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1 Introduction

When attempting to uncover relationships from individual data, the ‘Age-Cohort-Time

(ACT) problem’, due to the identity cohort+age= time, and ways of handling it in

different contexts is much discussed among social and medical researchers; see Mason

et al. (1973), Rodgers (1982), Portrait, Alessie, and Deeg (2002), Hall, Mairesse and

Turner (2007), McKenzie (2006), Winship and Harding (2008), Yang and Land (2008),

and Ree and Alessie (2011). The ACT identification problem has motivated additional

assumptions to reduce the parameter space. It is notorious in linear models, but also

when using more flexible functional forms, e.g., polynomials, problems of parameter

identification arise.

An example is the problem of disentangling partial effects of birth cohort, age and

time on a measure of sickness absence of individuals. Biørn et al. (2013), using a large

set of individual data on long-term absence spells that cover virtually all workers in

Norway over a 13-year period, have addressed this problem recently. They set out to

separate cohort, age and time effects in the discrete sick/non-sick response, representing

the effects by dummy variables through a fixed effects logit approach, considering the

response as equivalent regardless of whether the sickness duration was, say, one week

more than the minimum of 16 days, or six months.

In this paper the ACT problem for individual sickness is reconsidered in a setting

which represents the degree of sickness as a continuous variable, the length of the ab-

sence spells, with age, cohort and time also measured continuously. This approach, of

course, exploits a lot more of the information in the data set. It also gives challenges

in quantifying marginal effects of age and cohort, related inter alia to the form of the

relationship. Starting from a linear model, we extend it to polynomials in age, cohort

and time of order up to four, with focus on interactions between the three variables.

A general specification of the theoretical regression for the ACT problem – with y

denoting a variable to be explained, (a, c, t) the explanatory variables age, cohort, time,

satisfying a+c= t, and x a vector of other explanatory variables – is

(1) E(y|a, c, t, x) = f(a, c, t, x).

Eliminating one of the ACT variables, we can write the equation as

(2)
E(y|a, c, x) = f(a, c, a+c, x) ≡ F1(a, c, x),
E(y|c, t, x) = f(t−c, c, t, x) ≡ F2(c, t, x),
E(y|a, t, x) = f(a, t−a, t, x) ≡ F3(a, t, x).

An additive subclass of (1) has the form

(3) E(y|a, c, t, x) = fa(a, x) + fc(c, x) + ft(t, x),

and can be rewritten alternatively as

(4)
E(y|a, c, x) = fa(a, x) + fc(c, x) + ft(a+c, x) ≡ φ1(a, c, x),
E(y|c, t, x) = fa(t−c, x) + fc(c, x) + ft(t, x) ≡ φ2(c, t, x),
E(y|a, t, x) = fa(a, x) + fc(t−a, x) + ft(t, x) ≡ φ3(a, t, x).

Which of the parameters of f (or of fa, fc, ft) when F1, F2 and F3 (or φ1, φ2 or φ3)

are known, can be identified, depends on the functional form chosen. If f is linear, or
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a monotonically increasing transformation of a linear function, not all parameters can

be identified. This is, loosely speaking, because the linearity of f ‘interferes with’ the

linear definitional identity. If f , possibly after a monotonic transformation, is the sum

of a linear and a non-linear part, the linear part still creates identification problems,

while similar problems may not arise for the coefficients of the non-linear part.1 If g is

restricted to be non-linear, we have, for example, g(a)+g(c) 6= g(t). For polynomials

we can be more specific: while e.g. t3 and (a3, c3) are not collinear, t3 is collinear with

(a3, c3, a2c, ac2), and so on. This simple example indicates that when linear functions

are extended to polynomials, coefficient identification may crucially depend on whether

interactions between age, cohort and time are included and on how their coefficients are

restricted. This is one of the issues to be addressed.

The paper proceeds as follows. In Section 2 the ACT problem for a model with f

(and fa, fc, ft) linear and x omitted is reconsidered as a benchmark. In Section 3 we

extend f (or in the additive subcase (3), fa, fc, ft) to polynomials, and show that an

ACT problem for the coefficients of the linear terms still exists, but that the coefficients

of second- and higher order terms of fa, fc, ft can be identified. The extent to which

coefficients of higher-order terms in the more general polynomial version of (1) can

be identified, depends on which interactions between the ACT variables are included

and on their parameter restrictions. Alternative definitions of marginal effects for such

models are then elaborated in Section 4.2 Next, in Section 5, this framework is used,

for polynomial orders up to four, to explore age, cohort and time effects in sickness

absence from absence records from more than 1.7 million individuals in the Norwegian

labour force during a 14 year period. Gender differences are examined. We conclude that

long-term sickness, in absence days, is clearly non-linear in cohort and age and that the

model’s fit is significantly improved when polynomial additivity is relaxed by including

interactions between cohort and age, at least for polynomials of order up to four. There

are clear gender differences in the coefficient pattern. The overall fit, measured by R2,

is still poor, however. Modifications of the polynomial models where heterogeneity as

random and fixed individual effects occurs are in Section 6 compared with the versions

where heterogeneity is accounted for by (polynomial) cohort effects. This improves

overall fit somewhat, but not much. Section 7 concludes.

2 Revisiting the Age-Cohort-Time problem in a linear model

Observations from n individuals on a response variable yi, for example the length of

a sickness absence spell and three covariates, birth cohort, time and age of individual

i, (ci, ti, ai), are assumed to be available and in the initial specification assumed to be

related by the equation

(5) E(yi|ci, ti, ai) = α + γci + δti + βai, i = 1, . . . , n.

1Fisher (1961, p. 575) indeed refers to the “the frequent claim that non-linearities aid identification or even (the claim)
that the identification problem does not arise in many non-linear systems”.

2An example of a non-linear relationship recently given attention is the possible convexity of life satisfaction, on an
ordinal scale, as a function of age when estimated from panel data; see Ree and Alessie (2011) and Baetschmann (2012).

2



Other explanatory variables, corresponding to x in (1), are suppressed, but could easily

have been included by extending the intercept α. Since in any realistic data set

(6) ai + ci = ti, i = 1, . . . , n,

neither of γ, δ, β represents partial effects. If, however, we believe that δ=0 and impose

this as an a priori restriction, then γ and β can be identified as pure cohort and age

effects. We have, as an example of (2),

∆E(yi|∆ci,∆ti,∆ai) = (γ+δ)∆ci + (β+δ)∆ai(7)
= (γ−β)∆ci + (δ+β)∆ti
= (β−γ)∆ai + (δ+γ)∆ti.

The first-order conditions for the OLS problem for (5), subject to (6), exemplifies

solving a system of linear equations subject to linear variable restrictions. The problem

minα,δ,β,γ

∑n
i=1 u

2
i , where ui = yi−E(yi|ci, ti, ai) subject to ai+ci= ti gives three indepen-

dent conditions. Therefore only two linear combinations of the slope coefficients can be

identified: either (γ+δ), (β+δ) or (δ+γ), (β−γ) or (γ−β), (δ+β).3 Boundary cases are:

Data from one cohort : Only β+δ can be identified, letting either ai or ti be regressor.

Data from one period : Only β−γ can be identified, letting either ai or ci be regressor.

Data from one age: Only γ+δ can be identified, letting either ci or ti be regressor.

3 Extension to polynomial models

We consider two extensions of (5), the first has the additive form (3), the second has the

more general form (1).

Additive polynomial in age, cohort and time: The first extension is a sum of P th

order polynomials in ai, ci, ti, exemplifying (3), which has 3P coefficients. Eliminating,

by using (6), alternatively, ti, ai and ci, we can write the polynomial equation, now

exemplifying (4), as respectively:

E(yi|ai, ci) = α+
∑P

p=1 β
∗
pa

p
i +

∑P
p=1 γ

∗
pc

p
i +

∑P
p=1 δ

∗
p(ai+ci)

p,(8)

E(yi|ci, ti) = α+
∑P

p=1 β
∗
p(ti−ci)

p +
∑P

p=1 γ
∗
pc

p
i +

∑P
p=1 δ

∗
pt

p
i ,(9)

E(yi|ai, ti) = α+
∑P

p=1 β
∗
pa

p
i +

∑P
p=1 γ

∗
p(ti−ai)

p
i +

∑P
p=1 δ

∗
pt

p
i .(10)

We call this an additive P th order polynomial. Since, from the binomial formula,

tpi = (ai+ci)
p =

∑p
r=0

(
p
r

)
ari c

p−r
i ≡ cpi +

∑p−1
r=1

(
p
r

)
ari c

p−r
i + api ,

api = (ti−ci)
p =

∑p
r=0

(
p
r

)
tri (−ci)

p−r ≡ (−ci)
p +

∑p−1
r=1

(
p
r

)
tri (−ci)

p−r + tpi ,

cpi = (ti−ai)
p =

∑p
r=0

(
p
r

)
tri (−ai)

p−r ≡ (−ai)
p +

∑p−1
r=1

(
p
r

)
tri (−ai)

p−r + tpi ,

(8)–(10) can be reparametrized to give

E(yi|ai, ci)=α+β1ai+γ1ci+
∑P

p=2βpa
p
i +

∑P
p=2γpc

p
i +

∑P
p=2δp

∑p−1
r=1

(
p
r

)
ari c

p−r
i ,(11)

E(yi|ci, ti)=α+δ̄1ti+γ̄1ci+
∑P

p=2δ̄pt
p
i +

∑P
p=2γ̄pc

p
i +

∑P
p=2β̄p

∑p−1
r=1

(
p
r

)
tri (−ci)

p−r,(12)

E(yi|ai, ti)=α+β̃1ai+δ̃1ti+
∑P

p=2β̃pa
p
i +

∑P
p=2δ̃pt

p
i +

∑P
p=2γ̃p

∑p−1
r=1

(
p
r

)
tri (−ai)

p−r,(13)

3For an expanded discussion, see Biørn (2013).
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with coefficients (all identifiable without additional conditions being needed):

β1=β∗
1+δ∗1, γ1=γ∗

1+δ∗1, δp=δ∗p, βp=β∗
p+δ∗p, γp=γ∗

p+δ∗p, p=2, . . . , P,(14)

δ̄1=δ∗1+β∗
1 , γ̄1=γ∗

1−β∗
1 , β̄p=β∗

p , δ̄p=δ∗p+β∗
p , γ̄p=γ∗

p+(−1)pβ∗
p , p=2, . . . , P,(15)

δ̃1=δ∗1+γ∗
1 , β̃1=β∗

1−γ∗
1 , γ̃p=γ∗

p , δ̃p=δ∗p+γ∗
p, β̃p=β∗

p+(−1)pγ∗
p , p=2, . . . , P.(16)

This shows that although an additive P th order polynomial in (ai, ci, ti) has seemingly

no interactions, its reparametrization which creates, for example, (11) from (8), implies

interactions between the (powers of the) two remaining variables and reduces the number

of identifiable coefficients to C1=3P−1.

Full polynomial: The above additive ACT polynomials, which exemplify (3)–(4), have

an ‘asymmetry’. To obtain a model which exemplifies (1)–(2) they can be extended

to polynomials with a full set of interaction terms for all powers of orders 2, . . . , P−1

in, respectively, (ai, ci), (ti, ci) or (ti, ai). The increased flexibility this creates has the

potential to improve the fit to data, an issue to be addressed in Sections 5 and 6. We

elaborate this extension only for (8), reparametrized as (11), and specify

(17) E(yi|ai, ci) = α +
∑P

p=1βpa
p
i +

∑P
p=1γpc

p
i +

∑P
p=2

∑p−1
r=1 δpra

r
i c

p−r
i ,

which has C2 = 2P + 1
2P (P−1) = 1

2
P (P +3) coefficients. If P > 2, this is an effective

increase, since C2−C1=
1
2
P (P−3)+1.4 Model (17) specializes to (11) for

(18) δpr =

(
p

r

)
δp, p = 2, . . . , P ; r = 1, . . . , p−1.

Example: Consider a full fourth-order polynomial (P =4), for which (17) gives

E(yi|ai, ci) = α + β1ai + γ1ci + β2a
2
i + γ2c

2
i

+ β3a
3
i + γ3c

3
i + β4a

4
i + γ4c

4
i

+ δ21aici + δ31a
2
i ci + δ32aic

2
i

+ δ41a
3
i ci + δ42a

2
i c

2
i + δ43aic

3
i .

Imposing the C2−C1=3 restrictions δ31= δ32(=3δ3) and δ41= δ43=
2
3
δ42(=4δ4), implied

by (18), we get, after a reparametrization which replaces (δ21, δ31, δ32, δ41, δ42, δ43) by

(δ2, δ3, δ4), the additive polynomial model

E(yi|ai, ci) = α + β1ai + γ1ci + β2a
2
i + γ2c

2
i + δ22aici

+ β3a
3
i + γ3c

3
i + δ3(3a

2
i ci + 3aic

2
i )

+ β4a
4
i + γ4c

4
i + δ4(4a

3
i ci + 6a2i c

2
i + 4aic

3
i ).

4 Marginal effects

In the empirical application to be considered, demeaned observations of cohort, time and

age will be used. This is done not only to reduce the variables’ magnitude – a notable

advantage when forming powers and interactions – but also, and more importantly, to

facilitate comparison of results across models of different orders.

4A third model with three polynomials and all interactions between (a, c), (a, t) and (c, t) included, would have had

C3 =3P+3 1
2
P (P−1)= 3

2
P (P+1) coefficients and hence C3−C2=P 2. It is, however, hypothetical since the inescapable

restriction (6) precludes identification of all its coefficients. For examples and further discussion, see Biørn (2013).
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A basis for interpreting the coefficient estimates is obtained by taking a look at

expressions for ‘marginal effects’ of cohort and age. The following notation for central

moments will then be needed: Let a=a−E(a) and c=c−E(c), and define5

µa(p) = E[ap], µc(q) = E[cq],

µa|c(p) = E[ap|c], µc|a(q) = E[cq|a],

µac(p, q) = E[apcq],

p, q = 1, 2, . . . .

Corresponding to (17), after having deducted from cohort and age their expectations,

i.e., the theoretical counterpart to demeaning, we obtain6

(19) E(y|a, c) = α + β1a+γ1c+
∑P

p=2βpa
p+

∑P
p=2γpc

p+
∑P

p=2

∑p−1
r=1δpra

rcp−r.

The law of iterated expectations gives

E(y|a) = α+β1a+
∑P

p=2βpa
p+

∑P
p=2γpµc(p)+

∑P
p=2

∑p−1
r=1δpra

rµc|a(p− r),(20)

E(y|c) = α+γ1c+
∑P

p=2βpµa(p)+
∑P

p=2γpc
p+

∑P
p=2

∑p−1
r=1δprµa|c(r)c

p−r,(21)

E(y) = α+
∑P

p=2βpµa(p) +
∑P

p=2γpµc(p) +
∑P

p=2

∑p−1
r=1δprµac(r, p−r).(22)

Two kinds of marginal effects ‘at the mean’ can now be defined.

Expected marginal effects: Definition 1 (Expectations of first-derivatives): The marginal

expectations of the derivatives of sickness absence, y, with respect to age, a, and cohort,

c can be expressed in terms of population moments as7

(23)
E[∂y/∂a] = β1+

∑P
p=3 βppµa(p−1) +

∑P
p=2

∑p−1
r=1 δprrµac(r−1, p−r),

E[∂y/∂c] = γ1+
∑P

p=3 γppµc(p−1) +
∑P

p=2

∑p−1
r=1 δpr(p−r)µac(r, p−r−1).

Since β2 and γ2, i.e., the coefficients of the quadratic terms in (11), do not enter

these expressions, we for linear and quadratic relations simply have E[∂y/∂a] = β1 and

E[∂y/∂c]=γ1. If P ≥3, second and higher-order moments of age and cohort, interacting

with the coefficients of the cubic and higher-order terms, will also be involved.

Expected marginal effects: Definition 2 (First-derivatives of conditional expectations):

Two versions of these effects can be obtained from (19). Conditioning on both age and

cohort and differentiating with respect to one of them, we get, respectively,

(24)
∂E(y|a, c)/∂a = β1 +

∑P
p=2 βppa

p−1 +
∑P

p=2

∑p−1
r=1 δprra

r−1cp−r,

∂E(y|c,a)/∂c = γ1 +
∑P

p=2 γpp c
p−1 +

∑P
p=2

∑p−1
r=1 δpr(p−r)arcp−r−1.

Conditioning only on the variable on which we differentiate, (20) and (21) give

(25)
∂E(y|a)/∂a = β1 +

∑P
p=2 βppa

p−1 +
∑P

p=2

∑p−1
r=1 δprra

r−1µc|a(p− r),

∂E(y|c)/∂c = γ1 +
∑P

p=2 γpp c
p−1 +

∑P
p=2

∑p−1
r=1 δprµa|c(r)(p−r)cp−r−1.

There are notable differences between (24) and (25) on the one hand and (23) on the

other, since in the former, the second-order coefficients β2 and γ2 always occur, except

when the derivatives are evaluated at the expected cohort and age (a=c=0).

5Obviously, µa(1)=µac(1, 0)=µc(1)=µac(0, 1)=0, µac(p, 0)=µa(p), and µac(0, q)=µc(q).
6For simplicity we do not change the coefficient notation here. Expressions corresponding to (11) can be obtained by

substituting δpr=
(

p

r

)

δp in the following expressions.
7These expressions are obtained by first writing (19) as y = E(y|a, c) + u, where E(u|a, c) = 0, and next using

∂u/∂a = ∂u/∂c = 0 =⇒ ∂y/∂a = ∂E(y|a, c)/∂a, ∂y/∂c = ∂E(y|a, c)/∂c.
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5 Application: Sickness absence

In this section we explore aspects of sickness absence, measured in days, by exploiting

a large panel data set for long-term sickness absence records from individuals in the

Norwegian labour force. Different specifications of heterogeneity, notably with respect to

gender differences, are considered. Covariates other than the ACT variables and gender,

which of course also may influence observed absenteeism (and which to some extent are

observable) are neglected in the application to follow. This means that, for example

variables related to work-place, lifestyle, education, family situation, geographic region,

working career, health performance, doctor’s practice in issuing sickness certificates, etc.,

will, most likely, affect the coefficient estimates of the ACT and the transformations of

them we consider, to the extent that they are correlated with these ‘omitted variables’.

Hence, the policy implications of the results are not obvious and may be an issue for

discussion.

The discussion is organized in three subsections. First, data and summary statistics

are presented, next follows a description of the model hierarchy, and third, OLS regression

results for the linear models, the additive polynomials and the full polynomials of orders

up to four are discussed.

Data and descriptive statistics:

The data set available has zero entries for sickness absences of length less than 16 days

– for the following reason. Most Norwegian workers enjoy full coverage of lost earnings

due to sickness absence for up to one year. For the first 16 days of absence the payment

is covered by the employer; after that the Social Security Administration (SSA) provides

the payment. Only the number of days of long-term sickness absence, i.e., the absence

spells paid for by the SSA for each worker in each year, is counted. The lowest number of

absence days observed therefore is 16. Unlike the definitions used in Biørn et al. (2013),

sickness absence are, for part-time workers, measured in full-time equivalents. Also the

number of absence days recorded in a year refers to absence spells starting in that year

and possibly extending to the next year.8 The full panel data set, which also includes

individuals with no SSA-paid sickness absence, is unbalanced, covers 14 years, 1994–

2007, and contains 40 592 638 observations from 3 622 170 individuals. This gives an

average of 11.2 observations per individual, virtually the same for males and females.

Tables 1 and 2 give summary statistics, for the full panel, for the panel truncated

to contain only individuals and periods in which where a non-zero absence is recorded,

and for the sub-panels containing the two genders separately. The individuals in the full

panel have, on average, 12.6 absence days, 10.7 for males and 14.6 for females (Table 1,

column 1). For less than half of the individuals, 1 786 105, at least one sickness absence

of at least 16 days is recorded during the 14-year data period. The mean number of

absence days in the truncated panel is 112.7 (Table 1, column 5). Fewer absence spells are

recorded for males than for females (1.9 million against 2.6 million), while for males the

spells are on average longer (113.7 days against 111.9 days). The truncated, unbalanced

8For more details on definitions and institutional setting otherwise, see Biørn et al. (2013).
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data set, with 4 502 991 observations, 1 925 320 from males and 2 577 671 from females,

is the one to be used in the regressions later to be presented.

Some statistics describe the unbalance: (i) 61% of the (non-truncated) individuals

are observed in all the 14 years; the remaining 39% are distributed fairly evenly by the

number of observations (Table 2, columns 1 and 2). (ii) About 76% of the non-truncated

observations and about 86% of the truncated observations come from individuals ob-

served in all the 14 years. (iii) The mean absence length (after truncation) declines from

151.3 days for those observed in one year only, to 110.5 days for those observed in all the

14 years (Table 2, column 4). The more strongly an individual, for some reason, tends

to be absent from work due to sickness – which, for lack of a better term may be labeled

‘latent sickness inclination’ or ‘weakness of health’ – the larger is his/her probability

to stay permanently sick, to exit from the labour force and therefore to exit from our

panel. This is a systematic selection which may partly explain the systematic difference

between the two shares in (ii) and the two means in (iii). A discussion of some related

issues is given in Biørn (2010).

The year and cohort variables from which Table 1 is compiled, and used in the

following regressions, are measured from the year 1920, giving the variables yea and coh.

Their ranges extend from 74 to 87 (calendar years 1994 and 2007) and from 5 to 71

(birth years 1925 and 1991), respectively. The age variable, age(=yea-coh), varies from

16 to 69. The supplementary Appendix Table A.2, contains overall, within individual

and between individual standard deviations for the non-truncated and the truncated

data set. While the between variation of abs is far smaller than the within variation in

the non-truncated data set, they have more equal magnitude in the truncated data set.

Although the data set has a large number of observations, after truncation it is ‘thin’

along the year dimension – the individual time series have a substantial number of gaps.

On average, only 2.5 observations per individual, 2.3 for males, 2.7 for females, are avail-

able. This substantial spatial/temporal ‘imbalance’ – the truncated data set is not far

from a set of non-overlapping cross-sections – does not invite extensive application of

‘panel data methods’. However, in Section 6 supplementary results with ’fixed effects’

and ‘random effects’ modeling of individual effects will considered, to illustrate the sen-

sitivity of the estimated time and age effects to the way unobserved heterogeneity is

accounted for.

Correlation matrices for (abs,coh,yea,age) and the female dummy, fdum, are given

in Table 3, for the full and the truncated data (panel A) and by gender separately

(panels B and C). As expected, abs shows positive correlation with age and negative

correlation with coh. The omission of recorded zero absence spells results in a stronger

correlation across the truncated data set than across the full data set (correlation coef-

ficients 0.0456 and −0.0376 in the latter, 0.1123 and −0.1004 in the former), which is

quite reasonable. The female dummy fdum is positively correlated with abs across the

full data set and weakly negatively correlated across the truncated data set, which is

consistent with the gender-specific means in Table 1.

The correlation between (coh,yea,age) and fdum is weak, the latter is ‘almost or-

thogonal to’ the former, and changes sign when the data set is truncated. Considering
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the way the data set has been designed – coh spanning 66 years, age spanning 53 years

and yea spanning only 13 years – strong negative correlation between age and coh is ex-

pected: −0.9630 and −0.9509 in the full and the truncated panel, respectively.9 Turning

to the gender-specific matrices (panels B and C), we find notably stronger correlation

between abs and (coh,age) for males than for females.

Since polynomial regressions is a main concern, correlation coefficients for the un-

transformed variable are, in Table A.1, supplemented with correlation coefficients for

the powers of the (demeaned) ACT variables. Sickness absence abs is positively cor-

related with all powers of (demeaned) age (panel B, column 1) and the female dummy

fdum is negatively correlated with all powers of (demeaned) age (panel B, column 2).

For (demeaned) cohort, however, sign shifts occur: Its odd-numbered powers are nega-

tively correlation and its even-numbered powers positively correlated with abs. When

it comes to correlation between fdum and powers of cohort the odd-numbered powers

show positive correlation and the even-numbered powers show negative correlation (Ta-

ble A.1, panel B, column 2). Table A.1, panel A, giving the full correlation matrix of

the first-through fourth powers of all three ACT variables, supplements this picture:

The second and fourth powers of age and cohort show all strong positive correlation.

The correlations between a and a3 and between c and c3 are (unsurprisingly) strongly

positive, while while the corresponding cross-correlations are strongly negative. On the

other hand, the correlation between even and odd powers of these two variables is rather

weak and sometimes negative: for example -0.0304 between a and a2, -0.0325 between c

and c2 and -0.0583 between c4 and a3. This reflects, of course, that the observations are

demeaned. Correlation coefficients exceeding 0.7 in absolute value, are given in boldface

in this Appendix table. A clear pattern emerges.

Table 1: Descriptive statistics

All observations Obs. with abs > 16

Variable Mean St.dev. Mean St.dev.

abs 12.61670 51.14011 112.6820 110.9083
Males 10.73485 47.81207 113.7135 112.7852
Females 14.55141 54.28121 111.9116 107.4792

coh 39.77881 14.95959 38.71440 12.53668
yea 80.59854 4.03805 80.92159 3.88333
age 40.81973 14.58116 42.20718 12.06349

No. obs. 40 592 638 4 502 991
Males 20 577 392 1 925 320
Females 20 015 246 2 577 671

No. ind. 3 622 170 1 786 105

No. obs/ind. 11.207 2.521
Males 11.214 2.332
Females 11.199 2.684

9If the data set had been from a cross-section, the coh-age correlation would have been −1; confer Case 2 in Section 2.
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Table 2: Panel characteristics according to no. of observations

No. of observations Before truncation After truncation

before truncation Inds. Obs. Obs. mean abs

01 120 113 120 113 2 654 151.28
02 120 103 240 206 5 575 148.49
03 113 028 339 084 8 868 134.80
04 111 573 446 292 14 691 132.00
05 108 455 542 275 22 587 129.27
06 108 799 652 794 33 099 129.52
07 104 863 734 041 41 035 130.79
08 103 394 827 152 50 854 129.88
09 102 317 920 853 63 160 128.00
10 98 232 982 320 68 950 121.33
11 107 442 1 181 862 93 327 124.82
12 112 604 1 351 248 113 886 122.67
13 130 306 1 339 780 115 884 123.75
14 2 208 187 30 914 618 3 868 421 110.50

Table 3: Correlation matrices
A. Both genders

All 40 592 638 observations Only 4 502 991 obs. with abs > 16
abs coh yea age fdum abs coh yea age fdum

abs 1.0000 1.0000
coh -0.0376 1.0000 -0.1004 1.0000
yea 0.0251 0.2275 1.0000 0.0247 0.2744 1.0000
age 0.0456 -0.9630 0.0435 1.0000 0.1123 -0.9509 0.0367 1.0000
fdum 0.0373 -0.0123 -0.0008 0.0124 1.0000 -0.0080 0.0580 0.0220 -0.0532 1.0000

B. Males

All 20 577 392 observations Only 1 925 320 obs. with abs > 16
abs coh yea age abs coh yea age

abs 1.0000 1.0000
coh -0.0535 1.0000 -0.1177 1.0000
yea 0.0167 0.2259 1.0000 0.0228 0.2639 1.0000
age 0.0595 -0.9626 0.0466 1.0000 0.1291 -0.9524 0.0427 1.0000

C. Females

All 20 015 246 observations Only 2 577 671 obs. with abs > 16
abs coh yea age abs coh yea age

abs 1.0000 1.0000
coh -0.0228 1.0000 -0.0863 1.0000
yea 0.0328 0.2291 1.0000 0.0265 0.2812 1.0000
age 0.0324 -0.9633 0.0404 1.0000 0.0985 -0.9494 0.0343 1.0000

Table 4: Estimated models. Overview

Model label Polynomial order Regressors: No. of coef.
(d.k) Linear Power Interaction (incl. intercept)

terms terms terms

1.1 1 c, a 3
1.2 1 c, t 3
1.3 1 t, a 3

2.0 2 c, a c, t, a 6
2.1 2 c, a c, a 5
2.2 2 c, t c, t 5
2.3 2 t, a t, a 5

3.0 3 c, a c, t, a 9
3.1 3 c, a c, a 7
3.2 3 c, t c, t 7
3.3 3 t, a t, a 7

4.0 4 c, a c, t, a 12
4.1 4 c, a c, a 9
4.2 4 c, t c, t 9
4.3 4 t, a t, a 9

2.4 2 c, a c, a ca 6
3.4 3 c, a c, a ca, ca2, c2a 10
4.4 4 c, a c, a ca, ca2, c2a, c2a2, ca3, c3a 15
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Model tree

Table 4 lists 18 models of orders 1 through 4, all including only the ACT variables. For

convenience, they are labeled as d.k, where d and k indicate, respectively, the polynomial

order and the collection of power terms (when k=1, 2, 3) and interaction terms (when

k=4). From now on c, t, a will denote demeaned variables. The model-tree can be de-

scribed as follows. The linear models, 1.1, 1.2 and 1.3, are equivalent, which exemplifies

the ACT identification problem (Section 2). Models 2.k, 3.k and 4.k (k = 1, 2, 3) include

linear and power terms in two of the three variables and have 5, 7, and 9 coefficients

(including intercept), respectively. Models 2.0, 3.0, and 4.0, with 6, 9, and 12 coeffi-

cients, respectively, include linear terms in (a, t) and powers in (a, t, c). They exemplify

(11), reparametrized from (8), see (14). Models 2.4, 3.4, and 4.4 extend the additive

polynomial Models 2.k, 3.k, and 4.k (k = 1, 2, 3), by adding interaction terms to the

power terms. This extension exemplifies (17) and increases the number of coefficients to

6, 10, and 15, respectively.10

While Model 2.4 reparametrizes Model 2.0, Model 3.0 imposes one coefficient re-

striction on Model 3.4, and Model 4.0 imposes three restrictions on Model 4.4; see the

example with K=4 in Section 3. Models 2.k (k = 1, 2, 3) are nested within Model 2.0,

Models 3.k (k = 1, 2, 3) are nested within Model 3.0, and Models 4.k (k = 1, 2, 3) are

nested within Model 4.0, while Models d.1, d.2, d.3 (d = 2, 3, 4) are non-nested.

Table 5: Estimated models. OLS fit statistics. Observations with abs>16 only.

Both genders: Males: Females:

Model SSR×10−14 σu × 10−4 R2 SSR×10−14 σu × 10−4 R2 SSR×10−14 σu × 10−4 R2

1.1 5.4667 1.1018 0.013041 2.4075 1.1182 0.016968 3.0579 1.0892 0.010243
1.2 5.4667 1.1018 0.013041 2.4075 1.1182 0.016968 3.0579 1.0892 0.010243
1.3 5.4667 1.1018 0.013041 2.4075 1.1182 0.016968 3.0579 1.0892 0.010243

2.0 5.4385 1.0990 0.018146 2.3936 1.1150 0.022670 3.0437 1.0867 0.014818
2.1 5.4532 1.1005 0.015480 2.4010 1.1167 0.019644 3.0512 1.0880 0.012401
2.2 5.4387 1.0990 0.018099 2.3939 1.1151 0.022558 3.0438 1.0867 0.014801
2.3 5.4414 1.0993 0.017612 2.3946 1.1152 0.022265 3.0456 1.0870 0.014218

3.0 5.4306 1.0982 0.019567 2.3898 1.1141 0.024194 3.0398 1.0859 0.016096
3.1 5.4457 1.0997 0.016848 2.3975 1.1159 0.021053 3.0474 1.0873 0.013639
3.2 5.4331 1.0984 0.019111 2.3910 1.1144 0.023709 3.0411 1.0862 0.015673
3.3 5.4338 1.0985 0.018989 2.3910 1.1144 0.023706 3.0398 1.0863 0.015472

4.0 5.4279 1.0979 0.020049 2.3877 1.1136 0.025074 3.0389 1.0858 0.016371
4.1 5.4438 1.0995 0.017188 2.3957 1.1155 0.021800 3.0470 1.0872 0.013769
4.2 5.4311 1.0982 0.019474 2.3897 1.1141 0.024237 3.0403 1.0860 0.015933
4.3 5.4314 1.0983 0.019427 2.3891 1.1139 0.024511 3.0409 1.0862 0.015726

2.4 5.4385 1.0990 0.018146 2.3936 1.1150 0.022670 3.0437 1.0867 0.014818
3.4 5.4304 1.0982 0.019602 2.3898 1.1141 0.024213 3.0397 1.0859 0.016139
4.4 5.4276 1.0979 0.020104 2.3876 1.1136 0.025111 3.0387 1.0858 0.016451

10The equivalent models (12) and (13) are not further discussed. Restricting attention to (11) in estimation, has the
advantage of involving no sign-shifts for the binomial coefficients.
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Table 6: Correlation coefficients. fdum versus powers of cohort, year and age

Observations with abs > 16 only

p corr(fdum, cp) corr(fdum, tp) corr(fdum, ap)

1 0.0580 0.0220 -0.0532
2 -0.0240 0.0035 -0.0315
3 0.0439 0.0212 -0.0386
4 -0.0305 0.0006 -0.0407

Table 7: Coefficient of fdum in Models d.k (d=2, 3, 4; k=0, 1, 2, 3, 4)

Standard errors below coefficient estimates. All coefficients multiplied by 100

Observations with abs > 16 only

k = 0 k = 1 k = 2 k = 3 k = 4

d = 2 -20.055299 -28.321539 -23.107976 -17.953944 -20.055299
10.491141 10.505103 10.489306 10.493907 10.491141

d = 3 -35.414764 -43.605999 -32.355308 -33.752991 -36.025614
10.485608 10.499778 10.484916 10.488588 10.485528

d = 4 -47.195714 -57.309748 -38.015668 -44.262887 -47.751581
10.489016 10.503840 10.485522 10.491803 10.488848

OLS estimation results

Goodness of fit: Table 5 reports fit statistics for OLS estimation based on the truncated

data set for all observations and by gender: sum of squared residuals (SSR), standard error

of regression (σu) and squared multiple correlation (R2). Using the two-gender panel,

we obtain a fit, measured by the σu estimate, of about 1.1 × 10−4 in all the 18 models.

When measured by R2, the fit varies between 0.013 and 0.020. Even for Model 4.4, the

most parameter-rich model, the unexplained variation accounts for a large share of the

total variation. All models have lower σu estimates when using the female data than

when using the male data. On the other hand, R2 is higher for males (between 0.017

and 0.025) than for females (between 0.010 and 0.016). The latter may reflect the larger

number of female long-term absence spells as well as the fact that females may tend

to have more ‘diverse’ sickness absence patterns, less adequately captured by the ACT

variables, than males.

An interesting observation if that the fit, measured by R2, has about the same

magnitude as the McFadden R-square fit measure, obtained from the discrete response

(sick/non-sick) analysis of Biørn et al. (2013, Table 2), where a substantially larger num-

ber of parameters is, for both genders, used to capture the variation of sickness absence

(541 and 57 in the model versions with cohort-specific and cohort-invariant time and age

coefficients, respectively). Like the present model, the discrete response model gave a

better fit to the male observations than to the female observations.

Among the models with linear and power terms in two of the three variables, those

including (c, a) (Models 2.1, 3.1, and 4.1) give somewhat better fit, for both genders,

than the corresponding models in (c, t) (Models 2.2, 3.2, and 4.2) or in (t, a) (Models

2.3, 3.3, and 4.3). The improvement in fit, indicated by a reduced SSR, when the regres-

sor set includes both second, third, and fourth powers of all the three variables – i.e.,
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including powers of the variable which are omitted from the equation’s linear part to

escape the ACT problem – is clearly significant: The p-values of the F -tests for Model

2.1 against 2.0, for Model 3.1 against 3.0, and for Model 4.1 against 4.0 are all close to

zero. The small increase in the respective R2s, less than 0.003 (confer Table 5), is in

the F -statistics, ‘compensated’ by the large number of observations, leading to a clear

rejection of the restrictive model.11

Table 8: Linear models. OLS estimates

Standard errors below coefficient estimates. All coefficients multiplied by 100.

Observations with abs > 16 only

Both genders. No female dummy: Both genders. Female dummy included:
Model 1.1 Model 1.2 Model 1.3 Model 1.1 Model 1.2 Model 1.3

c 58.788114 -102.576460 58.963563 -102.448974
1.337988 0.430708 1.338368 0.431332

t 161.364574 58.788114 161.412537 58.963563
1.390470 1.337988 1.390493 1.338368

a 161.364574 102.576460 161.412537 102.448974
1.390470 0.430708 1.390493 0.431332

fdum -57.498539 -57.498539 -57.498539
10.513268 10.513268 10.513268

Males, 1 925 320 observations: Females, 2 577 671 observations:
Model 1.1 Model 1.2 Model 1.3 Model 1.1 Model 1.2 Model 1.3

c 50.316711 -118.110883 65.108447 -90.029052
2.081852 0.658029 1.745791 0.571107

t 168.427583 50.316711 155.137499 65.108447
2.156397 2.081852 1.818128 1.745791

a 168.427594 118.110883 155.137499 90.029052
2.156397 0.658029 1.818128 0.571107

Coefficient estimates: Tables 8–11 contain coefficient estimates for the 18 polynomial

models.12 Table 8 relate to linear models, Tables 9 and 10 relate to additive polynomial

models, and Table 11 gives results for cubic and fourth-order models in cohort and age,

with all interactions included.

Linear models: Estimates: Inclusion of the female dummy has a negligible effects on the

coefficient estimates of (coh,yea,age) (Table 8, upper half), which reflects that fdum is

‘almost orthogonal to’ these variables (Table 3, panel A). For given coh,yea,age, each

absence spell is about 0.57 days shorter for females than for males, with a p-value close

to zero (Table 8, right upper part).13 Controlling for cohort, we find that a one year

increase in age (equivalent to a one year increase in calendar time) gives an estimated

increase in (long-term) absence of 1.61 days (Table 8, upper half). Controlling for calen-

dar year, while increasing birth-year by one (equivalent to being one year younger) gives

an estimated reduction of absence of 1.03 days. Equivalently, controlling for age, while

increasing birth-year by one (equivalent to increasing calendar time by one year) gives

an estimated increase in absence of 0.59 days.

11The conclusion of rejection is also indicated from Tables 9 and 10 by the t-statistics of t2 in Model 2.0, the t-statistics
of t2 and t3 in Model 3.0 and the t-statistics of t2, t3 and t4 in Model 4.0.

12The Stata software, version 12, is used in the computations.
13As remarked, the spells are measured in such a way that a spell starting in year t may well extend to year t−1.
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Linear models: Gender effects: Notable gender differences emerge (Table 8, panel B).

The age effect, controlling for cohort, is 1.68 days for males and 1.55 days for females

(strictly, these are age plus year effects ; see (5) and (7)). When controlling for calendar

year, the age effect is 1.18 days for males and 0.90 days for females (strictly, these are

age minus cohort effects ; see (5) and (7)). The cohort effect, controlling for age, is 0.50

days for males and 0.65 days for females (strictly, these are cohort plus year effects ; see

(5) and (7)). Controlling for calendar year, the cohort effect is −1.18 days for males and

−0.90 days for females (strictly, these are cohort minus age effects ; see (5) and (7)).

Non-linear models: Estimates: For the quadratic, cubic, and fourth-order polynomial re-

gressions, Table 9 (combined truncated panel) and Table 10 (gender-specific estimates)

show that the marginal cohort and age effects at the empirical mean – the empirical

counterpart to γ1 and β1 in (24) at the expected age and cohort (a= c= 0) – are not

invariant to the assumed polynomial order. A certain pattern is visible though: The esti-

mated γ1 and β1 from the quadratic Model 2.1 are close to their estimates from the linear

Model 1.1 (in both year is omitted as a regressor): (0.61, 1.61) days versus (0.59, 1.61)

days when using the full (truncated) panel, (0.55, 1.69) versus (0.50, 1.68) days for the

male panel and (0.64, 1.54) versus (0.65, 1.55) days for the female panel. This finding may

be interpreted as an empirical counterpart to (23), which implies that γ1 and β1 measure

equally well the marginal cohort and age effects for P =1 and P =2. Contrasting, how-

ever, Model 2.2 with 1.2 (age omitted) and Model 2.3 with 1.3 (cohort omitted), larger

discrepancies emerge. Note also that the estimates of γ1 and β1 from the fourth-order

Model 4.1 are close to those from the cubic Model 3.1: (0.86, 1.21) versus (0.84, 1.20) for

the full panel, (0.89, 1.32) versus (0.85, 1.34) for the male panel and (0.82, 1.12) versus

(0.83, 1.11) for the female panel, respectively. On the other hand, contrasting Model 4.2

with 3.2 and Model 4.3 with 3.3, larger discrepancies again emerge. The results for the

third and fourth order polynomials as well as the discrepancies between the γ1 and β1

coefficients in Models 3.1 and 2.1 cannot be easily explained from the expressions for the

expected marginal effects, (23) or (25), however.

Non-linear models: Gender effects: While in all polynomial models the fit is slightly

improved when the female dummy is added to the ACT regressors (Table 5), the coeffi-

cient estimates of the power and interaction terms are rather insensitive to whether this

dummy is included or not. This reflects the weak correlation between the female dummy

and powers of the demeaned ACT variables, as shown in Table 6: fdum is positively

correlated with all powers of t and negatively correlated with all powers of a, while for

c, fdum is positively correlated with its odd-numbered powers and negatively correlated

with its even-numbered powers. The ‘female effect’ is somewhat sensitive to the poly-

nomial order chosen, however. The lowest estimates are obtained for the second-order

polynomials (d=2), while the highest estimates occur for the fourth-order polynomials

(d=4) (Table 7). In, e.g., Model 2.3, fdum is only ‘marginally significant’ at the 5% level

(t-value around 1.8). For all polynomial orders the models which include cohort and age

(Models 2.1, 3.1 and 4.1) have the largest coefficient of fdum in absolute value.

Table 10 shows that the sign of the coefficients of the linear and the quadratic terms

13



in the additive polynomials are the same for males and females. The same holds for the

models which include interactions; see Table 11. For the cubic and fourth-order terms,

however, there are some notable gender differences: (i) In the cubic additive models

where t3 is included, this variable has negative coefficient for males and positive coeffi-

cient for females. The same is true for the fourth-order additive models. In Model 4.0 the

coefficients of c4 also come out with different signs. (ii) In the non-additive Model 4.4,

the coefficients of all the fourth-order terms, a4, a3c, a2c2, ac3, c4, are positive, while in

Model 3.4, the coefficients of all the cubic terms, a3, a2c, ac2, c3, are negative for males

and positive for females.

Curvature: The quadratic model: The quadratic Model 2.0 can be written in several

forms. Let us take a closer look at its estimated regression Table 9. We have

(26)

̂E(y|a, c, t) = constant+42.380 c+ 144.231a+ 2.715 c2 − 40.724 t2 + 0.947a2,
̂E(y|a, c, t) = constant−101.851 c+ 144.231 t+ 2.715 c2 − 40.724 t2 + 0.947a2,
̂E(y|a, c, t) = constant+42.380 t+ 101.851a+ 2.715 c2 − 40.724 t2 + 0.947a2.

By manipulating the second-order terms, eliminating, respectively, t2, a2 and c2, which

creates interactions between the two remaining variables, we get

(27)

̂E(y|a, c,a+ c) = constant + 42.380 c+ 144.231a− 38.009 c2 − 81.448ac− 39.777a2,
̂E(y|t− c, c, t) = constant− 101.851 c+ 144.231t+ 3.662 c2 − 1.894 ct− 39.777 t2,
̂E(y|a, t− a, t) = constant + 42.380 t+ 101.851a− 38.009 t2 − 5.430 ta+ 3.662a2.

Since neither of the regressions in (27) has a Hessian matrix that is positive or negative

definite, neither are convex or concave in their two variables.14 However, controlling for

one variable, the curvature of the other (around mean) can be described as follows:15

̂E(y|a, c,a+c): Positively sloping and concave in c, when a is controlled for:

m
c|a ≡ ∂ ̂E(y|a, c,a+c)/∂c = 42.4− 76.0c− 81.4a.

Positively sloping and concave in a, when c is controlled for:

m
a|c ≡ ∂ ̂E(y|a, c,a+c)/∂a = 144.2− 79.5a− 81.4c.

Strictly, m
c|a

and m
a|c

are marginal cohort+year and age+year effects; cf. (2) and (7).

̂E(y|t−c, c, t): Negatively sloping and convex in c, when t is controlled for:

m
c|t ≡ ∂ ̂E(y|t−c, c, t)/∂c = −101.9 + 7.3c− 1.9t ≡ −101.9 + 5.4c− 1.9a.

Positively sloping and concave in t, when c is controlled for:

m
t|c ≡ ∂ ̂E(y|t−c, c, t)/∂t = 144.2− 79.5t− 1.9c ≡ 144.2− 79.5a− 81.4c.

Strictly, m
c|t

and m
t|c

are marginal cohort−age and year+age effects; cf. (2) and (7).

̂E(y|a, t−a, t): Positively sloping and convex in a, when t is controlled for:

m
a|t ≡ ∂ ̂E(y|a, t−a, t)/∂a = 101.9 + 7.3a− 5.4t ≡ 101.9 + 1.9a− 5.4c.

Positively sloping and concave in t, when a is controlled for:

m
t|a ≡ ∂ ̂E(y|a, t−a, t)/∂t = 42.4− 76.0t− 5.4a ≡ 42.4− 76.0c− 81.4a.

Strictly, m
a|t

and m
t|a

are marginal age−cohort and year+cohort effects; cf. (2) and (7).

14Recall that the sample mean corresponds to a=c=0, and that the coefficients of the quadratic terms are invariant
to changing the origins from which the variables are measured from origo to the respective sample means.

15Note: m
c|a

≡m
t|a

(cohort+year effect), m
a|c

≡m
t|c

(age+year effect), m
c|t

≡−m
a|t

(cohort−age/age−cohort effect).
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The interaction terms in the three versions of (27) are clearly of different importance.

Omitting the cohort-year (ct) interaction from the second equation and the year-age

(ta) interaction from the third equation, we get equations whose coefficients are ‘largely

similar’ to those obtained for Model 2.2 and Model 2.3 in Table 9. On the other hand,

the cohort-age (ca) interaction is important, with a standard error of its estimate (81.4)

of 0.7. This is consistent with Table 5, where columns 1–3 show that Models 2.0, 2.2

and 2.3 have approximately the same fit (although, as remarked, the R2 of the former is

significantly larger than for the two latter, according to F -tests, which reflects the very

large sample size), which is markedly better than the fit of Model 2.1. A message from

our data is thus that, with respect to fit, an additive quadratic model in cohort and age

is inferior. Columns 1 and 2 of Table 11 show that cohort-age interactions are important

also for cubic and fourth-order models: the coefficient estimates of ac, a2c, ac2 are all

significantly non-zero in both Model 3.4 and 4.4, while the coefficient estimates of the

fourth-order terms, a3c, a2c2, ac3, are also significant in Model 4.4.

Replicating the above calculations of marginal effects, using the estimated gender spe-

cific quadratic polynomials in Table 10, leads to largely the same qualitative conclusions.

From Table 11, columns 3 through 6, we see, however, that for the gender specific cubic

and fourth-order models, the effects of the interactions are not so sharply determined

as when using the pooled data set. An example is Model 3.4, where a2c comes out with

a statistically insignificant coefficient estimate for females. For males, the fourth-order

Model 4.4, shows signs of being ‘slightly overparametrized’. The facts that c4 in the more

parsimonious Model 4.0, and t3 in the still more parsimonious Model 4.2 come out with

insignificant estimates when based on such a large data set, supports this conclusion.
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Table 9: Additive polynomial models, both genders. OLS estimates

Standard errors below coefficient estimates. All coefficients multiplied by 100

Model 2.0 Model 2.1 Model 2.2 Model 2.3

c 42.380340 60.585173 -101.940029
1.345203 1.336902 0.429819

t 144.536227 41.477363
1.396276 1.345445

a 144.231486 161.751842 101.924793
1.396398 1.389262 0.429966

c2 2.715114 1.971366 3.385272
0.054864 0.054524 0.030284

t2 -40.724031 -41.220886 -38.489725
0.368281 0.366725 0.365603

a2 0.946568 1.604667 3.613155
0.064619 0.064432 0.035677

Model 3.0 Model 3.1 Model 3.2 Model 3.3

c 76.724597 84.154151 -57.250737
3.502955 1.903298 0.785178

t 172.191865 56.729322
3.296704 3.272278

a 112.836102 120.779528 37.426928
3.582489 2.040247 0.919296

c2 2.606039 1.853019 3.251259
0.055052 0.054712 0.030333

t2 -41.479595 -41.732512 -39.388832
0.379800 0.378365 0.377246

a2 0.947838 1.615172 3.513737
0.064734 0.064545 0.035675

c3 -0.046064 -0.048655 -0.134421
0.002895 0.002897 0.001977

t3 -0.430361 -0.317642 -0.517828
0.105797 0.105793 0.105763

a3 0.173579 0.166503 0.222032
0.004094 0.004098 0.002798

Model 4.0 Model 4.1 Model 4.2 Model 4.3

c 52.548887 86.106813 -55.494873
3.595653 1.905275 0.787608

t 147.973838 31.604168
3.392777 3.370314

a 87.286686 121.089294 36.231839
3.673045 2.041224 0.919756

c2 2.827748 3.561605 5.253592
0.117953 0.117917 0.079526

t2 -79.275911 -78.487626 -77.398579
1.295017 1.295017 1.294423

a2 4.284753 3.736192 6.736655
0.146429 0.146550 0.105084

c3 -0.048009 -0.055384 -0.141296
0.002917 0.002919 0.001991

t3 0.899624 0.992847 0.817227
0.114244 0.114254 0.114216

a3 0.178171 0.166682 0.228063
0.004106 0.004110 0.002803

c4 -0.000181 -0.002447 -0.003440
0.000162 0.000161 0.000126

t4 0.955973 0.957372 0.961728
0.031188 0.031196 0.031195

a4 -0.007641 -0.005475 -0.007123
0.000274 0.000274 0.000218
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Table 10: Additive polynomial models, by gender. OLS estimates
n = 1925 320 male observations, n = 2577 671 female observations

Standard errors below coefficient estimates. All coefficients multiplied by 100

Males Females

Model 2.0 Model 2.1 Model 2.2 Model 2.3 Model 2.0 Model 2.1 Model 2.2 Model 2.3

c 31.758144 54.771581 -115.664455 48.908553 64.057137 -90.961419
2.107399 2.089442 0.658028 1.752683 1.744434 0.569855

t 149.584621 26.891806 139.502753 51.566550
2.172239 2.100784 1.822877 1.751932

a 147.356020 169.461870 116.212245 139.808882 154.377164 90.459527
2.177278 2.161711 0.657782 1.823456 1.816452 0.569991

c2 2.371878 1.623362 3.422184 2.882900 2.155958 3.279112
0.083947 0.083514 0.045383 0.072751 0.072263 0.040810

t2 -44.115247 -44.845695 -42.250972 -38.288228 -38.588269 -35.890526
0.571358 0.569276 0.567653 0.481510 0.479349 0.477839

a2 1.466123 2.120466 3.809491 0.564440 1.210658 3.379057
0.098584 0.098371 0.053304 0.085799 0.085518 0.048144

Males Females

Model 3.0 Model 3.1 Model 3.2 Model 3.3 Model 3.0 Model 3.1 Model 3.2 Model 3.3

c 108.765840 85.536541 -68.401344 52.141957 82.112596 -49.747876
5.421252 2.951421 1.210357 4.589224 2.493162 1.035054

t 213.043639 79.779776 140.611404 39.608581
5.103383 5.067528 4.316973 4.283502

a 156.749650 134.064345 50.339134 81.040013 111.414513 29.451108
5.536130 3.153286 1.423234 4.698759 2.678112 1.208617

c2 2.196869 1.448297 3.203897 2.827747 2.092146 3.226687
0.084661 0.084240 0.045602 0.072795 0.072305 0.040807

t2 -46.188503 -46.747857 -44.462844 -38.202607 -38.197185 -35.925127
0.592667 0.590930 0.589332 0.494633 0.492521 0.490992

a2 1.473527 2.123672 3.669646 0.573022 1.228847 3.329532
0.098998 0.098782 0.053342 0.085837 0.085553 0.048121

c3 -0.057928 -0.059146 -0.137191 -0.036372 -0.040038 -0.127723
0.004334 0.004338 0.002953 0.003905 0.003907 0.002678

t3 -1.673378 -1.532214 -1.804121 0.460897 0.556583 0.409808
0.164161 0.164139 0.164095 0.138329 0.138328 0.138291

a3 0.157809 0.151743 0.218089 0.178519 0.170771 0.216700
0.006134 0.006142 0.004183 0.005518 0.005523 0.003786

Males Females

Model 4.0 Model 4.1 Model 4.2 Model 4.3 Model 4.0 Model 4.1 Model 4.2 Model 4.3

c 82.700016 89.380737 -64.177988 29.654602 82.868936 -49.256908
5.593129 2.961020 1.221103 4.694992 2.493587 1.035630

t 187.797695 52.541112 117.955136 16.617844
5.277807 5.244442 4.427865 4.396966

a 126.067810 132.492564 46.049813 58.443651 112.105654 29.361707
5.702334 3.158035 1.427940 4.802604 2.678450 1.208468

c2 2.255944 3.232719 6.062680 3.145343 3.748540 4.468093
0.182853 0.182692 0.121247 0.155075 0.155064 0.105791

t2 -84.234909 -83.218515 -82.524897 -75.243878 -74.594408 -73.233143
2.006220 2.006638 2.005199 1.694794 1.694565 1.694010

a2 6.924148 6.167961 8.861912 2.113462 1.680311 4.854743
0.224401 0.224549 0.159849 0.194024 0.194193 0.140149

c3 -0.059685 -0.067393 -0.150240 -0.037801 -0.044921 -0.130744
0.004382 0.004386 0.002993 0.003923 0.003925 0.002685

t3 -0.244280 -0.147421 -0.376444 1.701115 1.789498 1.655038
0.178787 0.178812 0.178731 0.148461 0.148469 0.148429

a3 0.170544 0.159813 0.232005 0.179445 0.167663 0.218822
0.006157 0.006164 0.004199 0.005532 0.005536 0.003788

c4 0.000201 -0.002339 -0.004799 -0.000432 -0.002533 -0.002178
0.000243 0.000241 0.000188 0.000219 0.000217 0.000171

t4 0.963787 0.969761 0.969139 0.935572 0.933612 0.939849
0.048432 0.048451 0.048442 0.040750 0.040758 0.040760

a4 -0.012130 -0.009735 -0.011205 -0.003664 -0.001655 -0.003444
0.000407 0.000407 0.000325 0.000372 0.000372 0.000297
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Table 11: Cubic and fourth-order polynomials in cohort and age. OLS estimates
Models 3.4 and 4.4. All admissible interactions. n = 4502 991

Standard errors below coefficient estimates. All coefficients multiplied by 100

Both genders Males Females

Model 3.4 Model 4.4 Model 3.4 Model 4.4 Model 3.4 Model 4.4

c 80.688492 56.505550 111.785778 87.713282 56.339426 31.705002
3.516609 3.610363 5.443383 5.624745 4.606265 4.716606

a 122.216542 95.949950 163.704856 134.194692 91.221186 65.825553
3.656929 3.745537 5.650399 5.815533 4.796330 4.904079

c2 -38.845045 -76.273126 -43.737948 -80.109273 -35.594895 -73.248320
0.377275 1.339883 0.590993 2.074577 0.491469 1.754509

ac -83.049804 -160.563765 -91.993013 -166.122777 -76.993718 -156.201652
0.759619 2.696105 1.186967 4.173005 0.990809 3.530790

a2 -40.638468 -77.181161 -44.576257 -76.662045 -37.983520 -77.843211
0.390953 1.390827 0.608975 2.150675 0.510883 1.822723

c3 -0.434736 0.885162 -1.695345 -0.322790 0.467804 1.758356
0.105785 0.114250 0.164174 0.179303 0.138308 0.148542

a2c -1.934940 2.210794 -5.478432 -1.178388 0.668550 4.747733
0.321363 0.346461 0.498084 0.541302 0.420441 0.451723

ac2 -1.534567 2.520752 -5.183824 -0.970427 1.108163 5.084168
0.317957 0.343230 0.493197 0.537537 0.415791 0.446826

a3 -0.614528 0.802044 -1.773503 -0.299884 0.244140 1.639669
0.109428 0.117710 0.169405 0.183405 0.143284 0.153755

c4 0.950453 0.962878 0.924521
0.031204 0.048469 0.040766

a3c 4.059271 4.029632 4.053828
0.126792 0.196631 0.165793

a2c2 5.961552 5.968617 5.894444
0.188265 0.292170 0.246064

ac3 3.888539 3.918741 3.811717
0.124868 0.193886 0.163156

a4 1.028033 1.004982 1.042547
0.032210 0.049907 0.042145

6 Heterogeneity attached to individual rather than to cohort

So far, heterogeneity has been treated as attached to the observable variables cohort,

year and age, sometimes also to gender, through linear, quadratic, cubic or fourth-order

polynomials. In this respect, the modeling of heterogeneity differs from the modeling

adopted in the binary choice’ analysis of Biørn et al. (2013), where heterogeneity is

attached to the individual.16 We will in this section, as a kind of sensitivity analysis,

extend parts of the polynomial regression analysis in Section 5 – still measuring sickness

absence, cohort, age and time continuously – in that direction. Unobserved individual-

specific heterogeneity will be allowed for in two alternative ways: random and modeled

(Tables 12, 15 and 16) and as fixed and non-modeled (Tables 13 and 14).

When including fixed effects in the linear and polynomial regressions, any transfor-

mations of cohort and the linear term in time have to be excluded. This is because

the fixed effects individual dummies, to escape perfect collinearity, have to capture all

explanatory variables that are time-invariant while year, equalling cohort+age, also is

linearly related to the continuously measured age and the individual dummies. Modeling

heterogeneity via random effects may be interpreted as supplementing the fixed cohort ef-

fects, represented parametrically by c and its powers, by an additional individual-specific

sickness absence component. These additional components are modeled as independent

16For an extended discussion of censoring issues in this context, see Biørn (2010).
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draws from a normal distribution with zero expectation and constant variance and by

construction, uncorrelated with c and any of its powers specified.17

For this modified approach, two reduced-size data sets will be used. The intention

of the reduction is to delete individuals with very few observations, since estimation of

heterogeneity characteristics from few observations may ‘disturb’ also estimation of the

coefficients of the polynomials. The first and largest of these reduced panels contains

observations from individuals observed in at least 5 years (before truncation) while the

second, which is a subset of the former, is the sub-panel of individuals observed in all 14

years (before truncation).18

Linear random effects models: Estimates: Results for the linear random effects models –

the counterpart to Models 1.1, 1.2 and 1.3 in Table 8 – obtained by feasible Generalized

Least Squares (FGLS), are given in Table 12). The coefficients of cohort, year, and age

are, on the whole, markedly larger that the OLS results reported in the upper left panel

of Table 8. Controlling for cohort and using the sub-panel observed in at least 5 years

(Table 12, left half), we find that a one year increase in age (equivalent to a one year

increase in the calendar time) gives an estimated increase in long-term absence of 2.68

days. This is about one day longer than the estimate when neglecting individual het-

erogeneity. Controlling for calendar year, and increasing birth-year by one (equivalent

to being one year younger) gives an estimated reduction in long-term absence of 1.26

days. This is about 1/4 day more than the estimate when neglecting individual hetero-

geneity. Equivalently, controlling for age, and increasing birth-year by one (equivalent to

increasing calendar time by one year) gives an estimated increase in long-term absence

of 1.42 days, which is about 3/4 day longer than the estimate when neglecting individual

heterogeneity. Estimation from the sub-panel observed in 14 years (Table 12, right half)

gives somewhat larger cohort effect, 1.66 days, when controlling for calendar year, and

a smaller age effect, 1.03 days, when controlling for cohort.

Non-linear random effects models: Estimates: The estimates obtained when including

random effects in the quadratic, cubic and fourth-order polynomials, are collected in Ta-

ble 15. The coefficient estimates of the linear and the quadratic terms are substantially

magnified relative to those in Table 9. Again, the (γ1, β1) estimates from Model 2.1 and

Model 1.1 are close: (1.43, 2.67) versus (1.43, 2.68) when using the sub-panel observed

in at least 5 years and (1.68, 2.67) versus (1.66, 2.70) when using the sub-panel observed

in 14 years. This again may be interpreted as an empirical counterpart to the expected

marginal effects, expressed in (23) for P =1 and P =2. As was also the finding from the

model with individual heterogeneity neglected, the (γ1, β1) estimates from Model 4.1 are

close to those from Model 3.1: (1.98, 1.59) versus (1.99, 1.59) when using the sub-panel

observed in at least 5 years and (1.91, 1.65) versus (1.92, 1.67) when using the sub-panel

observed in 14 years. Still, there is a systematic difference between the (γ1, β1) estimates

from Models 2.1 and 1.1 on the one hand and Models 4.1 and 3.1 on the other.

17For a further discussion of the distinction between ‘random’ and ‘systematic’ heterogeneity in this context, see
Biørn (2010, Section 3).

18The latter is a balanced 14 year subpanel within the full data set which becomes unbalanced with a maximum of 14
observations of each individual when all observations with abs=0 have been deleted.
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Table 12: Linear models with heterogeneity represented as random effects
FGLS estimates. Two sub-panels. Observations with abs > 16 only

Standard errors below coefficient estimates. All coefficients multiplied by 100

Individuals observed at least 5 times Individuals observed in all 14 years

Model 1.1 Model 1.2 Model 1.3 Model 1.1 Model 1.2 Model 1.3

c 142.6212 -125.5736 166.7959 -103.2787
1.3702 0.5109 1.5120 0.6214

t 268.1948 142.6212 270.0746 166.7959
1.3971 1.3702 1.4487 1.5120

a 268.1948 125.5736 270.0746 103.2787
1.3971 0.5109 1.4487 0.6214

Table 13: Linear and quadratic models with heterogeneity represented as fixed effects
OLS estimates. Two sub-panels. Observations with abs > 16 only

Standard errors below coefficient estimates. All coefficients multiplied by 100

Inds. obs. at least 5 times Inds. obs. in all 14 years

a 579.6145 578.3416 548.8104 545.9721
1.7406 1.7370 1.7740 1.7712

a2 8.9940 8.1642
0.0842 0.0889

Table 14: Polynomial models in age and year with individual fixed effects
OLS estimates. Observations with abs > 16 only

Standard errors below coefficient estimates. All coefficients multiplied by 100

Individuals observed in at least 5 years Individuals observed in 14 years

a 377.372099 377.377919 360.109748 381.696239 379.354625 380.055312 402.411870 426.194449
2.525332 2.524786 4.390597 4.289115 2.618011 2.615502 4.611818 4.508477

a2 8.662031 8.643476 8.751903 8.509869 8.798711 7.676804 7.312783 8.278119
0.187251 0.084114 0.186674 0.083875 0.204524 0.088919 0.204348 0.088836

a3 0.599213 0.599179 0.612254 0.599213 0.531269 0.527526 0.528431 0.532179
0.005482 0.005474 0.005466 0.005482 0.006157 0.006127 0.006143 0.006113

a4 -0.000041 -0.000518 -0.002689 0.002363
0.000369 0.000368 0.000441 0.000442

t2 -88.641588 -56.159106 -91.233783 -53.430282
1.486173 0.447723 1.557727 0.468120

t3 0.088218 -1.061174 -1.135111 -2.454241
0.132516 0.122690 0.138990 0.128761

t4 0.820367 0.951599
0.035797 0.037601
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Table 15: Additive polynomial models with individual random effects
FGLS estimates. Two sub-panel. Observations with abs > 16 only

Standard errors below coefficient estimates. All coefficients multiplied by 100

Individuals observed in at least 5 years Individuals observed in 14 years

Model 2.0 Model 2.1 Model 2.2 Model 2.3 Model 2.0 Model 2.1 Model 2.2 Model 2.3

c 125.113992 142.923506 -125.286022 150.302287 168.242666 -100.151922
1.374993 1.368335 0.509263 1.518202 1.510585 0.621195

t 250.266019 125.908336 251.075251 150.555962
1.401148 1.375446 1.454861 1.518178

a 250.209467 266.932440 125.454935 249.631625 266.950204 99.929247
1.400933 1.395511 0.511080 1.454854 1.447706 0.623343

c2 2.009051 1.379126 3.876123 1.458629 1.899043 4.416996
0.059117 0.058940 0.036695 0.084212 0.084164 0.060257

t2 -44.004294 -45.012907 -42.950756 -42.474665 -41.683506 -42.812243
0.363092 0.362307 0.361580 0.385494 0.385356 0.384974

a2 2.636979 3.172288 4.389779 3.584462 3.253804 4.456342
0.065380 0.065324 0.040682 0.071161 0.071215 0.051030

Individuals observed in at least 5 years Individuals observed in 14 years

Model 3.0 Model 3.1 Model 3.2 Model 3.3 Model 3.0 Model 3.1 Model 3.2 Model 3.3

c 161.272255 158.618650 -69.829545 184.346354 166.770640 -47.235116
3.539701 2.005788 0.987517 3.950440 2.385029 1.404267

t 284.255223 145.790241 298.536287 167.410746
3.255563 3.231344 3.423117 3.472377

a 200.885244 198.991022 43.287048 210.860656 192.367911 34.696490
3.558600 2.045873 1.056088 3.824070 2.157608 1.160972

c2 1.912377 1.273346 3.731148 1.243286 1.680162 4.073588
0.059305 0.059128 0.036744 0.084730 0.084685 0.060810

t2 -45.228011 -45.792555 -44.258694 -43.840507 -42.898913 -44.186905
0.373937 0.373409 0.372498 0.397306 0.397355 0.396772

a2 2.620599 3.163003 4.290284 3.354001 3.019470 4.115372
0.065454 0.065398 0.040715 0.071315 0.071371 0.051317

c3 -0.038890 -0.042231 -0.164516 -0.061783 -0.069398 -0.239322
0.003332 0.003334 0.002510 0.006688 0.006687 0.005700

t3 -0.789528 -0.672400 -0.820273 -1.352429 -1.507776 -1.342679
0.103860 0.103954 0.103829 0.110739 0.110773 0.110681

a3 0.247382 0.237228 0.280694 0.252530 0.246774 0.278243
0.004159 0.004165 0.003146 0.004881 0.004885 0.004170

Individuals observed in at least 5 years Individuals observed in 14 years

Model 4.0 Model 4.1 Model 4.2 Model 4.3 Model 4.0 Model 4.1 Model 4.2 Model 4.3

c 135.659699 158.872113 -68.683955 156.764178 164.822885 -47.431939
3.625635 2.007926 0.990071 4.038856 2.394229 1.417176

t 260.275601 121.205340 272.388764 140.988306
3.346407 3.323883 3.520775 3.568027

a 174.685219 198.331320 42.460716 184.480206 190.987298 34.561697
3.643733 2.046851 1.055993 3.911465 2.160169 1.163782

c2 0.675775 1.545318 5.067815 -0.259428 -0.574552 3.920815
0.137490 0.137410 0.104034 0.225933 0.225932 0.191532

t2 -83.297779 -82.619623 -81.594349 -84.624570 -83.620837 -85.017442
1.266764 1.267675 1.264973 1.344082 1.344168 1.343449

a2 6.041510 5.477589 6.926121 3.769465 4.871978 4.457734
0.147833 0.148041 0.116097 0.167162 0.167177 0.135652

c3 -0.036007 -0.044169 -0.169305 -0.052560 -0.057789 -0.238149
0.003358 0.003360 0.002528 0.006817 0.006816 0.005828

t3 0.526938 0.613212 0.477038 0.065922 -0.091606 0.083834
0.112005 0.112109 0.111963 0.119373 0.119429 0.119316

a3 0.253474 0.239343 0.285180 0.253921 0.253850 0.279121
0.004170 0.004176 0.003149 0.004911 0.004916 0.004201

c4 0.002054 -0.000438 -0.002366 0.004206 0.005888 0.000455
0.000204 0.000203 0.000173 0.000588 0.000587 0.000545

t4 0.949058 0.940285 0.939489 1.035212 1.032219 1.037326
0.030521 0.030553 0.030509 0.032521 0.032550 0.032509

a4 -0.007312 -0.005222 -0.005839 -0.000831 -0.004229 -0.000864
0.000278 0.000278 0.000241 0.000353 0.000353 0.000323
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Fixed effects results: Representing heterogeneity by fixed effects, we find for equations

which are linear and quadratic in age, results exemplified in Table 13. Here no linear

term in time is included, for reasons explained above. Results when also cubic and

fourth-order terms in age as well as quadratic, cubic and fourth-order terms in time

are included are given in Table 14. On the whole, the age variables obtain coefficient

estimates that are substantially larger in the fixed effects models than in corresponding

random effects models. In the equations with cubic and fourth-order terms in time,

the effect of the squared time (negative) is substantially larger in absolute value than

the corresponding equations with random effects and with no individual heterogeneity

accounted for. This may capture effects on sickness absence of omitted variables that

are correlated with age and time and not properly accounted for by the way we have

specified heterogeneity in the previous models.

We note a substantial drop in the coefficient estimate of the age variable in the fixed

effects models when cubic and fourth-order terms are added to the linear and quadratic

terms. On the other hand, inclusion of higher-order terms in time has no strong impact

on the estimates of the coefficients of the age variable. There are, however, some dis-

crepancies in this respect between the two sub-panels; see the first row of Table 14.

Random and fixed effects models: Heterogeneity and goodness of fit: Table 16 gives, for 13

polynomial random effects models, the estimated ρ, i.e., the variance of the individual-

specific effect as a share of the ‘gross disturbance’ variance (the variance of the sum of

the individual-specific effect and the genuine disturbance). The estimates are 18–19%

when the sub-panel of individuals observed in at least 5 years is used, and slightly lower

(17–18%) for the sub-panel observed in 14 years.

Overall, we may then conclude that inclusion of individual random or fixed effects

gives a better fit of the polynomial models in age and time. The R2 measures, in Table 17,

exceed those of comparable models in Table 5.

Table 16: Variance ratio (ρ) estimates in random effects models

ρ = var(indiv. effect)/var(indiv. effect+disturbance) Observations with abs > 16

Model Observed ≥ 5 years Observed 14 years

1.1 0.1863 0.1744

2.0 0.1865 0.1747
2.1 0.1840 0.1724
2.2 0.1854 0.1735
2.3 0.1899 0.1777

3.0 0.1889 0.1764
3.1 0.1863 0.1739
3.2 0.1853 0.1734
3.3 0.1924 0.1794

4.0 0.1880 0.1763
4.1 0.1853 0.1739
4.2 0.1849 0.1734
4.3 0.1917 0.1791
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Table 17: R2 fit index. Selected models

Observations with abs > 16. Individuals observed ≥ 5 years.

Random individual effects models

Regressors

c,a 0.0394

c,a, c2,a2 0.0432
c,a, c2,t2,a2 0.0460

c,a, c2,a2, c3,a3 0.0473
c,a, c2,t2,a2, c3,t3,a3 0.0505

c,a, c2,a2, c3,a3, c4,a4 0.0470
c,a, c2,t2,a2, c3,t3,a3, c4,t4,a4 0.0500

t,a, t2,a2 0.0470
t,a, t2,a2, t3,a3 0.0515
t,a, t2,a2, t3,a3, t4,a4 0.0511

Fixed individual effects models

Regressors

a 0.0394
a, a2 0.0434
a, a2, t2 0.0489
a, a2, a3 0.0476
a, a2, a3, t2, t3 0.0533
a, a2, a3, a4 0.0476
a, a2, a3, a4, t2, t3, t4 0.0535

R2 = fit measure ‘R2

within
’ in the Stata output

7 Conclusion

The conclusions from the empirical part of this study can be summarized as follows:

1. The dependence of sickness absence on age, cohort and time – all measured continu-

ously – is clearly non-linear in all variables.

2. The coefficient estimates of terms up to (at least) order four are statistically signifi-

cant at usual levels.

3. There are clear gender effects in sickness absence. Not only does the gender dummy

come out with a significant coefficient estimate in the linear models, there are also no-

table differences between the coefficient estimates in the polynomial models.

4. The improvement in fit, when we let the regressor set includes both second, third, and

fourth powers of all the three variables – including powers of the variable omitted from

the linear part to escape the ACT identification problem – is clearly significant. The

overall fit of the polynomial regressions, measured by R2 and related statistics, is still

poor, but not worse than the fit obtained from a more parameter rich discrete response

(sick/non-sick) model with age, cohort and time represented by dummies.

5. Including interaction terms in additive polynomials improves the fit significantly.

However, the interactions of the ACT variables are not of equal importance. In e.g. a

quadratic model, the cohort-age interaction seems to be particularly important.

6. Marginal effects of cohort and age – at the sample mean – come out with approx-

imately the same estimates from the linear and the quadratic models. This concurs

with the theoretical definition expectation of first-derivatives. Also the estimates from

the cubic and the quadratic models are fairly equal, but there is a marked discrepancy

between between the two pairs of estimates.
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7. Representing heterogeneity by individual, fixed or random, effects gives markedly

larger estimates of the age effects than when attaching heterogeneity to cohort only.

However, it should be recalled that, after truncation, on average, only 2.5 observations

per individual, are available for models which put this kind of heterogeneity in focus.
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Appendix Tables

Table A.1: Correlation matrix including powers of variables

4 502 991 observations after truncation

A. Powers of (demeaned) ACT-variables

c t a c2 t2 a2 c3 t3 a3 c4 t4 a4

c 1.0000
t 0.2744 1.0000
a -0.9509 0.0367 1.0000

c2 -0.0325 -0.0175 0.0281 1.0000
t2 -0.0490 -0.1245 0.0108 0.0852 1.0000
a2 -0.0304 -0.0018 0.0310 0.8324 0.0190 1.0000

c3 0.8502 0.3324 -0.7765 -0.0626 -0.0611 -0.0428 1.0000
t3 0.2537 0.9103 0.0293 -0.0240 -0.2156 -0.0014 0.3122 1.0000
a3 -0.8420 0.0287 0.8843 0.0410 0.0174 0.0441 -0.8638 0.0210 1.0000

c4 -0.0479 -0.0346 0.0387 0.9241 0.1283 0.7216 -0.0978 -0.0452 0.0584 1.0000
t4 -0.0668 -0.1996 0.0052 0.0824 0.9538 0.0175 -0.0838 -0.3220 0.0115 0.1257 1.0000
a4 -0.0387 -0.0025 0.0395 0.7945 0.0230 0.9407 -0.0582 -0.0024 0.0600 0.7663 0.0214 1.0000

B. abs and fdum versus powers of (demeaned) ACT-variables

abs fdum

c -0.1004 0.0580
t 0.0247 0.0220
a 0.1123 -0.0532

c2 0.0507 -0.0240
t2 -0.0493 0.0035
a2 0.0498 -0.0315

c3 -0.0976 0.0439
t3 0.0261 0.0212
a3 0.1170 -0.0386

c4 0.0421 -0.0305
t4 -0.0447 0.0006
a4 0.0433 -0.0407

Symbols a, c, t in this table

correspond to age,coh,yea

in Tables 3 and A.2

Table A.2: Standard deviations for subsamples

Non-truncated: Truncated:
All. Males Females All Males Females

abs overall 51.1401 47.8121 54.2816 110.9083 112.7852 109.4792
between 19.3747 18.6246 20.0012 94.5701 98.1903 91.3440
within 47.5608 44.3741 50.6283 80.5409 79.1534 81.5618

coh overall 14.9596 14.8772 15.0416 12.5367 12.6974 12.3780
between 18.0487 17.9254 18.1711 13.6686 13.8124 13.4984
within 0 0 0 0 0 0

yea overall 4.0382 4.0371 4.0390 3.8833 3.8746 3.8882
between 2.4929 2.4876 2.4984 3.3038 3.3662 3.2464
within 3.7720 3.7718 3.7722 2.7512 2.6497 2.8246

age overall 14.5812 14.5084 14.6533 12.0635 12.2585 11.8856
between 16.1962 16.0862 16.3050 12.6251 12.8686 12.3737
within 3.7720 3.7718 3.7722 2.7512 2.6497 2.8246
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