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EMISSIONS REDUCTIONS BE OPTIMIZED

INDEPENDENTLY OF THE POLLUTANT LEVEL?∗
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This version May 16, 2013.

Nils Chr. Framstad†‡

Abstract. Consider a model for optimal timing of emissions reduction, trad-
ing off the cost of the reduction against the time-additive aggregate of environ-
mental damage, the disutility from the pollutant stock M(t) the infrastructure
contributes to. Intuitively, the optimal timing for an infinitesimal pollution
source should reasonably not depend on its historical contribution to the stock,
as this is negligible. Dropping the size assumption, we show how to reduce
the minimization problem to one not depending on the history of M , under
linear evolution and suitable linearity or additivity conditions on the damage
functional. We employ a functional analysis framework which allows for delay
equations, non-Markovian driving noise, a choice between discrete and con-
tinuous time, and a menu of integral concepts covering stochastic calculi less
frequently used in resource and environmental economics. Examples are given
under the common (Markovian Itô) stochastic analysis framework.
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1 Introduction, and the simplest model

Consider an economic activity that leads to emissions of a stock pollutant, which again
leads to a certain damage per time unit, depending on the stock. The activity can at
any time be shut down (or possibly be retrofitted with clean technology) at a given cost
k, which may incorporate direct costs, scrap values, and/or the loss of utility from the
services the economic activity provides. The stock of pollutant will trend upwards as long
as the activity persists, and then trend downwards towards zero contribution (or at least
stay put) from the time of implementation. Consider then the problem of finding the (non-
clairvoyant) timing which minimizes expected discounted total cost.

A formal model for such a problem was treated by Pindyck in [19] and [20], slightly more
general than described above. Therein, the running cost was specified as the bilinear form
Θ(t)M(t) whereM(t) models the pollution from the activity (as stock units) at time t, and
Θ(t) models the impact cost factor, the damage per unit this (marginal) activity causes.
The aggregate discounted economic and ecological cost, is then taken to be∫ ∞

0

e−rtΘ(t)M(t) dt+ ke−rτ (1)

where τ is the time of policy implementation, and the objective is to minimize the expected
value of (1) over all stopping times τ ; in this model, the initial technology is exogeneous,
that is, we inherit the installation up and running. (As we shall work with formula (1)-type
random variables directly, we will usually not write the expectation operator explicitely.)
Pindyck models pollution stock by a linear deterministic differential equation

dM = (βη(t)− δM) dt, M(0) = m (2)

where η(t) could be interpreted as emission rate and β is the fraction that finds its way to
the environment. η will in the simple model be restricted to being a positive constant until
implementation, and 0 thereafter (with continuous fit at the implementation time), and so
β is then redundant, and can and will be assumed equal to 1. The initial state M(0) = m
is assumed nonnegative.

The impact cost factor Θ(t) is, for the time being, a diffusion process which does not
depend on M . A key result of [19] is that when Θ is a geometric Brownian motion, the
optimal rule for closedown is to wait until it exceeds a sufficiently high value θ∗, which does
not depend on M or in other words, does not depend on how long the installation has been
in operation. However, as later pointed out by [10] and [3], this property crucially depends
of the form of the damage function, and does not carry over to the case where the running
damage is replaced by ΘM2 – but the linear dynamics kept. (Of course, nonlinearities in
the damage function can be cancelled out by a corresponding nonlinearity in the dynamics.)

This leads to the question which is the main subject of this paper: if we generalize the
model, then under what conditions will the optimization depend on the state – or history –

2



of M? Using a Banach space framework, we shall see that the property of non-dependence
upon history, will carry over when «everything but the evolution of Θ» is linear – but
it shall also turn out that there are nonlinear cases which could be of interest. Our ap-
proach will not be restricted to the optimal stopping problem, but will cover continuous
and discontinuous optimization over infrastructure. The question does not apply to flow
pollutants; if it is only the flow that causes damage, then damage does obviously not de-
pend on stock. Nevertheless, for actually solving the optimization problems, it may be
useful to compare quickly decaying stocks with the limiting case of flows.

1.1 Removing M from the simple optimization problem

The optimization in the above simple model can be solved by dynamic programming.
Leaving a formal setup for the next section 2, we shall now restrict ourselves to the result
for the problem where η(t) is a given constant up to intervention time and 0 thereafter –
henceforth, a «one-shot problem»:

1.1.1 Proposition ([19]). Consider M following the dynamics (2) with β = 1 and η(t)
restricted to the form η(t) = η̄ · 1t∈[0,τ ], with M continuous at τ and C1 elsewhere. Suppose
furthermore that Θ obeys the (Itô) stochastic differential equation

dΘ(t) = Θ(t) · (α dt+ σ dZ(t)), Θ(0) = θ > 0 (3)

where Z is standard Brownian, and that r − α > 0, δ > 0 and k = k(η̄) > 0. Then the
problem of minimizing the expected value of (1) over all stopping times τ , is solved by
stopping first time Θ exceeds

θ∗ =
γk(η̄)

(γ − 1)η̄
(r − α)(r + δ − α) with γ =

1

2
− α

σ2
+

√(
α

σ2
− 1

2

)2

+
2r

σ2
(4)

and the value function is

θm

r + δ − α
+ k(η̄) ·

{[
γ θ
θ∗
−
(
θ
θ∗

)γ]/
(γ − 1) if θ < θ∗

1 if θ ≥ θ∗.
(5)

In particular, the optimal rule does not depend on m.

Notice that the m-dependent first term is the damage that would incur even without the
installation (τ = k = 0). The term (θ/θ∗)kγ/(γ−1) = θη̄/((r−α)(r+δ−α)) is the damage
from running the installation forever from now, and the the subtractive element represents
the value of the option to stop. The latter two do not depend on m. Let us give an
argument for this property without using dynamic programming nor the form (5) directly
– although, we can later use dynamic programming on the one-dimensional problem we
reduce the problem to. The solution for M(t) is

M(t) = e−δtm+ e−δt
∫ t

0

eδsη(s) ds (6)
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so that when we restrict controls to η(s) = η̄1s≤τ as above, with only τ ≥ 0 to choose, the
damage becomes

m

∫ ∞
0

e−(r+δ)t Θ(t) dt+ η̄

∫ ∞
0

e−(r+δ)t Θ(t)
(∫ min{t,τ}

0

eδs ds
)

dt+ ke−rτ (7)

Already before taking any expectation, we observe that the first term – the damage ob-
tained by running forever – does not depend on τ , while the two others do not depend onm.

We can actually compute (7) without dynamic programming, looking up the distributional
properties of the geometric Brownian motion and its stopping times in e.g. Borodin and
Salminen [4]. However, we could just as well reformulate in terms of a minimization
problem which does not depend on m, and then guess and verify by means of the Bellman
equation. Let us actually write out this, reorganizing (7) as

(m− η̄

δ
)

∫ ∞
0

e−(r+δ)t Θ(t) dt+

∫ ∞
0

e−rt Θ(t)eδmin{0,τ−t} · η̄/δ︸ ︷︷ ︸
=:F (t)

dt+ ke−rτ (8)

We then have that F satisfies

dF (t) = F (t) ·
[
(α− δ1t∈[0,τ ]) dt+ σ dZ(t)

]
, F (0) = θη̄/δ (9)

For the minimization of the expectation of the latter two terms, the Bellman equation
takes the form

−rV + αqV ′ +
1

2
σ2q2V ′′ + q =

{
δqV ′ before intervention
0 after intervention

(10)

The rest is routine: solve, find the strategy as a trigger q∗ by a C1 fit, and if one wishes a
fully rigorous proof, do the limit transition to infinite horizon.

1.1.2 Remark. It is easy to see that (at least under the appropriate integrability conditions),
the optimization will not depend of m even under the following generalizations:

(a) The argument onM uses, essentially, only an integrating factor approach, i.e. linearity
of the differential equation.

(b) Under linearity, it does not matter whether M models the total stock of the pollutant,
or if it models the project’s contribution: suppose the latter, and denote everyone else’s
contributions by L also driven by a linear differential equation with the same decay
rate, then we can either formulate in terms of the total (L+M) (also following a linear
differential equation with the same decay, though likely with different emission levels)
or split up. In either case, the optimization will separate into a term not depending
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on the decision and one not depending on L nor M (which enter otnly through the
sum). In the problem of Proposition 1.1.1, it means that the optimization amounts
to minimizing k(η) ·

[
γmin{1, θ/θ̂} − min{1, θ/θ̂}γ

]
/(γ − 1) – which is solved by by

choosing θ̂ = θ∗ according to (4).

(c) We need not restrict Θ to be geometric Brownian. It can be any exogeneously given
stochastic process which does not depend on M , and the optimal rule will still only
depend on the history and future law of Θ (that is, its state if it is autonomous
Markovian).

(d) k can be allowed to depend on Θ as long as it does not depend on M .

(e) The discount rate need not be constant nor deterministic, as long as it does not depend
on M nor our control. In the above case, e−rtΘ is geometric Brownian too, and we
could therefore merge the discount factor into the Θ process – but then the intervention
cost would have to be represented as a process too. That is however no issue:

(f) The optimization problem need not be restricted to optimal stopping – we can replace
the cost ke−rτ by a cost process associated to η(t) and Θ (possibly history-dependent),
as long as this does not depend on M . 4

Let us give an example of the latter.

1.1.3 Example. A work in progress by Jon Strand and this author [11] extends the Pindyck
model by endogenizing the initial infrastructure, then subject to a utility and an invest-
ment cost. In particular, the initial investment will, as shown above, not depend on m.
The paper also discusses extensions like endogenizing timing of the initial investment,
and availability of emissions-reducing technology to be retro-fitted to the installation. As
long as these quantities do not depend on m nor the subsequent development of M , then
neither will those decisions. Also extending to a model with gradual build-up of infrastruc-
ture and subsequent reduction of emissions, will have decision rules not depending ofM . 4

The next section will formalize the property discussed, as well as more general models for
which it carries over.

2 Linear evolutionary equations in a Banach space framework

We shall consider a more general setup than section 1. We replace the initial state m
by a function H exogeneously given, unaffected by the control. This will cover e.g. delay
equations for which the evolution depends on the past, in which case H is given initially as
the history (hence the letter), the path t 7→ {M(t)}t≤0. Analogously, we replace the initial
state θ for Θ, by an arbitrarily dimensional parameter denoted G – for example, this could
be the history t 7→ {Θ(t)}t≤0.

5



First some terminology:

2.0.4 Definition. We shall use the term «does not depend on» to mean invariance under
partial shift, e.g. functional independence (contrasted to stochastic independence). Terms
like «might depend on», «will usually depend on» and «does depend on» should be self-
explanatory. 4

The property is now given slightly informally:

2.0.5 Definition. Consider a minimization problem indexed by (G,H) ∈ G×H. We shall
say that the problem does not depend on H if, for each G ∈ G, the ordering of the controls
according to performance does not depend on H ∈ H. 4

We shall in practice look for decompositions of the form

[something which does not depend on the control]
+ [nonnegative functional of H] · [functional which does not depend on M ]

(11)

(where again, «does not depend on M» means functional independence, even when certain
values for H may deduced from M without knowing the control). The first line will be
analogous to the «θm/(r+ δ−α)» damage which incurs even without the pollutant source
in question. Usually, the «nonnegative functional of H» will be a constant, however an
example where it is not, will be given in (17)–(19). It should be noted that Definition 2.0.5
is weaker than the property that the optimal strategy not depending on H; consider the
example from he previous section, if one replaces ke−rτ by some function nondecreasing in
τ , then the optimal choice will be τ = 0 for all m ≥ 0, even when the M under the integral
is replaced by any positive nondecreasing function of M .

2.1 Sufficient conditions for the optimization problem not to depend on history

The following simple application of the Banach fixed-point theorem essentially sums up
why the linear cases behave as they do.

2.1.1 Lemma. Consider a Banach space M, with a bounded linear operator Ξ : M → M
such that some power is a contraction, and a linear functional Φ : M → R. Then for
X ∈M, the unique solution M of the functional equation

M = X + ΞM (12)
is M = ΨX, where (13)

Ψ := I +
∞∑
j=1

Ξj = (I−Ξ)−1 (14)

is a well-defined bounded linear operator from M onto M. Furthermore, ΦM = (ΦΨ)X,
a linear functional of X.
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Assume a linear structure X = A + H, where A is a (fully or partially) controllable
component (in dynamic systems, interpretable as controlling the future evolution) and H
does not depend on the control chosen (interpreted as a given, uncontrollable «history»),
and the following consequence is immediate:

2.1.2 Proposition. Given a set A ⊆ M, a (possibly nonlinear) functional Γ : A → R, a
linear operator Ξ : M→ M with some power being a contraction, and some fixed H ∈ M.
Then the problem

inf
A∈A
{ΦM + Γ(A)} subject to (12) and X = A+H (15)

can be rewritten as

(ΦΨ)H + inf
A∈A
{(ΦΨ)A+ Γ(A)} (16)

where the latter optimization problem does not depend on H.

Notice again that it does not matter whetherM models the project’s emissions or the total
emissions, as long as the evolution is modelled by the action of a linear operator. Under
linearity, it does not matter whether this «evolution» is actually in (univariate) time:

2.1.3 Remark. The motivating framework of section 1 concerned aggregate damage over
time. However, there is nothing in Proposition 2.1.2 that precludes time–space aggregates;
the vectorM could be of arbitrary dimension, including space indexing dimensions, and the
canonical model for the dissemination of a pollutant in physical space – the heat/diffusion
equation – is of course linear. 4

It is however crucial that the Ξ operator is not controlled:

2.1.4 Remark. Attempting to «fix» linearity by augmenting with more terms, will violate
the crucial exogeneity of the Ξ operator, which we need to keep the first term of (16) out-
side the optimization. Let for example the model be Ṁ = η̄1[0,τ ]−δ2M

2−δ1M , and so that
M is trapped in the unit interval. Then we attempt to introduce an infinite-dimensional
linear model with coordinatesMi(t) = the ith power ofM(t); it easily follows by induction
that each Ṁi can be written as a polynomial in M , hence as a finite linear combination
of the coordinates. However, then Ṁ2 = 2MṀ = 2M1η̄1[0,τ ] − δ2M3 − δ1M2, and the
first term makes the new infinite-dimensional Ξ dependent on control – and that ruins the
non-dependence argument even if said dependence occurs only in coordinates which do not
enter the running damage! 4

Let us work out how to fit the model of Proposition 1.1.1 into the applicability of Propo-
sition 2.1.2. The key is the contraction property established in the usual Picard–Lindelöf
iteration to hold locally, and just as in that argument, we can apply the following piecewise:
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• Our control A is now the cumulative emissions, the function t 7→
∫ t

0
η(s) ds. For the

problem of Proposition 1.1.1, A is the set of functions of the form η̄min{t, τ} for
some stopping time τ ≥ 0.

• The H function is the constant m.

• Ξ takes as input the function t 7→M(t) and returns the function t 7→ −δ
∫ t

0
M(s) ds.

• The aggregate damage is Φ, whose dependence on the initial conditionG = θ ∈ [0,∞)
is notationally suppressed.

The «piecewise» version of this is carried out on the partition 0 = t0 < t1 < ..., where ti
defined as first time contraction failed in the previous step, by shrinkingM to the subspace1

of functions with the known past t 7→M(min{t, ti}).

2.1.5 Remark. As mentioned in section 1, a strategy for flow pollutants will not depend
on state. In the case where the flow incurs a cost – ecological damage or Pigouvian tax –
then this is covered by the Γ functional, as it takes as input the entire emissions path and
hence can depend on the time-derivative. Nevertheless, it could be of interest to consider
a flow as a limit of a fast-decaying stock. One can then let Ξ represent a fast decay, and
renormalize X. Letting X = H + 1

ε
Ã and Ξ = 1

ε
Ξ̃, M is solved by

M = −(Ξ̃− εI)−1(εH + Ã)

in terms of the resolvent (Ξ̃ − εI)−1 of Ξ̃. If 0 is in the closure of the resolvent set,
we can then let ε → 0 through an appropriate sequence. Using again the problem of
Proposition 1.1.1 as example, we can take δ = 1/ε and η̃ = η̄/ε; then Ã = −η̃ Ξ̃1[0,τ ] =

η̃ ·
(
(εI − Ξ̃)1[0,τ ] − ε1[0,τ ]

)
, so that

M = ε(εI − Ξ̃)−1(H + 1[0,τ ]) + (εI − Ξ̃)−1(εI − Ξ̃)η̃1[0,τ ]

→ η̃1[0,τ ] as ε↘ 0 i.e. as δ → +∞

Thus in the limit, M is precisely the flow expressed as a limit of normalized stocks. 4

3 Some nonlinear cases

Linearity turns out not to be a necessary condition for the property of Definition 2.0.5; we
have merely used that H splits out additively upon application of the (ΦΨ) functional.
Furthermore, there are examples where not even this additivity holds, and where still the
optimization does not depend on history. The question is rather, whether these are to be
considered merely degeneracies. Of course, that is a matter of definition and opinion –

1behind the scenes, the null element of this space is the history; indeed, we could have performed that
translation by m in the first place
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for example, one would likely consider it a degeneracy if one ad hoc, for the purpose of
creating an example, restricts the set of controls in just in order to satisy the requirement
of Definition 2.0.5. Also, there are Φ functionals which do depend on H explicitely; for
example one can construct a cancelling of H by Φ = Φ̃(I − Ξ), i.e. ΦX = Φ̃M , and
M 7→ Φ̃M need not depend on H. For example, in the language of Proposition 1.1.1, a
functional that takes as input the path of eδtM(t) −M(0) will yield an expression which
does not depend on M(0) = m. The integral criteria of sections 1 and 4 would not be
prone to these kinds of constructed degeneracy, though.

The following will consider some cases which are nonelinear, but where the optimization
still does not depend on initial stock. The first quadratic case is arguably the more «de-
generate»:

3.1 A quadratic case

There turns out to be quadratic cases where the Γ cancels out the part which does not
depend on H, leaving one which does, but in a way that might leave the optimization not
depending. Suppose that the objective to be minimized is no longer linear, but involving
a quadratic: ΦM + 〈M,M〉+ Γ(A), for some suitable bilinear form 〈 · , · 〉. Suppose now
the particular form where Γ = Γ0 −ΦΨA− 〈A,A〉, where Γ0 does not depend on A. We
still assume the linear M = Ψ(A+H). Then the minimization problem becomes

ΦΨH + 〈ΨH,ΨH〉+ 2 inf
A∈A
〈ΨA,ΨH〉 (17)

and although the minimization usually depends upon H, there could be counterexam-
ples if the dependence on H separates out as a single multiplicative factor. Let us again
take the example from Proposition 1.1.1 as starting point. We modify the objective func-
tion (before applying the expectation) by replacing the linear integrand by the quadratic
e−rtΘ(t)(M(t))2 – as long as we assume m ≥ 0, this is increasing in M – and then replace
ke−rτ by the functional

Γ = η̄2

∫ ∞
0

e−(r+2δ)t Θ(t)
[( ∫ t

0

eδs ds
)2

−
(∫ min{t,τ}

0

eδs ds
)2]

dt (18)

assuming r big enough to keep everything finite. It has some properties in common with
the problem of Proposition 1.1.1; it is decreasing in τ , but positive whenever τ < ∞ and
θ > 0. We can simplify the minimand to∫ ∞

0

e−rt Θ(t)(M(t))2 dt+ Γ

= η̄2

∫ ∞
0

e−(r+2δ)t Θ(t)
(∫ t

0

eδs ds
)2

dt+ 2mη̄

∫ ∞
0

e−(r+2δ)t Θ(t)
(∫ min{t,τ}

0

eδs ds
)

dt

(19)
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and the minimization does not depend upon nonnegative m. Neither does the minimum,
trivially obtained by τ = 0. Again, we need to emphasize that establishing the «does not
depend» property of Definition 2.0.5 is more modest than the claim that the corresponding
property of the optimal strategy: Γ and Φ could have a common minimand without Defi-
nition 2.0.5 applying. And, there could be other cases where there is a «corner solution»
(i.e. for one-shot timing problems: such that the optimal τ is a.s. 0 or a.s. +∞).

It seems tempting to guess that nonlinear Φ, will lead to an optimization problem de-
pending on H except degenerate cases – for a suitable opinion on «degenerate». The next
subsection will consider a class where the linearity condition is weakened.

3.2 Additivity over history or over control: worst-case scenario optimization and
a connection to risk measures

Suppose that we are not optimizing a problem like (16), but, rather than with one fixed
linear functional (ΦΨ), we are given a family of functionals with the criterion being to
optimize over the «worst-case». In the following, a range of functionals Λ will replace the
single ΦΨ, with you playing against a worst-case opponent Λ ∈ L. Modify the setup of
Proposition 2.1.2 such that the objective is

inf
A∈A

sup
Λ∈L
{Λ(H + A) + ΓΛ(A)} (20)

This criterion is, usually, nonlinear, but the optimization – the one wrt. A – need still not
depend on H. One example, stated in the last part of the next Proposition, would be if a
minimax theorem applies; reversing order and splitting off the ΛH term, we get – for each
Λ – an optimization problem which does not depend on H. In that case, though, we need
some structure on the Γ functional.

Of course we do not need Λ to be linear either, as long as Λ(H + A) = ΛH + ΛA; this
is reflected in the next Proposition, which is formulated somewhat ad hoc; the purpose
of this subsection is to point out that there are such cases which – arguably – could be
considered reasonable modelling criteria, not to give the full extent of those.

3.2.1 Proposition. Consider the problem

inf
A∈A

sup
Λ∈L
{ΛH + ΛA+ ΓΛ(A)} (21)

where L is a given family of functionals Λ : M→ R and A is our control. The functional
Γ can depend on Λ, although in part (i) below we will assume it does not:

(i) If Λ 7→ ΛA is constant on L for each A, and furthermore that ΓΛ is constant wrt. Λ
for each A, the optimization problem (21) reduces to

inf
A∈A

{
Λ0A+ ΓΛ0(A)

}
+ sup

Λ∈L
ΛH (22)

for an arbitrarily chosen Λ0 ∈ L.
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(ii) If instead Λ 7→ ΛH is constant on L for each H, then (21) reduces to

Λ0H + inf
A∈A

sup
Λ∈L

{
ΛA+ ΓΛ(A)

}
(23)

again, for an arbitrarily chosen Λ0 ∈ L.

(iii) Alternatively, suppose that L is convex and A is convex and compact, and that
Λ 7→ ΓΛ(A) is upper semicontinuous and quasiconcave and A 7→ ΓΛ(A) is lower
semicontinuous and quasiconvex. Then (21) can be written

sup
Λ∈L

{
ΛH + min

A∈A
{ΛA+ ΓΛ(A)}

}
(24)

provided the inner minimum is attained.

Neither of these three optimization problems wrt. A, depend on H.

Proof. The first two parts are self-evident. The assumptions for part (iii), are those Sion’s
generalization of the celebrated von Neumann minimax theorem (cf. e.g. [14]).

It should be remarked that the convexity of A could be a significant restriction; for the
one-shot case, the set of functions of the form A(t) = η̄ min{t, τ} is not convex, and one
will have to extend the problem for a hope to apply part (iii).

The respective conditions of invariance wrt. Λ may at first glance seem artificial, but there
are obvious examples where they are reasonable extensions of the model. For an obvious
example: if current stock m (from everyone else’s contributions) is the only thing uncertain
and disagreed upon, then we are obviously in case (i). More generally, the invariance wrt.
Λ, in particular the one in (ii), will show up if the optimization criterion is a certain special
case of a risk measure as introduced in financial mathematics by Artzner and co-authors
[1], [2] (the «coherent» case). Following the more general (convex) case of Föllmer and
Schied [8], [9], we make the following definition, where the U is a «good» – such that −U
represents loss, cost or damage.

3.2.2 Definition. A convex risk measure ρ is a functional on a family of uncertain out-
comes U , satisfying the below properties, where a is real-valued and constant:

(i) Translation invariance over constants: ρ(U + a) = ρ(U)− a, all real a.

(ii) Monotonicity: If U1 ≥ U0 then ρ(U1) ≤ ρ(U0).

(iii) Convexity: ρ(aU0 + (1− a)U1) ≤ aρ(U0) + (1− a)ρ(U1), all a ∈ [0, 1].

Furthermore, a convex risk measure is called coherent if (iii) is strengthened into (iv)–(v):

(iv) Positive homogeneity: ρ(aU) = aρ(U) for all a ≥ 0.

(v) Subadditivity: ρ(U0 + U1) ≤ ρ(U0) + ρ(U1). 4
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The «uncertain outcomes» are uncertain in the Knightian sense: there is no ex ante given
probability space, and the probabilistic representation to follow below – representing Knigh-
tian uncertainty through Knightian risk – is a theorem and not an assumption. However,
the definition assumes constants to be known, hence null sets, which also explanins the rôle
of the below dominating reference measure P0 – which nobody needs to actually believe
in, apart from the sigma-ring of null sets it generates.

The theory of risk measures establishes a connection between the quantification ρ, and
sets of acceptable risks, not unlike preferences represented by utility functions. For convex
risk measures, the acceptance sets are convex (analogous to convex preferences), by [8,
Proposition 2]. Under suitable regularity conditions on the family of null sets, there is a
representation theorem, [8, subsection 2.2], where any convex risk measure ρ can be repre-
sented in terms of varying probability measures as follows, where EP denotes expectation
wrt. the P measure:

ρ(U) = sup
P∈P

{
− ζ(P) + EP[−U ]

}
(25)

for some family P of probability measures which are absolutely continuous wrt. some given
common P0, and some extended real functional ζ : P → (−∞,+∞] with ζ(P) ≥ −ρ(0),
all P ∈ P. Further properties of P and ζ are well established: under mild regularity con-
ditions, ζ can be chosen to be convex and lower semicontinuous; P can be chosen as the
full family of P0-absolutely continuous measures; and if ρ is also coherent, we can instead
restrict P in a way that admits ζ ≡ 0 (this by putting ζ = +∞ outside the restriction).

Compare now to the various cases of Proposition 3.2.1: For part (ii), note the similarity
in form of the braced expressions of (25) and (23) – though the properties of P 7→ −ζ
need not in general apply to Λ 7→ Γ; should the latter however be concave and upper
semicontinuous, we are in the scope of part (iii). For part (i), note in the coherent case
(ζ = 0) the similarity to the rightmost term of (22). We have the following observation
which connects a special case of coherent risk measures to the nondependence of history
in the problem of Proposition 3.2.1:

3.2.3 Remark. Suppose that each Λ is a negative expectation −EP and that Γ does not
depend on Λ, i.e. not on P. With the supΛ{ΛH + ΛA} of (21) being a coherent risk
measure, make the additional assumption that part (i) of the definition admits strength-
ening from translation invariance over constants to additivity over the damage ΛH from
the history. Then (20) does admit the form (21), and

inf
A∈A

sup
Λ∈L
{Λ(H + A) + ΓΛ(A)} = inf

A∈A
{Γ(A) + ρ(H) + ρ(A)} (26)

where the latter optimization does not depend on H. 4
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Thus if the criterion is to minimize a functional where the ecological damage can be writ-
ten as a coherent risk measure, then we need a bit more – but, it could be argued, not
drastically more – structure to obtain the non-dependence.

There is a canonical interpretation to the representation (25). A coherent risk measure
corresponds to evaluating risk by picking the worst-case among a fixed set of probabil-
ity measures (interpretable as «worst of the reference scenarios», or «most pessimistic
committee member’s expectation»); a convex risk measure also introduces a penalty ζ,
interpretable as a trade-off to account for the scenarios not being equally credible. Ap-
plying this thinking to Proposition 3.2.1, we can give the cases the following respective
interpretations:

(i) Proposition 3.2.1 part (i) fits a case where the expected damage from our actions – for
a given strategy – is the same in all scenarios; everyone agrees on the expectation of
this quantity. Fitting this to the case of Proposition 1.1.1, it would mean that there
should not be any disagreement over the probability distribution of Θ, as that would
affect the damage from our project; however, with m being the stock from everyone
else’s activity, that could be unknown. Polling a panel of experts to each give their
expected value, does not affect the optimization, only the optimal value.
Notice that this interpretation is completely at odds with the «small agent» model,
where m is this project’s history and Θ models the marginal cost, a result of everyone
else’s actions.

(ii) Proposition 3.2.1 part (ii) fits a case where the expected damage from the history is
the same in all scenarios, but the expected damage or cost from the infrastructure
under consideration, is not. It does not seem natural to consider this option in the
problem of Proposition 1.1.1, but example 3.2.4 will elaborate on a case where such
a criterion could be employed for the optimization of the initial infrastructure like in
[11].

Before the specific example, let us make some more general considerations: Specialize first
to the expectation form, where for each P – the class being such that all members are
absolutely continuous wrt. some common probability measure P0 – we have

ΦM = EP

[ ∫ ∞
0

e−rtΘ(t)M(t) dt
]

= EP

∫ ∞
0

e−rtΘ(t)ΨA(t) dt+ EP

∫ ∞
0

e−rtΘ(t)ΨH(t)) dt

(27)

and assume that all P ∈ P agree on the rightmost term, i.e. the expected future damage
from the history. Consider the following criterion:

inf
A∈A

sup
P∈P

{
EP

∫ ∞
0

e−rtΘ(t)M(t) dt+ ΓP(A)
}

(28)

13



Even without linearity, the invariance over history yields sufficient structure to write

EP0

∫ ∞
0

e−rtΘ(t)ΨH(t) dt+ inf
A∈A

sup
P∈P

{
EP0

∫ ∞
0

e−rt Θ(t)ΨA(t) dt dP
dP0

+ ΓP(A)
}

(29)

Moving the Radon–Nikodým derivative under the integral sign and applying t-conditional
expectation (where the integrand is assumed adapted to the filtration), we can put Q(t) =
Et[ dP/ dP0]. If the Γ functional admits of a similar expected integral form, we can make
the similar operation, and formulate as a sequential optimal control problem formulated
under a single measure, namely P0 (despite that nobody needs actually believe in it). The
next example will be a bit simpler, however.

3.2.4 Example. In the Framstad and Strand [11] extension to the model of Proposition 1.1.1,
there are two choice variables. One is the initial infrastructure, represented by its emission
level η̄, chosen subject to an immediate cost of setting up / benefit from the infrastructure
k0(η̄) – we assume no uncertainty about the benefit from the infrastructure. The other
is the time τ to cease emissions. The model is otherwise quite similar to the one of
Proposition 1.1.1, where Θ is geometric Brownian – let us assume that everyone agrees it
will be that kind of process. Now the expected damage from current stock, from (7), is
Θ0m/(r+δ−α). Let us imagine that all those five parameters are known and agreed upon,
but that the volatility σ2 is unknown and disagreed upon; notice that this uncertainty would
unwind immediately as Θ starts, as volatility can be calculated from any positive time-
interval. Let us therefore assume that the next observation of Θ is at a future deterministic
time, where a continuous observation of the time series will start, and that implementation
of the cleaning technology will certainly not take place before that date. Shifting time, call
that date zero, so that we now are at time −T .
Suppose now that starting from time 0, then τ will be optimized according to the scenario
which as been revealed, but the initial choice of η̄ should be made in order to minimize
total damages and cost for the worst-case scenario to be revealed at time zero. As the
optimization problem does not depend on the current stock, we drop out the mΘ−T/(r +
δ − α) term; we shall optimize

inf
η̄

{
k0(η̄) + η̄ e−rT sup

P∈P
EP

[ ∫ ∞
0

e−(r+δ)t Θ(t)
(∫ min{t,τP}

0

eδs ds
)

dt+ ke−rτP
]}

(30)

where τP is the optimized stopping time. P can however be indexed by the possible values
of σ2, and we pick the one that yields the highest value function (5). The aggregated
damages and costs if running forever, do not depend on σ, and can be reduced by an
option to stop – this reduction term increases in σ2, so the smallest possible choice yields
the worst-case (5) – in particular, if all σ2 could be arbitrarily small, the optimization wrt.
η̄ should assume the deterministic scenario. In [11], comparative statics wrt. volatility
are considered for more general cost structures, assuming k0 decreasing and convex. Lower
volatility is shown to reduce both initial emission level η̄ and the trigger value θ∗, as well as
the expected total emissions, provided that the implementation cost k = k(η̄) has elasticity
between 1 and γ/(γ − 1). 4
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4 Linear (stochastic) differential equations.

This section concerns cover the case where M is governed by a stochastic differential
equation. The standard existence and uniqueness result is a Picard–Lindelöf argument,
which of course applies under linearity, so it is a special case of Proposition 2.1.2, but if we
want to solve the problem (15) from the representation (16), we would want to write out
the latter. Notice though, that it is not necessarily desirable to work with (16) – especially
as Proposition 2.1.2 provides us with the information that we can look for an optimal rule
not depending on the state of M . The next subsection will cover the semimartingale Itô
differential case, and then other integrals will be sketched in subsection 4.2.

4.1 Itô stochastic differential equations

Let us fix the setup and notation for this subsection:

• We shall work on a (notationally suppressed) usual stochastic basis; namely, a prob-
ability space equipped with a right-continuous filtration complete at time zero.

• Vectors are column vectors, unless indicated by the transposition superscript † . The
symbol · denotes the Euclidean inner product on Rd, but will be used for products
between scalars as well.

• For stochastic processes, denote by superscript c for continuous part, and for discon-
tinuities: ∆+Y = Y (t+)− Y (t), ∆−Y = Y (t)− Y (t−). We will use ∆± for formulas
valid for both, and merely ∆ when the interpretation is unambiguous. Furthermore,
we use accents Ỳ , resp. Ý for the left-continuous version, resp. right-continuous ver-
sion of Y .

• The reader should be aware that as matrix products do not commute, notation like
dΠ(t)M(t) may be necessary even when M will be part of the integration.

• Differentials denote Itô type integration.

We now specify the objective function; we assume that the optimization problem is to
minimize the expected value of the functional∫ ∞

0

(
M(t−)† dD(t) + dC(t)

)
. (31)

where we shall, ad hoc, assume integrability. Since we are in a multidimensional setting,
the discount factor e−rt has been incorporated into the processes D and C (mnemonics:
Damage from the pollutant, Cost of control).

The modelling building blocks are the following entities
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Measurability/continuity assumptions on the processes. We assume that all processes
are adapted, and their sample paths possess both left and right limits. In addition, the
following are standing assumptions:

(a) The Rd-valued process D, assumed right-continuous, is an exogeneously given (uncon-
trolled) process which aggregates the environmental damage of the pollutant stock.
dD specializes Φ but generalizes e−rtΘ(t) dt.

(b) M will be the pollutant stock, which we can affect through a predictable, hence assumed
left-continuous, control denoted S; we introduce this for the sake of interpretation,
although we will not write down the explicite way it enters. t 7→ M need not be left
nor right continuous. We shall introduce a driving process X for M , and the following
measurability/continuity conditions will apply for X and for M :
• On intervals where S is constant, M will be assumed right-continuous.
• At discontinuity times T for S – henceforth interventions , M , does not affect
M(T ), only M(T+). In other words, we have that M(T ) does not depend on
∆+S = S(T+) − S(T ), which may in turn depend on the history up to and
including T (the T -measurability of this difference is the assumed predictability),
and which affects ∆+M . Due to the assumed right-continuity of the filtration,
M(T+) is T -measurable; at time T , we know our intervention ∆+S, and there is
no randomness drawing the right limit.

(c) The process C – specializing the Γ functional but generalizing ke−rτ – is the incurred
cost of the control, allowed to depend on the history (subject to assumptions specified
below), in particular, the entire history of S, but we shall below assume it does not
depend on H. As C is only an integrator for the continuous discount factor, we do not
need to worry about left-hand or right-hand jumps, as discontinuities contribute only
through C(T+)− C(T−). We can therefore work with any version.

The dynamics for M will in this subsection be assumed to obey the following form (in
terms of transposes, to get the differential postmultiplied):

dM †(t) = M †(t−) dΞ†(t) + dX†(t), M(0) = m (32)

where H is fully represented through m, and the Ξ functional is specified as integration
wrt. the given Rd×d-valued right-continuous process Ξ. In order to fit to the setup, put
X(0) = m and A = X −m; then the Rd-valued process X −m can be influenced by the
control (but shall not depend on M nor m).

We then have the following:

4.1.1 Proposition. Suppose that for each given control S, the following holds: Ξ, D, X
and C are given semimartingales, the two first right-continuous, and that the jumps satisfy,
with probability 1,

∆Ξ∆X́ ∈ column space (I + ∆Ξ), all jumps. (33)
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Suppose furthermore that M uniquely (up to version) solves the (Itô) stochastic differential
equation (32). Then there exists some Rd-valued semimartingale Π, given by

Π(0) = I, dΠ(t) = ( dΞ(t))Π(t−) (34)

2such that (31) equals, if at most one integral diverges,

m†
∫ ∞

0

Π(t)† dD +

∫ ∞
0

([
∆+X(0) +

∫
(0,t]

Π(s−)−1 d
(
X́(s)− Y (s)

)]†
Π(t)

†
dD + dC(t)

)
(35)

where Y is a right-continuous process such that, in terms of Itô differentials,

dY c = dΞc dXc, (I + ∆Ξ)∆Y = ∆Ξ∆X́ (36)

In particular, if Ξ and D do not depend on S, then the minimization over S does not
depend on M .

Proof. Notice first that (33) ensures that (36) can be satisfied even when ∆Ξ has an
eigenvalue of −1. Now M enters directly the objective only through the left-continuous
version. We can therefore first do the differential calculus on the right-continuous version
Ḿ , which satisfies (32) except at intervention times. Notice that Ḿ(0) = m+ ∆+M(0) =
m+ ∆+X(0), and ∆+X(0) depends solely on ∆+S(0). We claim that

Ḿ(t) = Π(t)m+Π(t)
[
∆+X(0) +

∫
(0,t]

Π(s−)−1 d
(
X́(s)− Y (s)

)]
(37)

To see this, differentiate using the Itô formula. Suppressing time arguments,

dḾ = ( dΞ)M̀ +ΠΠ−1 d(X́ − Y ) + ( dΞ)( d(X́ − Y )) (38)

where the latter term is the cross-variation expressed as Itô differentials. Now cancel terms
using (36).

4.1.2 Remark. A few comments are appropriate.

(a) The restriction (33) applies in the case where the jump amplitude could possibly have
−1 as eigenvalue (in which case, at the eigenvector, Ξ would cause a jump to null).
It limits the possible jumps X could make at the same time. The condition will be
satisfied if, at any jump time T , then if a coordinate of M jumps to a state not
depending on M(T−), then this new post-jump state is zero. It thus covers cases
where the pollutant should vanish at a jump (say, if we are modelling a case where
some exogeneous agent could at some point T choose to clean up).

2form with time-differentials postmultiplied: (Π† dΞ†)†
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(b) The model and result admits cases where we actually intervene in the pollution stock,
but only throughX – that is, in absolute numbers, not in percentages. The intervention
does not depend on the level; if damages and costs are so that it pays off to remove 1
unit of the pollutant, then that decision does not depend on the stock level. This may
be objectionable when M models cardinal level, as it could bring M outside the first
orthant – and capping the cleansing operation to keep stocks nonnegative, would mean
that the strategy takes the state of M into account. This objection does however not
apply to a discrete emission which instantly increases one or more coordinates of M .

(c) These discrete interventions in X may seem to be not captured in the above argument,
but no information is lost. Even if the proof only uses the left- and right-continuous
versions, then ∆+S(t) could in principle be based on the observation of M(t) as well
(as that is measurable), and not merely the left limit. Without welfare loss, it will
actually not depend on M(t) – that property is now proven, not merely assumed.

(d) The dynamics of M can depend on D, but not the other way around; if D depends on
our control then them-dependent part may of course also do so. M andD may however
be driven by common given processes – just augment D with these, and augment M
with zero-valued coordinates to match the dimension for the dot product.

(e) Even thoughD is assumed semimartingale, it is a generalization of the «no assumptions
needed» Θ of Remark 1.1.2(c). Recall that D(t) does not correspond Θ(t), but to∫ t

0
e−rsΘ(s) ds.

(f) Proposition 4.1.1 covers linear stochastic difference equations. To those who have only
familiarized themselves with the stochastic integral with respect to Brownian motion
and then maybe with respect to Lévy motions, Markov chains as Itô diffusion-type
processes may look as a bit of an odd approach. However, the semimartingale concept
does not require jump-times to be random, and processes could very well be constant
between integer times – all such processes are in fact semimartingales, as long as they
are adapted. 4

The linearity of the evolutionary operator covers higher-order differential equations for
M . Assuming ad hoc stability and generality, then the optimal strategy still does not
depend on M if the model of Proposition 1.1.1 is modified to allow for an nth order linear
differential equation

n∑
i=0

δi ·
( d

dt

)i
M(t) = η̄ · 1t∈[0,τ ] with M ∈ Cn−1 ∩ Cn([0,∞) \ {τ}) (39)

In the following example, we shall cover the stable non-oscillating case with n = 2.
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4.1.3 Example. Consider the model of Proposition 1.1.1, except that M obeys equation
(39) with δ2 = 1 and δ1 > 2

√
δ0, δ0 ≥ 0. With characteristic roots

λ1 = − δ1
2
−
√

δ21
4
− δ0 < λ2 = − δ1

2
+

√
δ21
4
− δ0 (40)

and initial data M(0) = m, Ṁ(0) = µ, we get

M(t) =
η̄

δ0

+
1

λ2 − λ1

([
λ2(m− η̄

δ0
)− µ

]
eλ1t −

[
λ1(m− η̄

δ0
)− µ

]
eλ2t

− η̄

δ0

{
λ2(1− eλ1 min{0,t−τ})− λ1(1− eλ2 min{0,t−τ})

}) (41)

We see that them and µ terms split out linearly in a way that does not depend on emissions.
However, with η̄ given, we can just as well split out the entire first line, which does not
depend on τ . The first line yields the damage

θη̄

δ0(r − α)
+

θ

λ2 − λ1

(λ2(m− η̄
δ0

)− µ
r − λ1 − α

−
λ1(m− η̄

δ0
)− µ

r − λ2 − α

)
=
( η̄

(r − α)
+ (r − λ1 − λ2 − α)m+ µ

)
· θ

(r − λ2 − α)(r − λ1 − α)
(42)

while the contribution from the rest, including intervention cost, is

ke−rτ − η̄

δ0(λ2 − λ1)

∫ ∞
0

e−rtΘ(t)
{
λ2(1− eλ1 min{0,t−τ})− λ1(1− eλ2 min{0,t−τ})

}
dt (43)

which has expectation

E
[
ke−rτ − η̄

δ0

e−rτΘ(τ)

∫ ∞
0

e−(r−α)t
{

1 +
λ1e

λ2t − λ2e
λ1t

λ2 − λ1

}
dt
]

(44)

where we have used the strong Markov property to perform the time-change, and the
multiplicative form of the geometric Brownian motion. Again, by the strong Markov
property and the continuity of the gBm, it suffices to consider stopping times of the form
τ̂ = first hitting time for [θ̂,∞), and then one can optimize over θ̂:(

k − θ̂ · η̄
δ0

·
{ 1

r − α
− r − λ1 − λ2 − α

(r − λ2 − α)(r − λ1 − α)

})
· E[e−rτ̂ ]

=
(
k − η̄θ̂

(r − α)(r − λ1 − α)(r − λ2 − α)

)
·min{1, (θ/θ̂)γ} (45)

with γ given by (4). The minimizer is

θ∗ =
γ

γ − 1
· k(η̄)

η̄
· (r − α)(r − λ1 − α)(r − λ2 − α) (46)
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– compare to (4) again – so that (45) becomes −min{1, (θ/θ∗)γ} · k/(γ − 1). To get the
value function, and on a form comparable with (5), we add the (42) contribution:

(r − λ1 − λ2 − α)m+ µ

(r − λ2 − α)(r − λ1 − α)
θ + k(η̄) ·

{[
γ θ
θ∗
−
(
θ
θ∗

)γ]/
(γ − 1) if θ < θ∗

1 if θ ≥ θ∗.
(47)

The first term is the damage which incurs with or without the project in question, and we
see that the contribution from the optimized project has precisely the same form, except
with a modified formula for the optimal trigger level θ∗. Observe that λ1 and λ2 are both
negative, so the condition r > α ensures that everything converges. 4

4.2 Some considerations beyond the Itô integral

The previous subsection employed the standard stochastic calculus setup: the Itô integral
wrt. semimartingales. The approach does however apply to other integral concepts as well.

Let us first point out that fractional integrals – whether they are of Erdély–Kober type (uni-
fying and generalizing both the Weyl and Riemann-Liouville types, see [18]) or Hadamard
type – are linear and can be covered by the form (12). Fractional differential equations
have been proposed to model anomalous diffusion («diffusion» here meaning the physical
phenomenon, e.g. particle flows in hydrology), see e.g. [5]. Another use is to allow for
non-semimartingales, e.g. the well-known fractional Brownian motion, as a driving noise
in differential equations. The brief exposition on fractional calculus in what follows, is
intended to facilitate the latter – the Stratonovich type and Hitsuda–Skorohod / Wick–Itô
type integrals are valid also for the semimartingale framework as a special case.

An example: Fractional Brownian motion The fractional Brownian motion (fBm) X(h) of
Hurst parameter h ∈ (0, 1) is a Gaussian process with zero mean, and covariance structure
(for the univariate case) E[(X(h)(T ) − X(h)(t))2] = |T − t|2h. We shall work with the
continuous-path version (ensured by the Kolmogorov continuity theorem). The term was
coined by the seminal paper [17], defining it as the (h−1/2)-order Weyl fractional integral
(/derivative) of ordinary Brownian motion X, as, for h 6= 1/2,

(constant) ×
∫ t

−∞

[
(t− s)h−1/2 − (max{0,−s})h−1/2

]
dX(t) (48)

but fBm also admits finite-memory Erdély–Kober representations (e.g. [6]). fBm has
negatively correlated increments for h < 1/2. For h > 1/2 it has positively corre-
lated increments, and the long memory property that the covariance of the increments
X(h)(1) − X(h)(0) and X(h)(T ) − X(h)(1) diverges to +∞ with T . The long memory
has been a rationale to consider it as a model for various phenomena, including finance;
however, not being semimartingale, it leads to arbitrages (i.e. riskless free lunches) in fric-
tionless markets with continuous trading. Among the vast literature on the topic, see e.g.

20



Rogers’ article [21], where he not only establishes an arbitrage strategy, but also how to fit
the same long memory property into an arbitrage-free semimartingale model. Fractional
Brownian motion has also been used in the modelling of pollution, e.g. [12].

The non-semimartingale property means that fractional Brownian motion as an integrator,
behaves somewhat different from ordinary Brownian motion. We mention a few cases suited
to allow these kinds of processes as integrators.

The integrals of Young and Stratonovich and beyond. For stochastic analysis wrt. Brow-
nian motion, there is the well-known Stratonovich integral, formalized by choosing the
midpoint time for the integrands, taking limits of sums Y (1

2
(ti+1 + ti))(X(ti+1) − X(ti)).

The Stratonovich integral admits an ordinary chain rule, without second-order terms. It
turns out that if the driving process is continuous (discontinuities may be handled jump-
by-jump) and with paths of zero quadratic variation, the Itô and Stratonovich integrals
coincide, and equal the Young integral, which is, in some sense, the only continuous path-
wise integral under this regularity. The Stratonovich integral thus extends the Young
integral while keeping its (ordinary) chain rule. If we assume continuous sample paths and
ordinary chain rule in Proposition 4.1.1, we put Y = 0 and delete ∆X and cross terms.
Even though the optimization problem could be cumbersome, we know that the state and
history of M need not be taken into account, reducing the dimensionality of the optimiza-
tion problem.

Further generalizations can be given through the theory of rough paths , see e.g. [16], and
the linear differential equations that arise with those integrals, admit existence/uniqueness
by Picard-type iteration.

The Wick–Itô and Hitsuda–Skorohod type integrals. Originating from white noise theory,
these integrals are defined on distributions spaces, wherein Brownian motion is actually
differentiable. The Wick–Itô formulation does in fact use the time-derivative of Brownian
motion, allowing a Riemann-sum based integral (technically defined in the Bochner or even
Pettis sense), written as ∫ T

0

Y (t) ♦ Ẋ(t) dt (49)

where the ♦ denotes the (associative, commutative) so-called Wick product. This is not a
pathwise («ω-wise») integral, as the Wick product is not a product between the realizations
of random variables, but a product of probability distributions (somehow in the sense that
the convolution product is); it has the property that the expectation of a Wick product, is
the product of expectations. Furthermore, the Wick–Itô integral admits a Wick product-
version of the ordinary chain rule, on a certain closure of the set of Wick polynomials∑
ciU

♦i (for example, the Wick exponential exp♦(X(t)) = 1 +
∑

i∈NX(t)♦i/i! will have the
time-derivative Ẋ(t) ♦ exp♦(X(t)). References for white noise theory with applications to
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Wick–Itô differential equations include the book [13], and for fBm, [7].

Let us simply perform the formal algebraic manipulation using the Wick-type integral,
to see the consequences for the model – assuming for simplicity continuous sample paths.
First, we need a Wick-integrating factor: Π = exp♦(Ξ). Then M becomes

M(t) = Π(t) ♦m+Π(t) ♦

∫ t

0

Π(s)♦(−1) ♦ dX(s) (50)

= exp♦(Ξ(t)) ♦m+ exp♦(Ξ(t)) ♦

∫ t

0

exp♦(−Ξ(s)) ♦ Ẋ(s) dt (51)

Now the first term goes outside the minimization. Let us assume that we are again in a
one-shot model where Ẋ(t) can be written η̄1[0,τ ]. If the damage functional is on Wick
form – the differential being ♦ dD = ♦ Θ dt – then we are in a sense lucky, as we then
have a pure Wick formulation, and one might apply expectations first and optimization
afterwards. However, mixing the ω-wise product and the Wick product, will usually lead
to intractabilities, and converting back and forth is certainly not trivial. For example, if
we have pathwise differential dD, we would want to calculate the probability distribution
exp♦(Ξ(t) − Ξ(s)) ♦ 1[0,τ ] and evaluate at ω; the author is not aware of any tractable way
to do this for general stopping times τ . And without doing this evaluation, we only have a
distribution, not a response to path; without evaluation, the Wick product does not state
how to respond to observation. Thus, the modelling choice at each «product» occurring in
the model – Wick-type or ω-wise type – has nontrivial consequences to model behaviour.
The linearity is still key to the property of Proposition 2.1.2 though, and the knowledge
that the optimization can be carried out without regard to H could potentially help mak-
ing the problem tractable.

The Wick–Itô integral is often employed in anticipative stochastic calculus – for example,
in (51), the ♦ in front of the m allows it to be random, and it could even depend on future
states ofM , as long as we do not have the opposite (functional) dependence. Indeed, there
are other integral concepts designed for anticipative stochastic calculus, see for example
[15] for a fairly recent one.

Stochastic partial differential equations As pointed out in Remark 2.1.3, the theory of
Proposition 2.1.2 covers (linear) time–space evolution modeled by the heat equation. The
dissemination of pollutant in space could also be subject to randomness. Such models could
be hard to accommodate under ordinary stochastic calculus, as one could easily encounter
models where one would want multi-parameter Brownian motion and its second-order
derivative. However, there is a well-developed theory based on white noise analysis, using
the Wick–Itô approach – potentially leading to the same difficulties as for optimal stopping,
in converting the model to one for response to actual observations. Again, see the book
[13].
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5 Closing remarks

For linear models for the decay of pollution, as considered in this paper, the optimization
can be carried out without regard to the stock. This is a property often assumed as a
valid approximation for idealized infinitesimal agents, but under linearity it holds exact
regardless of size. The result admits general damage functionals as long as they do not
depend on M explicitely and so that the functionals themselves are not controllable, and
are linear or possess the appropriate additivity property.

In Itô stochastic differential equation models, the impact cost factor can even covariate
with M in terms of Itô differentials, and the dynamics for M could depend on dD or Θ.
Covariating Itô differentials seems natural from a small agent point of view, when the im-
pact could in reality depend on the aggregate stock; then upwards fluctuations (or jumps)
in the aggregate stock could cause Θ to increase, while it would still be a reasonable approx-
imation to disregard a small agent’s contribution to this effect. But the reverse causality
should definitely be allowed in a multi-agent model, where there would be a feedback from
the Θ level to the agents’ behaviour, and the «θ∗» triggers will vary over the agents’ cost
structures represented by k or more generally the Γ functional.

For future research, the non-dependence result could make it easier to guess a solution form
for problems with linear models, and then fit and verify by the tool of choice, e.g. dynamic
programming. Furthermore, the reduction of dimensionality might be helpful for numerical
solutions. The risk measure-alike criteria, on the other hand is a different issue, with
possible room for modelling of heterogeneous beliefs; a question for the applicability of the
representation herein, is when the additivity property is a realistic modeling assumption.
And, finally, is the kind of transformations employed in this paper useful for more tractable
optimization in models which include stochastic (physical) diffusion of pollutant?
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