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1 Introduction

The pioneering article by Trygve Haavelmo on statistical implications of an economic

model, Haavelmo (1943), related to a single market. In Girshick and Haavelmo (1947,

1953) it was extended to an empirical five-equation model specifying two interre-

lated markets, its five equations representing demand for food by consumers, supply

of foodstuffs by farmers, demand for farm food products by the commercial sector,

supply of food to the retail market, and generation of consumers’ income.

One of the chapters in Haavelmo’s study of investment theory, Haavelmo (1960,

Chapter 32), also dealt with two interrelated markets, from a theoretical viewpoint,

in discussing stock-flow dynamics in a capital market. He there considered a model

with four endogenous variables, two quantities and two prices. The two interrelated

quantities are capital as a stock and investment as a flow, and the two interrelated

prices are the price of the stock of the durable capital good and the cost of exploiting

the service flow from this stock. Haavelmo’s contributions to econometric market

models and his contribution to the theory of investment by his insistence on the

integration of investment-flow-capital-stock dynamics in explaining investment fluc-

tuation have rarely been given attention in applied econometric work. Two quotes

illustrate his approach:

“...the rate of investment is determined by a conjunction of the cost of producing
capital goods and the yield from its use as a factor of production.... it is, actually,
not the users of capital who “demand” investment, it is the producers of capital
goods who determine how much they want to produce at the current price of capital”
[Haavelmo (1960, p. 196)], “The demand for investment cannot simply be derived
from the demand for capital. Demand for a finite addition to the stock of capital
can lead to any rate of investment, from almost zero to infinity, depending on the
additional hypothesis we introduce regarding the speed of reaction of the capital-
users”[Haavelmo (1960, p. 216)].

In this paper, by elaborating models and model sketches with linear functional

forms, I take some steps towards integration of these two parts of Haavelmo’s work.

Relying, inter alia, on Jorgenson (1974) and Biørn (1989, Chapter 4), I attempt

to bring the duality in the representation of the capital service price vis-à-vis the

capital stock prices and the representation of the capital quantity in relation to the

investment flow into focus. The interest rate and the capital’s retirement pattern

will ‘interfere’ in the dynamic process. The specific purpose is to elaborate one

of Haavelmo’s innovative elements in his investment theory for confrontation with

elements from simultaneous equation modeling of vector autoregressive systems with

exogenous variables (VARX systems), as exposed by, inter alia, Quenouille (1957),

Zellner and Palm (1974), and extended by, inter alia, Hsiao (1997), for simplicity

using linear functional forms.

The paper proceeds as follows. In Section 2, a general linear dynamic model is

outlined as a background, and its three derived forms, to be exemplified in the follow-

ing sections, are defined. Next, in Section 3, we present a four-equation prototype

model with two interrelated quantities and two interrelated prices, supplemented

by examples to illustrate dynamic properties. In Section 4 an econometric mar-

ket model for investment and capital inspired by ideas from Haavelmo’s investment
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theory is considered. Some simulations to illustrate theoretical points, including

conditions for dynamic stability, are provided. In Section 5 consequences of relaxing

the geometric decay specification of the capital retirement process, are discussed.

Concluding remarks follow in Section 6.

2 Background: A linear dynamic model and its derived forms

Consider a dynamic model with an (N×1)-vector of endogenous variables, yt, a

(K×1)-vector of exogenous variables, xt, and an (N×1)-vector of disturbances ut.

Its structural form (SF) is

B0 yt = B1 yt−1 + Γxt + ut, ut ∼ IID(0,Σ),(2.1)

where t denotes time, and B0, B1, Γ are (N×N), (N×N) and (N×K) coefficient

matrices, respectively. The model’s reduced form (RF) is:

yt = Π1y t−1 +Π0xt + ϵt, ϵt = B−1
0 ut ∼ IID(0,Ω),(2.2)

Π1 = B−1
0 B1, Π0 = B−1

0 Γ, Ω = B−1
0 Σ(B ′

0)
−1.

Successive inserting yields

yt = Πθ
1y t−θ +Π0xt +

∑θ−1
i=1 Π

i
1Π0x t−i + ϵt +

∑θ−1
i=1 Π

i
1ϵ t−i.

The model’s stability condition,

lim
θ→∞

Πθ
1 = lim

θ→∞

[
B−1

0 B1

]θ
= 0,

will be satisfied if and only if [see Lütkepohl (2005, Section 2.1)]

(2.3)

 The eigenvalues of Π1, (λ1, . . . , λN), solving |Π1−λIN |=0,
are all inside the unit circle ⇐⇒

all N roots of |B0−qB1| = 0 are outside the unit circle.


Since, if (2.3) holds, IN+

∑∞
i=1(Π1L)

i = (IN−Π1L)
−1, L denoting the lag operator,

it follows that the model’s final form (FF) can be written as:

yt = Π0xt +
∑∞

i=1 Π
i
1Π0x t−i + ϵt +

∑∞
i=1 Π

i
1ϵ t−i(2.4)

= (IN−Π1L)
−1Π0xt + (IN−Π1L)

−1ϵt.

Then also
∑∞

i=0 Π
i
1=(IN−Π1)

−1, so that

(2.5) Π ≡
∑∞

i=0 Π
i
1Π0=(IN−Π1)

−1Π0 = (B0−B1)
−1Γ,

which is the RF coefficient matrix of the static counterpart to (2.1):

(2.6) (B0−B1)y = Γx+ u.

Writing (2.1) and (2.2) as

B(L)yt = Γxt + ut, B(L) = B0 −B1L,(2.7)

Λ(L)yt = Π0xt + ϵt, Λ(L) = IN−Π1L,(2.8)

(2.5) can be rewritten as
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(2.9) Π = Λ(1)−1Π0 = B(1)−1Γ, Λ(1) = IN−Π1, B(1) = B0−B1.

Let B∗(L) be the adjoint of B(L), so that

(2.10) B−1(L) =
B∗(L)

|B(L)|
.

Premultiplying (2.7) by B∗(L)= |B(L)|B−1(L) yields

(2.11) |B(L)|yt = B∗(L)Γxt +B∗(L)ut.

We call this transformation of (2.1) the model’s autoregressive form, or its ARMAX-

form (AF). All of its equations have the same autoregressive part, with |B(L)| as the
common lag-polynomial of the endogenous variables, and with disturbance vector,

B∗(L)ut, whose elements are MA(1)-transformations of the SF disturbances, and

lag-distributions on the exogenous variables. This model form exists if |B(L)| ̸=0,

but (2.3) is not required. From (2.10) and (2.11), if (2.3) holds, we obtain

(2.12) yt =
B∗(L)

|B(L)|
Γxt +

B∗(L)

|B(L)|
ut = B−1(L)Γxt +B−1(L)ut.

This equation expresses the FF in terms of the SF coefficients, while in (2.4) it is

expressed by the RF coefficients.

The transformations which carry one model form into another can be summa-

rized as follows, condition (2.3) being required for (c), (d) and (e) only:

(a) From SF to RF: Premultiply SF by B−1
0 .

(b) From SF to AF: Premultiply SF by B∗(L).

(c) From RF to FF: Premultiply RF by Λ−1(L).

(d) From AF to FF: Divide AF by |B(L)|.
(e) From SF to FF: Premultiply SF by B−1(L).

3 Two four-equation market models

As a preamble to and background for the presentation of the Haavelmo-inspired

market model we consider two four-equation models (N = 4) which exemplify the

general setup in Section 2. It has two quantities, (kt, jt), and two prices, (ct, pt).

The first equation is a demand function which determines the quantity kt from the

price ct and a shift variable zt, which can contain exogenous terms and a distur-

bance. The second equation is a supply function which determines the quantity jt
from the price pt and a (scalar) shift variable xt, which can contain exogenous terms

and a disturbance. The third equation connects the two quantity variables and can

be interpreted as a supply function for kt. The fourth equation connects the price

variables, expressing ct as a first-order lag-distribution in pt.

Simple version: The simplest of the two models, exemplifying (2.1), is

kt = αct + zt,(3.1)

jt = βpt + xt,(3.2)

kt = λkt−1 + jt,(3.3)

ct = θ0pt + θ1pt−1,(3.4)
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where α< 0, β > 0, 0≤ λ< 1. Eliminating jt and ct gives a system expressing the

supply and the demand for the quantity kt as functions of pt and the shift variables:

kt = λkt−1+βpt+xt,

kt = αθ0pt+αθ1pt−1+zt,
⇐⇒

[
1 −β
1 −αθ0

][
kt
pt

]
=

[
λ 0
0 αθ1

][
kt−1

pt−1

]
+

[
xt

zt

]
,(3.5)

with

B(L) =

[
1−λL −β
1 −α(θ0+θ1L)

]
, B∗(L) =

[
−α(θ0+θ1L) β

−1 1−λL

]
,

Γ(L) =

[
1 0
0 1

]
, |B(L)| = β−αθ0+α(λθ0−θ1)L+ λαθ1L

2.

The roots of the polynomial equation |B(q)|=0, which is of the second order if

λ ̸=0 and θ1 ̸=0, are:

q =
−α(λθ0−θ1)±

√
α2(λθ0+θ1)2 − 4αβλθ1
2λαθ1

(3.6)

=
−(λθ0−θ1)±

√
(λθ0+θ1)2 − 4(β/α)λθ1
2λθ1

.

They can be inside or outside the unit circle. Since α< 0, the radicand is positive

for θ1>0. If θ1<0 and |λθ0+θ1|<2
√

λθ1β/α, the roots are complex conjugate. If

λθ1=0, the lag polynomial is of the first order, with

θ1=0, λ>0 =⇒ q=
θ0−β/(−α)

λθ0
,

λ=0, θ1 ̸=0 =⇒ q=
θ0−β/(−α)

(−θ1)
.

Consider next the derived forms for this simple model.

Reduced form:

[
kt
pt

]
=

1

β−αθ0

[
−αθ0 β
−1 1

]{[
λ 0
0 αθ1

][
kt−1

pt−1

]
+

[
xt

zt

]}
=⇒

kt = − αθ0λ

β−αθ0
kt−1 +

βαθ1
β−αθ0

pt−1 −
αθ0

β−αθ0
xt +

β

β−αθ0
zt,

pt = − λ

β−αθ0
kt−1 +

αθ1
β−αθ0

pt−1 −
1

β−αθ0
xt +

1

β−αθ0
zt,

jt = − βλ

β−αθ0
kt−1 +

βαθ1
β−αθ0

pt−1 +
αθ0

β−αθ0
xt +

β

β−αθ0
zt,

ct = − θ0λ

β−αθ0
kt−1 +

βθ1
β−αθ0

pt−1 −
θ0

β−αθ0
xt +

θ0
β−αθ0

zt.

ARMAX-form: [β−αθ0+α(λθ0−θ1)L+λαθ1L
2]

[
kt
pt

]
=

[
−α(θ0+θ1L) β

−1 1−λL

][
xt

zt

]
⇐⇒
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kt = −α(λθ0−θ1)

β−αθ0
kt−1−

λαθ1
β−αθ0

kt−2+
1

β−αθ0
[βzt−α(θ0 + θ1L)xt],(3.7)

pt = −α(λθ0 − θ1)

β−αθ0
pt−1−

λαθ1
β−αθ0

pt−2+
1

β−αθ0
[(1−λL)zt−xt].(3.8)

Since (3.3)–(3.4) imply jt=(1−λL)kt and ct=(θ0+θ1L)pt, it follows that

jt = −α(λθ0−θ1)

β−αθ0
jt−1−

λαθ1
β−αθ0

jt−2+
1−λL

β−αθ0
[βzt−α(θ0 + θ1L)xt],(3.9)

ct = −α(λθ0 − θ1)

β−αθ0
ct−1−

λαθ1
β−αθ0

ct−2+
θ0+θ1L

β−αθ0
[(1−λL)zt−xt].(3.10)

Final form (if both roots of |B(q)| are outside the unit circle):

kt =
1

|B(L)|
[−α(θ0+θ1L)xt+βzt],

pt =
1

|B(L)|
[−xt+(1−λL)zt],

jt =
1−λL

|B(L)|
[−α(θ0+θ1L)xt + βzt],

ct =
θ0+θ1L

|B(L)|
[−xt + (1−λL)zt].

Equations (3.7) and (3.9) are neither supply, nor demand functions, but conflu-

ent relations, containing elements from both, and therefore having a lower degree

of autonomy than either.

Four boundary cases are worth a closer examination.

[a]. λ=1, θ0=1, θ1=0 =⇒ jt=∆kt, ct=pt. This implies

kt =
βzt−αxt

β−α(1−L)
, jt =

(1−L)[βzt−αxt]

β−α(1−L)
, ct = pt =

(1−L)zt−xt

β−α(1−L)
.

The equation for jt has unit roots for zt and xt, ct = pt has a unit root for zt. The root of the
common AR polynomial is β/(−α)+1>1.

[b]. λ=0, θ0=1, θ1=−1 =⇒ jt = kt, ct = ∆pt. This implies

jt = kt =
βzt−α(1−L)xt

β−α(1−L)
, pt =

zt−xt

β−α(1−L)
, ct =

(1−L)[zt−xt]

β−α(1−L)
.

The equation for ct has unit roots for both zt and xt, jt = kt has a unit root for xt. The root of
the common AR polynomial is the same as in example [a].

[c]. λ=0, θ0=−1, θ1=1 =⇒ jt = kt, ct = −∆pt. This implies

jt = kt =
βzt+α(1−L)xt

β+α(1−L)
, pt =

zt−xt

β+α(1−L)
, ct = − (1−L)[zt−xt]

β+α(1−L)
.

The equation for ct has unit roots for both zt and xt, jt=kt has a unit root for xt only. The root
of the common AR polynomial is 1−β/(−α), which is negative for β > |α|, but may be both inside
and outside the (−1,+1) interval. Even this simple example has the potential for giving oscillating
and non-oscillating and stable and non-stable solutions.

[d]. λ=1, θ0=−1, θ1=1 =⇒ jt=∆kt, ct=−∆pt. Then we get
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[β+α(1−L)2]kt = βzt + α(1−L)xt,

[β+α(1−L)2]pt = (1−L)zt−xt,

[β+α(1−L)2]jt = β(1−L)zt + α(1−L)2xt,

[β+α(1−L)2]ct = −(1−L)2zt+(1−L)xt.

The equation for jt has a single unit root for zt and a double unit root for xt. The converse holds for
the equation for ct. The roots of the AR polynomial, obtained from (3.6), are 1±

√
β/(−α), which

are real and add to 2. Hence, the model has the potential for giving oscillating and non-oscillating
as well as stable and non-stable solutions.

Generalized version: A generalized model follows from (3.1)–(3.4) by extending

α, β, λL, θ0+θ1L to lag polynomials α(L), β(L), λ(L), θ(L) and attaching the polyno-

mial η(L) to jt in (3.3):

kt = α(L)ct + zt,(3.11)
jt = β(L)pt + xt,(3.12)
kt = λ(L)kt + η(L)jt,(3.13)
ct = θ(L)pt.(3.14)

Equations (3.11) and (3.12) can be interpreted as generalized cobweb demand and

supply equations, respectively, (3.13) connects the two quantities by a rational lag-

distribution the two quantities, and (3.14) connects the two prices by a finite lag-

distribution. Eliminating ct and jt leads to the following generalization of (3.5):

(3.15)

[
1−λ(L) −β(L)η(L)

1 −α(L)θ(L)

] [
kt
pt

]
=

[
η(L) 0

0 1

] [
xt

zt

]
,

with

B(L) =

[
1−λ(L) −β(L)η(L)

1 −α(L)θ(L)

]
, Γ(L) =

[
η(L) 0

0 1

]
,

B∗(L) =

[
−α(L)θ(L) β(L)η(L)

−1 1−λ(L)

]
, |B(L)| = β(L)η(L)−α(L)θ(L)[1−λ(L)],

and the following generalizations of the ARMAX-form (3.7)–(3.10):

|B(L)|kt = −α(L)θ(L)η(L)xt+β(L)η(L)zt,(3.16)

|B(L)|pt = −η(L)xt+[1−λ(L)]zt,(3.17)

|B(L)|jt = −α(L)θ(L)[1−λ(L)]xt+β(L)[1−λ(L)]zt,(3.18)

|B(L)|ct = −θ(L)η(L)xt+θ(L)[1−λ(L)]zt.(3.19)

If the disturbance parts of xt and zt are white noise, the disturbances of this model

form will be MA processes of order determined by the lag-polynomial orders.

The common lag-polynomial in the AR-part of the equations for quantities,

(3.16) and (3.18), and for prices, (3.17) and (3.19), has elements which originate

from the demand and the supply response mechanisms, the equation connecting the

quantities, and the lag-distribution between the prices. This generalized model ex-

emplifies the simultaneous equation time-series analysis (SEMTSA) approach; see

Zellner and Palm (1974), Zellner (1979), Palm (1986), and Hsiao (1997).
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We can, letting ᾱ = α(1), β̄ = β(1), λ̄ = λ(1), η̄ = η(1), θ̄ = θ(1), write the

corresponding static RF, satisfying ct = θ̄pt, jt = [(1−λ̄)/η̄]kt and corresponding to

(2.6), as

kt =
η̄(β̄zt − ᾱθ̄xt)

β̄η̄−ᾱθ̄(1−λ̄)
= ᾱct + zt,

pt =
(1−λ̄)zt − η̄xt

β̄η̄−ᾱθ̄(1−λ̄)
,

jt =
(1−λ̄)(β̄zt − ᾱθ̄xt)

β̄η̄−ᾱθ̄(1−λ̄)
= β̄pt + xt,

ct =
θ̄[(1−λ̄)zt − η̄xt]

β̄η̄−ᾱθ̄(1−λ̄)
.

Below five models exemplifying (3.11)–(3.14) are given.

Model A: Baseline static model
If α(L)=α, β(L)=β, λ(L)=0, η(L)= θ(L)=1, all dynamics is eliminated, the two quantities and
the two prices coincide, and all derived model forms degenerate to

kt = jt = − α

β−α
xt +

β

β−α
zt,

pt = ct = − 1

β−α
xt +

1

β−α
zt.

Model B: Introducing delayed supply response – supply cobweb
Let now β(L) = β1L, but retain the other assumptions in Model A. The two quantities and the
two prices again coincide. The only dynamic element is the lagged supply response. The solution
oscillates. Stability requires |α|> β1, i.e., demand should respond more strongly to the current
price than supply responds to the lagged price. We get

REDUCED FORM

kt = β1pt−1+xt,

pt =
β1

α
pt−1+

1

α
[xt−zt],

ARMAX-FORM

kt =
β1

α
kt−1+xt−

β1

α
zt−1,

pt =
β1

α
pt−1+

1

α
[xt−zt],

FINAL FORM

kt =
1

α− β1L
[αxt−β1Lzt],

pt =
1

α− β1L
[xt−zt].

The RF equation of kt and the supply function coincide. The RF- and the AF-equations for pt
coincide.

Model C: Introducing delayed demand response – demand cobweb
Let α(L) =α1L, but retain the other assumptions of Model A. The two quantities and the two
prices again coincide. The only dynamic element is the lagged demand response. The solution
oscillates. Stability requires β> |α1|, i.e., supply should respond more strongly to the current price
than demand responds to the lagged price. We get

REDUCED FORM

kt = α1pt−1+zt,

pt =
α1

β
pt−1+

1

β
[zt−xt],

ARMAX-FORM

kt =
α1

β
kt−1+zt−

α1

β
xt−1,

pt =
α1

β
pt−1+

1

β
[zt−xt],

FINAL FORM

kt =
1

β − α1L
[βzt−α1Lxt],

pt =
1

β − α1L
[zt−xt].

The RF equation of kt and the demand function coincide. Again, the RF-equation and the AF-
equation for pt coincide.

Model D: Introducing an autoregression connecting quantities
Let λ(L)=λ1L, but retain the other assumptions in Model A. Then
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REDUCED FORM

kt =
−αλ1kt−1+βzt−αxt

β−α
,

pt =
−λ1kt−1+zt−xt

β−α
,

ARMAX FORM

kt =
−αλ1kt−1+βzt−αxt

β−α
,

pt =
−αλ1pt−1+zt−λ1zt−1−xt

β−α
,

FINAL FORM

kt =
βzt−αxt

β−α(1−λ1L)
,

pt =
zt−λ1zt−1−xt

β−α(1−λ1L)
.

The RF and AF equations for kt coincide. Stability is ensured for λ1 ∈ (0, 1), α< 0, β > 0, since
then β−α>(−α)λ1.

Model E: Introducing a lag-distribution connecting prices
Let θ(L)=θ0+θ1L, but retain the other assumptions in Model A. Then

REDUCED FORM

kt=
βαθ1pt−1+βzt−αθ0xt

β−αθ0
,

pt=
αθ1pt−1+zt−xt

β−αθ0
,

ARMAX FORM

kt=
αθ1kt−1+βzt−α(θ0+θ1L)xt

β−αθ0
,

pt=
αθ1pt−1+zt−xt

β−αθ0
,

FINAL FORM

kt=
βzt−α(θ0+θ1L)xt

β−α(θ0+θ1L)
,

pt=
zt−xt

β−α(θ0+θ1L)
.

The RF and AF equations for pt coincide. Stability requires β−αθ0>(−α)θ1 ⇐⇒ θ1<θ0+β/(−α).

4 Simple capital-investment model à la Haavelmo

We now give model (3.11)–(3.14) a specific interpretation, as a simplified linearized

version of the market model for investment of Haavelmo (1960, Chapter 32). We

interpret kt as the capital stock, jt as the quantity of gross investment flow, pt as the

price of investment, and ct as the capital service price, and assume α(L)=α, β(L)=β.

Also, we let λ(L)=λL=(1−δ)L, interpreting δ∈(0, 1] as a retirement (depreciation)

rate, let ρ be a market interest rate and p̂t+1|t a forecast for the investment price in

period t+1 formed by the capital users in period t:

kt = αct + zt,(4.1)

jt = βpt + xt,(4.2)

kt = (1−δ)kt−1 + jt,(4.3)

ct = pt − 1−δ
1+ρ

p̂t+1|t.(4.4)

Equation (4.4) connects the capital service price with the investment price, the

retirement rate and the interest rate. Its rationale is that the per unit cost of

capital service is obtained by deducting from pt the present value of the remaining

share 1−δ of one unit next period, evaluated at the expected price p̂t+1|t. How can

(4.4) be related to (3.14)?

The price forecast may be connected to pt in several ways and the specific choice

here may crucially affect the model’s dynamic properties. The model has no explicit

cobweb mechanism, as model examples B and C in Section 3. It has two ‘static’

equations, one autoregressive backward-looking equation and one forward-looking

equation.

Haavelmo (1960, Chapter 28) states explicitly the importance of the effect of

changes in the capital price on the demand for capital, which he calls the ‘speculative

element in the holding of capital’ :
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“A producer must pay attention, not only to the price of capital in relation to its
productivity and its interest cost, but also to the possibility of price changes over
his planning period. There is, of course, a great difference in this respect between
the case of perfect mobile capital in a perfect capital market and the case where the
producer has to tie himself to immobile....capital. But it is not so that a producer can
free himself from losses due to price falls even in a perfect capital market. This he
could do only if he knew the time at which the price will change....”[Haavelmo (1960,
p. 168)].

His treatise, being basically theoretical, is not concerned with econometric modelling

of the price increase term in the capital service price, i.e., how to connect this

‘speculative element’ with observable variables. Let p̂t+1|t=pt+∆̂pt+1|t and

µ= 1
1+ρ

, λ=1−δ =⇒ µλ= 1−δ
1+ρ

, 1−µλ= ρ+δ
1+ρ

.

Consider Table 1, giving some boundary values for (ρ, δ) and the implied (jt, ct).

Table 1. Equations (4.3) and (4.4) for boundary values

µλ jt ct
Case 1: δ=1 0 kt pt
Case 2: ρ→∞ 0 ∆kt+δkt−1 pt
Case 3: δ=ρ=0 1 ∆kt −∆̂pt+1|t
Case 4: δ=0, ρ>0 1/(1+ρ) ∆kt [ρpt−∆̂pt+1|t]/(1+ρ)

Case 5: ρ=0, 0<δ<1 1−δ ∆kt+δkt−1 δpt−(1−δ)∆̂pt+1|t

Case 1, with immediate retirement, takes us back to the static model. Case 3, with

zero capital retirement and zero interest cost, represents ‘costless capital use’, with

a service price equal to minus the increase in the expected capital price. Case 5 is

the only case in which jt depends on both the level and the increase of kt while ct
depends on both the level and the (expected) increase of pt. Case 2 removes ∆̂pt+1|t
from ct, while Case 3 removes kt−1 from jt. In Case 4 the capital service price is

positive (negative) if the real interest rate ρ−∆̂pt+1|t/pt is positive (negative).

So far ∆̂pt+1|t has been unspecified. We represent this term by a lag-distribution

on the realized increase over the current and last M periods, with polynomial π(L) =

π0 + π1L+ · · ·+ πMLM , given by

∆̂pt+1|t = π(L)∆pt = π(L)(1−L)pt =⇒ p̂t+1|t = [1 + π(L)(1−L)]pt
=⇒ ct = {1−µλ[1 + π(L)(1−L)]}pt.

This implies that we in (3.14) let

θ(L)=1−µλ[1+π(L)(1−L)] ⇐⇒ θm=

1−µλ(1+π0), m=0,
−µλ(πm−πm−1), m=1, . . . ,M−1,
+µλπM−1, m=M,

(4.5)

so that (3.15) becomes:[
1−λL −β

1 −α{1−µλ[1+π(L)(1−L)]}

] [
kt
pt

]
=

[
xt

zt

]
.
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The model version obtained represents the following special case of (3.11)–(3.14):

α(L)=α, β(L)=β, λ(L)=λL, η(L)=1,

θ(L)=1−µλ[1+π(L)(1−L)],

|B(L)| = β − α(1−λL)θ(L) = β − α(1−λL){1−µλ[1 + π(L)(1−L)]},

with ARMAX-form, exemplifying (3.16)–(3.19),

|B(L)|kt = −αθ(L)xt + βzt,(4.6)

|B(L)|pt = −xt + (1−λL)zt,(4.7)

|B(L)|jt = −αθ(L)(1−λL)xt + β(1−λL)zt,(4.8)

|B(L)|ct = −θ(L)xt + θ(L)(1−λL)zt.(4.9)

In the Haavelmo-type investment equation exemplified by (4.8), the interest and

retirement rates, ρ and δ = 1−λ, interact with the demand and supply slopes α

and β, as well as with the form of the price expectation process π(L), via θ(L). The

model has implicit cobweb elements due to capital accumulation and the way the

capital service price is connected to the capital stock (investment) price. It has

a lower degree of autonomy than the capital demand and the investment supply

equations; see Aldrich (1989) on Haavelmo and the autonomy concept.

Since θ(1) = 1−µλ = ρ+δ
1+ρ

and |B(1)| = β−α(1−µλ)(1−λ), irrespective of π(L),

the static reduced form counterpart to (4.6)–(4.9) is

kt =
βzt − α(1−µλ)xt

β−α(1−µλ)(1−λ)
,

pt =
(1−λ)zt − xt

β−α(1−µλ)(1−λ)
,

jt =
(1−λ)[βzt − α(1−µλ)xt]

β−α(1−µλ)(1−λ)
= (1−λ)kt,

ct =
(1−µλ)[(1−λ)zt − xt]

β−α(1−µλ)(1−λ)
= (1−µλ)pt.

An interesting question is which parameter combinations can ensure stability of

this dynamic four-equation system. Consider the cases M=1 and M=2:

M=1 : |B(L)| = β − α[θ0 + θ1L](1−λL)
= β−αθ0 − α(θ1−λθ0)L+ αλθ1L

2,
where θ0 = 1−µλ(1+π0), θ1 = µλπ0.

M=2 : |B(L)| = β − α[θ0 + θ1L+ θ2L
2](1−λL)

= β−αθ0 − α(θ1−λθ0)L− α(θ2−λθ1)L
2 + αλθ2L

3,
where θ0 = 1−µλ(1+π0), θ1 = µλ(π0−π1), θ2 = µλπ1.

Table 2 shows for selected cases, the roots of the characteristic equation of the asso-

ciated difference equation [corresponding to 1/q in (2.3)], all of which are required

to be inside the unit circle for stability to be ensured.
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Table 2. Characteristic equation of Haavelmo-type model (4.6)–(4.9)
Roots depending on demand-slope/supply-slope α/β, horizon M , δ and ρ.

µλ = 1−δ
1+ρ i=

√
−1. Figures in boldface signalizes unstable roots

M=1: ∆̂pt+1|t=pt−pt−1, θ(L)=1−2µλ+µλL

a. Short-lived and moderately long-lived capital

α/β δ ρ µλ Roots of char.eqn. Modulus

a1: −0.5 0.20 0.05 0.76190 0.11613 ± 0.63199 i 0.64258
a2: −0.5 0.80 0.05 0.19048 0.06000 ± 0.10462 i 0.12060
a3: −0.8 0.20 0.05 0.76190 0.23607 ± 0.88522 i 0.91616
a4: −0.8 0.80 0.05 0.19048 0.08408 ± 0.11538 i 0.14277

b. Very long-lived capital

α/β δ ρ µλ Roots of char.eqn. Modulus

b1: −0.5 0.02 0.02 0.96078 0.02673 ± 0.93401 i 0.93439
b2: −0.8 0.02 0.02 0.96078 0.08776 ± 1.69090 i 1.69320
b3: −0.5 0.01 0.01 0.98020 0.01414 ± 0.96604 i 0.96614
b4: −0.8 0.01 0.01 0.98020 0.05077 ± 1.82980 i 1.83050

c. Demand slope close to supply slope

α/β δ ρ µλ Roots of char.eqn. Modulus

c1: −0.9 0.01 0.50 0.66000 0.21691 ± 0.88254 i 0.90881
c2: −0.9 0.50 0.01 0.49505 0.22301 ± 0.41361 i 0.46990

c3: −0.9 0.20 0.20 0.66667 0.25714 ± 0.78714 i 0.82808
c4: −0.9 0.15 0.15 0.73913 0.26279 ± 0.96109 i 0.99637
c5: −0.9 0.10 0.10 0.81818 0.25851 ± 1.21830 i 1.24540

M=2: ∆̂pt+1|t=
1
2
(pt−pt−2), θ(L)=1− 3

2
µλ+ 1

2
µλL2

b. Very long-lived capital

α/β δ ρ µλ Roots of char.eqn. Modulus

b1: −0.5 0.02 0.02 0.96078 −0.37043 ± 0.71719 i 0.80720
0.46351 0.46351

b2: −0.8 0.02 0.02 0.96078 −0.52421 ± 0.92623 i 1.06430
0.51387 0.51387

b3: −0.5 0.01 0.01 0.98020 −0.38452 ± 0.72898 i 0.82460
0.46647 0.46647

b4: −0.8 0.01 0.01 0.98020 −0.55695 ± 0.94552 i 1.09740
0.51676 0.51676

c. Demand slope close to supply slope

α/β δ ρ µλ Roots of char.eqn. Modulus

c3: −0.9 0.20 0.20 0.66667 −0.23248 ± 0.67981 i 0.71846
0.46495 0.46495

c4: −0.9 0.15 0.15 0.73913 −0.28807 ± 0.75135 i 0.80468
0.48397 0.48397

c5: −0.9 0.10 0.10 0.81818 −0.36650 ± 0.83438 i 0.91133
0.50158 0.50158

c6: −0.9 0.05 0.05 0.90476 −0.48386 ± 0.93106 i 1.04930
0.51771 0.51771

c7: −0.9 0.01 0.01 0.98020 −0.62804 ± 1.01760 i 1.19580
0.52951 0.52951
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Thirteen parameter combinations for M=1, with π0=1 =⇒ θ(L)=1−2µλ+µλL,
and nine combinations for M = 2, with π0 = π1 =

1
2
=⇒ θ(L) = 1− 3

2
µλ+ 1

2
µλL2,

and the corresponding characteristic roots are given in Table 2. These examples

show that whether or not the system is dynamically stable, depends strongly on the

relative demand and supply slopes and on the retirement and depreciation rates.

The steeper the demand slope relative to the supply slope, the more long-lived the

capital, and the lower the interest rate, the stronger is the tendency for the sys-

tem to be unstable. This is characterized by at least one root of the characteristic

equation having modulus larger than one (equivalent to the roots of the autore-

gressive polynomial |B(L)| being inside the unit circle), confer condition (2.3) and

the two b-panels. From the point of view of stability, long-lived capital (δ low)

can be ‘compensated by’ a high interest rate, and a low interest rate can be ‘com-

pensated’ by capital being short-lived (δ high). Compare, for M = 1, alternatives

c1 and c2 with b4: α/β = −0.8, ρ = δ = 0.01 is an unstable constellation, while

α/β=−0.9, ρ=0.50, δ=0.01 as well as α/β=−0.9, ρ=0.01, δ=0.50 ensure stability.

The latter conclusion relies on the assumption that the demand and supply slopes

are unchanged when the durability of the capital is changed.

The effect of a change in the capital users’ price expectation horizon on the

model’s dynamic stability can be illustrated by comparing the b and c panels in

Table 2 for M = 1 with those for M = 2. The latter case, smoothing the price

increases, should be expected to stabilize the model. This is confirmed: all roots

have, cet.par., smaller moduli for M = 2 than for M = 1, and there is a stronger

tendency for stability to be ensured. A notable example is c5, with the relative

slopes equal to α/β = −0.9 and both the interest and the retirement rates equal to

0.1. In the M=1 case [∆̂pt+1|t=∆pt] the system is unstable (modulus=1.25), while

in the M =2 case [∆̂pt+1|t=
1
2
(∆pt+∆pt−1)] it is stable (moduli=0.911 and 0.502).

If the common value of δ and ρ decreases to 0.15 and 0.10, the system becomes

unstable also in the M=2 case.

The examples in Section 3 – notably the ‘multiple unit roots’ example [d], the

‘two-price distributed lag’ example E, and the expression for the two roots, (3.6), in

the simple model – indicate that the system’s tendency to be unstable is stronger the

closer is the demand slope (in absolute value) to the supply slope. The two b panels

in Table 2, representing very long-lived capital and low interest rate, illustrate this.

In all cases, α/β=−0.5 (b1 and b3) gives stability, even for retirement and interest

rates as low as δ = ρ= 0.01 – although with modulus close to unity in the M = 1

horizon case – while α/β =−0.8 (b2 and b4) gives instability. In the M = 1 case,

the modulus of the two roots is as high as 1.83.

Results from four simple simulation experiments, with calibrated series for xt

and zt for 120 periods (the first 10 retained for ‘initializing’ the process), performed

by using modules in the PcGive modelling system (OxMetric 6.01), are illustrated

graphically in Figures 1 through 4. The intention is to mimic effects of smoothly

changing ‘signals’, exogenous variables, normally distributed ‘noise’, assuming
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xt = 10 + 0.2 t+ ut, ut ∼ N(0, 42),

zt = 100 + 0.1 t+ 0.005 t2 + vt, vt ∼ N(0, 22).

Other potentially interesting alternatives might be profiles with jumps or transitory

shocks to illustrate possible ‘echo effects’ in investment quantity and prices. The

parameter values assumed for the slopes are in all cases α=−2.5, β=5. For (δ, ρ)

two alternatives are considered: short-lived capital and somewhat low interest rate

(0.5, 0.05) (Figures 1 and 2 for M =1 and M =2, respectively) and medium long-

lived capital and somewhat high interest rate (0.2, 0.15) (Figures 3 and 4 for M=1

and M=2, respectively).

The four graphs in each figure primarily illustrate the sensitivity of the time

profile of the endogenous variables (kt, jt, pt, ct) (ct symbolized by ucc) to changes in

the assumed price expectation horizon and the retirement and interest rates. The

overall shape of simulated series for kt and jt is not very sensitive to changes in

the parameter values, except that the former is, of course, closer to the latter when

faster retirement is assumed. For the two price variables, we find striking differences

across the four sets of graphs. As expected, ct has a more jagged pattern when a

one-year horizon for the price increase is assumed than when the normalized two-

period difference for the price increase is assumed. In both M=1 examples, ct tend

to take negative values. When a medium-lived capital is assumed (δ = 0.2), the

simulated ct series fluctuates around zero.

5 Extension: Models allowing for non-geometric capital decay

Haavelmo (1960, Chapter 32) specifies the capital accumulation process and the cap-

ital service prices in his neo-classical market model by geometric decay. So far, we

have followed this description, the popularity of which also in much later theoretical

and empirical work probably reflects its simplicity – it is a one-parameter process,

implying a constant hazard rate of capital deterioration, i.e., an age-invariant retire-

ment rate. Good reasons can be given to modify this assumption. Geometric decay

eliminates very likely situations where capital survival follows concave functions,

i.e., increasing retirement with age. If we change the model in that direction, the

capital service price and the retirement must be remodeled, with due regard to the

duality between the two variables. How this influences the capital market model’s

dynamic properties is worth a closer examination. Below, we briefly sketch possible

ways to proceed.

Simple cases where the capital is assumed to have a finite (maximal) service

life N , are sudden retirement at age N , and linear retirement up to age N . To

accommodate these, we can replace (4.3), which implies kt =
∑∞

s=0(1−δ)jt−s, and

(4.4) by, respectively:

Sudden retirement: kt =
∑N−1

s=0 jt−s, ct=pt − 1
1+ρ

(1− 1
N
)p̂t+1|t,

Linear retirement: kt =
∑N−1

s=0 (1−
s
N
)jt−s, ct=pt− 1

1+ρ
(1− 2

N+1
)p̂t+1|t.

Then, in the formula for the capital service price, we let δ under geometric decay

be replaced by, respectively, 1
N

and 2
N+1

, which equal the respective retirement rates
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in the hypothetic case with constant investment; see Biørn (2005, Section 5). If the

capital lives one year only (N=1), we are back at the static model with k=jt, ct=pt
(corresponding to δ=1 under geometric decay).

More generally, we can let the capital’s declining efficiency with age be indicated

by a non-negative sequence of survival rates {bs}s=N−1
s=0 ; b0 = 1, and replace (4.3)–

(4.4) by

kt =
∑N−1

s=0 bsjt−s,(5.1)

ct = pt − 1
1+ρ

(
1− 1∑N−1

s=0 bs

)
p̂t+1|t = pt − 1−δN

1+ρ
p̂t+1|t,(5.2)

where δN =1/
∑N−1

s=0 bs is the retirement rate in a stationary situation with constant

investment: jt = j̄, kt = k̄ = j̄
∑N−1

s=0 bs. An example of a two-parametric survival

function, which can exhibit both concavity and convexity, depending on whether

the parameter σ is less than or larger than 1, is

bs = (1− s
N
)σ, N ≥ 1, σ ≥ 0.

Letting b(L) = b1L+ b2L
2 + · · ·+ bN−1L

N−1, we can rewrite these relationships as

kt = [1+b(L)]jt,

ct = pt − µ b(1)
1+b(1)

p̂t+1|t = pt − µλN p̂t+1|t,

where µ= 1
1+ρ

, δN = 1
1+b(1)

and λN =1−δN . The form of the expectation process for

the capital price and the form of the retirement process will then be entwined with

the interest rate in the autoregressive polynomial. Let us take a closer look at this.

The specification (5.1)–(5.2) can be combined with the lag-distribution (4.5) for

the price expectations in Model (3.11)–(3.14). We let α(L)=α, β(L)=β and

λ(L) = 0, η(L) = 1 + b(L),

θ(L) = 1−µλN [1+π(L)(1−L)],

and find that the equation which connects the investment quantity and the invest-

ment price, after inserting ct={1−µλN [1+π(L)(1−L)]}pt and kt=[1+b(L)]jt in the

stock demand function (4.2) becomes

[1+b(L)]jt = α {1−µλN [1+π(L)(1−L)} pt+zt.(5.3)

Inserting the investment supply function (3.11), jt = βpt+xt, and its inverse pt =

(1/β)(jt−xt), we get, respectively,

[1+b(L)](βpt+xt) = α {1−µλN [1+π(L)(1−L)} pt+zt,

[1+b(L)]jt = α {1−µλN [1+π(L)(1−L)} (1/β)(jt−xt)+zt.

which can be rewritten as ARMAX-form equations for the investment quantity and

the investment price, respectively,

[β−α{1−µλN [1+π(L)(1−L)]}+βb(L)]pt = zt − [1+b(L)]xt,(5.4)

[β−α{1−µλN [1+π(L)(1−L)]}+βb(L)]jt = βzt−α{1−µλN [1+π(L)(1−L)]}xt.(5.5)
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Combining (5.4) with the capital service price equation (3.14), ct = θ(L)pt, and (5.5)

with kt=[1+b(L)]jt, we get

[β−α{1−µλN [1+π(L)(1−L)]}+βb(L)] ct(5.6)

= θ(L)zt − θ(L)[1+b(L)]xt,

[β−α{1−µλN [1+π(L)(1−L)]}+βb(L)] kt(5.7)

= β[1+b(L)]zt−α[1+b(L)]{1−µλN [1+π(L)(1−L)]}xt.

Equations (5.5) and (5.7) can be interpreted as Haavelmo-type investment and cap-

ital equations under a generalized description of capital retirement. Again the form

of the retirement and the price expectation processes and the interest rate inter-

act in a rather complex way in the determination of the dynamic behaviour of the

investment quantity and its price.

So far, we have not addressed the problem of explicitly modelling a forward-

looking mechanism in the formation of price expectations. One, somewhat simplistic,

way of doing this could have been to replace π(L) by π(L−1) = π0 + π1L
−1 + · · · +

πML−M , ∆̂pt+1|t = π(L)∆pt by ∆̂pt+1|t = π(L−1)∆pt and (4.5) by

θ(L−1)=1−µλ[1+π(L−1)(1−L)].

Another way is to omit π(L) and instead invoke a ‘(non-)arbitrage condition’ fre-

quently postulated as an equilibrium condition in the capital market literature,

saying that the price of a capital asset should equal the present value of its future

service prices weighted by the relevant efficiency at each age; confer Hotelling (1925),

Hicks (1973, Chapter II), and Jorgenson (1989, section 1.2); see also Takayama (1985,

p. 694), and Diewert (2005, Section 12.2). A simple implementation could be to re-

place (5.2) and ct={1−µλN [1+π(L)(1−L)]}pt by:
(5.8) pt = ct + µb1ct+1 + µ2b2ct+2 + · · ·+ µN−1bN−1ct+N−1 = [1+b(µL−1)]ct,

where still µ = 1/(1+ρ). Combining (5.8) with (4.1) and (4.2) gives, instead of

equation (5.3), which connects jt and pt, the following system in jt and ct:

[1+b(L)]jt = αct+zt,

jt = β[1+b(µL−1)]ct + xt,

to obtain

{β[1+b(L)][1+b(µL−1)]−α}ct = zt − [1+b(L)]xt,(5.9)

{β[1+b(L)][1+b(µL−1)]−α}jt = β[1+b(µL−1)]zt − αxt.(5.10)

Combining (5.9) with pt = [1+b(µL−1)]ct and (5.10) with kt=[1+b(L)]jt, we get

{β[1+b(L)][1+b(µL−1)]−α}pt = [1+b(µL−1)]zt − [1+b(L)][1+b(µL−1)]xt,(5.11)

{β[1+b(L)][1+b(µL−1)]−α}kt = β[1+b(L)][1+b(µL−1)]zt − α[1+b(L)]xt.(5.12)

The common polynomial of (5.9)–(5.12), β[1+ b(L)][1+ b(µL−1)]−α, accounts for

both lags and leads up to order N . A closer examination of this polynomial and the

polynomials attached to the exogenous shift and error variables, which once again

captures the interaction of the interest rate and the retirement pattern, is required

to describe the Haavelmo-type investment and capital equations, (5.10) and (5.12),

in this forward-looking model.
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6 Concluding remarks

The main conclusions can be summarized as follows:

First, the ‘Haavelmo-type investment equation’ – as elaborated through a number

of somewhat simplistic linear four-equation models inspired from his A Study in the

Theory of Investment, published more than 50 years ago, and condensed in the

dynamic market models’ final form equations – is a system property of the market

model. Its investment equation is a confluent relation with a potentially low degree

of autonomy, representing both demand and supply responses as well the form of the

capital accumulation process and the expectation process for the investment price.

Second, the value of the (assumed constant) interest and the retirement rates

are parts of the coefficients of the model’s final form equations. The model has im-

plicit cobweb elements due to the capital’s survival process and the relation between

the investment price and the capital service price, even if the demand and supply

functions are seemingly static.

Third, the model’s exogenous variables, in conjunction with its disturbance terms

contribute to the fluctuations in capital accumulation and prices through the moving

average elements in the final form equations. Both the capital deterioration process

and the form of the price expectations have impact on the form and length of the

moving average polynomials in the final form equations.

Fourth, the price expectation term in the capital service price and how it is

modeled, are essential for the system’s dynamic behaviour. This notably applies

to the length of the capital users’ horizon when forming expectations. The model

framework can be modified to explicitly admit forward-looking behaviour.

Fifth, switching from ‘regimes’ with short-lived to long-lived capital or from

high-interest ‘regimes’ to low-interest ‘regimes’, for given supply and demand slopes,

tends to destabilize the system. This confirms that in a Haavelmo-like neo-classical

capital market, the values of the interest and the retirement rates are important

determinants for the system’s dynamics.

Sixth, the Haavelmo type of model can be extended to allow for more flexible

survival pattern of capital than geometric decay. The duality in the representation

of the capital service price vis-à-vis the capital stock prices and the representation

of the capital quantity in relation to the investment then comes into focus. Changes

in the survival pattern clearly have the potential to change the systems dynamics.

Several extensions of the framework presented here could be envisaged. Some

examples indicate the potential of the Haavelmo capital market model: (i) Including

explicit cobweb elements in the demand and supply functions to ‘refine’ the dynam-

ics of the system. (ii) Changing the status of the interest rate from being a constant

‘parameter’ to becoming an exogenous time function. (iii) Revising the specification

of the expectation process for the capital price as suggested the ‘rational expecta-

tions’ literature. (iv) Extending the setup from linear to non-linear forms for the

demand and supply functions. (v) Relaxing the model’s implicit assumption of a

closed capital goods market, in allowing for capital that is mobile between mar-

kets, ‘forced’ scrapping of capital, etc. (vi) Splitting the functions xt and zt into
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interpretable economic variables. (vii) Representing the noise terms of xt and zt by

VAR or VARMA processes. (viii) Including multiple markets for capital good with

different durability, as well as demand equations for consumption goods and other

non-capital goods. (ix) Performing Monte-Carlo simulations on calibrated model

versions to improve our learning about its dynamic properties. (x) Confronting the

model with genuine empirical data by using appropriate econometric time-series

methodology.
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