)
0 b�ib� 0i(�Zi):(4.17)

Inserting (4.17) in (4.16), we get the asymptotically optimal (feasible) GMM esti-

mator

e�Lx = h
[
P

iX
0
i (�Zi)]

�P
i(�Zi)

0 b�ib� 0i(�Zi)
��1

[
P

i(�Zi)
0Xi]

i�1
(4.18)

�
h
[
P

iX
0
i(�Zi)]

�P
i(�Zi)

0 b�ib� 0i(�Zi)
��1

[
P

i(�Zi)
0yi]

i
:

These estimators can be modi�ed by extending all �x
i(t) to (�x

i(t)

...�y 0
i(t)) in

(4.14), which also exploit the OC's in the �y's. Other moment estimators, which we

do not consider in our EIV context, are discussed for situations with predetermined

IV's in Ziliak (1997), with the purpose of reducing the potential �nite sample bias

of the asymptotically optimal GMM estimators.

4.d Non-stationarity and the intercept term in the level equation

The treatment of the intercept term c in estimating the level equation when using

the OC's (2.20) and (2.21) needs a comment. A basic point is that when (D1)

holds, using IV's in di�erences annihilates c in the moment equations, since then

E(�xipq) = 01K and E(�yipq) = 0.

If, however, we relax the mean stationarity assumption (D1), which cannot be

assumed to hold in many practical situations, we get

E[(�xipq)
0�it] = E[(�xipq)

0yit]� E[(�xipq)
0]c� E[(�xipq)

0xit]� = 0K1;

E[(�yipq)�it] = E[(�yipq)yit]� E[(�yipq)]c� E[(�yipq)xit]� = 0:

Using E(�it) = E(yit)� c�E(xit)� = 0 to eliminate c leads to the following modi�-

25We can here omit the intercept c; see Section 4.d.
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cations of (2.20) and (2.21):8>>>>><>>>>>:

When (B1), or (B3), and (D2) hold, and t 6= p 6= q;
or when (B2) and (D2) hold, and jt� pj; jt� qj > � , then

E[(�xipq)
0�it] = E[(�xipq)

0(yit � E(yit))]

� E[(�xipq)
0(xit � E(xit))]� = 0K1:

(4.19)

8>>>>><>>>>>:

When (C1), or (C3), and (D2) hold, and t 6= p 6= q;
or when (C2), and (D2) hold, and jt� pj; jt� qj > � , then

E[(�yipq)�it] = E[(�yipq)(yit � E(yit))]

� E[(�yipq)(xit � E(xit))]� = 0:

(4.20)

To implement these modi�ed OC's in the GMM procedures described in Sections 4.a

{ 4.c for the level equation, we could replace E(yit) and E(xit) by corresponding

global or period speci�c sample means and otherwise proceed as above. An illustra-

tion will be given in Section 5.

5 Illustration: Input elasticities in manufacturing

In this section, we present an empirical application of some of the estimators in

Section 4 for a very simple relationship with a single regressor (K = 1). The data

are from eight successive annual Norwegian manufacturing censuses, collected by

Statistics Norway, for the sector Manufacture of textiles (ISIC 32), with N = 215

�rms observed in the T = 8 years 1983 { 1990. Two normalizations of the relation-

ship are considered. In version A, the yit and the xit variables are, respectively, the

log of the material input and the log of gross production, both measured as values

at constant prices. In version B, their interpretation is reversed. This means that �

can be interpreted as the marginal input elasticity of materials in version A and as

its inverse in version B, both assumed to be one in simple (Leontief) input-output

analysis. The input and the output measure, not least the latter, may be thought to

contain potential measurement errors both in the strict and wide sense. With this

interpretation, the heterogeneity variable, �i, may pick up, inter alia, �rm speci�c

di�erences in technology.

The results are given in Tables 1 and 2 for the equations in di�erences and

in Tables 3 and 4 for the equations in levels. Our notation convention is that `hat'

estimates are based on standard unweighted GMM formula, `tilded' estimates are the

asymptotically e�cient GMM estimates based on the estimated optimal weighting

matrices, as described in Sections 4.b and 4.c. The subscripts x, y, and xy refer to
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the instruments. The procedures used for calculating asymptotic standard deviation

estimates are described in Appendix A.26

Table 1 gives period speci�c GMM estimates of � obtained from the di�erenced

equation for 5 selected di�erences (among the 1
2T (T�1) = 28), the IV's being level

x's (columns 1 and 4), level y's (columns 2 and 5), or both of them (columns 3

and 6). The `hat' estimates in columns 1 { 3 are based on (4.5), the `tilde' estimates

in columns 4 { 6 are the corresponding asymptotically e�cient GMM estimates

based on the estimated optimal weighting matrix, as described in Section 4.b. The

estimates in panel A are uniformly higher than those in panel B, which agrees

with the fact that they can be interpreted as obtained by running two stage least

squares on the `original' and on the `reverse regression', respectively. Under both

normalizations, the estimates utilizing the y instruments tend to exceed those based

on the x instruments. The estimates combining the x and y instruments are not

invariably between those based on either of them, and the former are not invariably

more precise. Using the optimal weighting, however, we �nd that the estimates

combining the x and y instruments are more precise, according to the asymptotic

standard deviation estimates, than those based on either the x or the y instruments.

Table 2 contains the overall GMM estimates obtained from the di�erenced equa-

tion, utilizing, respectively, all essential OC's (row 1) and only the OC's constructed

from one-period di�erences (row 2). We �nd that adding the T �2 = 6 essential

two-period OC's to the (T�1)(T�2) = 42 one-period OC's, may signi�cantly a�ect

the result (cf. Proposition 1). This holds both when the IV's are level x's (columns 1

and 3) and level y's (columns 2 and 4). Sargan-Hansen orthogonality test statistics,

which are asymptotically distributed as �2 with a number of degrees of freedom

equal to the number of OC's imposed (cf. Hansen (1982), Newey (1985), Arellano

and Bond (1991), and Appendix B), corresponding to the asymptotically e�cient es-

timates in columns 3 and 4, are also reported. These statistics indicate non-rejection

of the full set of OC's when using the x's as IV's in panel A [cf. (2.18)] and the y's

as IV's in panel B [cf. (2.18)] { i.e., the output variable in both cases { with P value

equal to 0.295 and 0.111, respectively. The full set of OC's when using the y's as

IV's in panel A and the x's as IV's in panel B { i.e., the material input variable

in both cases { is however rejected. All the results in Table 2 uniformly indicate a

marginal input elasticity of materials larger than one. The estimates in panel A are,

however, lower than the (inconsistent) estimate obtained by running OLS regression

26All numerical calculations reported below are performed by means of procedures constructed

by the author in the GAUSS software.
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on di�erences (without intercept), which is 1.1608, and the estimates in panel B are

higher than the (inconsistent) estimate obtained by running reverse OLS regression

on di�erences (without intercept), which is as low as 0.5894.

Table 3 contains period speci�c GMM estimates obtained from the level equation

for 3 selected periods among the T = 8, using as IV's, respectively, x di�erences

(columns 1 and 3) and y di�erences (columns 2 and 4). The results in panels A1 and

B1 are based on the OC's corresponding to (2.20) and (2.21), with untransformed

levels, for the `original' and the `reverse regression', respectively. All these estimates

are very precise, the former clustering around 0.92 { 0.94, the latter around 1.06 {

1.08, regardless of which IV set is used. Using OC's corresponding to (4.19) and

(4.20), i.e., deducting year means from the level variables, we get the estimates given

in panels A2 and B2. They are more sensitive to the choice of estimator and IV set

and have standard deviation estimates which are substantially larger.

Finally, Table 4 contains the overall GMM estimates obtained from the level

equation, using all essential OC's in combination with the untransformed observa-

tions (row 1) or with the observations measured from their year means (row 2).

The four sets of estimates di�er substantially. The orthogonality test statistics

(columns 5 and 6) give conclusions similar to those for the di�erenced equation in

Table 2: Non-rejection of the full set of OC's when using the x's as IV's in panel A

[cf. (2.20)] and the y's as IV's in panel B [cf. (2.21)] { i.e., the output variable in

both cases { and rejection when using the y's as IV's in panel A and the x's as IV's

in panel B { i.e., the material input variable in both cases. Note that the set of

moment conditions we test here is larger than in Table 2, since it also includes as-

sumption (D2), time invariance of the covariance between the �rm speci�c e�ect �i

and the latent regressor �it. These estimates, unlike those for the di�erenced equa-

tion in Table 2, however, do not uniformly give marginal input elasticity estimates

of materials exceeding one. Using level observations measured from year means, and

hence relaxing mean stationarity of the latent regressor, we get estimates exceeding

one, while using untransformed observations, and hence imposing mean stationar-

ity, we get estimates smaller than one. For comparison, we refer the (inconsistent)

OLS estimate obtained from the complete data set when deducting global mean and

period means from the observations, which are 1.1450 and 1.1476, respectively, for

the `original regression' and 0.7888 and 0.7864, respectively, for the `reverse regres-

sion'. The corresponding (consistent) `between period' estimates, operating on the

T = 8 year means only [cf. (3.6)] are, however, very close to one, 1.0027 and 0.9859,

respectively.
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Tentatively, we then conclude from these examples that GMM estimates of the

input elasticity of materials tend to be larger than one, regardless of the normaliza-

tion of the equation, if we use either the equation in di�erences with IV's in levels or

the equation in levels, with observations measured from their year means, and with

IV's in di�erences. If we use the strict equation in levels and with IV's in di�erences,

the GMM estimates tend to be smaller than one.

6 Concluding remarks

In this paper, we have demonstrated that several, rather simple, GMM estimators

which may \solve" jointly the heterogeneity problem and the measurement error

problem in panel data, exist. These problems may be \unsolvable" when only pure

(single or repeated) cross section data or pure time series data are available. The

estimators considered use either (A) equations in di�erences with level values as in-

struments, or (B) equations in levels with di�erenced values as instruments. In both

cases, the di�erences may be taken over one period or more. Estimators combining

approaches (A) and (B) are not considered. Ideas similar to the latter { although

exploiting one-period di�erences only { have been followed recently in GMM es-

timation of AR(1) equations for panel data without measurement errors, by Ahn

and Schmidt (1995), Arellano and Bover (1995), and Blundell and Bond (1995),

inter alia for increasing estimation e�ciency by utilizing the initial conditions on

the process.

Even if the equation is static, instruments constructed from the regressors (x's)

as well as from the regressands (y's) may be of interest. Our empirical illustrations,

using input and output data for �rms in a single regressor case, indicate that for

both normalizations of the equation, GMM estimates using y instruments tend to

exceed those using x instruments. GMM estimates combining both instrument sets

in an `optimal' way, are more precise than those using either one of them. Although

a substantial number of orthogonality conditions constructed from di�erences taken

over two periods or more are redundant, our numerical examples suggest that adding

two-period di�erence orthogonality conditons to the one-period conditions in the

GMM algorithm may signi�cantly a�ect the result. From this we conclude that

utilizing the information contained in two-period di�erences may increase estimation

e�ciency. Using levels as instruments for di�erences or vice versa as a general

estimation strategy within a GMM framework, however, may raise problems related

to `weak instruments'. Finding operational ways of identifying such instruments and
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reducing their potential damage in terms of ine�ciency, or even inconsistency, are

challenges for future research.

Finally, we �nd that GMM estimates based on the level equation are more pre-

cise (in terms of asymptotic standard deviations) than those based on di�erenced

equations. Deducting period means from levels, to compensate for non-stationarity

of the latent regressor, give estimates for the level equation which are less precise and

more sensitive to the choice of instrument set than those operating on untransformed

levels.
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Table 1:

Period specific GMM estimates of �. N = 215; T = 8

Differenced equation (t; �). Instruments in Levels.

Standard deviation estimates in parenthesis.

A. y = ln(material input), x = ln(output).

t � b�x(t�) b�y(t�) b�xy(t�) e�x(t�) e�y(t�) e�xy(t�)
2 1 1.1382 1.1555 1.1401 1.1693 1.1436 1.1577

(0.1007 0.1060 0.1082 0.0907 0.0872 0.0682)

5 4 1.0447 1.1555 1.0449 1.0006 1.1127 0.9993

(0.0798 0.0982 0.0812 0.0747 0.0941 0.0717)

8 7 0.9875 0.9352 1.0845 0.9610 0.9867 1.1035

(0.1754 0.1488 0.1372 0.1666 0.1348 0.1116)

5 1 1.0845 1.1563 1.0754 1.0782 1.0639 1.0579

(0.0348 0.0499 0.0327 0.0316 0.0293 0.0234)

8 4 1.0910 1.3334 1.0981 1.0987 1.3564 1.0563

(0.0698 0.0823 0.0673 0.0647 0.0766 0.0566)

8 1 1.0728 1.2175 1.0812 1.0566 1.0851 1.0332

(0.0440 0.0676 0.0446 0.0379 0.0380 0.0277)

B. y = ln(output), x = ln(material input).

t � b�x(t�) b�y(t�) b�xy(t�) e�x(t�) e�y(t�) e�xy(t�)
2 1 0.8087 0.8256 0.7665 0.8485 0.8357 0.8354

(0.0652 0.0678 0.0639 0.0619 0.0642 0.0496)

5 4 0.8164 0.9165 0.8338 0.8301 0.9546 0.8782

(0.0713 0.0732 0.0743 0.0691 0.0696 0.0632)

8 7 0.8966 0.8796 0.7230 0.9308 0.8330 0.7694

(0.1187 0.1420 0.0981 0.1114 0.1343 0.0769)

5 1 0.8274 0.9134 0.8378 0.9297 0.9216 0.9312

(0.0452 0.0306 0.0419 0.0238 0.0266 0.0201)

8 4 0.7438 0.9021 0.7756 0.7265 0.8663 0.7826

(0.0457 0.0565 0.0448 0.0418 0.0517 0.0407)

8 1 0.7897 0.9215 0.7942 0.9074 0.9399 0.9210

(0.0514 0.0388 0.0492 0.0291 0.0330 0.0258)
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Table 2:

GMM estimates of � based on differenced equation. N = 215; T = 8

Instruments in Levels. All essential orthogonality conditions

Standard deviation estimates in parenthesis.

A: y = ln(material input), x = ln(output).

b�Dx b�Dy e�Dx e�Dy
Estimates

All OC's 1.0821 1.1275 1.0546 1.0825

(0.0331 0.0346 0.0173 0.0169)

One period OC's only 1.1215 1.2398 1.0690 1.1164

(0.0366 0.0496 0.0184 0.0219)

Orthogonality tests

All OC's 51.7111 70.3871

P value 0.2950 0.0152

One period OC's only 56.4225 91.7643

P value 0.0550 0.0000

B: y = ln(output), x = ln(material input).

b�Dx b�Dy e�Dx e�Dy
Estimates

All OC's 0.8404 0.8931 0.8917 0.9244

(0.0283 0.0283 0.0143 0.0148)

One period OC's only 0.7451 0.8475 0.8531 0.9042

(0.0361 0.0305 0.0175 0.0155)

Orthogonality tests

All OC's 86.5531 59.0766

P value 0.0004 0.1112

One period OC's only 112.4654 71.3243

P value 0.0000 0.0023
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Table 3:

Period specific GMM estimates of �. N = 215; T = 8

Level equation (t). Instruments in Differences.

Standard deviation estimates in parenthesis.

A1. y = ln(material input), x = ln(output). No transformation

t b�x(t) b�y(t) e�x(t) e�y(t)
2 0.9262 0.9203 0.9274 0.9215

(0.0038 0.0079 0.0034 0.0061)

5 0.9346 0.9426 0.9349 0.9403

(0.0032 0.0064 0.0030 0.0057)

8 0.9306 0.9329 0.9325 0.9378

(0.0034 0.0051 0.0032 0.0047)

A2. y = ln(material input), x = ln(output). Year mean deduction

t b�x(t) b�y(t) e�x(t) e�y(t)
2 1.0129 1.2082 0.9936 1.0964

(0.0854 0.1301 0.0698 0.1073)

5 0.9797 1.1843 0.9294 1.1128

(0.1283 0.1963 0.1213 0.1481)

8 1.0193 1.3767 1.0471 1.1849

(0.1799 0.1654 0.1661 0.1452)

B1. y = ln(output), x = ln(material input). No transformation

t b�x(t) b�y(t) e�x(t) e�y(t)
2 1.0862 1.0796 1.0849 1.0782

(0.0093 0.0044 0.0072 0.0039)

5 1.0605 1.0698 1.0632 1.0696

(0.0072 0.0036 0.0064 0.0034)

8 1.0712 1.0745 1.0660 1.0723

(0.0058 0.0039 0.0054 0.0037)

B2. y = ln(output), x = ln(material input). Year mean deduction

t b�x(t) b�y(t) e�x(t) e�y(t)
2 0.7815 0.9600 0.8236 0.9740

(0.0852 0.0740 0.0761 0.0652)

5 0.7211 0.9263 0.7668 0.9765

(0.1106 0.1144 0.0939 0.1051)

8 0.6109 0.8401 0.6941 0.8634

(0.1060 0.1314 0.1010 0.1294)

29



Table 4:

GMM estimates of � based on level equation. N = 215; T = 8

Instruments in Differences. All essential orthogonality conditions

Col. 1 { 4: Standard deviation estimates in parenthesis.

Col. 5 { 6: �2 orthogonality test statistics, P values in parenthesis.

A: y = ln(material input), x = ln(output).

b�Lx b�Ly e�Lx e�Ly �2(e�Lx) �2(e�Ly)
No transformation 0.9308 0.9325 0.9351 0.9404 56.7641 81.4882

(0.0031 0.0052 0.0024 0.0022) (0.1557 0.0013)

Year mean deduction 1.0219 1.2148 1.0739 1.1749 54.6578 73.5559

(0.0644 0.1202 0.0289 0.0316) (0.2065 0.0079)

B: y = ln(output), x = ln(material input).

b�Lx b�Ly e�Lx e�Ly �2(e�Lx) �2(e�Ly)
No transformation 1.0718 1.0743 1.0628 1.0690 80.6409 56.6942

(0.0060 0.0035 0.0025 0.0028) (0.0016 0.1572)

Year mean deduction 0.7345 0.9392 0.7428 0.8834 64.4824 52.4157

(0.0730 0.0559 0.0225 0.0242) (0.0460 0.2720)
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Appendix

In this appendix, we elaborate (A) the procedures for estimating asymptotic covari-
ance matrices of the GMM estimators and (B) the orthogonality tests.

A. Estimation of covariance matrices
All models in the main text, with suitable interpretations of y, X , Z, �, and 
,
have the form:

y = X� + �; E(�) = 0; E(Z 0�) = 0; E(�� 0) = 
;(A.1)

where y = (y01; : : : ;y
0
N )

0, X = (X0
1; : : : ;X

0
N )

0, Z = (Z0
1; : : : ;Z

0
N)

0, and � =
(�01; : : : ; �

0
N )

0, Zi being the IV matrix of Xi. The two generic GMM estimators
considered are b� = [X 0PZX ]�1[X 0PZy]; PZ = Z(Z 0Z)�1Z 0;(A.2) e� = [X 0PZ(
)X ]�1[X 0PZ(
)y]; PZ(
) = Z(Z 0
Z)�1Z 0:(A.3)

Let the residual vector calculated from b� be b� = y �X b�, and use the notation

SXZ =
X 0Z
N

; SZX =
Z 0X
N

; SZZ =
Z 0Z
N

; S�Z =
� 0Z
N

; SZ� =
Z 0�
N

;

SZ
Z =
Z 0
Z
N

; SZ��Z =
Z 0�� 0Z

N
; S

Zb�b�Z =
Z 0b�b� 0Z

N
:

Inserting for y from (A.1) in (A.2) and (A.3), we get

p
N(b���) =

p
N [X0PZX ]�1[X0P Z�]

= [SXZS
�1
ZZSZX ]

�1
h
SXZS

�1
ZZ
Z

0

�p
N

i
;

p
N(e���) =

p
N [X0PZ(
)X]�1[X0PZ(
)�]

= [SXZS
�1
Z
ZSZX ]

�1
h
SXZS

�1
Z
Z

Z
0

�p
N

i
;

and hence,

N(b� � �)(b� � �) 0
= [SXZS

�1
ZZSZX ]

�1[SXZS
�1
ZZSZ��ZS

�1
ZZSZX ][SXZS

�1
ZZSZX ]

�1;

N(e� � �)(e� � �) 0
= [SXZS

�1
Z
ZSZX ]

�1[SXZS
�1
Z
ZSZ��ZS

�1
Z
ZSZX ][SXZS

�1
Z
ZSZX ]

�1:

The asymptotic covariance matrices of
p
N b� and

p
N e� can then, under suitable

regularity conditions, be written as [see Bowden and Turkington (1984, pp. 26, 69)]

aV(
p
N b�) = lim E[N(b� � �)(b� � �) 0] = plim[N(b� � �)(b� � �) 0];

aV(
p
N e�) = lim E[N(e� � �)(e� � �) 0] = plim[N(e� � �)(e� � �) 0]:

Since SZ��Z and SZ
Z coincide asymptotically, we get, using bars to denote plims,

aV(
p
N b�) = [�SXZ

�S
�1
ZZ

�SZX ]
�1[ �SXZ

�S
�1
ZZ

�SZ
Z
�S
�1
ZZ

�SZX ][ �SXZ
�S
�1
ZZ

�SZX ]
�1;(A.4)

aV(
p
N e�) = [�SXZ

�S
�1
Z
Z

�SZX ]
�1:(A.5)
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Replacing the plims �SXZ , �SZX , �SZZ and �SZ
Z by their sample counterparts,
SXZ , SZX , SZZ and SZ�̂�̂Z and dividing by N , we get from (A.4) and (A.5) the

following estimators of the asymptotic covariance matrices of b� and e�:
d
V(b�) = 1

N
[SXZS

�1
ZZSZX ]

�1[SXZS
�1
ZZSZ�̂�̂ZS

�1
ZZSZX ][SXZS

�1
ZZSZX ]

�1(A.6)

= [X 0PZX]�1[X 0PZb�b� 0PZX ][X 0PZX]�1;d
V(e�) = 1

N
[SXZS

�1
Z�̂�̂ZSZX ]

�1(A.7)

= [X 0Z(Z 0b�b� 0Z)�1Z 0X ]�1 = [X 0PZ(b�b� 0)X]�1:

These are the generic expressions which we use for estimating variances and covari-
ances of the GMM estimators considered.

When calculating e� from (A.3) in practice, we replace PZ(
) by PZ(b�b� 0) =
Z(Z 0b�b� 0Z)�1Z 0 [see White (1982, 1984)].

B. Orthogonality testing

For testing the (vector) orthogonality condition E(Z 0
i�i) = 0, we use the Sargan-

Hansen statistic [cf. Hansen (1982), Newey (1985), and Arellano and Bond (1991)]

H = N
h
S �̂ZS

�1
Z�̂�̂ZSZ�̂

i�1
= [b� 0Z(Z 0b�b� 0Z)�1Z 0b�]�1:(A.8)

Under the null, it is asymptotically distributed as �2 with a number of degrees of
freedom equal to the number of orthogonality conditions, i.e., the dimension of the
vector Z 0

i�i.
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