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On free lunches in random walk markets
with short-sale constraints and small

transaction costs, and weak convergence to
Gaussian continuous-time processes∗

Nils Chr. Framstad†‡

June 27, 2011

Abstract. This paper considers a sequence of discrete-time random walk mar-
kets with a single risky asset, and gives conditions for the existence of arbitrage
opportunities or free lunches with vanishing risk, of the form of waiting to buy and
selling the next period, with no shorting, and furthermore for weak convergence of
the random walk to a Gaussian continuous-time stochastic process. The conditions
are given in terms of the kernel representation with respect to ordinary Brownian
motion and the discretisation chosen. Arbitrage examples are established where
the continuous analogue is arbitrage-free under small transaction costs – including
for the semimartingale modifications of fractional Brownian motion suggested in
the seminal Rogers (1997) article proving arbitrage in fBm models.

Key words: Stock price model, random walk, Gaussian processes, weak conver-
gence, free lunch with vanishing risk, arbitrage, transaction costs
MSC (2010): 60B10, 60E05, 60F05, 91G10
JEL classification: C61, D53, D81, G11

0 Introduction

As well known since Rogers [7], fractional Brownian motions is a troublesome model for
uncertainty in price processes, as fBm will introduce arbitrage opportunities to canonical
models where the ordinary Brownian motion does not. To remedy this, Rogers proposes
a parametrised semimartingale modification, whose moving average kernel converges to the
fBm’s – in particular, the no-arbitrage property is not preserved under this limit. For the
purposes of studying market value gains (or losses), one can however argue that the pointwise

∗This paper has benefited from discussions with in particular Albert Shiryaev and Gisle James Natvig.
†University of Oslo, Department of Economics, P.O. Box 1095 Blindern, NO-0317 Oslo, Norway.
ncf+research@econ.uio.no

‡Also affiliated with the Financial Supervisory Authority of Norway, P.O. Box 1187 Sentrum, NO-0107 Oslo,
Norway. The content of this article does not reflect the views of the Norwegian FSA.
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convergence of the kernel function is less interesting than e.g. weak convergence; heuristically,
price process «neighbours» should in the very least produce neighbouring profit/loss processes.
Weak convergence is however not generally sufficient to preserve arbitrage properties, as upside
or downside could converge to 0; In Shiryaev’s book [8] (sec. VI.3), more precise conditions
for convergence to fair prices are given in terms of weak convergence of the (driving noise,
pricing kernel) pair. A special case where an arbitrage property seems to – or at least seems
to be interpreted as to – carry over a weak limit, emerges from a work by Sottinen [9], who
establishes a sequence of discrete-time binary random walk (semimartingale) markets which
(a) converges weakly to the geometric fractional Brownian motion Black–Scholes market with
Hurst parameter H > 1/2, and (b) admits an arbitrage opportunity obtained by waiting for
the right moment to buy (nonnegative drift) or short sell (nonpositive drift) the stock, and
unwinding the position the very next period; the «right moment» is of course when you might
with probability one know that the stock market beats the money market even if tomorrow is
a bad day (in which case you buy), or waiting for the conversely «bad» market (in which case
you sell).
The purpose of this paper is to generalise this approach to more general Gaussian processes,

and give conditions in terms of the moving average kernel and its discretisation. It will also
cover cases with sufficiently small transaction costs. The Gaussian law has full support, cf.
the no-arbitrage results of Guasoni and coauthours [4], [5], and it is essential for arbitrage in
our discrete-time setting – both with and without transaction costs – that the downside be
bounded. We give sufficient conditions for the existence of an arbitrage opportunity or a free
lunch with vanishing risk (FLVR) of the form wait for a possible time where we buy, and then
sell next period; we also give sufficient conditions for weak convergence of the discrete random
walks to the Gaussian continuous-time counterparts. Our main contributions in substance are
summarised:

• We cover a fairly general class of Gaussian processes, and give examples and counterex-
amples to the existence of arbitrage opportunities / FLVRs of the abovementioned form.

• Our examples cover both cases where arbitrages are removed, and created, by discreti-
sation. In particular, we argue that for the fBm case treated by [9], the limit transition
leads to one arbitrage opportunity vanishing and one emerging.

• We cover any negative drift term (a word which should be interpreted cautiously for
non-semimartingales) without shorting, as it turns out that the instantaneous growth
from the noise term can tend to infinity.

• For the same reason the arbitrage may also admit sufficiently small transaction costs.

• We do not have to assume the discretised market to be binary (hence complete if
arbitrage-free) with innovations ∈ {−1, 1}. Some regularity on the bound of the support
will suffice.

• The weak convergence of the driving noise is likewise shown in this more general setting.

It turns out essential for the free lunch results (given in Section 2) that the innovations of
the random walk are bounded, and therefore the weak convergence result of Theorem 1.1 is
restricted to this case.
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1 The continuous-time and discrete-time market models

Our market has one «safe» asset, taken as numéraire and normalised to price = 1, and one
«risky» asset S(n), which for each n is a discretisation of a continuously evolving stochastic
process S (referred to as n = ∞). S will be constructed from a drift process A =

∫ t
a(s)ds

and a driving noise Z, assumed to be a Gaussian moving average process with an adapted
(hence upper limit of integration is t) kernel representation

Z(t) =

∫ t0

−∞
K(t, s)dW (s) +

∫ t

t0

K(t, s)dW (s)

= J(t) +

∫ t

t0

K(t, s)dW (s),

(1)

with respect to standard Brownian motion W , where K is a given deterministic (finite) func-
tion which we extend to s ≥ t by defining it to be zero there. For example, a fairly large class
of moving average processes, including fractional Brownian motion as well as all Gaussian
semimartingales, admit a representation of the form K(t, s) = L(t− s) for t > 0, and we shall
give special attention to these later.

The agent is supposed to enter the market at time t0, which is the motivation for the
splitting there. We might choose to discretise W on the entire time line; however, J will
merely enter as a drift term, and we can equally well discretise J directly. We shall choose
to do the latter, and results in terms of the former approach will follow analogously. Hence
we start by discretising W for t > t0 by replacing its increments n1/2 · (W ( i+1

n )−W ( in))) by
mutually independent random variables ξi+1 = ξ

(n)
i+1, and put

Z(n)(t) = J( bntcn ) +

bntc−1∑
i=bnt0c

K( bntcn , s
(n)
i ) · n−1/2ξ(n)i+1 (2)

where s
(n)
i = t0 + i−bnt0c

n (3)

where b · c is the floor function (the integer part). We remark that the choice of s(n)i is done
for simplicity, and could be done more generally, as long as s(n)i − t0 + bnt0c

n ∈ [ in ,
i+1
n ) – at

this stage; we shall however soon use the assumption (3) to simplify notation for the other
time arguments in (2) as well. Now define for n <∞

A(t) =

∫ t

t0

a(s)ds, A(n)(t) =
1

n

bntc−1∑
i=bnt0c

a(s
(n)
i ) (4)

and assume that for all t ≥ t0, S and S(n) are given by

S = G(A+ Z) S(n) = G(A(n) + Z(n)) (5)

for some strictly increasing function G. (6)

The canonical choice is G to be the exponential function, but we shall not need this specific
property; for one result we will however use convexity, and for weak convergence we shall need
continuity. We shall later see that it is essential for Theorem 2.4 that the ξi be bounded, and
such an assumption will give rise to a simple proof for the following theorem:
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1.1 Theorem: Weak convergence

Let Z be given by (1) with

sup
t∈[t0,t0+T ]

∫ t0+T

t0

(
(K(t, s))2 + (K ′1(t, s))

2
)
ds <∞ (7)

and Z(n) by (2) with
E[ξi] = 0 = 1− E[ξ2i ]

and such that the ξi have support contained in some common interval [−M̌, M̂ ]. Then on
[t0, t0 + T ], Z(n) converges weakly to Z, and for continuous G also S(n) to S.

Proof. See the Appendix.

For the discrete-time markets, we shall restrict ourselves to the following set of strategies:

1.2 Definition:

Let n < ∞ be given, and consider the natural filtration generated by S(n). For any natural
m, an m-period strategy consists of waiting until some stopping time t∗ = s

(n)
i∗

, where i∗ ≥
j0 := bnt0c, buying a predictable positive number b of units, holding these until a stopping
time t∗ = s

(n)
i∗ where i∗ ∈ (i∗, i∗ + m] and then selling all b units. We shall refer to the case

m = 1 as the single period case.
The net return from this transaction is

R = Ri∗,i∗ := b · (S(n)(t∗)− S(n)(t∗))− (λΛ∗ + λΛ∗) (8)

where λΛ∗ and λΛ∗ are the respective transaction costs for buying and selling. 4

The reason for the «λ» parameter is that we will consider the properties for small transaction
costs, and it will be convenient to scale by a number. The main results will be carried out under
the assumption of fixed transaction costs. Proposition 2.3 will show that this is sufficiently
general, but preliminarily, the Λ∗, Λ∗ will be more general:

1.3 Assumption/notation:

• The family {ξ(n)j+1}j will be assumed independent.

• λ will be a number ≥ 0.

• Λ∗ = Λ∗(b, S
(n)(t∗)) and Λ∗ = Λ∗(b, S(n)(t∗), S

(n)(t∗)) will be nonnegative functions,
bounded in (S(n)(t∗), S

(n)(t∗).

• We shall use the term «transaction cost λ» to imply that Λ∗ + Λ∗ = 1, and we shall
refer to «the simple model (9)» to refer to the single period case of transaction cost λ
where G is the identity.

4
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We shall focus on the simple model, where the return (on the event {i∗ <∞}) will be

S(n)(t0 + i∗+1−bnt0c
n )− S(n)(t0 + i∗−bnt0c

n )− λ

= y
(n)
i∗+1 + x

(n)
i∗+1 − λ, where (9a)

y
(n)
j+1 =

1

n

{
a(s

(n)
j ) + J(s

(n)
j+1)− J(s

(n)
j )
}

(9b)

x
(n)
j+1 =

1√
n

{
K(s

(n)
j+1, s

(n)
j )ξ

(n)
j+1 +

j−1∑
i=j0

(
K(s

(n)
j+1, s

(n)
i )−K(s

(n)
j , s

(n)
i )
)
ξ
(n)
i+1

}
(9c)

adopting the convention that the empty sum, corresponding to j = j0 (= bnt0c), is zero.

An arbitrage opportunity – to be precisely defined in the next section – occurs if for some
bounded i∗ ∈ [j0,∞), given the information available then, the transaction costs plus the
worst-case possible downside from the innovationK(s

(n)
i∗+1, s

(n)
i∗

)·ξ(n)i∗+1 will be fully compensated
by the contribution from the dependence of the past (the remaining terms), provided that the
event of this happening at j has positive probability at the initial time step j0. The next
section will give conditions for FLVR and arbitrage – obviously there will not be any arbitrage
opportunities if K(s

(n)
j+1, s

(n)
j ) · ξ(n)j+1 has full support for all j≥ j0.

2 Free lunches: sufficient conditions and examples

Starting out with the definitions from the previous section, we now define arbitrage opportu-
nities (as usual) and FLVRs under our admissibility conditions. We shall for simplicity only
consider the strictest (L∞) FLVR definition; in the more general setting, one would replace
the ess sup in (10) (and (11)) below, by the Lp norm of the negative part of the return.

2.1 Assumption/notation:

Let us use the term «j-measurable» to mean measurable at step j, i.e. at time s(n)j , and write

Pj = P
(n)
j for the probability measure conditional on the filtration generated up to time s(n)j .

In particular, P0 is conditional on the information available at the time t0 where the agent
enters the market (this information is then most recently updated at time bnt0c/n). We always
assume that this information set is given.
Since ξj is independent of the past, we shall suppress the dependence of law in terms like

e.g. ess supξj which is taken to be mean the supremum over the (Pj-)essential support of ξj .
We shall use the symbol 1 to mean «no smaller than and not a.s. equal». 4

Informally, we have a free lunch with vanishing risk if we can obtain an arbitrarily small
downside to mean return ratio, and an arbitrage opportunity if one can have positive-mean
return without downside. The most natural norm to quantify downside is the most restrictive
one, namely the essential supremum. The following definition appears notationally a bit
cryptical, but will underm-period strategies coincide with the conventional definition of FLVR
and arbitrage:

5



2.2 Definition:

Fix n,m both <∞. Consider the condition

ess sup(Pj) [−Rj,i∗
∣∣Dj ]

1 ∧ E[Rj,i∗
∣∣Dj ]

≤ δ. (10)

The market is said to admit an free lunch with vanishing risk («FLVR») if for every δ > 0
there exist i∗ ≥j = jδ≥ j0 (integers, and where i∗ ≤ j+m allowed to be a stopping time) and
a j-measurable event Dj such that P0[Dj ] > 0, and such that (10) holds. The market is said
to admit an arbitrage opportunity if the FLVR definition holds also for δ = 0. 4

Notice that in the simple model (9), one can replace the LHS of (10) by

− ess inf
ξj+1

[xj+1 + yj+1 − λ
∣∣Dj ]

1 ∧ E[xj+1 + yj+1 − λ
∣∣Dj ]

. (11)

For the purpose of giving sufficient conditions for arbitrage under small transaction cost –
which is the main object of this section – the simple model turns out fairly close to general:

2.3 Proposition: Free lunches in the simple model (9) vs. in the full model

Fix b > 0, n <∞. Assume that for each j, we have

ξj signK(s
(n)
j , s

(n)
j+1) upper bounded, or (12a)

Λ∗ of at most linear growth wrt. the last variable (the selling price) (12b)

Then there is arbitrage for sufficiently small λ, provided that so is the case in the simple model
(9). If G is convex, then there is FLVR for sufficiently small λ, provided that so is the case in
the simple model (9).

Proof. The proof is less interesting, and is relegated to the Appendix.

From this setup, the strategies described informally at the end of the previous section,
immediately give the first part of the following sufficient conditions:

2.4 Theorem: Sufficient conditions for free lunches (I)

Consider the simple model (9).

(a) Fix n <∞. If for some natural j ≥ j0 we have

ess inf
ξj+1

ess sup
{ξi}i=j0+1,...,j

{xj+1 + yj+1} ≥ λ̄ ≥ 0 (13)

we have an arbitrage opportunity for all transaction costs λ ∈ [0, λ̄). Furthermore, we
have arbitrage opportunity for transaction cost λ̄ if in addition there is a point probability
at the ess sup and K(s

(n)
j+1, s

(n)
j ) ξj+1 is non-degenerate.
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(b) Fix a T > 0. Assume that at t0 + T we have both K( · , s) differentiable (s, t0 + T ] and J
Hölder continuous1 with exponent α > 1/2. Put

η(n)(s) = ess sup
ξbns+1c

{ξbns+1c · sign (K ′1(t0 + T, s))}.

Then if

lim inf
n

ess inf
ω

K(t0 + T + 1/n, s
(n)
bj0+Tnc)ξTn+1 +

∫ t0+T

t0

|K ′1(t0 + T, s)|η(s)ds > 0 (14a)

– for which it is sufficient that

lim inf
n

ess inf ξn
ess sup ξn

> −∞, K(t0 + T+, t0 + T ) = 0, and K ′1 not identically zero (14b)

– there is an arbitrage opportunity for all sufficiently small transaction costs within bTnc
steps, whenever n is sufficiently large. If (14a) holds with lim infn replaced by lim supn, we
have arbitrage opportunity for all sufficiently small transaction costs for some sufficiently
large n.

(c) Let λ = 0. Assume that there are sequences {jk}, {nk} with jk ≥ bnkt0c, such that

lim
k

ess sup
ξjk+1

ess inf
ξj0 ,...,ξjk

x
(nk)
jk+1 + y

(nk)
jk+1 = 0 (15)

lim
k

∫ jk/nk

t0

|K ′1(jk/nk, s)|η(s)ds+ ess inf
ω

K(jk/nk, s
(nk)
jk

)ξ
(nk)
jk+1 ≥ 0 (16)

lim inf
k

∣∣∣K(s
(nk)
jk+1, s

(nk)
jk

)
(

E[ξ
(nk)
jk+1]− ess inf

ω
ξ
(nk)
jk+1

)∣∣ ∈ (0,∞) (17)

and at each jk/nk we have both K( · , s) differentiable and J Hölder continuous with
exponent α > 1/2. Then there is a FLVR.

(d) There are infinite-variation semimartingales Z, equalling weak limits of their discretisa-
tions Z(n) formed by i.i.d. bounded ξi with zero mean and unit variance, for which part
(b) applies.

Proof. Part (a) is trivial. For part (b), we first observe that (14a) follows from (14b). The
sum part of (9c) will tend to the integral in (14a), the drift term is of order 1/n and the
Hölder regularity yields y(n)j = o(n−1/2). In the limit we would – on the (possibly null) set
of all ξ’s attaining values on the boundaries of their supports – get a return of the order
o(n−1/2)−λ+n−1/2 · [LHS of (14a)]. With positive probability, one is within a factor 1− ε of
the essential extrema, and if (14a) holds, then the return would still exceed any small enough
λ for all large enough n. The ess sup case – some large enough n – follows by considering a
suitable subsequence.
For part (c), we observe that (15) merely grants that the numerator of (11) tends to 0; we

can assume it to converge from below, otherwise there is nothing to prove. Then we rewrite
the ratio − ess inf /E into (E− ess inf)/E− 1; for each j = jk, n = nk, we then get

K(s
(n)
j+1, s

(n)
j )
(

E[ξ
(n)
j+1]− ess infω ξ

(n)
j+1

)
K(s

(n)
j+1, s

(n)
j )E[ξ

(n)
j+1] + ess supω

∑j−1
i=j0

(
K(s

(n)
j+1, s

(n)
i )−K(s

(n)
j , s

(n)
i )
)
ξ
(n)
i+1 + n1/2y

(n)
j+1

− 1.

1strictly speaking, we need only bound the «downside»; for simplicity, we skip the details
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At the limit, the y part will vanish and the sum tend to the integral in (16), by which numerator
and denominator tends to the same number Q – which cancels out, as Q is finite and nonzero
by (17).
The weak convergence of part (d) is Theorem 1.1. For the rest, we shall for simplicity assume

t0 = 0 and note from [3] Theorem 3.9, that Z is a semimartingale if there exists a ψ ∈ L2 and
a v ∈ R such that K(t, s) = v+

∫ t−s
0 ψ(u)du, and J(t) =

∫ 0
−∞

∫ t−s
−s ψ(u)dudW (s), and that Z

has finite variation iff v = 0. Then part (b) will apply as long as ψ is sufficiently regular at T ,
and «large enough»: For the integral in (14a), we note that by the i.i.d. assumption we can
choose η constant, equal to some ξ, and

∫ T
0 K ′1(T, s)ds =

∫ T
0 ψ(T − s)ds =

∫ T
0 ψ(s)ds, while

K(T + 1/n, T ) = v +
∫ 1/n
0 ψ(s)ds. Clearly, if the ξ are bounded and ψ is either a positive

function or a negative, then (14a) holds for v > 0 small enough. Indeed, if the support of the
ξ is symmetric and the worst-case scenario is ξj+1 = −ξ, it suffices that

0 < v <

∫ T

0
|ψ(s)|ds. (18)

Remark. The conditions in part (a) are also necessary within the simple model (9). 4

So the proof of point (b) gives us conditions for when there is a positive set – namely
the event that all ±ξi (the sign determined by K ′1) up to time T fall within (1 − ε) of their
respective essential suprema, on which we can buy at time T , sell the next period and even in
the (ω-) worst case for ξTn+1, still gain nonnegative profit even with transaction costs up to
λ. Indeed, the noise term gives rise to an infinite instantaneous growth rate, knocking out the
effect of any negative drift, giving rise to arbitrage opportunity even with sufficiently small
transaction costs.
The analysis will be simplified if

{ξi} i.i.d. with M̌ := − ess inf ξi and M̂ := ess sup ξi both ∈ (0,∞) (19a)

K(t, s) = L(t− s), t > s > t0, with L not constant
and such that L(∞) and ` := L(0+) both exist (possibly infinite)

(19b)

This form of K covers a wide class of processes, including semimartingales (cf. the proof of
Theorem 2.4 d) and also ones to be covered in the below examples (the assumption that L
be non-constant merely rules out the ordinary Brownian motion case, which will not yield
free lunches). Under conditions (19), the sum in (9c) can telescope for suitable outcomes
ξi = ±M0(1− ε) or better, (i ≥ j), yielding

x
(n)
j+1 ≥

1√
n
L( 1

n)ξ
(n)
j+1 +

1√
n

∣∣L( j+1−bnt0c
n )− L( 1

n)
∣∣ ·M0 (20)

where in general, we can choose arbitrary M0 ∈ [0,min{M̌, M̂}]; however we can choose any
M0 = M̂ if L is nondecreasing, and = M̌ if L nondecreasing.
In addition to condition (19a), it would also be natural from an approximation point of

view to assume zero mean. However, that is not essential to the following:
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2.5 Theorem: Sufficient conditions for free lunches (II)

Consider the simple model (9). Assume eqs. (19) to hold and J Hölder continuous with
exponent α > 1/2. Put ` = L(0+) (finite or infinite) and, whenever well-defined, c =∣∣L(∞)/`− 1

∣∣ ·M0 + ess inf(ξ sign `).

(a) If |`| ∈ (0,∞] then

• there is an arbitrage opportunity with small enough λ = λn > 0, provided that
|L(∞)| = +∞ or c > 0;

• there is a FLVR with λ = 0, all n large enough, provided that c = 0;

(b) If ` = 0 and limn |nα−1/2L( 1
n)| ∈ (0,∞], then there is an arbitrage opportunity with small

enough λ = λn > 0.

Proof. Obtainable up to j is at least

xj+1
√
n

|L(1/n)|
, which ≥

∣∣L( j+1−bnt0c
n )

L( 1
n)

− 1
∣∣ ·M0(1− ε) + ξj+1 signL(1/n), (21)

any ε > 0. Taking j →∞, the right-hand side of (21) will be > 0 for all large enough j, n if c
exists and is > 0; otherwise, it suffices that L(∞) infinite or ` = 0. In all cases, our conditions
grant that the n−1/2 term dominates as j, n grow, and yields return large enough to cover
some positive (n-dependent) transaction cost.
It remains to prove the FLVR part of (a), assuming L(∞) finite. The numerator and denom-
inator in (11) both tend to 0, and we can rewrite the reciproke of the ratio as

−1− E[ξj+1 signL(1/n)]− ess infω(ξj+1 signL(1/n))∣∣L( j+1−bnt0c
n

)

L( 1
n
)

− 1
∣∣ ·M0(1− ε) + ess infω(ξj+1 signL(1/n)) +

√
n

L( 1
n
)
y
(n)
j+1

(22)

Choose a sequence εj,k ↘ 0. Hölder regularity grants that y term vanishes and thus the denom-
inator tends to c, which is assumed zero. The numerator is nonzero since ξ are nondegenerate
and ` 6= 0.

Remark. Notice that the statement of Theorem 2.5 is not dependent on t0. From the setup
of Theorem 2.4, we have not ruled out that there is an arbitrage opportunity at t0 when the
agent enters the market, but that the event of free lunch fails once and for all – or put other-
wise, an agent who enters market one period too late, might learn that one had an arbitrage
opportunity which did not materialise «yesterday, but now it is gone forever». On the other
hand, when Theorem 2.5 applies, the agent can wait for lunch time, and if the market develops
unfavorable there will always be a positive probability that the free lunch will materialise at
some later j. 4

We will in the following discuss a few cases.
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2.6 A few cases: examples and non-examples

(a) Sottinen [9] considers fractional Brownian motion with Hurst parameter H > 1/2, using
the representation K(t, s) =

∫ t
s (u/s)H−1/2(u − s)H−3/2du (up to an irrelevant positive

constant), so that K(t+, t) = 0 and K ′1 is positive. In [9] the representation uses only
the positive time path of the Wiener process, but our setup covers the case where we
enter the market later, yielding J(t) =

∫ t0
−∞

∫ t
s (u/s)H−1/2(u − s)H−3/2dudW (s). Then J

is differentiable at T , so that Theorem 2.4 part (b) applies as long as the ξi are bounded
and their supports obey some common bound away from zero and infinity. The result holds
regardless of the history from t0 and up to the moment we enter the market, generalising
[9].

We can also get an idea of how bad the distributions of the ξi must be chosen in order
to violate the result. If each ξi is a binary variable, then in order to satisfy E[ξi] = 0 =
1−E[ξ2i ], the support must be of the form {−γ−1i , γi}. Choosing γi = (i− 1)−r and hence
η(s) = (ns)−r and the worst-case value for ξTn+1 equal to −(nT )r, and observing that
K(T + 1/n, T ) is O(n−H+1/2), we see that although the left hand side of (14a) is zero, it
converges in a controlled manner: the return will be

o(1/n) +
[
[positive constant]−O(n2r−(H−1/2))

]
− λ,

and so it suffices that 2r < H − 1/2.

(b) Maybe a more common representation for fractional Brownian motion (for any H 6= 1/2)
is – up to a constant –

Zt =

∫ t

−∞

[
(t− s)H−1/2 −max{0,−s}H−1/2

]
dW (s),

corresponding to J(t) =
∫ 0
−∞{(t+ |s|)H−1/2 − |s|H−1/2}dW (s) +

∫ t0
0 L(t− s)dW (s) with

K(t, s) = L(t − s) = (t − s)H−1/2. Let us assume that the ξi are i.i.d. with bounded
support; L is monotoneous, so then conditions (19) hold. In addition, J is Lipschitz. Now
the results are different for positively and negatively correlated fBm:

• In the case H > 1/2, L positive and decreasing to zero. Theorem 2.5 part (b) applies.

• In the case H < 1/2, L is positive and tends to ∞. The parameter c vanishes, so we
obtain FLVR. Inspecting the calculations for this particular choice of L, we see that
there is no arbitrage opportunity.

(c) In [7], Rogers proposes a modification of fractional Brownian motion, in order to eliminate
the arbitrage but preserving the long run memory properties which motivated the use of
fBm in finance in the first place. Rogers gives a specific (monotone) example

L(t− s) = k((t− s)2 + ε)(H−
1
2
)/2, (23)

but suggests more generally to choose L such that L(0) = 1, L′(0) = 1, and has the
same ∼ (t − s)H−1/2 behaviour for large t. Assuming i.i.d. innovations with symmetric
support, Theorem 2.5 part (a) yields, as for fBM, arbitrage opportunity forH > 1/2 (since
L(∞) =∞), and FLVR For H < 1/2 (since c = 0 by the symmetry of the supports). .
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(d) Ordinary Brownian motion has both upside and downside regardless of history, and the
discretised market is easily seen to be arbitrage-free. However, a mix of fractional Brow-
nian motion (where H > 1/2) with sufficiently small ordinary Brownian noise, will admit
arbitrage under suitably wide conditions: Consider (14a) and assume the ξi iid, so that
the integral – to which only the fBm part contributes, as the Brownian part has constant
kernel k – becomes M̂

∫ T
0 K ′1(T, s)ds. The ξj+1 coefficient, on the other hand, becomes

k since the fBm contribution vanishes in the limit. So there is an arbitrage opportunity
as long as the amount k of ordinary Brownian noise is less than

∫ T
0 K ′1(T, s)ds · M̂/M̌ .

This in contrast with the limiting continuous case, where for H > 3/4 the mix is not only
arbitrage-free for any positive level of ordinary Brownian volatility, but also the fBm part
takes the rôle as drift and does not appear in the Black–Scholes call option price – see [2].
The clear cut at 3/4 does not carry over to the discretised case, while the bordering level
of the Brownian volatility plays no part in the continuous case.

(e) The Ornstein–Uhlenbeck process admits the representation L(t) = e−θt with θ > 0. It
has L(0+) = 1 and L(∞) = 0, and the discretisation with i.i.d.’s with symmetric support
does therefore admit FLVR from Theorem 2.5 part (a). Note that 0 < e−θ(t−s) = 1 +∫ t−s
0 (−θ)e−θrdr so that v = 1 is precisely large enough for (18) to fail; indeed, one might
check that it will not admit arbitrage opportunities.

Concluding remarks

We have seen that discrete-time random walk markets may behave fairly different from their
weak limits, as former may admit arbitrage opportunities or FLVRs which vanish in the limit
even for semimartingales like the Ornstein–Uhlenbeck process. A careful note here is appro-
priate: while there are arbitrage opportunities for e.g. both fractional Brownian motion with
H > 1/2 and the discretised counterpart, they are not the same: as pointed out by Rogers
[7], a short-memory modification «semimartingalises» fBm, but in the discretised case the
arbitrage opportunity is due to the (originally desirable) long memory. Hence, in the limit
transition, one arbitrage vanishes and another is created. Furthermore, threshold levels seem
to lose significance, like the mix between ordinary and fractional Brownian motion, where the
arbitrage opportunity vanishes at a certain level of ordinary Brownian noise in the discretised
case and for H > 3/4 in the continuous case.

At the end of the day, these results underline the need for caution in choice of models of
financial markets, choice of continuous vs. discrete time modelling, and in discretisation for
numerical analysis. The flaws of an approach where prices alone are discretised this way, are
serious enough to be of practical significance. Arguably, a practitioner should be worried even
at far less radical modeling issues than distorted arbitrage properties – maybe even more so
for less radical artifacts, which might not be as easily detected and corrected.
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Appendix: two remaining proofs

Proof of Theorem 1.1. The drift and the already occured part will represent no issue, so let
us assume A = A(n) = J = 0. Also, we can assume without loss of generality, that t0 = 0 and
observe that weak limits commute with continuous functions G.
Convergence in finite-dimensional distributions follows like in [9], Theorem 1, by noting

that the explicit form of his kernel is not essential to the proof – only the convergence of the
variance is, and (7) suffices. To prove tightness, we want to apply [1], Theorem 12.3, for which
it suffices to find constants γ ≥ 0 and α > 1 and a nondecreasing continuous function F so
that for all t > u, all positive θ, we have

P[|Z(n)(t)− Z(n)(u)| ≥ θ] ≤ θ−γ |F (t)− F (u)|α (24)

Now

Z(n)(t)− Z(n)(u) =

bntc−1∑
i=0

(
K( bntcn , s

(n)
i )−K( bnucn , s

(n)
i )
)
· n−1/2ξ(n)i+1 =:

bntc∑
i=0

Y
(n)
i . (25)

Since for each n, the Yi are bounded, zero-mean, independent variables, we can use [6], The-
orem 2, to obtain that for any θ > 0,

P[|
bntc∑
i=0

Yi| ≥ θ] ≤ 2 exp{−2θ/Γn} (26)

where Γn =
∑bntc

i=0 (ess supYi − ess inf Yi)
2. It therefore suffices to show that we can find F ,

α and γ so that θγ exp{−2θ/Γn} ≤ 1
2 |F (t)− F (u)|α for all θ > 0, all n. By inserting for

θ = γΓn/2 which maximises the left hand side, this is equivalent to

Γn ≤
e

γ
21−1/γ |F (t)− F (u)|α/γ , all n

To establish such a bound, we use the boundedness of supports to obtain

Γn ≤ Cn−1
bnT c∑
i=0

(
K( bntcn , s

(n)
i )−K( bnucn , s

(n)
i )
)2

→ C

∫ T

0
(K(t, s)−K(u, s))2ds

= C

∫ T

0
(

∫ t

u
K ′1(r, s)dr)2ds

≤ C sup
r∈[0,T ]

∫ T

0
(K ′1(r, s))

2ds · (t− u)2.

where C is a suitable constant. By (7), the (t− u)2 coefficient is finite, and we are done.

Proof of Proposition 2.3. Put b = m = 1. Denote the buying and selling prices in the simple
model (9) by ζ́ and ζ̀, and in the full model by Ś = G(ζ́) and S̀ = G(ζ̀). Observe first that
the we may take ζ́ bounded by restricting Dj without voiding the property P0[Dj ] > 0, and
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we will do so in the following. Assume that the simple model (9) has arbitrage for transaction
cost c > 0; then

ζ̀ 1 ζ́ + c

which by applying G and rearranging, is equivalent to

S̀ − Ś − λ(Λ∗(1, Ś, S̀) + Λ∗(1, Ś)) 1 G(ζ́ + c)−G(ζ́)− λ(Λ∗(1, G(ζ́), G(ζ̀)) + Λ∗(1, G(ζ́)))

so we have arbitrage if the right hand side is nonnegative, so it suffices that

0 < λ ≤ G(ζ́ + c)−G(ζ́)

Λ∗(1, G(ζ́), G(ζ̀)) + Λ∗(1, G(ζ́))
(27)

As already remarked, we can assume ζ́ bounded, so it suffices to bound Λ∗ for given ζ́. If (12a)
holds, then also ζ̀ is bounded. Assume therefore (12b), i.e. Λ∗(1, Ś, S̀) ≤ λ0(Ś) + λ1(Ś) · S̀,
where λ0, λ1 are locally bounded functions of Ś. Then the return is

Y = S̀ − Ś − λ(Λ∗(1, Ś, S̀) + Λ∗(1, Ś))

≥ S̀(1− λλ1(Ś))− Ś(1− λλ1(Ś))− λλ1(Ś)Ś − λ(Λ∗ + λ0)

By boundedness of Ś we can take λλ1(Ś) < 1, in which case the return will be 1 0 if

S̀ − Ś 1 λ
λ0 + λ1Ś + Λ∗

1− λλ1(Ś)

which at least equals λ · 2(λ0 + λ1Ś + Λ∗) =: λΛ̃, where Λ̃ is a locally bounded function of Ś
alone. Hence we can consider the problem with Λ̃ in place of Λ∗ and assuming Λ∗ = 0, and
then the right-hand side of (27) will not depend on the selling price ζ̀. We are done with the
arbitrage part of the proposition.
For FLVR, it suffices to point out that Jensen’s inequality improves both the upside and

downside for convex G, compared to for linear ones.
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