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1 Introduction

An issue in the analysis of economic relationships by means of panel data is how

to treat heterogeneity regarding the form of the relationships across the units or

groups in the panel. Often a common coefficient structure is assumed, only allowing

for unit specific (or time specific) differences in the intercepts (‘fixed’ or ‘random’

effects). If the heterogeneity has a more complex form, this approach may lead to

inefficient (and sometimes inconsistent) estimation of the slope coefficients.

A more appealing modelling approach is to jointly allow for heterogeneity in the

intercepts and the slopes. We may, for instance, want to investigate heterogeneity

in returns to scale coefficients and elasticities of substitution across firms in factor

demand, in Engel and Cournot elasticities across households in commodity demand,

or in accelerator coefficients in investment equations. The challenges then become

how to construct and estimate a model which is sufficiently flexible while being

parsimonious. The fixed coefficients approach, with each unit having a distinct co-

efficient vector, is very flexible, but may easily suffer from overparametrization; the

number of degrees of freedom being too small to permit reliable inference. The

random coefficients approach, in which specific assumptions are made about the

distribution from which the unit specific coefficients are ‘drawn’, is far more parsi-

monious in general. The common expectation vector represents the coefficients of

an average unit, e.g., the average scale elasticity, its covariance matrix gives read-

ily interpretable measures of the degree of heterogeneity. The random coefficients

approach may also be viewed a parsimonious way of representing certain kinds of

disturbance heteroskedasticity in panel data analysis.

A growing number of methodological papers deal with this random coefficient

problem for balanced panel data; see Longford (1995) and Hsiao (2008) for sur-

veys. Early contributions to the econometric literature on random coefficients for

linear, static single regression equations with balanced panel data are Swamy (1970),

Hsiao (1975), and Swamy and Mehta (1977). Estimation problems for the covari-

ance matrices of such models are discussed in Wansbeek and Kapteyn (1982). Av-

ery (1977) and Baltagi (1980) consider systems of regression equations with random

intercept heterogeneity for balanced panels. Biørn (1981), Baltagi (1985), and Wans-

beek and Kapteyn (1989) consider a single regression equation with random intercept

heterogeneity for unbalanced panels. Systems of regression equations for unbalanced

panel data with random intercept heterogeneity are considered in Biørn (2004) and

Platoni, and Sckokai and Moro (2012).

The model class to be considered in the present paper extends those mentioned

above, except that only unit-specific heterogeneity is allowed for. For micro data

and several data sets for aggregate units, e.g., regions, unbalanced data are the

exception rather than the rule. We may waste a lot of observations if we curtail an

originally unbalanced data set to make it balanced. Our setup is characterized by a

static system of linear regressions equations, random unit specific heterogeneity in

intercepts and coefficients and unbalanced panel data. The sample selection rules are
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assumed to be ignorable, i.e., the way the units or groups enter or exit is not related

to the model’s endogenous variables. See Verbeek and Nijman (1996, section 18.2)

for an elaboration of this topic.

The paper proceeds as follows: The model is presented in Section 2, with specific

attention to the treatment of equality constraints on coefficients in different equa-

tions. Section 3 describes the main stages in Maximum Likelihood (ML) estimation.

A basic difficulty in computer implementation stems from the unbalance of the panel

in combination with the complexity in the way the covariance matrices of the coef-

ficients enter the likelihood function. In Section 4, we consider a simpler, stepwise

procedure for estimation of these covariance matrices before we in Section 5 present

a simplified algorithm for modified ML estimation. An illustration of this algorithm

based on cost and input data for Norwegian manufacturing, with firm data having

a time series length up to 22 years, is presented in Section 6.

2 Model and notation

Our regression model has G equations, indexed by g = 1, . . . , G, equation g having

Kg regressors. The data are from a panel with units observed in at least 1 and

at most P periods. In describing unbalanced panel data sets, the observations

from a specific unit i is often indexed as t = 1, . . . , Ti, where Ti is the number

of observations from unit i; see, e.g., Baltagi (2008, section 9.3). Our notation is

different, based on the assumption that the units are arranged in groups, or blocks,

according to the number of times they are observed. Let Np be the number of units

observed in p periods (not necessarily the same and not necessarily contiguous),

let (ip) index unit i in block p (i = 1, . . . , Np; p = 1, . . . , P ), and let t index the

running observation (t = 1, . . . , p). In unbalanced panels, t differs from the calendar

period (year, quarter etc.).1 The total number of units and the total number of

observations are then N =
∑P

p=1Np and n=
∑P

p=1Npp, respectively. Formally, the

data set in block p (p = 2, . . . , P ) is a balanced panel data set with p observations

of each of the Np units, while the data set in block 1 is a cross-section.

Two ways of formulating the model will be described: [A] assuming the G equa-

tions to contain disjoint sets of coefficients, and [B] assuming some equations to have

coefficients in common. We first consider [A], next the modifications needed in [B],

and then describe a general formulation which includes both.

[A]. When each equation has a distinct coefficient vector, the total number of coef-

ficients is K =
∑G

g=1Kg. Let the (p × 1) vector of observations of the regressand

in Equation g from unit (ip) be yg(ip), let its (p × Kg) regressor matrix be Xg(ip)

(including a vector of ones associated with the intercept), and let ug(ip) be the

(p × 1) disturbance vector in Equation g from unit (ip). We represent heterogene-

ity, for Equation g, unit (ip), by the random coefficient vector βg(ip) (including the

1Subscripts denoting the calendar period may be attached. This may be convenient for data documentation
and in formulating dynamic models, but will not be necessary for the static model considered here. For example,
in a data set with P =20, from the years 1981–2000, some units in the p=18 group may be observed in the years
1981–1998, some in 1982–1999, some in 1981–1990 and 1992–1999, etc.
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intercept) as

(2.1) βg(ip) = βg + δg(ip), g = 1, . . . , G, i = 1, . . . , Np, p = 1, . . . , P,

where βg is its fixed expectation and δg(ip) is a random shift vector. We assume that

ug(ip) and δg(ip) are independently distributed and that

(2.2)

E[δg(ip)] = 0Kg,1, E[δg(ip)δ
′
h(ip)] = Σ

δ
gh,

E[ug(ip)] = 0p,1, E[ug(ip)u
′
h(ip)]=σ u

ghIp,

Xg(ip) ⊥ ug(ip) ⊥ δg(ip), g, h = 1, . . . , G,

where 0m,n is the (m× n) zero matrix and Ip is the p-dimensional identity matrix.

Equation g for unit (ip) is

yg(ip) = Xg(ip)βg(ip) + ug(ip) = Xg(ip)βg + ηg(ip),(2.3)

where we interpret

ηg(ip) = Xg(ip)δg(ip) + ug(ip),(2.4)

as a gross disturbance vector, representing both the genuine disturbances and the

random coefficient variation. These vectors are independent across units, with2

(2.5) E[ηg(ip)] = 0p,1, E[ηg(ip)η
′
h(ip)] = Xg(ip)Σ

δ
ghX

′
h(ip) + σ u

ghIp.

[B].When some coefficients occur in more than one equation – reflecting for instance

cross-equational (symmetry) constraints resulting from micro units’ optimizing be-

haviour – the total number of free coefficients is less than
∑G

g=1Kg. Such coefficient

restrictions are assumed to affect both components of (2.1). We stack, for unit (ip),

the y’s, the u’s, and the η’s by equations and define

y(ip) = [y ′
1(ip), . . . ,y

′
G(ip)]

′, u(ip) = [u ′
1(ip), . . . ,u

′
G(ip)]

′, η(ip) = [η ′
1(ip), . . . ,η

′
G(ip)]

′

Σ
u =




σ u
11 · · · σ u

1G
...

...
σ u
G1 · · · σ u

GG


 .

We can now rewrite (2.1) as

β(ip) = β + δ(ip), p = 1, . . . , P,(2.6)

where β(ip) is the random (K×1) vector containing all coefficients, β is its expecta-

tion and δ(ip) is its random shift vector when redefining Xg(ip) as the (p×K) matrix

of regressors in the gth equation whose kth column contains the observations on the

variable which corresponds to the kth coefficient in β(ip) (k=1, . . . , K). If the gth

equation does not contain the latter coefficient, the kth column of Xg(ip) is set to

zero. Accordingly, (2.2)—(2.4) are modified to

2For notational simplicity, the conditioning on (Xg(ip),Xh(ip)) is suppressed.
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E[δ(ip)] = 0K,1, E[δ(ip)δ
′
(ip)] = Σ

δ,

E[u(ip)]=0Gp,1, E[u(ip)u
′
(ip)] = Ip ⊗Σ

u,

X(ip) ⊥ u(ip) ⊥ δ(ip),

(2.7)

y(ip) = X(ip)β + u(ip) = X (ip)β + η(ip),(2.8)

η(ip) = X(ip)δ(ip) + u(ip),(2.9)

where X(ip) = [X ′
1(ip), . . . ,X

′
G(ip)]

′, so that (2.5) is generalized to

(2.10) E[η(ip)] = 0Gp,1, E[η(ip)η
′
(ip)] = X(ip)Σ

δX ′
(ip) + Ip ⊗Σ

u = Ω(ip),

where ⊗ is the Kronecker product operator and Ω(ip) is defined by the last equality.

While in [B], X(ip) is not block-diagonal, in [A], we have

X(ip)=



X1(ip) · · · 0

...
. . .

...
0 · · · XG(ip)


, β=




β1
...

βG


, η(ip)=




η1(ip)
...

ηG(ip)


, Σ δ=



Σ

δ
11 · · · Σ

δ
1G

...
...

Σ
δ
G1 · · · Σ

δ
GG


 .

3 The Maximum Likelihood problem

We now describe the Maximum Likelihood (ML) problem for joint estimation of

(β,Σu,Σδ), additionally assuming the random coefficients and the disturbances to

be normally distributed:

δ(ip) ∼ IIN (0K,1,Σ
δ), u(ip) ∼ IIN (0Gp,1, Ip ⊗Σ

u).

Then the (η(ip)|X(ip))’s are independent across (ip) and distributed as N(0Gp,1,Ω(ip)),

giving a log-density function of (y(ip)|X(ip)) equal to

L(ip) = −Gp

2
ln(2π)− 1

2
ln |Ω(ip)| −

1
2
Q(ip),

where

(3.1) Q(ip) = [y(ip)−X(ip)β]
′
Ω

−1
(ip)[y(ip)−X(ip)β] = η ′

(ip)Ω
−1
(ip)η(ip).

The log-likelihood function of all y’s, conditional on all X’s, for block p and for the

complete sample can be written as, respectively,

L(p) =
∑Np

i=1L(ip) = −GNpp

2
ln(2π)− 1

2

∑Np

i=1ln |Ω(ip)| −
1
2

∑Np

i=1Q(ip),(3.2)

L =
∑P

p=1L(p) = −Gn
2
ln(2π)− 1

2

∑P

p=1

∑Np

i=1ln |Ω(ip)| −
1
2

∑P

p=1

∑Np

i=1Q(ip).(3.3)

Two ML problems then emerge: ML estimation of (β,Σu,Σδ) with data from

block p: maximization of L(p); ML estimation based on the complete data: maxi-

mization of L=
∑P

p=1L(p).

The block specific problem is the simplest of the two, although more complicated

than the ML problem for regression systems with balanced panel data, constant co-

efficients and random intercepts, see Avery (1977) and Baltagi (1980), as different

units have different Ω(ip) matrices, as shown by (2.10). The complexity of the full

ML problem is larger because the unbalance implies that the y, X, and Ω matrices

have different number of rows, reflecting the different number of observations of the

units: while Σ
u and Σ

δ have the same dimensions throughout, the dimensions of
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X(ip) and Ip, and hence of Ω(ip), differ. Below the structure of these two problems

is outlined.

ML estimation for block p. Setting the derivatives of L(p) with respect to β,Σu,Σδ

equal to zero we obtain

∑Np

i=1

(
∂Q

(ip)

∂β

)
= 0K,1,(3.4)

∑Np

i=1

[
∂ ln |Ω(ip)|

∂Σ
u +

∂Q
(ip)

∂Σ
u

]
= 0G,G,

∑Np

i=1

[
∂ ln |Ω(ip)|

∂Σ
δ +

∂Q
(ip)

∂Σ
δ

]
= 0K,K .

(3.5)

These first-order conditions define the solution to the ML problem for block p, each

p giving a distinct estimator set. Conditions (3.4) coincide with those that solve the

GLS problem for β for block p, conditional on Σ
u and Σ

δ, and its solution is

β̂
GLS

(p) = [
∑Np

i=1X
′
(ip)Ω

−1
(ip)X (ip)]

−1[
∑Np

i=1X
′
(ip)Ω

−1
(ip)y(ip)].(3.6)

Inserting β= β̂
GLS

(p) in (3.1) and (3.2) gives the concentrated log-likelihood function

for block p, which when maximized with respect to Σ
u,Σδ gives block specific ML

estimators.

ML estimation for all blocks jointly. Setting the derivatives of L with respect to

β,Σu,Σδ equal to zero we obtain

∑P

p=1

∑Np

i=1

[
∂Q

(ip)

∂β

]
= 0K,1,(3.7)

∑P

p=1

∑Np

i=1

[
∂ ln |Ω(ip)|

∂Σ
u +

∂Q
(ip)

∂Σ
u

]
= 0G,G,

∑P

p=1

∑Np

i=1

[
∂ ln |Ω(ip)|

∂Σ
δ +

∂Q
(ip)

∂Σ
δ

]
= 0K,K.

(3.8)

Conditions (3.7) coincide with those that solve the full GLS problem for β, condi-

tional on Σ
u and Σ

δ, and we find

β̂
GLS

= [
∑P

p=1

∑Np

i=1X
′
(ip)Ω

−1
(ip)X(ip)]

−1[
∑P

p=1

∑Np

i=1X
′
(ip)Ω

−1
(ip)y(ip)].(3.9)

Inserting β= β̂
GLS

in (3.1) and (3.3) gives the concentrated log-likelihood function,

which when maximized with respect to Σ
u and Σ

δ to gives their ML estimators.

4 Simplified estimation procedures

To implement ML as outlined above, in terms of analytical matrix derivatives, is

complicated. In particular the procedures for estimating Σu and Σ
δ are simpler than

those following from differentiation of the concentrated log-likelihood functions. Be-

low we present simplified, stepwise procedures. We describe the full procedure as

an algorithm with four elements:

5



A. Initial OLS estimation of β(ip) and β.
B. Initial estimation of Σu,Σδ from disturbances and coefficient-slacks.
C. Revised GLS estimation of β(ip) and β.
D. Revised estimation of Σu,Σδ from updated disturbances and coefficient-slacks.

A. First-round OLS estimation of β. Consider first the estimation of the expected

coefficient vector β. We start by computing unit specific OLS estimators separately

for all units for which a sufficient number of observations permitting such estimation

exist. This means that in each equation, the number of observations p must exceed

the number of coefficients, including the intercept.3 Let q denote the lowest value of

p that permits OLS estimation of all G equations. The estimator of the coefficient

vector for unit (ip), formally conditioning inference on β(ip), is

β̂(ip)=



β̂1(ip)
...

β̂G(ip)


=[X ′

(ip)X(ip)]
−1[X ′

(ip)y(ip)]=




[X ′
1(ip)X1(ip)]

−1[X ′
1(ip)y1(ip)]

...

[X ′
G(ip)XG(ip)]

−1[X ′
G(ip)yG(ip)]


.(4.1)

Inserting from (2.8) we find that β̂(ip) is unbiased for β, with covariance matrix

(4.2) V(β̂(ip)) = [X ′
(ip)X (ip)]

−1[X ′
(ip)Ω(ip)X(ip)][X

′
(ip)X(ip)]

−1,

while conditional on β(ip) it is unbiased with covariance matrix4

V(β̂(ip)|β(ip)) = [X ′
(ip)X(ip)]

−1[X ′
(ip)(Ip ⊗Σ

u)X(ip)][X
′
(ip)X (ip)]

−1,

A first-round estimator of β based on the observations from the units observed p

times is the sample mean of the unit specific OLS estimators as

(4.3) β̂(p) =
1
Np

∑Np

i=1 β̂(ip) =
1
Np

∑Np

i=1[X
′
(ip)X(ip)]

−1[X ′
(ip)y(ip)], p = q, . . . , P.

A corresponding estimator, based on all observations from units observed at least q

times, can be obtained as the mean of the
∑P

p=q Np unit specific estimators:

β̂=[
∑P

p=qNp]
−1
∑P

p=q

∑Np

i=1β̂(ip)=[
∑P

p=qNp]
−1
∑P

p=q

∑Np

i=1[X
′
(ip)X(ip)]

−1[X ′
(ip)y(ip)].(4.4)

B. First-round estimation of Σu and Σδ. Construct from (4.1) the (Gp× 1) OLS

residual vector corresponding to u(ip) and rearrange it into a (G× p) matrix Û (ip):

û(ip) =




û1(ip)

...
ûG(ip)


 = y(ip)−X(ip)β̂(ip), Û (ip) =




û
′
1(ip)
...

û
′
G(ip)


 .

Element (g, t) of Û (ip) is residual t of unit (ip) in equation g. From observations on

the units observed p times we obtain a block p-specific estimate of Σu by analogous

moments in residuals,

3We here neglect possible cross-equational coefficient restrictions.

4If Σu is diagonal it can be simplified to V(β̂(ip)|β(ip)) =





σu
11(X

′

1(ip)X1(ip))
−1

...

σu
GG(X ′

G(ip)
X

G(ip)
)−1



.
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(4.5) Σ̂
u

(p) =
1

Npp

∑Np

i=1 Û (ip)Û
′

(ip), p = q, . . . , P,

and, using (4.1) and (4.3), obtain from the resulting coefficient-slack vectors β̂(ip) −

β̂(p) a block p-specific estimate of the covariance matrix of the coefficient vector, Σδ,

by using its empirical counterpart, i.e.,5

Σ̂
δ

(p) =
1
Np

∑Np

i=1(β̂(ip)−β̂(p))(β̂(ip)−β̂(p))
′, p = q, . . . , P.(4.6)

Inserting Σ̂
u

(p) and Σ̂
δ

(p) into the expression for Ω(ip) given by (2.10), we get the

following estimator based solely on the observations from block p:

(4.7) Ω̂(ip)p = X(ip)Σ̂
δ

(p)X
′
(ip) + Ip ⊗ Σ̂

u

(p), i = 1, . . . , Np; p = q, . . . , P.

It can be inserted into (4.2) to give an estimator of V(β̂(ip)).

An estimator of Σu based on observations from all units observed at least q times

can now be obtained as

(4.8) Σ̂
u
= [

∑P

p=qNpp]
−1
∑P

p=q

∑Np

i=1Û (ip)Û
′

(ip) = [
∑P

p=qNpp]
−1

∑P

p=qNpp Σ̂
u

(p).

The corresponding estimator of Σδ is

(4.9) Σ̂
δ
= [

∑P

p=qNp]
−1

∑P

p=q

∑Np

i=1(β̂(ip)−β̂)(β̂(ip)−β̂) ′,

which exploits the overall slacks in the β̂(ip)’s. Inserting Σ̂
u
and Σ̂

δ
in (2.10), we

get the following estimator based on all observations:6

(4.10) Ω̂(ip) = X(ip)Σ̂
δ
X ′

(ip) + Ip ⊗ Σ̂
u
, i = 1, . . . , Np; p = 1, . . . , P.

Since (4.1) and (4.4) imply

[
∑P

p=qNp]
−1
∑P

p=q

∑Np

i=1(β̂(ip)−β̂)(β̂(ip)−β̂) ′

= [
∑P

p=qNp]
−1
∑P

p=q

∑Np

i=1(β̂(ip)−β̂(p))(β̂(ip)−β̂(p))
′

+ [
∑P

p=qNp]
−1
∑P

p=q Np(β̂(p)−β̂)(β̂(p)−β̂) ′,

Σ̂
δ
can be rewritten as the following counterpart to (4.8)

(4.11) Σ̂
δ
= [

∑P

p=qNp]
−1

∑P

p=q NpΣ̂
δ

(p)+[
∑P

p=qNp]
−1

∑P

p=q Np(β̂(p)− β̂)(β̂(p)− β̂) ′.

It shows that Σ̂
δ
can be separated into components representing within- and between-

block variation in the β̂’s, the former a weighted mean of the block specific estimators

given by (4.6), the latter a positive definite quadratic form.

C. Second-round GLS estimation of β. Once we have estimated the Ω(ip)’s from

(4.10), (asymptotically) more efficient estimators of β can be constructed. The two

former steps took the unit specific OLS estimators of the coefficient vector, (4.1), as

5This estimator is positive definite and consistent if both p and Np go to infinity. It is not, however, unbiased
in finite samples. Modified estimators for similar balanced situations are considered in Hsiao (2003, pp. 146–147).

6Note that while Ω̂(ip) is constructed from observations from all units, Σ̂
u

and Σ̂
δ

are constructed from
observations from units observed at least q times.
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starting point. In this step we start from the more efficient unit- and block specific

GLS estimators. We then replace β̂(ip) by

(4.12) β̃(ip) = [X ′
(ip)Ω

−1
(ip)X (ip)]

−1[X ′
(ip)Ω

−1
(ip)y(ip)], i = 1, . . . , Np; p = q, . . . , P.

We here proceed as if the Ω(ip)’s are known. In practice, we may use either the

estimators Ω̂(ip) from step B or estimate the Ω(ip)’s from recomputed GLS residuals

and coefficient-slacks, as will be described below. From (3.1) and (4.1) it can be

shown that β̃(ip) is unbiased, with

(4.13) V(β̃(ip)) = [X ′
(ip)Ω

−1
(ip)X(ip)]

−1,

and that V(β̂(ip))−V(β̃(ip)) is positive definite.

A revised estimator of β based on the observations from block p can then be

defined as the matrix weighted mean of the unit specific GLS estimators, the matrix

weight being their respective inverse covariance matrices:

β∗
(p) = [

∑Np

i=1 V(β̃(ip))
−1]−1[

∑Np

i=1 V(β̃(ip))
−1β̃(ip)] p = q, . . . , P.(4.14)

From (4.12) and (4.13) it follows that β∗
(p) equals the strict GLS estimator for block

p, β̂
GLS

(p) , given in (3.6) as the solution to the ML problem for block p conditional on

Σ
u,Σδ. From (4.13) it follows, since all β̃(ip)’s are uncorrelated, that

(4.15) V(β∗
(p)) = [

∑Np

i=1X
′
(ip)Ω

−1
(ip)X(ip)]

−1.

The corresponding estimator of β using observations from all blocks with p≥q is

β∗ = [
∑P

p=q

∑Np

i=1 V(β̃(ip))
−1]−1[

∑P

p=q

∑Np

i=1 V(β̃(ip))
−1β̃(ip)](4.16)

= [
∑P

p=q

∑Np

i=1X
′
(ip)Ω

−1
(ip)X(ip)]

−1[
∑P

p=q

∑Np

i=1X
′
(ip)Ω

−1
(ip)y(ip)].

It equals β̂
GLS

, given in (3.9), as the solution to the ML problem conditional on Σ
u

and Σ
δ, except that observations from blocks 1, 2, . . . , q−1 are omitted. From (4.13)

it follows, because all β̃(ip)’s are uncorrelated, that

(4.17) V(β∗) = [
∑P

p=q

∑Np

i=1X
′
(ip)Ω

−1
(ip)X(ip)]

−1.

D. Second-round estimation of Σu and Σδ. Using the second-round estimators of

β obtained C, we can update the estimators Σu and Σ
δ obtained in the first round.

We construct from the unit-specific GLS estimators β̃(ip) the (Gp×1) residual vector

corresponding to u(ip) and rearrange it into the (G× p) matrix Ũ (ip) as follows:

ũ(ip) =




ũ1(ip)
...

ũG(ip)


 = y(ip) −X(ip)β̃(ip), Ũ (ip) =




ũ
′
1(ip)
...

ũ
′
G(ip)


 .

The second-round estimator of Σu and Σ
δ for block p, updating Σ̂

u

(p) and Σ̂
δ

(p),

given by (4.5) and (4.6). now using the coefficient-slack vectors β̃(ip)−β∗
(p), are,

respectively
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Σ̃
u

(p) =
1

Npp

∑Np

i=1 Ũ (ip)Ũ
′

(ip),(4.18)

Σ̃
δ

(p) =
1
Np

∑Np

i=1(β̃(ip) − β∗
(p))(β̃(ip) − β∗

(p))
′, p = q, . . . , P.(4.19)

We can then update Ω̂(ip)p, given by (4.7), by

(4.20) Ω̃(ip)p = X(ip)Σ̃
δ

(p)X
′
(ip) + Ip ⊗ Σ̃

u

(p), i = 1, . . . , Np; p = q, . . . , P.

The second-round estimator of Σu and Σ
δ, updating Σ̂

u
and Σ̂

δ
, given by (4.8) and

(4.9), respectively, are

Σ̃
u
= [

∑P

p=qNpp]
−1

∑P

p=q

∑Np

i=1 Ũ (ip)Ũ
′

(ip),(4.21)

Σ̃
δ
= [

∑P

p=qNp]
−1

∑P

p=q

∑Np

i=1(β̃(ip) − β∗)(β̃(ip) − β∗) ′.(4.22)

We finally update the estimators of Ω(ip), obtained from (4.10) by using

(4.23) Ω̃(ip) = X(ip)Σ̃
δ
X ′

(ip) + Ip ⊗ Σ̃
u
, i = 1, . . . , Np; p = 1, . . . , P.

5 Stepwise, modified ML algorithms

Stepwise modified estimation algorithms for (β,Σu,Σδ) can be constructed by com-

piling the procedures described in Section 4. Below, we summarize such an algo-

rithm. It can be considered a modified ML algorithm, provided it, when iterated

according to a prescribed criterion, converges towards a unique solution. We specify

it for both block specific estimation and for estimation using the full data set. Block-

specific estimates can be obtained for any block p ∈ [q, P ], where q still denotes the

lowest value of p for which OLS estimation is possible for all G equations.

Algorithm for one block p:

1: Estimate by (4.1) for one p (≥q), i=1, . . . , Np, unit-specific estimators of β.
Extract the corresponding OLS residuals.

2: Compute from (4.3) an estimator of β for block p.

3: Compute from (4.5)–(4.6) block specific estimators of Σu and Σ
δ.

4: Compute from (4.7) Ω̂(ip)p for i = 1, . . . , Np.

5: Insert Ω(ip) = Ω̂(ip)p into (4.12) and (4.14) to compute the unit- and block-

specific estimators β̃(ip) and β∗
(p).

6: Extract revised residuals and coefficient-slacks and recompute from (4.18)–

(4.19) block-specific estimators of Σu and Σ
δ.

7: Compute Ω̃(ip)p from (4.20) for i = 1, . . . , Np.

8: Insert Ω(ip) = Ω̃(ip)p into (4.12) and (4.14) and recompute β̃(ip) and β∗
(p).

Algorithm for the full data set

1: Estimate by (4.1) unit-specific estimators of β for i=1, . . . , Np; p ∈ [q, P ],
Extract the corresponding OLS residuals.

2: Compute from (4.4) an estimator of β from the data for blocks p ∈ [q, P ].

3: Compute from (4.8)–(4.9) overall estimators of Σu and Σ
δ.

4: Compute from (4.10) Ω̂(ip) for i = 1, . . . , Np; p ∈ [1, P ].
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5: Insert Ω(ip) = Ω̂(ip) into (4.12) and (4.16) to compute β̃(ip) and β∗.

6: Extract revised residuals and coefficient-slacks and recompute from (4.21)–

(4.22) overall estimators of Σu and Σ
δ.

7: Compute Ω̃(ip) from (4.23) for i = 1, . . . , Np; p ∈ [1, P ].

8: Insert Ω(ip) = Ω̃(ip) into (4.16) and recompute β∗.

Steps 6–8 can iterated till convergence, according to some criterion.

If, after iteration of steps 6–8, the latter eight-step algorithm converges towards a

unique solution, it gives our modified ML estimator.

6 An application

Parts of the approach described above are applied to data for the Pulp and Paper

industry in Norway for the years 1972–1993. With T =22 this is a rather long panel

of micro manufacturing data. A substantial part of the sample relates to firms

observed in the full 22 years, but sample attrition and accretion as well as gaps

in the series have resulted in a data set with also firms responding p= 1, 2, . . . , 21

years included. The data set comes from virtually the same source as that used in

Biørn, Lindquist, and Skjerpen (2002). For the present application not all available

observations are exploited. Only a selection of about two thirds, N = 111 firms,

those observed p = 22, 21, 20, 10, 7, 5 times – i.e., 6 blocks among the original 22 are

included. One reason why we have ‘curtailed’ the data set in this way is that Np

for several p is quite low, giving potentially ‘volatile’ estimates in the block-specific

regressions. The number of observations from the firms selected is n=1891, giving

an average of n/N=17 observations per firm. The design of this data set is described

in Table 1.

Our model example has G=3 equations, all containing the same K =2 regres-

sors. Given the rather small data set, with some units observed only 5 times, it is

essential to keep the dimension of the regressor vector small.7 Within this setting,

the model is intended to explain, in a simplistic way, total factor cost per unit of

output as well as cost shares for two inputs. The first equation expresses the log of

the variable cost per unit of output as functions of the log of output and the log of

the material price/labour cost. In this way the potential presence of non-constant

returns to scale (non-unitary scale elasticity) can be examined. Equations two and

three express, respectively, the cost share of materials and the cost share of labour

as functions of the same exogenous variables. Technical change is, for simplicity,

disregarded.8 The specific variable definitions are:

y1, y2, y3 = logcx, csm, csl (endogenous), x1, x2 = logx, logpml (exogenous),

where

7For an elaboration of this issue for a, somewhat related, random coefficient analysis based on a small-sized
balanced panel data set, see Biørn et al. (2010, Section 4.2).

8The underlying total cost also includes energy cost, which is not modelled in the example. Neither are capital
cost and capital input represented in the model. Hence, we have no ‘full’ cost function represented.
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logcx = log(cost/output),
csm = cost of materials as share of total cost,
csl = cost of labour as share of total cost,
logx = log(output),
logpml = log(material price/labour cost).

Tables 2 through 6 collect results from this application, the con columns in Tables 2

and 5 relating to the intercept of the equations. Supplementary, block-specific results

are given in the Appendix. All computations are done by routines programmed in

the Gauss software code.

First, Table 2 contains, as benchmarks, OLS estimates based on all n=1891 ob-

servations and standard errors for the u disturbances (σ̂u) and coefficient standard

errors calculated in the ‘customary’ way neglecting coefficient heterogeneity. The

empirical means of the n coefficient estimates, as obtained from (4.1) and (4.4), and

the empirical standard deviations computed from the former are reported in Ta-

ble 3. Not surprisingly, the two sets overall ‘means’ differ substantially, reflecting,

inter alia, their different weighting of the firm-specific estimates in the aggregates.

These means agree with respect to sign, but differ substantially in magnitude. The

empirical standard deviations in Table 3 signalize considerable coefficient hetero-

geneity.

The block-specific estimates underlying the overall estimates in Table 3 are given

in the Appendix; see columns 1–4 of the A panels of Table A.1. The block-specific

OLS standard errors of regression (SER), computed in the ‘customary’ way, are given

in column 5. In columns 1–4 of the B panels of Table A.1, the block-specific coeffi-

cient distributions are described by their estimated skewness and kurtosis. By and

large, the kurtosis estimates do not depart substantially from their value under nor-

mality, which is 3. The majority of the skewness estimates are in the (−1,+1) range,

indicating both left-skewed and right-skewed coefficient distributions. Columns 5–6

of the B panels contain the empirical means of the standard error estimates of the

firm-specific estimates, while column 7 gives the means of estimated standard errors

of the u disturbances, σ̂u, corresponding to the overall estimate in Table 2, column 4.

Their orders of magnitude are similar.

The covariance matrix of the ‘coefficient-slack’ vector, Σ̂
δ
, as estimated from

(4.1), (4.4) and (4.9), is given in Table 6. The covariance matrix of the ‘genuine

disturbance vector’ u(ip), i.e., Σ̂
u
, as estimated from (4.8), the residual vectors being

û(ip)=y(ip)−X(ip)β̂(ip), is given in Table 4.

Finally, Table 5 gives the overall Feasible Generalized Least Squares (FGLS)

estimates, as obtained from (4.16), with their standard errors obtained from the

diagonal elements of (4.17). The standard errors exceed those in Table 2 by a large

margin. This is as expected, since the former refer to a model which disregards any

coefficient heterogeneity, while the latter fully capture this heterogeneity, ‘weighting

together’ the effects of the firm-to-firm ‘coefficient slack’ and genuine ‘disturbance

noise’. We find clear evidence of increasing returns to scale, as logx comes out with

a significantly negative estimate of the expected coefficient in the logcx equation,
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implying an elasticity of cost with respect to output in the (0,1) interval. Increas-

ing the production scale affects the materials cost share negatively and the labour

cost share positively, and the effect is significant at ‘standard’ p-values. Also the

logged factor price ratio comes out with significant responses, again in the expected

coefficient value sense.

Overall, with respect to sign, these results based on FGLS and the random

coefficient setup, in Table 5 can be said to ‘robustify’ the results based on simple

OLS estimation in Table 2, but the coefficient estimates deviate substantially. Block

specific FGLS estimates underlying those in Table 5, computed from (4.14) and

(4.15), are given in the Appendix, Table A.2. Most of the estimated expected

coefficients come out as insignificant, except for the p = 22 block, for which both

the number of firms and the number of observations are by far the largest. One

notable exception is that logx comes out with an estimate close to zero in the logcx

equation, suggesting constant returns to scale.

Table 1: Panel design

p Np Npp

22 61 1342
21 8 168
20 6 120
10 11 110
7 13 91
5 12 60∑

111 1891

Table 2: Overall OLS Estimates, for all blocks (p=22, 21, 20, 10, 7, 5)

.
Standard errors, from OLS formula neglecting coefficient heterogeneity, in square bracket

Eq. with LHS VAR con logx logpml OLS SER: σ̂u

logcx 0.6609 -0.3008 0.6786 0.2802
[0.2843] [0.0094] [0.0661]

csm 0.5630 -0.0439 0.0244 0.0340
[0.0399] [0.0013] [0.0093]

csl 0.5950 0.0283 -0.0400 0.0395
[0.0455] [0.0015] [0.0106]

Table 3: Means (β̂) and Standard deviations of OLS estimates. All firms

.
Means based on (4.1) and (4.4). Standard deviations based on (4.1).

Eq. with β̂ = Mean of β̂(ip) Emp.st.dev. of β̂(ip)
LHS var logx logpml logx logpml

logcx -0.2461 0.8074 0.8424 0.9871
csm -0.0377 0.0823 0.0722 0.1360
csl 0.0369 -0.1138 0.0785 0.1413
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Table 4: Disturbance covariance matrix Σ̂
u

, estimated from (4.8)

.
LHS var:

LHS var: logcx csm csl

logcx 0.0785
csm -0.0026 0.0012
csl 0.0008 -0.0011 0.0016

Table 5: Overall FGLS Coefficient Estimates, β∗, based on (4.16)–(4.17)

.
Standard errors, from estimated diag[V(β∗)]1/2, in parenthesis.

Eq. with RHS var:

LHS var: con logx logpml

logcx -1.9173 -0.2158 0.9230
(0.9393) (0.0852) (0.1073)

csm 0.2684 -0.0367 0.0742
(0.0935) (0.0076) (0.0144)

csl 0.8984 0.0327 -0.1112
(0.1007) (0.0083) (0.0152)

Table 6: Coefficient covariance matrix, Σ̂
δ

, estimated from (4.9)

.
Eq. with LHS var: logcx Eq. with LHS var: csm Eq. with LHS var: csl
con logx logpml con logx logpml con logx logpml

con 82.6957
logx -6.7030 0.7096

logpml -4.0870 0.0010 0.9744
con -2.3112 0.1591 0.1955 0.7651
logx 0.1653 -0.0144 -0.0075 -0.0429 0.0052

logpml 0.2056 -0.0082 -0.0316 -0.0813 -0.0004 0.0185
con 0.2429 0.0143 -0.1378 -0.6685 0.0376 0.0713 0.8655
logx 0.0079 -0.0018 0.0074 0.0358 -0.0047 0.0009 -0.0512 0.0062

logpml -0.1156 0.0056 0.0155 0.0757 0.0005 -0.0174 -0.0840 -0.0008 0.0200

Square root of elements of diag[Σ̂
δ
]

Eq. with RHS var:

LHS var: con logx logpml

logcx 9.0937 0.8424 0.9871
csm 0.8747 0.0722 0.1360
csl 0.9303 0.0785 0.1413
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Table A.1: Block-specific OLS results and summary statistics
.

A. Means and Standard deviations of firm specific coefficient estimates (4.1)

β̂(p) = Mean of β̂(ip) Emp.st.dev. of β̂(ip) Block OLS

LHS Var. logx logpml logx logpml SER

p = 22 block logcx 0.0319 1.0723 0.8952 0.8423 1.3806
csm -0.0447 0.0601 0.0601 0.0915 0.1542
csl 0.0337 -0.1010 0.0659 0.1165 0.1818

p = 21 block logcx -0.4422 1.0260 0.5993 0.3999 1.2822
csm -0.0089 0.0153 0.0635 0.1212 0.2198
csl -0.0045 -0.0818 0.0734 0.1637 0.2491

p = 20 block logcx -0.6212 1.0240 0.3854 0.6940 1.3738
csm -0.0369 -0.0082 0.0403 0.1196 0.1650
csl 0.0466 -0.0372 0.0480 0.1065 0.1936

p = 10 block logcx -0.5530 0.5915 0.7356 1.0568 0.5448
csm -0.0581 0.0873 0.1128 0.1727 0.0992
csl 0.0840 -0.1110 0.1188 0.1527 0.1048

p = 7 block logcx -0.4860 0.5150 0.7932 1.2818 0.4772
csm -0.0113 0.1620 0.1001 0.1742 0.0707
csl 0.0304 -0.1556 0.1048 0.1757 0.0757

p = 5 block logcx -0.7996 -0.2786 0.4086 0.9098 0.3544
csm -0.0320 0.1939 0.0639 0.1728 0.0366
csl 0.0398 -0.1954 0.0669 0.1774 0.0380

B. Across-firm Skewness and Kurtosis of coef. estimates. Means of Std.Err. estimates

Skewness of β̂(ip) Kurtosis of β̂(ip) Mean of σ̂̂β(ip)
Mean of σ̂u

LHS Var. logx logpml logx logpml logx logpml

p = 22 block logcx 0.2072 -0.3719 1.8810 3.0642 0.2995 0.4323 0.3009
csm 0.5425 0.4122 4.1847 4.8145 0.0298 0.0439 0.0312
csl 0.0206 -0.1114 2.9044 3.1033 0.0381 0.0544 0.0379

p = 21 block logcx 0.3884 0.4161 1.8163 1.5646 0.3300 0.4736 0.2920
csm -0.2462 -0.6004 1.6532 3.2693 0.0519 0.0816 0.0471
csl 0.1807 0.7127 1.9881 2.9226 0.0641 0.0964 0.0545

p = 20 block logcx 1.4469 -0.2405 3.6188 2.0464 0.2352 0.4954 0.3227
csm 0.5037 -0.1589 2.1310 1.8273 0.0272 0.0523 0.0371
csl 0.1325 1.0647 2.9129 2.9540 0.0340 0.0652 0.0442

p = 10 block logcx -1.2123 0.0727 4.3715 2.8245 0.3023 0.4993 0.1909
csm -0.0205 0.2585 2.3166 2.3321 0.0477 0.0848 0.0318
csl 0.1884 -0.4170 2.0474 2.2100 0.0479 0.0889 0.0339

p = 07 block logcx -0.3412 -0.4855 2.8204 2.1651 0.3612 0.7595 0.2092
csm -0.1380 -0.4044 1.5448 2.5538 0.0458 0.1176 0.0310
csl 0.1039 0.3700 1.5484 3.1027 0.0519 0.1300 0.0346

p = 05 block logcx -0.7242 -0.9904 3.1037 3.0776 0.3047 0.9746 0.2190
csm -1.6330 0.3938 4.4491 2.3055 0.0342 0.1159 0.0235
csl 1.2148 -0.5350 3.4305 2.7534 0.0344 0.1144 0.0241

Table A.2: Block-specific FGLS results based on (4.14)–(4.15)
.

Coefficient Estimates, β∗

(p). Standard errors, from estimate of diag[V(β∗

(p))]
1/2, in parenthesis

Eq. with p = 22 block p = 21 block p = 20 block

LHS VAR logx logpml logx logpml logx logpml

logcx -0.0004 1.1254 -0.4659 1.0674 -0.5887 1.0756
(0.1145) (0.1366) (0.3196) (0.3845) (0.3549) (0.4376)

csm -0.0407 0.0578 -0.0101 0.0227 -0.0345 -0.0074
(0.0102) (0.0185) (0.0287) (0.0519) (0.0312) (0.0592)

csl 0.0291 -0.0967 0.0014 -0.0894 0.0386 -0.0409
(0.0112) (0.0195) (0.0316) (0.0547) (0.0341) (0.0624)

Eq. with p = 10 block p = 7 block p = 5 block

LHS VAR logx logpml logx logpml logx logpml

logcx -0.4244 0.6200 -0.4835 0.2797 -0.6110 -0.1336
(0.2822) (0.3566) (0.2551) (0.3702) (0.2588) (0.4164)

csm -0.0651 0.0887 -0.0134 0.1787 -0.0263 0.1787
(0.0256) (0.0474) (0.0231) (0.0483) (0.0234) (0.0536)

csl 0.0815 -0.1244 0.0228 -0.1917 0.0275 -0.1836
(0.0280) (0.0505) (0.0252) (0.0520) (0.0256) (0.0578)
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