Boukouras, Aristotelis; Koufopoulos, Kostas

Working Paper

Information Aggregation and Adverse Selection

Courant Research Centre: Poverty, Equity and Growth - Discussion Papers, No. 62

Provided in Cooperation with:
Courant Research Centre 'Poverty, Equity and Growth in Developing and Transition Countries', University of Göttingen

Suggested Citation: Boukouras, Aristotelis; Koufopoulos, Kostas (2011) : Information Aggregation and Adverse Selection, Courant Research Centre: Poverty, Equity and Growth - Discussion Papers, No. 62

This Version is available at:
http://hdl.handle.net/10419/90554

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Discussion Papers

No. 62

Information Aggregation and Adverse Selection

Aristotelis Boukouras, Kostas Koufopoulos

January 2011
Abstract

We consider a general economy, where agents have private information about their types. Types can be multi-dimensional and potentially interdependent. We show that, if the interim distribution of types is common knowledge (the exact number of agents for each type is known), then a mechanism exists, which is consistent with truthful revelation of private information and which implements first-best allocations of resources as the unique Bayes-Nash equilibrium. Our result requires weak restrictions on preferences (Local Non-Common Indifference Property) and on the Pareto correspondence (Anonymity) and it is robust to small perturbations regarding the knowledge of the interim distribution. Our paper is useful in understanding the power of information aggregation in alleviating incentive constraints and is particularly pertinent to games with large populations, in which case the interim distribution of types converges to a unique distribution.

Keywords: adverse selection, anonymity, first-best allocations, full implementation, information aggregation, mechanism design, single-crossing property, Pareto correspondence

JEL Classification: D71, D82, D86

*We would like to thank Luis Braido, Theodoros Diasakos, Peter Hammond, Christopher Hennessy, Matthew Jackson, Eric Maskin, Claudio Mezzetti, Chris Mürris, Asako Ohinata, Motty Perry, Philip Reny, Paul Youdell and Nikos Zygouras, for their very useful comments and remarks, for which we feel grateful.

†Courant Research Centre Poverty, Equity and Growth, Georg-August University Göttingen, aboukou@gwdg.de

‡University of Warwick, Warwick Business School, Kostas.Koufopoulos@wbs.ac.uk
1 Introduction

As first shown by the papers of Akerlof (1970), Spence (1973) and Rothschild and Stiglitz (1976), hidden-types (adverse selection) problems can have significant consequences in terms of efficiency on economic outcomes\(^1\). More specifically, incentive compatibility constraints limit the set of feasible allocations that can be attained. How are these restrictions relaxed as more information becomes common knowledge? And what is the minimum additional information required for achieving first-best efficiency? These are some of the questions that have emerged in the attempt to better understand the effects of information aggregation on efficiency. Indeed, some early papers by McAfee (1992), Armstrong (1999) and Casella (2002) already point towards this direction.

In this paper we claim that if the number of agents with the same type is known for all types in a population (what we call the interim distribution of types), then it is possible, under fairly general conditions, to implement first-best allocations. More precisely, we consider an economy with asymmetric information and finite agents, each one of whom has private information about his type. We also assume that i) the interim-distribution of types is common knowledge, ii) preferences satisfy the Local Non-Common Indifference Property and iii) the social choice set satisfies Anonymity\(^2\). Given these general conditions, we show that it is possible to construct a mechanism which has a unique Bayes-Nash equilibrium, where all agents reveal their type truthfully and they receive a first-best allocation.

This result has two interpretations. On one hand, one may consider economic applications with a finite number of agents, where, in addition to the private information that each individual has, there is knowledge about how many agents have each type. This additional information could come from a positive or negative information shock. For example, a retail store has received pre-paid orders from its customers, has already the goods in stock and is ready to make the deliveries. However, the records on the orders get destroyed due to an accident and the store’s manager does not know who made each order. What can he do? Can he induce the customers to reveal the orders they have made truthfully without them making unreasonable claims or receiving orders that were meant for other customers? We claim that this is possible, as long as the

\(^1\)The title of our paper may be slightly misleading. Adverse selection is, of course, the outcome that may be generated in private information environments. The true source of the problem is the hidden information. Despite the fact that in our paper we have a hidden-types economy, we show that in the equilibrium of our mechanism, individuals reveal their information truthfully and they receive first-best allocations based on that. Therefore, adverse selection problems never arise as an equilibrium of our game. So, our main claim is that information aggregation, under certain conditions, can eliminate the possibility of adverse selection outcomes.

\(^2\)Since we are considering an economy of incomplete information, different realizations of types, which are consistent with the same interim-distribution, result in different desirable allocations. Therefore, we use the term Social Choice Set instead of the term Social Choice Rule or Correspondence, which usually refers to complete information environments. See also Jackson (1991) and Palfrey and Srivastava (1989).
manager posts a list with all the orders made and gives to each customer a basket of goods, which depends on how many other agents have claimed to have ordered it.

On the other hand, one can interpret this result as an application of the law of large numbers. If the ex-ante probability distribution is known, then, for sufficiently large populations, one can obtain a quite accurate estimate of the aggregate number of agents who have a specific type and, based on this information, he can address adverse selection problems. An example of this case would be insurance companies, which have data on millions of cases, collected over decades, and know with very high accuracy the probability of certain accidents taking place and how personal characteristics affect these probabilities. While the main result is originally stated for the case where the interim distribution is known with perfect precision, we subsequently prove that it holds for the case where it is known with a small noise.

Our formulation is general enough to accommodate both interpretations and the intuition behind the result is common. If the interim-distribution is known, then one can aggregate the messages that all agents are sending out and uncover any misreport(s), even if the identity of the liar is not known. As a consequence, appropriately designed punishments for lying can induce agents to reveal their information truthfully.

We talk about appropriately designed punishments, because one of the features of our mechanism is that punishments must not be too extreme. If the punishment from detecting a lie is too severe, then some agents may deliberately lie about their type in order to force other agents to also do so. The lies cancel out in terms of the aggregate information and the former agents “steal” the allocations of the latter, who are forced to lie under the fear of the extreme punishments. This can lead to coordination failures and multiplicity of equilibria. Therefore, uniqueness of the equilibrium requires a careful construction of the allocations when lies are detected. We show that such punishments exist when the indifference curves of different types are not locally identical, meaning that in the neighborhood of any allocation one can find other allocations such that each type prefers one of these over the rest.

We should also point out that we derive this result for a general hidden-types environment. Types can be multi-dimensional, valuations can be independent or interdependent and the joint probability distribution over type-profiles allows for correlation across types or dependencies on the identity of the agents (different agents may face different probability distributions over types). The only restriction we impose on our notion of (Pareto) efficiency is Anonymity. Anonymity requires that the allocation, which an agent receives, depends only on his type (and possibly on the interim-distribution) but not on his identity. It is a reasonable assumption which is satisfied by the majority of social choice sets. For instance, in many mechanism design papers, a mechanism is efficient if it implements the utilitarian social choice set, which satisfies our definition of Anonymity.

The Walrasian correspondence is another example of a well-known social choice set which satisfies Anonymity. The issues of the existence of equilibrium and its welfare

3See for example the papers by Mezzetti (2004), Jackson and Sonnenschein (2007).
properties in economies with adverse selection have been analyzed by many papers in the context of the Walrasian mechanism\(^4\). It has been shown that the equilibrium, if it exists, is inefficient. Since the usual justification for competitive behavior is the large number of agents in both sides of markets (indeed, most of these papers assume a continuum of agents), one can apply our mechanism in order to implement the full-information competitive equilibrium allocations in the examined economies.

Moreover, it should be pointed out that the assumption of the interim distribution of types being common knowledge is needed because we consider general social choice sets. If we focus on the implementation of specific allocations on the Pareto frontier so that allocations depend only on one's type, we can implement the first-best as a unique equilibrium even if agents have heterogeneous beliefs or no information at all about the interim distribution\(^5\). Our mechanism can still implement the desirable allocations truthfully, given that the social planner knows the interim distribution. This is because, as becomes clear in section 4, players' best-response correspondences depend on their beliefs about how many misreports will be detected by the mechanism and not on their ability to detect other agents' lies. For instance, this formulation fits the example of the store manager we provided earlier. The manager does not have to post the list of orders as we suggested earlier (though it was useful for the purposes of the exposition). It is sufficient that agents know that he knows them.

We also provide necessary and sufficient conditions for full implementation when the interim-distribution is common knowledge and examples of well known economies with adverse selection, where our mechanism can be implemented. It should be stressed that we obtain our equilibrium by using iterated elimination of strictly dominated strategies and, hence, it is also a Bayes-Nash equilibrium. This contrasts with most of the existing papers, where the Bayesian equilibrium concept is used. Finally, we examine issues of robustness to small perturbations regarding the knowledge of the interim-distribution and issues of participation constraints.

2 Related Literature

Our paper is most closely related to papers that use information aggregation to implement first-best allocations in economies with asymmetric information. Thus, in terms of spirit and research questions, Jackson and Sonnenschein (2007) is the paper closest to ours. They consider a specific set of agents, who play multiple copies of the same game at the same time and their types are independently distributed across games. They allow for mechanisms, which “budget” the number of times that an agent claims to be of a certain type. If the number of parallel games becomes very large, then all the Bayes-Nash equilibria of these mechanisms converge to first-best allocations.

\(^5\)E.g. the Walrasian correspondence in the Rothschild-Stiglitz model.
Our model differs from that of Jackson and Sonnenschein in four dimensions: i) we do not require multiple games to be played at the same time but we impose a stronger assumption on what is common knowledge (or, in certain cases, what is known by the central planner). ii) We allow for interdependent values, while they consider an independent values setting. iii) We allow for a more general joint probability over type profiles, since types can be independently or interdependently distributed in our formulation, and apart from preferences, types may concern other individual characteristics as well (productivity parameters, proneness to accidents, etc.). iv) We also allow for a more general social choice set. In terms of results, if values are interdependent (but still independently distributed), the Jackson-Sonnenschein mechanism may have multiple equilibria in the limit, while we prove the uniqueness of the equilibrium under small perturbations.

McLean and Postlewaite (2002, 2004) also consider efficient mechanisms in economies with interdependent values. The state of the world is unknown to all agents, but each individual receives a noisy private signal about the state. They show that when signals are sufficiently correlated with the state of the world and each agent has small informational size (in the sense that his signal does not contain additional information about the state of the world when the signals of all the other agents are taken into account), then their mechanism implements allocations arbitrarily close to first-best allocations.

There are two main differences between their setting and ours. First, in the model of McLean and Postlewaite when private signals are perfectly correlated with the state of the world all agents learn not only their own type but also the type of all other agents. That is, in the limit, the framework of McLean and Postlewaite is one of complete information. In contrast, in our setting agents can, at most, know the interim distribution of types (when the signal is perfect). Second, McLean and Postlewaite implement allocations arbitrarily close to first-best while we achieve exact first-best implementation even when agents face a slight uncertainty about the interim-distribution, i.e. when private signals are slightly noisy.

Our paper is also related to the auctions literature with interdependent types. In this context, Crémier and McLean (1985) and Perry and Reny (2002, 2005), show the existence of efficient auctions when types are interdependent. Crémier and McLean, however, require large transfers which may violate ex-post feasibility. Also, Perry and Reny require the single crossing property on preferences which is a stronger restriction than ours. Our general framework can encompass auction design problems as well. Furthermore, our main focus is the uniqueness of the equilibrium, an issue which is not studied in these papers.

It is also noteworthy that in the framework of auction design the papers by Maskin (1992), Dasgupta and Maskin (2000) and Jehiel and Moldovanu (2001) show, in increasing generality, that efficiency and incentive compatibility can not be simultaneously satisfied if the single crossing condition is violated or if signals are multidimensional. In a sense, in our model agents receive private signals as well, but one can think of them as perfect signals about the interim distribution. As we have already mentioned, a small noise about the precision of these signals does not alter our results.
that respect, the additional information of our environment allows us to overcome this impossibility and implement efficient outcomes, even if conditions, which are necessary in the standard mechanism design literature for implementation, are violated.

Rustichini, Satterthwaite and Williams (1994) show that the inefficiency of trade between buyers and sellers of a good, who are privately informed about their preferences, rapidly decreases with the number of agents involved in the two sides of the market and in the limit it reaches zero. Effectively, the paper examines the issue of convergence to the competitive equilibrium as the number of agents increases. However, their model is limited to private values problems and hence it can be seen as a special case of our formulation.

More recently, the papers by Mezzetti (2004) and Ausubel (2004),(2006) examine the issues of efficient implementation under interdependent valuations and independently distributed types. However, they also assume that agents’ preferences are quasi-linear with respect to the transfers they receive, whereas in our model utility may not be transferable. Moreover, the mechanisms proposed in these papers may generate multiple equilibria (in most of which truth-telling is violated), while we are interested in a mechanism which has a unique truth-telling equilibrium.

3 The Economy

The economy consists of a finite set I of agents, with I standing for the aggregate number of agents as well. Θ is the finite set of potential types (so ϑ_i is the type of a single agent i). The vector θ contains I elements and is a type-profile, a realization of a type for each agent. Each agent has private information about his own type, but does not know the types of the other agents. Φ is the ex-ante cumulative distribution function over the set of all possible type-profiles Θ, with $\Phi(\theta)$ the ex-ante probability that the type-profile θ is realized.

S is the finite set of all states. Each state s is a complete description of the publicly available information. Depending on the application, this may include agents’ features or public shocks. The probability distribution over states Π is a function of the type-profile θ. Therefore, $\pi(s|\theta)$ is the probability of state s arising, conditional on the type-profile θ.

β is an unordered collection of I realizations of types (potentially the same types for some realizations). The interpretation is that β is the distribution of types that have been realized. Given a β, the exact number of agents who have a specific type is known for all types. We slightly abuse terminology by calling β the interim distribution of types. $\Theta(\beta)$ is the set of all type-profiles consistent with the interim distribution β.

7A more accurate definition of the interim distribution is the percentage of realizations of each type over the entire population, namely the collection of numbers $I(\vartheta) = \lambda_\vartheta(\beta)/I$, where $\lambda_\vartheta(\beta)$ is the number of agents who have type ϑ given the collection β. However, since the collection β already contains this information and for notational simplification, we retain the misnomer of interim-distribution for β.
while $\Theta(\beta)$ is the collection of types which have realized, as can be inferred from the interim distribution β.

The above elements characterize the economy: $E = \{I, \Theta, \Phi, S, \Pi, \beta\}$. We assume that E is common knowledge. Given E, let $A(E)$ (or simply A) be the set of all feasible allocations, with elements $a \in A \subseteq \mathbb{R}_+^{I \times S \times L}$, with $L \times S \geq 2$. L can be interpreted as the number of commodities in the economy. Each a is an S-tuple of feasible state-dependent allocations. In other words, the collection of feasible allocations may depend on the state of the world. Furthermore, we assume that preferences are represented by expected utility functions:

$$U_i(a) = \sum_{\theta_{-i}} \left[\sum_{s \in S} u_i(a, s) \pi(s|\theta_i, \theta_{-i}) \right] \phi(\theta_{-i}|\theta_i, \beta), \quad \theta_{-i} \in \Theta_{-i}(\beta|\theta_i)$$

$U_i(a)$ is the expected utility to agent i when he receives allocation a, with $u_i(a, s)$ the decision-outcome payoff in state s (preferences may be state-dependent) and θ_{-i} is a type-profile for all agents, excluding i, which is consistent with the interim-distribution of types β^8.

The formulation of the economy allows for modeling a wide variety of economic situations. Types may or may not be independently distributed, and the characteristics of agents may or may not depend on the types of other agents. Hence, both adverse-selection problems with independent or inter-dependent valuations can be seen as special cases of our formulation.

4 Implementation of First Best Allocations

4.1 Implementation

In this subsection we show that the conditions specified in section 3 are sufficient for the implementation of truthful strategies. Full implementation (i.e. the uniqueness of the truthful equilibrium) requires additional conditions, which we specify in subsections 4.2 and 4.3. The main idea is simple. The knowledge of the interim distribution of types allows the construction of a direct mechanism, which provides allocations conditional on the message profile being consistent with the interim distribution or not. If the message profile is different from the interim distribution, this is considered as an indication of lying by some agent, in which case the mechanism provides a “punishment” allocation. As a result, an agent reveals his information truthfully, if all other agents reveal their information truthfully as well.

Let $a^* = (a^*_1, a^*_2, ..., a^*_i, ..., a^*_I)$ be a Pareto efficient allocation of the economy. a_i represents an individual allocation, namely it is a vector of state-contingent allocations for agent i. Let a^m be an individual allocation such that $a^m_{ils} = \min\{a^*_ils\}$ for every

8Therefore, we implicitly require the standard six axioms for expected utility representation: Completeness, Transitivity, Local Non-Satiation, Convexity, Continuity and Independence of Irrelevant Alternatives.
\(i \in I \) and for each state-contingent commodity \(l_s \). By construction, \(I \times a^m \) is feasible. Consider the direct mechanism \(M_0(g, a) \), \(g : M \to A \), in which agents state their type. \(\lambda_\beta(\vartheta) \) is the number of agents with type \(\vartheta \) according to the interim distribution \(\beta \) and \(\lambda_m(\vartheta) \) is the number of agents who report type \(\vartheta \). Agents receive allocations according to the following message profiles:

- If \(\lambda_\beta(\vartheta) = \lambda_m(\vartheta) \), \(\forall \vartheta \in \Theta(\beta) \), then \(a_i = a^*_i \), \(\forall i \in I \).
- If \(\lambda_\beta(\vartheta) \neq \lambda_m(\vartheta) \) for at least one \(\vartheta \in \Theta(\beta) \), then \(a_i = a^m \), \(\forall i \in I \).

Claim 1: \(M_0 \) has a truthful equilibrium.

Proof: Suppose \(I - 1 \) agents report truthfully. By Local Non-Satiation, \(U_i(a^*_i) \geq U_i(a^m) \). Therefore, it is a best-response for agent \(i \) to report truthfully as well.

This demonstrates that if the interim-distribution is common knowledge, it is sufficient for truthful implementation under the standard conditions on preferences in general economic environments. In fact, implementation of the truthful equilibrium is possible even when there is a single state contingent commodity. Hence, the implementation of first-best allocations is possible in the most well-known models of adverse selection (Akerlof (1970), Spence (1973), Rothschild-Stiglitz (1976)) if one makes the additional assumption that the interim-distribution is known.

Even though this is a strong assumption, in subsection 4.6, we show that as the number of agents increases, the interim-distribution converges to the ex-ante distribution of types. Hence, the standard assumptions of the literature are sufficient for implementation of first-best allocations when the number of agents is sufficiently large\(^9\).

4.2 Full Implementation

In this section we provide sufficient conditions for full implementation. We make three assumptions additional to section 3. We then present a series of Lemmata, which are used in the proof of the main Proposition, and provide the main claim of the paper: if the interim-distribution of types is common knowledge, preferences satisfy the Local Non-Common Indifference Property (LNCIP) and the social choice set satisfies Pareto efficiency and Anonymity, then a mechanism exists that fully implements it. The assumptions required for this result are the following.

Assumption 1: The Social Choice Sets satisfy Anonymity.

\(^9\)Actually, for our results to obtain we do not require that the interim distribution converges to the ex ante distribution. We only need that the interim distribution converges to a unique distribution, given the correlation between draws.
Definition 1: A Social Choice Set satisfies Anonymity if, for every social choice function in the set, each agent’s assigned allocation depends only on his type and the interim-distribution of types: \(a_i^* = a(\vartheta_i, \beta)\).

Under Anonymity, agents who have identical types receive identical allocations. Therefore, an agent’s identity per-se has no impact on the agent’s final allocation. As a result, for any interim-distribution of types there is a unique collection of allocations to be assigned to agents. The order of the allocations does depend on the type-profile \(\theta\), but the collection of individual allocations is the same for all type-profiles consistent with the same interim-distribution.

It is also noteworthy that Anonymity is a desirable property for a social choice rule. In most cases of interest, economists are concerned with the economic characteristics of agents and not with their identity. Therefore, it is reasonable to assume that if the distribution of these characteristics remains unchanged, so does the distribution of the economically desirable outcomes. It is also a property satisfied by many commonly used social choice rules, like the Walrasian correspondence and the utilitarian social welfare function.

Assumption 2: Preferences satisfy the Local Non-Common Indifference Property (LNCIP).

This is a requirement that the intersection of the indifference planes around any individual allocation of any two agents with different types is of at least one dimension lower than the dimensions of the indifference planes themselves. In other words, if the indifference planes are n-dimensional (e.g. three-dimensional surfaces), the intersection around any allocation \(a_i\) is (n-1)-dimensional (e.g. curves). Formally:

Definition 2: Let \(C_{i\epsilon}(a) = \{c \in A : U_j(c|\vartheta_i, \theta_{-i}) = U_j(a|\vartheta_i, \theta_{-i}), \|c - a\| < \epsilon\}\). The **Local Non-Common Indifference Property** is satisfied if \(\forall i \in I, \forall a \in A \text{ and } \forall j \in I, \vartheta_j \neq \vartheta_i, \text{ there exists } \bar{\epsilon}_{ij} > 0 : dim (C_{i\epsilon}(a) \cap C_{j\epsilon}(a)) \leq L \times S - 1, \forall \epsilon < \bar{\epsilon}_{ij}\).

LNCIP is a weaker restriction than the Single-Crossing Property (SCP) which is usually used in the literature. For example, any pair of indifference curves that has finitely many intersections satisfies the LNCIP but it violates the SCP. Also, LNCIP allows for tangent indifference planes (as long as the tangent parts “miss” at least one dimension compared to the indifference planes), while the SCP does not. On the other hand, if SCP is satisfied then LNCIP is also satisfied\(^{10}\). Figure 1 provides two diagrams, which

\(^{10}\)Note that we could alternatively characterize this restriction on preferences in terms of the axiomatic approach. Apart from the standard axioms (Completeness, Transitivity, Local Non-Satiation, Convexity, Continuity and Independence of Irrelevant Alternatives), we would require the Axiom of Local Non-Common Indifference. In this case, the only difference from the definition provided above is the definition of \(C_{i\epsilon}(a)\): \(C_{i\epsilon}(a) = \{c \in A : c \sim_i a, \|c - a\| < \epsilon\}\).
illustrate the LNCIP and distinguish it from the SCP.

Finally, we denote by $A(a_i)$ the set of individual allocations strictly less than a_i: $A(a_i) = \{c_i \in A : c_{i ls} \leq a_{i ls}, \forall ls\}$. $L_i(a_i)$ is the lower contour-set for an agent i given some individual allocation a_i.

Assumption 3: If for ϑ, ϑ' holds that $a^*_{\vartheta} \succ_{\vartheta'} a^*_{\vartheta'}$ and $a^*_{\vartheta'} \succ_{\vartheta} c$, $\forall c \in A(a^*_{\vartheta}) \cap L_{\vartheta'}(a^*_{\vartheta'})$, then $\lambda_{\vartheta}(\vartheta') \geq \lambda_{\vartheta}(\vartheta)$, where ϑ and ϑ' are different types.

Assumption 3 ensures feasibility off-the-equilibrium-path and is discussed in more detail after the presentation of Lemma 4. Below, we provide three results which hold for any Pareto efficient allocation. The combination of these results shows that every allocation on the Pareto frontier of an economy generates a “social ranking” among the agents of the economy, such that agents of “lower ranks” envy the allocations of “higher ranks”. We exploit the common knowledge of this ranking, due to the common knowledge of the interim-distribution and the efficiency of the allocation, in order to construct a mechanism, which has a unique equilibrium and in which agents reveal their private information truthfully.

Lemma 1: Let PF(E) be the Pareto Frontier of economy E. Then, for every allocation a on the Pareto Frontier, there exists at least one agent $i \in I$, who does not envy the allocation of any other agent: $U_i(a_i) \geq U_i(a_j), \forall j \in I$.

Proof: See the Appendix

Lemma 2: For every allocation a on the Pareto Frontier, there exists at least one
agent $i \in I$, whose allocation is not envied by any other agent: $U_j(a_j) \geq U_j(a_i), \forall j \in I$.

Proof: See the Appendix

Corollary 1: If $a \in PF(E)$, then Lemma 1 and 2 hold for any subset of I. Namely, let $\bar{I} \subseteq I$ and let $\bar{A} = \{a_i : i \in \bar{I}\}$. Then, if $a \in PF(E)$, Lemma 1 and 2 hold for \bar{I} with regard to \bar{A} as well.

Proof: See the Appendix

Lemma 1 and 2 provide two necessary conditions for Pareto efficiency. If these conditions are violated, then an allocation can not be Pareto efficient. However, they are not sufficient. One can easily find examples, where these conditions hold but the allocation is not on the Pareto frontier of the economy. Most importantly for our purposes, they imply that any Pareto efficient allocation exhibits a social ranking between groups of agents who envy and groups who are envied.

Let $\text{Rank}(K) = \{i \in I : U_i(a_i) \geq U_i(a_j), \forall j \in I\}$, be the set of agents who do not envy the allocation of any other agent. By Lemma 1, we know that this set is non-empty. Then, by removing this set of agents from the set I and applying Corollary 1, we can define $\text{Rank}(K-1) = \{i \in I - \text{Rank}(K) : U_i(a_i) \geq U_i(a_j), \forall j \in I - \text{Rank}(K)\}$. By iteration, we can define K groups, $1 \leq K \leq I$, such that the agents in each one of them do not envy any of the agents in their own group or groups with lower rank, but they envy the allocation of some agent(s) in groups with higher rank. We will also refer to group $\text{Rank}(K)$ as the group with the highest rank and group $\text{Rank}(1)$ as the group with the lowest rank. Some additional results required for the proof come from the LNCIP and are provided in Lemma 3 and Lemma 4.

Lemma 3: If the LNCIP holds, then around the neighborhood of any individual allocation a_i, there exists a set of allocations such that each agent of a certain type prefers a particular allocation over the rest.

Proof: See the Appendix

In effect, Lemma 3 states that it is possible to find incentive compatible allocations for any type in the neighborhood of any allocation, which implies that it is possible to

11 One extreme case is when an allocation exhibits no-envy, in which case $\text{Rank}(K)$ contains the whole set of agents and Lemma 1 and 2 apply for all (egalitarian allocations). The other extreme case is when each rank-group contains a single agent, in which case the agents form a complete hierarchy, from the one who is envied by all the other agents to the one who is not envied by anyone else.
Lemma 4: Suppose \(a^* \in PF(E) \) and Assumptions 1 and 2 hold. \(\forall \vartheta, \vartheta' \in \Theta(\beta) \) there exist some feasible individual allocations \(\{a_1(\vartheta, \vartheta'), a_2(\vartheta, \vartheta')\} \), such that, if \(\text{Rank}(\vartheta) > \text{Rank}(\vartheta') \), then \(a_1(\vartheta, \vartheta') \succ_\vartheta a^*_\vartheta \succ_\vartheta a_2(\vartheta, \vartheta') \). \(a^*_\vartheta \succ_\vartheta a_2(\vartheta, \vartheta') \succ_\vartheta a_1(\vartheta, \vartheta') \).

Proof: Because a Pareto efficient allocation is feasible by definition, any allocation \(c \in A(a^*_\vartheta) \cup A(a^*_\vartheta') \) is feasible. Also, due to the Pareto efficiency of \(a^* \) and the fact that \(\vartheta' \) envious the first-best allocation of \(\vartheta \), \(L_{\vartheta'}(a^*_\vartheta) \cap A(a^*_\vartheta) \neq \emptyset \). Take an individual allocation \(c \) inside this intersection and arbitrarily close to (and below) the indifference plane of \(\vartheta' \) that passes through \(A(a^*_\vartheta') \). Therefore, \(a^*_\vartheta \succ_\vartheta c \). There are two possible sub-cases to consider (the case of indifference is being ignored because it always possible to move \(c \) slightly so that it falls under the following two cases).

Case a): \(c \succ_\vartheta a^*_\vartheta \). In this case, let \(a_1(\vartheta, \vartheta') = c \) and \(a_2(\vartheta, \vartheta') = a^*_\vartheta \) and this completes the proof. \(\lambda_\beta(\vartheta) \) allocations \(c \) and \(\lambda_\beta(\vartheta') \) allocations \(a^*_\vartheta \) are feasible on aggregate.

Case b): \(a^*_\vartheta \succ_\vartheta c \). In this case, by LNCIP, it is possible to find an allocation \(d \) very close to \(a^*_\vartheta \) such that: \(d \succ_\vartheta a^*_\vartheta \) and \(c \succ_\vartheta d \). Because \(c \) is in the interior of \(A(a^*_\vartheta) \), it is always possible to find such points (we could define distance \(\epsilon \) and make sure that \(B_\epsilon(c) \cap U_{\vartheta'}(a^*_\vartheta) \neq \emptyset \), while \(B_\epsilon(d) \cap U_{\vartheta'}(a^*_\vartheta) = \emptyset \), where \(B_\epsilon(c) \) is the open ball with radius \(\epsilon \) around \(c \)). Therefore, let \(a_1(\vartheta, \vartheta') = d \) and \(a_2(\vartheta, \vartheta') = c \). \(\lambda_\beta(\vartheta) \) allocations \(d \) and \(\lambda_\beta(\vartheta') \) allocations \(c \) are feasible on aggregate.

Lemma 4, provides pairs of feasible and incentive compatible allocations for any pair of types \(\vartheta, \vartheta' \) which are of different rank. However, feasibility is ensured under the implicit assumption that the number of agents is equal across types. If this is not the case, then additional restrictions on the interim distribution are required. This is the role of Assumption 3. Specifically, the set \(\{a_1(\vartheta, \vartheta'), a_2(\vartheta, \vartheta')\} \) in Lemma 4 is feasible by construction whenever \(\lambda_\beta(\vartheta) = \lambda_\beta(\vartheta') \). In case a) \(c \succ_\vartheta a^*_\vartheta \), it is always possible to find the desired allocations for any number of agents of the two types, since the allocation which ensures incentive compatibility \(c \) is in the interior of \(A(a^*_\vartheta) \).

Case b) \(a^*_\vartheta \succ_\vartheta c \), however, is problematic if \(\lambda_\beta(\vartheta) > \lambda_\beta(\vartheta') \). In this case it is feasible to provide \(\lambda_\beta(\vartheta) \) allocations of type \(c \) and \(\lambda_\beta(\vartheta') \) allocations of type \(d \). If the \(\vartheta \)-type agents are much more than the \(\vartheta' \)-type agents, then there may be too few allocations \(d \) in order to ensure that \(a(\vartheta, \vartheta') \succ_\vartheta a^*_\vartheta \). Assumption 3 rules out those cases by imposing restrictions on the number of agents who are envied. This is a joint restriction on preferences and the interim-distribution.

Lemmas 3 and 4, along with the knowledge of the “social ranking” of the allocations, allows us to construct a mechanism which makes it a dominant strategy for agents of higher rank to report their type truthfully. The main idea is that, if the number

\[^{12}\text{The last condition is required for ensuring incentive compatibility. See also 4.3 for the necessity of this condition for full implementation.}\]
of agents, who report a specific type is higher than the number who have this type, according to the interim distribution, then they all receive an allocation, which the “true” types prefer to the first-best allocations of the misreporting types, but the other types do not prefer. This acts as an effective punishment for lies by those who envy allocations of other types. Hence we use iterated elimination of dominated strategies to prove the uniqueness of the proposed equilibrium. We construct this argument formally in the proof of Proposition 1.

Proposition 1: Assume that the economy E, described in section 3, satisfies Assumptions 2 and 3. Then, for every allocation $a^* \in PF(E)$, which satisfies Assumption 1, there exists a mechanism, for which a^* is the unique Bayes-Nash equilibrium allocation and agents report their private information truthfully.

Proof: The proof is done by construction. Let $a^* \in PF(E)$, which satisfies Anonymity, and let $a^*(\theta)$ be the first-best allocation which is to be implemented for each type-profile, with individual allocations $a_i = a_i^*(\vartheta_i, \beta)$, $\forall i \in I$. Also, let $\hat{a}_\theta(a, \epsilon)$ denote an individual allocation in the ϵ-neighborhood of allocation a which is incentive compatible for type ϑ, in the sense of Lemma 3, and let $a_1(\vartheta, \vartheta')$, $a_2(\vartheta, \vartheta')$ be individual allocations as constructed by Lemma 4. Recall that $\lambda_\beta(\vartheta)$ and $\lambda_\beta^m(\vartheta)$ is the number of agents of type ϑ according to the interim distribution β and the received messages m, respectively, and a^m is the minimum allocation, as defined in 4.1.

Each agent reports his type m_i and a final allocation is received according to the following mechanism $M_1(g, a)$:

i) If $m \in \Theta(\beta)$, then $a_i(m_i, m_{-i}) = a^*(m_i, \beta)$, $\forall i \in I$.

ii) If m is such that for only two types, (ϑ, ϑ'), the number of reported agents is different from the number of agents in the interim-distribution by one, specifically $\lambda_m^m(\vartheta) = \lambda_\beta^m(\vartheta) + 1$, $\lambda_m^m(\vartheta') = \lambda_\beta^m(\vartheta') - 1$, then:

- If $\text{Rank}(\vartheta) = \text{Rank}(\vartheta')$, agents who reported types ϑ, ϑ' choose an allocation from the set $\{a^*(\vartheta, \beta) - \epsilon, a^*(\vartheta', \beta) - \epsilon\}$. ϵ is strictly positive for all state-contingent commodities and it is sufficiently small so that $a^*(\vartheta, \beta) - \epsilon \succ_\vartheta a^*(\vartheta', \beta)$ and $a^*(\vartheta', \beta) - \epsilon \succ_{\vartheta'} a^*(\vartheta, \beta)$.

- If $\text{Rank}(\vartheta) > \text{Rank}(\vartheta')$, agents who reported types ϑ, ϑ' choose an allocation from the set $\{a_1(\vartheta, \vartheta'), a_2(\vartheta, \vartheta')\}$.

- If $\text{Rank}(\vartheta) < \text{Rank}(\vartheta')$, agents who report type ϑ' receive allocation $a_{\vartheta'}^*$ and agents who report type ϑ receive allocation $\frac{\lambda_\beta(\vartheta)}{\lambda_\beta^m(\vartheta)} a_{\vartheta}^m$.

- For all $m_k \neq \{\vartheta, \vartheta'\}$, $a_k(m_k, m_{-i}) = a^*(m_k, \beta)$.

iii) For any other case, $a_i(\vartheta, m_{-i}) = \hat{a}_\theta(a^m, \epsilon)$, $\forall \vartheta \in \Theta(\beta)$.

13
Under the mechanism above, it is a strictly dominant strategy for all agents with types of rank(K) to report their type truthfully. To see this consider the different beliefs of an agent of rank(K) (say i) about the messages that other agents will send. If i believes that all other agents will report their type truthfully, then the best-response for him is to report truthfully. This is because $a^*(\vartheta_i, \beta) \succ_i a^*(\vartheta_i, \beta) - \epsilon$, in the case he reports another type of the same rank, and $a^*(\vartheta_i, \beta) \succ_i \lambda_\beta(\vartheta') a^*(\vartheta', \beta)$, in case he reports a type of lower rank.

If i believes that only one other agent will misreport, then i still prefers to report his type truthfully, irrespectively of the rank of the other agent. Say that i believes that j is of the same rank as him but of different type and that j will misrepresent her preferences as being of type ϑ_i. If i reports that he is of type ϑ_i, then the two lies will cover each other and i will receive $a^*(\vartheta_j, \beta)$. But if he chooses to report ϑ_i, then $\lambda m(\vartheta_j) = \lambda_\beta(\vartheta_j) - 1$ and $\lambda m(\vartheta_i) = \lambda_\beta(\vartheta_i) + 1$. In the latter case, i chooses one allocation from $\{a^*(\vartheta_i, \beta) - \epsilon, a^*(\vartheta', \beta) - \epsilon\}$. Since $a^*(\vartheta_i, \beta) - \epsilon$ is constructed to be strictly preferred by i to $a^*(\vartheta_j, \beta)$, i strictly prefers to report truthfully.

The same argument holds if i believes that j is of type ϑ_j, which is of lower rank than K, and that j will report ϑ_i. Note that, by the construction of the set $\{a_1(\vartheta_i, \vartheta_j), a_2(\vartheta_i, \vartheta_j)\}$ (see also Lemma 4), there are $\lambda_\beta(\vartheta_i) + \lambda_\beta(\vartheta_j)$ individual allocations that are feasible. If one of the two allocations is requested more times than it is feasible, then, in the game induced by i’s report: assign first the allocations in excess supply to the agents who request them and then assign the rest of the agents randomly to the remaining allocations. This ensures that there are no coordination failures and all agents choose their most preferred allocation. Also, note that in both cases where i believes that j misreports, i strictly prefers to report truthfully than to send any other message $\vartheta \neq \{\vartheta_i, \vartheta_j\}$, because, in the latter case, i receives $a_\vartheta(a^m, \epsilon)$, which makes him strictly worse-off.

In the case where i believes that multiple misrepresentations will take place, either in types of rank(K), or in other ranks, then, irrespectively of his message, $m \neq \Theta(\beta)$ (if all representations but one cancel out then we go back to the analysis of the previous cases). This means that his message, alone, can not hide the fact that some agent(s) misrepresents(misrepresent) her(their) type(s). His best response remains to report truthfully: $U_i(\hat{a}_\vartheta(a^m, \epsilon)) > U_i(\hat{a}_\vartheta'(a^m, \epsilon))$, $\forall \vartheta' \neq \vartheta_i$, by construction (recall that $I \times a^m$ is feasible). We conclude that, under all possible beliefs, i strictly prefers to report truthfully.

Given this, it is a best response for an agent of rank(K-1) to report his type truthfully as well. Say that agent i, who is of rank(K-1), envies the allocation of some type ϑ_j of rank(K). Of course, if i believes that some agent of type ϑ_j will report as being of type ϑ_i, then the best response for i is $m_i = \vartheta_j$, but, as we showed, this cannot be an equilibrium. Hence, if i believes that all agents will report truthfully, he prefers to report truthfully as well. If he believes that only one agent of the same or lower rank

\[\text{This argument also makes clear that our paper is not one of dominant strategy implementation, as only rank(K) individuals have dominant strategies.}\]
will misreport their types as his own, he will still prefer to reveal his type truthfully, for the same type of reasoning as in the case of an agent of rank(K). Finally, if he believes that many agents will misreport their types, he still prefers to receive an incentive compatible allocation (by construction) than misrepresenting his own type. Therefore, given that rank(K) agents report truthfully, agents of rank(K-1) also report truthfully. By induction, we conclude that for an agent of Rank(κ), if all agents of higher rank are expected to report truthfully their types, his best-response is to report truthfully, irrespectively of the actions of agents of the same or lower rank. Since it is a dominant strategy for rank(K) agents to report truthfully, then, by iterated elimination of strictly dominated strategies, the only possible equilibrium is when all agents report truthfully. Therefore, the unique Bayes-Nash equilibrium of the mechanism is for all agents to reveal their type and to receive the allocation \(a_i^*(\vartheta, \beta), \forall i \in I \). ■

The result depends crucially on the fact that the rank of types is known. This is due to the interim-distribution being common knowledge. On the other hand, Anonymity ensures that agents do not gain any strategic benefit from their personal identity. For instance, even if \(\beta \) is common knowledge, if different type-profiles result in different ranks between types, then it may not be a dominant strategy for any agent to reveal his type truthfully. As one's rank, in this case, also depends on the realized types of the other agents, there may be situations where an agent misreports his type in order to force someone to misreport as well. This may cause multiplicity of equilibria. In other words, if Anonymity fails, implementation is still possible, but full implementation may fail.

The LNCIP is also required for the uniqueness of the equilibrium, as it allows for agents to strictly improve their payoff if they report truthfully. Once again, if LNCIP is violated, then one can still construct mechanisms which implement the first-best allocations, but the uniqueness of the equilibrium may not be possible. Therefore, the common knowledge of the interim-distribution, Anonymity and LNCIP (along with Assumption 3) are jointly sufficient conditions for full implementation of first-best allocations, but they are not necessary.

We would also like to comment on the advantages of our mechanism in comparison to the existing literature (see for example, Jackson, 1991, Maskin, 1999). First, our mechanism holds even with two agents (or even in the degenerate case of one agent). Second, the required message space is minimal, since agents send messages only about their own type. Third, we do not require any ad-hoc game, which has no equilibrium in pure strategies (like an integer game), in order to rule out undesirable equilibria. This is achieved by “enticing” some of the misreporting agents to report truthfully, whenever there are multiple misrepresentations. Fourth, full implementation is also achieved if the equilibrium concept is changed to iterated elimination of strictly dominated strategies, which is, in fact, the solution concept we use in the proof of Proposition 1. Therefore, our mechanism is not limited only to Bayesian implementation.

Finally, Assumptions 1,2 and 3 are relatively weak and there are many cases of interest that comply with them. To demonstrate this, in 4.4, we provide some well-
known examples of economies with hidden types and the solutions that our framework provides. But first, we characterize the problem by providing necessary and sufficient conditions for full implementation when the interim-distribution is common knowledge.

4.3 Full Implementation: Necessary and Sufficient Conditions

Condition 1: Suppose $a^* \in PF(E)$. $\forall \vartheta, \vartheta' \in \Theta(\beta)$ such that $a^*_\vartheta \succ a^*_{\vartheta'}$, $\exists a(\vartheta, \vartheta') \in A$ such that: (i) $a(\vartheta, \vartheta') \succ a^*_\vartheta$, and (ii) $a^*_{\vartheta'} \succ a(\vartheta, \theta')$.

Proposition 2: Condition 1 is necessary for full implementation.

Proof: Full implementation of a^* requires that $g(m) = a^*$ if $m_i = \vartheta_i$, $\forall i \in I$ and that the strategy profile $m_i = \vartheta_i$, $\forall i \in I$ is the unique Bayes-Nash equilibrium. Consider any direct mechanism $M(g, a)$, which specifies some allocation $a(m) \neq a^*$, whenever m is such that $\lambda_m(\vartheta'') \neq \lambda_\beta(\vartheta'')$ for some $\vartheta'' \in \Theta(\beta)$ (whenever this is the case, then, by common knowledge of the interim-distribution, it follows that $m_i \neq \vartheta_i$ for some $i \in I$).

Suppose that, apart from i (of type ϑ) and j (of type ϑ'), incentive compatibility is satisfied for all other agents and that they report truthfully (this is done in order to check the necessity of the condition).

Because Condition 1 is violated, then either part (i) or part (ii) of the condition is violated (or both). This means that at least one of the following will hold: (i) $a(m_i = \vartheta, m_j = \vartheta', m_{-i,j}) \succ_j a^*_{\vartheta'}$, (ii) $a^*_{\vartheta'} \succ_i a(m_i = \vartheta, m_j = \vartheta, m_{-i,j})$. In case (i), truthful reporting is not equilibrium, because, if everyone else reports truthfully, j’s best-response is $m_j = \vartheta$ (incentive compatibility is violated for j). In case (ii), there may be multiple equilibria because, if the truthful equilibrium exists, then so does another equilibrium, where i reports type ϑ and j reports type ϑ'. To see this, notice that if i believes that j is of type ϑ' and that $m_j = \vartheta$, then his best-response is $m_i = \vartheta'$, in which case it is also a best-response for j to report $m_j = \vartheta$. Finally, in the case where both parts of Condition 1 are violated, then there can be no truthful equilibrium (as j strictly prefers to report ϑ, if everyone else reports truthfully), while an untruthful equilibrium may exist, where i reports j’s type and vice versa. In all cases, full implementation is impossible. ■

Condition 1 is similar in spirit to Bayesian Monotonicity, which is necessary for full implementation in economies with incomplete information (Jackson, 1991). In our case, full implementation is possible, if there is a feasible allocation through which some agent (i) “signals” cases of misreport. As a result, not all efficient allocations are fully implementable when the interim-distribution is common knowledge. However, Condition 1 holds whenever the number of agents of lower-rank are less or equal to the number of agents of higher ranks. Assumption 3 in section 4.2 made this restriction clear. On the other hand, Condition 1 is weaker than Assumption 3, and may hold in cases where this assumption is violated.
Note that Condition 1 is also sufficient for full implementation if one allows for mechanisms with games that do not have an equilibrium in pure strategies (for example integer games, as in Maskin (1999) or modulo games, as in Jackson (1991))14. This is because one can rule out undesirable equilibria with multiple misrepresentations of types (sub-case (iii) in the mechanism of Proposition 1) by making agents to play such a game, whenever the message-profile differs from the interim-distribution by more than one message. However, if one restricts attention to mechanisms where agents send only messages about their types, the following condition is also required.

Condition 2: Suppose \(a^* \in PF(E) \). There exists allocation \(a \in A \), such that \(a^*_\vartheta \succ_\vartheta a_\vartheta \) and \(a_\vartheta \succ_\vartheta a_{\vartheta'} \ \forall \ \vartheta, \vartheta' \in \Theta(\beta) \).

Condition 2 ensures that whenever there are more than one misrepresentations of types, it is a best-response for one of the “liars” to deviate and report truthfully, while it is not a best-response to deviate from truth-telling. It becomes apparent that Assumption 3 and the LNCIP satisfy Condition 1 (Lemma 4), while LNCIP also satisfies Condition 2 (Lemma 3). Jointly, Condition 1 and 2 are necessary and sufficient for full implementation for this restricted set of mechanisms when the interim-distribution is common knowledge15.

4.4 Examples

Spence (1973)

The Spence economy consists of two types. Group I has low productivity \(a \) and its proportion in the population is \(q_1 \). Group II has high productivity \(\bar{a} \) and its proportion in the population is \(1 - q_1 \). Acquiring \(y \) units of education costs \(y/a \) for Group I and \(y/\bar{a} \) for Group II. Productivity parameters are private information and firms hire workers according to a wage schedule, based on verifiable educational attainment. The payoff for an individual is the value of his wage minus the educational cost and for a firm the productivity parameter minus the wage.

Spence argues that agents will acquire education (which does not increase productivity in his model) in order to signal their productivity to firms. In equilibrium, the wage schedules are such that high productivity workers acquire some education and credibly signal their type, while low productivity workers acquire no education, and firms correctly infer that they are low productivity. The education acquired by Group II is a deadweight loss, but necessary for credible signaling.

Assume that the total population \(N \) is common knowledge. Then \(Nq_1 \) is the total number of agents of Group I and \(N(1 - q_1) \) is the total number of agents of Group II. Based on this, the following mechanism can separate types without any agent incurring educational costs in equilibrium.

14See the Appendix for the proof. We omit it here, since it is similar to the proof of Proposition 1.

15See the Appendix for the proof.
Let all workers report their type. If the number of agents who report Group I and II is \(Nq \) and \(N(1-q) \), respectively, then agents who report Group I receive wage \(w_{G_{I}} = a \) and those who report Group II, receive wage \(w_{G_{II}} = \pi \). Otherwise, those who report Group I receive \(w_{G_{I}} = a \) and those who report Group II, are asked to undertake one unit of education and receive \(w_{G_{II}} = a + \epsilon \), with \(\frac{1}{\pi} < \epsilon < \frac{1}{a} \) (recall that a unit of education costs \(\frac{1}{a} \) for high productivity workers and \(\frac{1}{\pi} \) for low productivity workers).

The above mechanism fully implements the first-best allocations in this economy. First, consider the strategies of an \(\bar{a} \)-type. It is clear that, irrespectively of the reports of the other agents, it is a dominant strategy for her to report \(\bar{a} \), since \(\bar{a} > a \) and \(a + \epsilon - \frac{1}{a} > a \). Then, it is a best-response for an \(\bar{a} \)-type to report truthfully as well. This is because \(a > a + \epsilon - \frac{1}{a} \). Hence, all agents report truthfully in equilibrium and acquire zero education. In Figure 2 contract \(a_{0} \) denotes the offer to high-productivity workers when lies are detected.

![Figure 2: Spence, 1973](image)

Rotschild-Stiglitz (1976)

Consider the following, slightly modified, version of the Rothschild-Stiglitz economy. There is a finite number of \(N \) risk-averse agents and one risk-neutral entrepreneur. There is one commodity. Agents have a stochastic endowment with two possible states \(w_{H} \) and \(w_{L} \), with \(w_{H} > w_{L} \). The entrepreneur has an endowment \(w_{E} \), which is subject to no risk. An agent’s utility function depends on her consumption on both individual states: \(U(c_{L}, c_{H}) \). There are two types of agents. \(K \) of them are of type 1 and face a high probability of suffering from the low endowment state: \(p_{H} \). The remaining \(L = N - K \)
are of type 2 and have a low probability of \(w_L \): \(p_L < p_H \). Types are private information, but the rest characteristics of the economy are common knowledge. Finally, assume that \(w_E \) is large enough so that, even if all other agents suffer from the low-endowment state, they can still be fully insured by the entrepreneur’s wealth.

Assuming that the other side has full bargaining power and hence the entrepreneur makes no profits from her services, the following mechanism can be utilized in order to implement first-best allocations (see also Figure 3). All agents report their type. If the message-profile matches the interim-distribution then each agent receives the insurance contract that corresponds to her message (\(C_{FB1} \) and \(C_{FB2} \) are the state-contingent allocations resulting from the first-best insurance contracts for 1 and 2 respectively). Otherwise, agents who report type 1, receive an insurance contract which results to allocation \(A_1 \), while agents who report type 2, receive \(A_2 \).

\[\text{Figure 3: Rothschild-Stiglitz, 1976} \]

Notice that, by construction, \(A_2 \succ_2 C_{FB1} \succ_2 A_1 \) and \(C_{FB1} \succ_1 A_1 \succ_1 A_2 \). Also, providing any combination of these individual allocations to the agents of the economy is feasible, since they all lie in the interior of \(A(C_{FB2}) \). Therefore, Condition 1, is satisfied. It is easy to check that it is a dominant strategy for type 2 to report truthfully. Given this, it is a best-response for any agent of type 1 to report truthfully, as well. Therefore, the proposed mechanism has a unique Bayes-Nash equilibrium, which is truthful.
4.5 Robustness to Small Perturbations

So far we have assumed that the interim-distribution of types is commonly known with perfect precision. This is a very strong assumption, and hence we would like to make sure that small relaxations of it would not change our results dramatically. As it turns out, if there is a sufficiently small noise about β, then our main claim still holds.

Let Γ be the set of all possible interim-distributions that can be generated by Θ. By definition, $\bigcup_{\gamma \in \Gamma} \Theta(\beta) = \Theta$. Suppose, now, that there is a small noise about the probability of the interim-distribution. Agents have a probability distribution over the set of interim-distributions. With probability $1 - \sum_{\gamma \in \Gamma} \epsilon_\gamma$, the interim-distribution β will be realized, while ϵ_γ is the probability that some other interim-distribution γ will be realized, with $\epsilon_\gamma > 0, \forall \gamma \in \Gamma$.

We maintain the assumption that each agent knows his own type with certainty but has no information about the other agents' type. The expected utility of agent i has to be modified in order to include the uncertainty over the interim distribution:

$$U_i(a) = (1 - \sum_{\gamma \in \Gamma} \epsilon_\gamma) \sum_{\theta_{-i} \in \Theta_{-i}(\beta|\vartheta_i)} \left[\sum_{s \in S} u_i(a, s) \pi(s|\vartheta_i, \theta_{-i}) \right] \phi(\theta_{-i}|\vartheta_i, \beta)$$

$$+ \sum_{\gamma \in \Gamma} \epsilon_\gamma \left[\sum_{\theta_{-i} \in \Theta_{-i}(\gamma|\vartheta_i)} \left[\sum_{s \in S} u_i(a, s) \pi(s|\vartheta_i, \theta_{-i}) \right] \phi(\theta_{-i}|\vartheta_i, \gamma) \right]$$

We also assume that for each $\gamma \in \Gamma$ and for every ϑ_i there exists an individual allocation $a_i^*(\vartheta_i, \gamma)$ such that any I-collection of individual allocations is consistent with γ, Pareto optimal and satisfies Anonymity. In other words, for every γ there is a set of Pareto-optimal allocations to be implemented, each one corresponding to a specific realization of a type-profile θ consistent with γ and Anonymity.

In the case of uncertainty about the interim distribution, the rank of each agent is also uncertain, as different γ may correspond to different sets of realized types and different ranks. The problem then would be similar to the problem when the Anonymity property is violated. However, if this uncertainty is sufficiently small, the equilibrium strategies of agents will not change. To see this, consider an agent i who has the highest rank under β (and potentially other ranks for other γ's). If he knows that β is the interim distribution with certainty, then under the mechanism presented in 4.2, he would strictly prefer to report his type truthfully than report any other type:

$$U_i(\vartheta_i, m_{-i}|\beta) > U_i(\vartheta', m_{-i}|\beta), \forall \vartheta' \neq \vartheta_i, \forall m_{-i} \in M$$

Adding a small uncertainty about the interim distribution means that his expected utility by reporting his type truthfully becomes:

$$U_i(\vartheta_i, m_{-i}) = (1 - \sum_{\gamma \in \Gamma} \epsilon_\gamma)U_i(\vartheta_i, m_{-i}|\beta) + \sum_{\gamma \in \Gamma} \epsilon_\gamma U_i(\vartheta_i, m_{-i}|\gamma)$$
It is evident that, if ϵ_γ is sufficiently small for every γ, the expected utility of i approaches the expected utility under β and hence it remains a strictly dominant strategy to report his type truthfully. The argument can be repeated for any other agent j of different rank according to β. Given a sufficiently small vector of probabilities ϵ, j expects all higher-rank agents to report truthfully and his best-response is to report truthfully as well, irrespectively of the messages send by agents of the same or lower ranks. Hence, there exists some vector ϵ, with strictly positive elements, such that the equilibrium strategies under certainty over β remain the unique equilibrium strategies under uncertainty over β.

Corollary 2: If the interim distribution of types is uncertain but there is a sufficiently high probability that some distribution β will be realized, then the mechanism of Proposition 1 fully implements the first-best allocations for every interim-distribution.

Proof: It follows from the analysis above.

It is noteworthy that, due to the fact that truthful revelation of one’s type is the only equilibrium action for all agents, the desirable individual allocations will be implemented for any interim distribution γ. In other words, the almost certainty about β makes agents to report their type truthfully irrespectively of the interim distribution that is eventually realized. As a consequence, agents receive first-best allocations for all realized interim-distributions. This confirms that our result is robust to small perturbations of the information structure and it is not just a construction of perfect knowledge of the interim distribution.

4.6 Convergence to Ex-Ante Distributions

So far we have shown our main result and that it is robust to small uncertainty about the interim distribution. We also want to show that if the number of agents becomes very large then the interim-distribution converges to the ex-ante distribution of types16, in which case our informational assumptions converge to the widely used assumptions in the standard mechanism design literature, i.e. agents know the ex-ante probability of each type occurring. This allows us to relate our formulation and results to large economies with adverse selection problems, and make the claim that in these economies, because the interim-distribution is effectively common knowledge, one can implement first-best allocations.

16As we have explained earlier, for our results to obtain we do not require that the interim distribution converges to the ex ante distribution. We only need that the interim distribution converges to a unique distribution, given the correlation between draws.
Of course, this requires some restrictions on the joint probability function Φ. The easiest way is to assume that types are independently and identically distributed. This means that the probability of acquiring type ϑ, τ(ϑ), is the same across all agents and the draws of types from the ex-ante distribution are uncorrelated. Then, by directly applying the Weak Law of Large Numbers we get:

\[\lim_{I \to \infty} \left(\frac{\lambda_\vartheta(I)}{I} \right) = \tau(\vartheta) \]

This is exactly the information provided by the interim-distribution: the number of agents, for whom type ϑ has realized. Hence, at the limit, the relative frequency of types in the population (interim-distribution) coincides with the ex-ante probability distribution \(^{17}\). Hence, our mechanism can be applied to economies with large populations without requiring any additional information than the standard mechanism design literature on asymmetric information and with minimal restrictions on the joint probability function.

4.7 Participation Constraints

A final note is required regarding the issue of participation constraints. In many important applications of adverse selection problems, agents are given the opportunity not to participate in a contract or in a mechanism if the expected utility they anticipate by entering is less than some exogenously given threshold. In our model, however, we have completely ignored any participation constraint restrictions. Fortunately, this omission does not result in loss of generality. If participation constraints are to be taken into consideration, then this only restricts the points of the Pareto frontier that satisfy these constraints and does not alter the rest of the analysis\(^ {18}\).

\(^{17}\)Notice, however, that other formulations of the Law of Large Numbers do not require independently or identically distributed types. For example, suppose that the type generating process is an ergodic Markov chain. Then, as the number of draws becomes infinitely large, the empirical distribution of types converges to a unique distribution (see for example Grinstead and Snell, 1997). Clearly, in this case, draws may be correlated, but, as long as the mechanism designer knows the transition matrix of the Markov chain and assuming that all draws take place before the mechanism is played, then the interim distribution can be estimated with arbitrary precision as the number of agents approaches infinity. Generally, our mechanism can be applied in all cases where the interim distribution converges to a unique distribution as the population becomes very large.

\(^{18}\)Of course, in all interesting problems, the intersection of all participation constraints with the Pareto-frontier is non-empty. Notice that, in off-the-equilibrium-path situations, the resulting allocations may violate certain participation constraints. But as long as agents decide and commit on their participation before the mechanism is played (based on the expectation of an outcome, which results from some equilibrium of the sub-game), then the uniqueness and efficiency of the equilibrium guarantees the participation of all agents.
Conclusion

In this paper we consider a general hidden-type economy and, under relatively weak conditions, we show that it is possible to construct a mechanism which has a unique Bayes-Nash equilibrium, where all agents reveal their type truthfully and they receive a first-best allocation. Our result relies on information aggregation and appropriately chosen punishments. If the interim distribution is known (perfectly or imperfectly), then one can aggregate the messages that all agents are sending out and uncover any misreport(s), even if the identity of the liar is not known.

Truth-telling, however, requires appropriately designed punishments for lying. If the punishment from detecting a lie is too severe, then some agents may deliberately lie about their type in order to force other agents to also do so. The lies cancel out in terms of the aggregate information and the former agents “steal” the allocations of the latter, who are forced to lie under the fear of the extreme punishments. This can lead to coordination failures and multiplicity of equilibria. Therefore, uniqueness of the equilibrium requires a careful construction of the allocations when lies are detected. We show that such punishments exist when the indifference curves of different types are not locally identical, meaning that in the neighborhood of any allocation one can find other allocations such that each type prefers one of these over the rest.

It should be stressed that we obtain our equilibrium by using iterated elimination of strictly dominated strategies and, hence, it is also a Bayes-Nash equilibrium. This contrasts with most of the existing papers, where the Bayesian equilibrium concept is used. Furthermore, the assumption on the interim distribution of types being common knowledge is needed because we consider general social choice sets. If we focus on the implementation of specific allocations on the Pareto frontier so that allocations depend only on one’s type, we can implement the first-best as a unique equilibrium even if agents have heterogeneous beliefs or no information at all about the interim distribution. Our mechanism can still implement the desirable allocation truthfully, given that the social planner knows the interim distribution. This is because players’ best-response correspondences depend on their beliefs about how many misreports will be detected by the mechanism and not on their ability to detect other agents’ lies. Finally, an interesting question is whether the implementation of first-best allocations in this setting can be achieved through a decentralized mechanism. We plan to address this question in the near future.
References

Lemma 1: Let $PF(E)$ be the Pareto Frontier of economy E. Then, for every allocation a on the Pareto Frontier, there exists at least one agent $i \in I$, who does not envy the allocation of any other agent: $U_i(a_i) \geq U_i(a_j), \forall j \in I$.

Proof: Suppose that the claim does not hold. Then, all agents envy at least one other agent: $\forall a_i \exists j \in I, j \neq i : U_i(a_j) > U_i(a_i)$. But, since this holds for all agents, then there exists at least one reassignment of individual allocations among the I agents such that some of them are made strictly better-off and the rest remain as well-off as under a.

In order to find one such reassignment, use the following algorithm. Pick an arbitrary $i \in I$ and let $\tilde{i} = \{j \in I : U_i(a_j) > U_i(a_i)\}$, be the set of agents whom i envies. Reassign a_j, for some $j \in \tilde{i}$, to i. If $i \in \tilde{j}$, then reassign a_i to j and stop the reassignment. If $i \notin \tilde{j}$, then reassign some a_h, $h \in \tilde{j}$ to j and then proceed to agent h. Continue until you reach some agent k, such that either $i \in k$ or there exists some $l \in k$, whose allocation a_l has already been reassigned. In the first case, reassign allocation a_i to k and stop the reassignments. In the latter case, ignore all reassignments preceding agent l (these agents retain their original allocations), reassign to l the allocation a_k and stop the reassignments.

Since the set of agents is finite and all agents envy at least one allocation, after at most I reassignments, the algorithm above will end-up in some agent, whose allocation has already been reassigned, or the first agent, where reassignment started. In this case, a reassignment of allocations has been found, which makes some agents in I better-off (from agent l until agent k) while the rest remain equally well-off. This constitutes a Pareto improvement and violates the initial assumption that $a \in PF(E)$. □

Lemma 2: For every allocation a on the Pareto Frontier, there exists at least one agent $i \in I$, whose allocation is not envied by any other agent: $U_j(a_j) \geq U_j(a_i), \forall j \in I$.

Proof: The proof is similar to the proof of Lemma 1. Suppose that the claim does not hold. Then, all agents are envied by at least one other agent: $\forall a_i \exists j \in I, j \neq i : U_j(a_i) > U_j(a_j)$. But, this implies that there exists at least one reassignment of individual allocations among the I agents such that some of them are made strictly better-off and the rest remain as well-off as under a.

In order to find one such reassignment, use the following algorithm. Pick an arbitrary $i \in I$ and reassign a_i to one of the agents in the set $\tilde{i} = \{j \in I : U_i(a_i) > U_j(a_j)\}$. Then reassign a_j. If $i \in \tilde{j}$, then reassign a_j to i and stop the reassignment. If $i \notin \tilde{j}$, then
reassign a_j to some arbitrary $h \in j$ and repeat the reassignment. Continue until you reach some agent k, such that there exists some $l \in k$, whose allocation a_l has already being reassigned. Ignore all reassignments preceding agent l (these agents retain their original allocations), reassign to l the allocation a_k and stop the reassignments.

Since the set of agents is finite and all allocations are envied by at least one agent, after at most I reassignments, the algorithm above will end-up in some agent whose allocation has already been reassigned. In this case, we have found a reassignment of allocations which makes some agents in I better-off while the rest remain equally well-off. This constitutes a Pareto improvement and violates the initial assumption that $a \in PF(E)$. ■

Corollary 1: If $a \in PF(E)$, then Lemma 1 and 2 hold for any subset of I. Namely, let $\hat{I} \subseteq I$ and let $\hat{A} = \{a_i : i \in \hat{I}\}$. Then, if $a \in PF(E)$, Lemma 1 and 2 hold for \hat{I} with regards to \hat{A} as well.

Proof: Take any subset of agents \hat{I} of the set I. Suppose that Lemma 1 and 2 do not hold over the set \hat{A}, which is the set of individual allocations of the agents in \hat{I}. Then, it is possible to find a reassignment of allocations between the agents in \hat{I}, such that some of them will be made better-off while the rest remain as well-off. But that is a Pareto-improvement for some agents in I, which contradicts the assumption that $a \in PF(E)$. ■

Lemma 3: If the LNCIP holds, then around the neighborhood of any individual allocation a_i, there exists a set of allocations such that each agent of a certain type prefers a particular allocation over the rest.

Proof: Recall that $C_i(a) = \{c \in A : U_i(c|\vartheta_i, \theta_{-i}) = U_i(a|\vartheta_i, \theta_{-i}), \|c - a\| < \epsilon\}$. Also, define $L_j(a_i)$ to be the lower-contour set of agent j associated with allocation a_i: $L_j(a_i) = \{c \in A : U_j(c|\vartheta_j, \theta_{-j}) < U_j(a_i|\vartheta_j, \theta_{-j})\}$ and $V_j(a_i)$ to be the upper-contour set: $V_j(a_i) = \{c \in A : U_j(c|\vartheta_j, \theta_{-j}) > U_j(a_i|\vartheta_j, \theta_{-j})\}$.

H is a $L \times S - 1$ hyper-plane, which passes through a_i, and is perpendicular to the MRS of some type’s indifference curve, which also passes through a_i. H splits the space of allocations in two sub-spaces, A_1 and A_2. In each of these sub-spaces, and due to the LNCIP, there exists some $\tau > 0$ such that for every $\epsilon < \tau$, within the open ball $B_\epsilon(a_i)$, the upper contour set of a type is a subset of the upper contour set of some other type (see also the picture below).

Say that agent k is the type with the smallest upper contour set within ball $B_\epsilon(a_i)$ and subspace A_1: $V_k(a_i) \cap B_\epsilon(a_i) \cap A_1 < V_l(a_i) \cap B_\epsilon(a_i) \cap A_1, \forall l \in \Theta$. Then, there exists some allocation $b \in B_\epsilon(a_i)$ such that a_i is strictly preferred to b by agents of type k, 27
but the agents of all other types strictly prefer b to a_i: $b \in L_k(a_i)$ and $b \in V_l(a_i), \forall l \in \Theta$.

Likewise, there exists allocation c, which does not belong in the two smallest upper contour sets within $B_\epsilon(a_i)$ but it is within all the other upper contour sets, which means that a_i is strictly preferred by type k to b and c, b is strictly preferred by the type with the second smallest contour set to a_i and c and all the other types prefer c to a_i and b. By induction, one can construct $\Theta - 1$ allocations in the ϵ-neighborhood of a_i, such that the agents of one type strictly prefer one allocation over all the other. ■

Proposition 3: In the space of mechanisms, which permit sub-games with no equilibrium in pure strategies, Condition 1 is sufficient for full implementation.

Proof: Suppose that $G_I(P, A)$ is a simultaneous move game $G : P \rightarrow A$ with I players, and assume that G has no Nash equilibrium in pure strategies (examples include Jackson (1991) and Maskin (1999)). Also, arbitrarily restrict the payoffs of G_I such that the maximum possible payoff for any type is lower than if he were to receive the first-best allocation of any other type\(^{19}\). Let $R_i(p_{-i}, G)$ be the best-response correspondence of agent i if game G_I is played. Finally, suppose that Condition 1 is satisfied and that the interim distribution of types, β, is common knowledge. The mechanism below fully implements any Pareto efficient allocation which satisfies Anonymity.

\(^{19}\)An easy way to do this is to multiple all payoffs of G_I with an arbitrarily small but positive number.
Each agent reports his type m_i and a final allocation is received according to the following mechanism $M(g, a)$:

i) If $m \in \Theta(\beta)$, then $a_i(m_i, m_{-i}) = a^*(m_i, \beta)$, $\forall i \in I$.

ii) If m is such that for two types, (ϑ, ϑ'), the number of reported agents is different from number of agents in the interim-distribution by one, specifically $\lambda_m(\vartheta) = \lambda_\beta(\vartheta) + 1$, $\lambda_m(\vartheta') = \lambda_\beta(\vartheta') - 1$, then:

- If $\text{Rank}(\vartheta) = \text{Rank}(\vartheta')$, agents who reported types ϑ, ϑ' choose an allocation from the set $\{a_\vartheta^* - \epsilon, a_{\vartheta'}^\star - \epsilon\}$. ϵ is strictly positive for all state-contingent commodities and it is sufficiently small so that $a_\vartheta^* - \epsilon \succ a_{\vartheta'}^\star$ and $a_{\vartheta'}^\star - \epsilon \succ a_\vartheta^*$.
- If $\text{Rank}(\vartheta) > \text{Rank}(\vartheta')$, agents who reported types ϑ, ϑ' choose an allocation from the set $\{a_\vartheta(\vartheta, \vartheta'), a_{\vartheta'}(\vartheta, \vartheta')\}$. $a(\vartheta, \vartheta')$ satisfies Condition 1.
- If $\text{Rank}(\vartheta) < \text{Rank}(\vartheta')$, agents who report type ϑ' receive allocation $a_{\vartheta'}^\star$ and agents who report type ϑ receive allocation $\frac{\lambda_\beta(\vartheta)}{\lambda_m(\vartheta)}a_\vartheta^\star$.
- For all $m_k \neq \{\vartheta, \vartheta'\}$, $a_k(m_k, m_{-i}) = a^*(m_k, \beta)$.

iii) For any other case, the mechanism induces the game G_I.

If more than one misreport is detected, M induces G_I, which has no equilibrium\(^{20}\). Therefore, there can be no equilibrium of the mechanism where agents believe that more than two misreports will be detected. Conditional on that, it is a strictly dominant strategy for the agents of the highest rank to report truthfully their type. To see this, take agent i of type ϑ and suppose that his rank is K. Agent i’s only possible equilibrium beliefs are that: either (i) all other agents will report truthfully or (ii) one other agent will misreport or (iii) there will be multiple misreports but they will cover each other (e.g. type ϑ_k reporting as type ϑ_l, and vice versa) apart from one. Case (ii) and (iii) are strategically equivalent for i as his response induces the same allocation.

If i believes that all other agents will report their type truthfully then his best response is to report truthfully as well. Otherwise, he receives either the allocation $a_\vartheta^* - \epsilon$, if he misreports his type as of another type with equal rank, or the allocation $\frac{\lambda_\beta(\vartheta)}{\lambda_m(\vartheta)}a_{\vartheta'}^\star$, where ϑ' is of lower rank than i. Clearly, i strictly prefers a_ϑ^* to the above allocations and his best response is to report his type truthfully.

If, on the other hand, i believes that an agent (say j of type ϑ') of rank(K) will misreport his type to ϑ, then by reporting truthfully he receives $a_\vartheta^* - \epsilon$, while by reporting type ϑ' he receives $a_{\vartheta'}^\star$. By construction, $a_\vartheta^* - \epsilon \succ a_{\vartheta'}^\star$. If i reports any other type then his payoff will be even less due to the restrictions on the payoffs of G_I. Hence, i’s best response is to report truthfully.

If i believes that an agent (say m of type ϑ'') of a lower rank will misreport his type to ϑ, then a similar argument goes through. Reporting truthfully is strictly preferred

\(^{20}\)More than one misreport detected means that either $\lambda_\beta(\vartheta) \neq \lambda_m(\vartheta)$ for more than two types or that $\lambda_m(\vartheta) - \lambda_\beta(\vartheta) > 2$ and $\lambda_m(\vartheta') - \lambda_\beta(\vartheta') < 2$ for some types ϑ, ϑ'.

29
to reporting any other type, since $a_\vartheta(\vartheta, \vartheta') \succ_\vartheta a_{\vartheta'}$. Finally, if i believes that some agent m of type ϑ_m will misreport his type to ϑ_n, then i prefers reporting truthfully and receiving a^*_ϑ to reporting untruthfully and receiving some payoff induced by G_I.

Hence, for all beliefs that can be consistent with equilibrium, all agents of rank K strictly prefer to report their type truthfully. Given this and by following the same reasoning, agents of rank $(K-1)$ strictly prefer to report truthfully as well. By induction and iterated elimination of strictly dominated strategies, we conclude that all ranks will report truthfully and hence the unique Bayes-Nash equilibrium of the mechanism is for all agents to report their type truthfully. ■

Proposition 4: Condition 1 and 2 are jointly sufficient for full implementation.

Proof: Suppose that Condition 1 and 2 are satisfied and that the interim distribution of types, β, is common knowledge. The mechanism below fully implements any Pareto efficient allocation which satisfies Anonymity. Each agent reports his type m_i and a final allocation is received according to the following mechanism $M(g, a)$:

i) If $m \in \Theta(\beta)$, then $a_i(m_i, m_{-i}) = a^*(m_i, \beta), \forall i \in I$.

ii) If m is such that for two types, (ϑ, ϑ'), the number of reported agents is different from number of agents in the interim-distribution by one, specifically $\lambda_m(\vartheta) = \lambda\beta(\vartheta) + 1$, $\lambda_m(\vartheta') = \lambda\beta(\vartheta') - 1$, then:

- If $\text{Rank}(\vartheta) = \text{Rank}(\vartheta')$, agents who reported types ϑ, ϑ' choose an allocation from the set $\{a^*_\vartheta - \epsilon, a^*_{\vartheta'} - \epsilon\}$. ϵ is strictly positive for all state-contingent commodities and it is sufficiently small so that $a^*_\vartheta - \epsilon \succ_\vartheta a^*_{\vartheta'}$ and $a^*_{\vartheta'} - \epsilon \succ_{\vartheta'} a^*_\vartheta$.
- If $\text{Rank}(\vartheta) > \text{Rank}(\vartheta')$, agents who reported types ϑ, ϑ' choose an allocation from the set $\{a_{\vartheta}(\vartheta, \vartheta'), a_{\vartheta'}(\vartheta, \vartheta')\}$. $a(\vartheta, \vartheta')$ satisfies Condition 1.
- If $\text{Rank}(\vartheta) < \text{Rank}(\vartheta')$, agents who report type ϑ' receive allocation $a^*_{\vartheta'}$ and agents who report type ϑ receive allocation $\frac{\lambda_\vartheta(\vartheta)}{\lambda\beta(\vartheta)} a^*_\vartheta$.
- For all $m_k \neq \{\vartheta, \vartheta\}$, $a_k(m_k, m_{-i}) = a^*(m_k, \beta)$.

iii) For any other case, an allocation \tilde{a}, which satisfies Condition 2, is implemented.

The mechanism above is identical to the mechanism of Proposition 3, with the only exception that, if more than one misreport is detected, then instead of inducing a game without an equilibrium, the mechanism provides an allocation which is constructed according to Condition 2. By construction of \tilde{a}, all types prefer to report truthfully if they believe that many misreports will be detected.
Therefore, even if a rank(K)-agent believes that there will be several detections of misreports, he still prefers to report truthfully. He also prefers to report truthfully than reporting any other type, if he believes that there is only one misreport \((a_\vartheta(\vartheta, \vartheta')) \succ_\vartheta a_\vartheta^* \succ_\vartheta a_\vartheta')\). Since his best-response remains the same for all other beliefs, this means that any agent of rank(K) has a strictly dominant strategy to report truthfully. Therefore, by following the same reasoning as in the proof of Proposition 3 and by iterated elimination of strictly dominated strategies, we conclude that the mechanism has a unique Bayes-Nash equilibrium, at which all agents report their type truthfully. ■