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Abstract

For any extremal coefficient function ¢ of a dissipative max-stable process on Z there
exists a measurable set S C R such that

2—¢(h)=|SN(S+h), heZ.

We present a constructive proof by giving a monotonic sequence of sets S, that converge
to the set S.
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1 Introduction

It is well-known from [1] and [4] that a dissipative max-stable process Y on Z with standard
Fréchet margins has the representation Y; = max;eny U; f(t—z;), t € Z. Here, f : R — Ry with
[ f(s)ds =1, and {(U;, z;) }3°, is a Poisson point process on [0, c0) x R with intensity measure
u~21(u > 0)du x dz. In particular, the so-called spectral function f completely characterizes
the dependence structure of Y. A corresponding summary measure with properties similar
to the Gaussian autocovariance function is given by the extremal coefficient function

_ /max{f(s), f(s+h)}ds, hez, (1)

that has been proposed by [3]. We will consider a sequence (f,)nen,, No = NU {0}, of non-
negative step functions such that f, T v for a suitable function v : R — R with ¢, = ¢, and
hence ¢, — ¢ as n — co. Our main result will be the construction of a bounded monotonic
sequence of sets, i.e. (Sp)nen, T 9, |S| < 00, associated to (f,) such that

/fn Jds — b5 (h) = |Su N (S — k)], € No,h € Z. @)

Hence, our results imply that for any extremal coefficient function (1) on Z an equivalent
representation as a set covariance function [S N (S — h)|, h € Z, given by a certain set
S C R, |S| < oo, exists. The reverse is straightforward [2]. Consequently, the ensembles for
set covariance and extremal coefficient functions for dissipative processes can be shown to
coincide on a grid. An application of our result can also be found in [2].

To be specific, let (f)nen, T 7 be a monotonically increasing sequence of step functions with
nonnegative coefficients ank;, n € No, k € K, = {-n,...,n}, i = (i1,...,i,) € {0,1}", and
all other coefficients zero. Here, is € {0,1}, s =1,...,n,and i = ig = ) if n = 0. Throughout,
we will put [i]s = >0, i;2"7 and ilg = (i1,...,4¢), £ = 1,...,n, where i|p = (). Note that
the use of a binary number for the index ¢ will be advantageous later on. In particular, for
all z € R we put || = max{n € Z:n < z}, and we will assume from now on that

fnlx) = ZGS,kﬂs’ where k = |x] and i € {0,1}" with [i]s = |2"(z — k)]. (3)
s=0

Only in Corollary 3 this assumption will be abandoned. According to (1) let ¢y, (h), h € Z,
n € Ny, denote the extremal coefficient function of the stationary dissipative process Y7,
generated by the spectral function f,, where by (3) we find that

¢, (h) = 27" Z Z Z%,k,ﬂs—

ke Ky ic{0,1}" s=0
2D mm{zam,zaskm} hez )
ke Ky ie{0,1}m

Example 1. For the continuous spectral function f = v given in Fig. 1 we sketch the first
three elements of a monotonic sequence of step functions (f,)nen, T f given by (3) with
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Figure 1: Approximation of a continuous spectral function f by the step function f2 defined in (3). The corresponding
coefficients are given in Example 1. Note that the bars a,; do not necessarily touch the graph of f.

To give an idea of our approach to construct a suitable sequence (S,,) consider the sets Agp;,
s=0,1,2, k € K, i € {0,1}*, given in Fig. 2. We put

:U U U skz+k n € Ny, (5)

s=0keKsic{0,1}¢

such that (5,) is monotonic, and we will show in Theorem 1, cf. Section 5, that (2) holds. For
the above small set of coefficients the latter may be readily verified using Figs. 1 and 2. We
point out that in (2) the requirement of monotonicity for (.S,,) appears to be a fundamental
restriction. More precisely, the determination of an arbitrary sequence (S,,) such that (2) holds
is straightforward. Throughout the rest of our analysis we will mainly be concerned with the
construction of suitable sets Ag; as well as the discussion of their properties. However, note
that in Fig. 2 we also include intervals By, s = 0,1,2, i € {0,1}*, for some tedious index
b that will be discussed below. At this point the intervals By, may best be thought of as
placeholders. In particular, they indicate allowable locations for the sets Agx;. Note further
that the intervals Bgp; will have to be constructed jointly with Ag;. Roughly speaking, the
construction of Bgij,; for j € {(i,0),(¢,1)} and some suitable index a will be shown in
(16) below to depend on certain intersections of Ag; on the index k ranging over particular
orderable subsets of K. The latter will specifically be reflected by the index a. To conclude
the example, note that in Theorem 1 we will essentially make use of the fact that

27" fu(k + [i (6)

8,kyi|s N UBnbz

for all k € K,, and all ¢ € {0,1}". It will be helpful later on to check at this point that (6)
holds for the above example using Figs. 1 and 2.

To fix some notations let us denote a proper inclusion by “C”. We shall use “C” for an
inclusion that does not preclude equality. Further, we will understand [z,y) = 0 if y < =z,



and A° = () for any set A. For n € Ny let B, = {0, 1}”2, b= (bi,...,b,) € B,, where
bs € {0,1}*7 1 s=1,...,n,b=1by = 0 if n = 0, and N,, is the set of indices corresponding
to zeros in bs, e.g. Ny, = {2,5} for by = (1,0,1,1,0). Let E,o = B,, x {0,1}"" and E,, =
Eno\ ({0} x {0,1}"). We will put b|¢ = (bo,...,be), and accordingly (b,i)|¢ = (b|¢,i¢) for
¢£=0,...,n. Our approach will be organized as follows. In Section 2 we will define suitable
intervals By and discuss their relevant properties. To this end, we shall study an order on
the joint index (b,7) € E,, o that will later refer to the allocation of the intervals B,;; on the
line. We will formally introduce the order in (7). The nature of the order will then be largely
revealed by part 2 of Lemma 1. It will be shown in Lemma 2 that the order is total on a
suitable subset of E, (. In particular, the actual definition of B,;; in (16) will be restricted
to this subset in a natural way. As we will be able to draw some important conclusions
on the intervals B,;; even for arbitrary sets A,r; we will defer the actual joint definition of
By and A,x; to Section 3. There, in Corollaries 1 and 2 we will show that the assertions
of two auxiliary assumptions made for step n, cf. (Al) and (A2) in Section 2, hold true by
induction in step n + 1. In Section 3 we will further discuss two important properties of A,x;
in Lemmata 5 and 6. Thereafter we will study a decomposition of A,; in Section 4 that will
eventually be useful in the proof of Theorem 1 in Section 5 where we will show that (2) holds.
Finally, for any given spectral function f we will find that there is a suitable function v as a
limit of step functions where ¢; = ¢, cf. Corollary 3.

2 A Sequence of Auxiliary Sets

To begin with, we will equip the sets E,, o, n € N, with the following partial order “<,”. For
(b,i) € En,O let

{(a,j) € Eno:(a,7) <p (i)} = {(a,j) € By : 3¢ < n such that ale = b
and a|, # blx, alx, bl # 0 for all £ < k < n. Further, [jl¢]2 < [i]¢]2,
or jle =ile and Ng , C Nb§+1} U {(a,j) € E,o:30 <nsuch

that bls = 0,als # 0 and b|y # 0 for a115<)\§n}. (7)

For later reference note that by (7), in particular,
(b,i) <p (0,7), for all j € {0,1}" and (b,i) € E,,. (8)
Further, we have that
(b,i) € Ey, if (b,i) <p (a,j) for any (a,j) € E,. (9)

As indicated above, we will show in Lemma 2 below that for all n € Ny the functions fo, ..., f»
generate a suitable subset Eno=Enoys < Enp for which the above order is total. An essential
step to the construction of F,, o is provided by the following lemma whose proof is obvious.

Lemma 1. For k = 1,..., K, let q& € [0,1] and put goo = 1. Define maxycpqr = 0 and
mingeg gy = 1 and let x, = maxpen, g and yp = minggy, g for all b € {0,1}%. Put
My={l:q<ul,ueR, and Uy = {b e {0,1} : Ny = M,,uec{q:q<qltU{0}}. For
all ke {l,..., K} U{oc} we have that



1. A partition of [0, qr) is given by {[xp, yp), b € U}
2. {Ny, b € Uy} is strictly totally ordered under inclusion
3. Yo < xp for Ny C Ny, a,b € Uy, or for a=>b ¢ Uy
4. Uy ={a € Ux : N, C Np}, b € argmaxqep,, |Nal-

Example 2. For K = 6 and ¢1 = 0.2, ¢o = 0.3, g3 = 0, g4 = 0.4, g5 = 0.1 and ¢5 =
0.2 we consider the partition of [0,¢2) given by part 1 of Lemma 1. We have {¢ : ¢ <
g2} U {0} = {0,0.1,0.2} and My = {3}, Mp1 = {3,5} and My2 = {1,3,5,6} such that
U, ={(1,1,0,1,1,1),(1,1,0,1,0,1),(0,1,0,1,0,0)}. In particular, part 1 of Lemma 1 yields
[0,0.3) = [0,0.1) U[0.1,0.2) U[0.2,0.3), and parts 2 and 3 are obvious. Concerning part 4 of
the lemma we have

Us = {(1,1,0,1,1,1),(1,1,0,1,0,1),(0, 1,0, 1,0,0), (0,0,0,1,0,0), (0,0,0,0,0,0) }.
To verify the assertion note finally that arg max,ep, |Na| = {(0,1,0,1,0,0)}.

For later reference by parts 1 to 3 of Lemma 1 for all b € Uy, we have

[‘leyb) = Z |[xa7ya)| + [anb - xb)' (10)

a€Uoo:
NoCN,

For all n € Ny we will next define successively the sets E~'n70 and B,;;. For that purpose we
shall frequently apply the notation introduced in Lemma 1. Note carefully, however, that we
will necessarily extend the subscripts by the indices n € Ny and (b,4) € ENH,O. Consequently,
for all k € K,, U {oo} and (b,i) € E, o let now

Uniti = {a € {0,13*" 7"+ Ny = Myupi, v € {Guivi * Givi < Gnrni} U {0}} (11)
where, as above, Myupi = {k : @nipi < u}, u € R. Further, we put

Gnkbi = |Anki N Bppil (12)
and
qn,00,bi = |Bnb7,| (13)

for arbitrary sets A,j; that will be chosen to depend on fy,..., fn,—1 in Eq. (35) below, i.e.
Qnkbis k € K, U{oo}, are arbitrary numbers up to guip < |Bnpi|- Note that by (11) we have

0¢ Unrpi ifkeK,, (e k# oc0). (14)
Let now

En,o = {((b7 U), (Zaj)) ) (b,Z) € En_LQ,U € Un—l,oo,b,iaj € {07 1}}
U ({0} x {0,1}") (15)
and put E, = E,0\ ({0} x {0,1}"). We will discuss below that the union in (15) can in
fact be disjoint. In particular, for any n € Ny we will have that 0 ¢ U o4, ¢ € {0,1}", cf.

the proof of Corollary 1. Note that in the following we shall occasionally truncate the above
indexation where no confusion may arise.



Lemma 2. For all n € N the order “<,,” given in (7) is total on E, .

Proof. Let the order “<,” be total on E, 19 and let (a,j),(b,i) € E,_ 1. By (15) it is
sufficient to show that either ((a, @), (j,¢)) = ((b,0), (i,€)) or ((a, ), (j4,t)) <p ((b,B), (i,€)) or
((a,0),(4,1)) =p ((b,8), (i,€)) for all € Usg 4,;U{0}, B € Usop;U{0} and all ¢, e € {0,1}. By
symmetry we may assume that (a,j) < (b,4). Let first (a,j) = (b,4). Then, Us q; = Usc b,
and the following threefold distinction is a partition of all ((a, «), (j,¢)) and ((b, 5), (i,€)) with
(a,j) = (b,i). In either case we will show that an ordering by “<,” exists where we will omit
the trivial relation of equality.

1. Let @ = 8 € Usq,j and ¢, € € {0, 1} such that [(j,¢)]2 < [(¢,€)]2. Then, ((a, ), (j,t)) <p
((b,0), (i,€)) by (7) for £ =n. (6 does not exist.)

2. Let (a,), (b,8) # 0, a, 3 € Usgq,j, a # B, and ¢,e € {0,1}. Then, (a, )l = (b,0)|¢
and (a, )|, # (b, 5)]x for all £ < k < n, only if £ = n — 1. Further, (j,¢)|p—1 = j =
i = (4,€)|n—1, and No C Ng (or N, D Npg) by part 2 of Lemma 1 and the fact that
a, 3 € Uso,q,j- (6 does not exist.)

3. Let (b,8) =0, @ € Uso,a, @ # 0, and ¢,e € {0,1}. Then, § = n, and the fact that
(a, @) # 0 yields ((a, ), (j,1)) < (b, B), (i, €)) by (7). (€ does not exist.)

Next, let (a,j) <p (b,7). Then, by (7) there is £ < n — 1 such that al¢ = bl¢ and al. # b,
ale, bl # 0 for all € < kK < n—1, or there is 6 < n — 1 such that b|s = 0, als # 0 and
by # 0 for all 6 < A < n — 1. According to (7) we may distinguish three cases that yield the
ordering (a,j) <p (b,7). We will consider them separately and show that in either case also
((a, ), (4,1)) <p ((b, ), (i,€)) for all a, B € {0,1}?"! and all ¢, e € {0,1}.

1. Let alg = ble, ali # blx, alx, bl # 0 for all £ < k < n—1, and [jl¢]2 < [i]¢]2. Now,
(a,0)|e41 = (b,8)|g41 only if £ = n — 1. (0 does not exist.) Then, the fact that

[(4; el < (i, €)lera]2 yields ((a, ), (4,0)) <p ((b,8),(i,€)) by (7). If (a,a)|eq1 #
(b, B)le+1 also ((a, ), (4,¢)) <p ((b;8),(i€)) by (7) using that (a,a)l¢ = (b, 8)|¢ and
(4 Vlel2 < (4, €)le]2-

2. Let al¢ = blg, alx # blx, alx, bl # 0 for all § < k <n, and jle = il¢, Nag,, C Nogyy- (0
does not exist.) Then, £ < n, and for all a,, 3 € {0,1}?"~! and all ¢, ¢ € {0, 1} we trivially
also have (a,a)le = (b, B)le, [(J, V)le]2 = [(4,€)|¢)2 and Ny o)., C Np,p),,- The above
yields further that (a,a)|er1 # (b, B)|e+1 and (a, @)|e1, (b, B)|¢+1 # 0. Comparing with
(7) we readily find that ((a, ), (j,¢)) <, ((b,8), (i,€)).

3. Finally, let b5 = 0, a|s # 0 and b|y # 0 for all 6 < A < n. (£ does not exist.) Now,

also (b, )]s = 0 and (a, )5 # 0. If (b, 5)]541 # O then ((a, @), (j,1)) <p (b, B), (i, €)) is
immediate by (7). If (b, 3)|5+1 = 0 then 6 =n—1, and (a, @)|s+1 # 0 yields by (7) that

((a; @), (5, 0)) =<p ((b, ), (i €))-
O



We will denote the respective total order by “<”. For (b,i) € Emo let

xp + .
|:$b, b B yb> + Z |Bn—1,a,j| R b 75 0, in = 0,
(@,5)=(,3)|n—1

Ty + .
[ bzyb’yb + > IButagl, b#0in=1,
Bypi = (@.5)=(byi)[n—1 (16)

27" 10,max fo (k + [{]227") — max fo (k+ [i]22‘")>

+ > [Buyl, b=0,
(6.7)=(0)

where retaining the notation of Lemma 1 we put

Ty = Ty ps = max _ ; 17

b= Tnbilas = X Gtk (bi)n (17)
and

Yo = Ynbilos = M0 Gt )]s (18)

Note that part 3 of Lemma 1, and (15) yield in particular that by applying (16) to any
(b,1) ¢ E~'n70 we get B, = 0. In Fig. 2 we give a successive construction of B,; up to n = 2.
There, we use the coefficients discussed in Example 1 and we anticipate (35) in order to fix
Apnki- Next, note that (16) for all n € Ny yields

|Braj| = |Bnai| for all (a,j), (a,i) € E, with j|,_1 = i|n_1 (19)

where we point out that (19) does not hold for a = 0, cf. the intervals Bj o0 and Bj 1
in Fig. 2. As indicated above we shall now assume that for a fixed n € Ny, we have

B0 = U Bpti,a,; forallm <nandie{0,1}". (A1)

(”ﬂj)eémﬁ»l:
(a,3)Im=(0,7)

Lemma 3. Assume (A1). Then, for all m < n the following holds.

1. For (b,i) € Ep o we have

mei = [07 |mez|) + Z |Bmaj|- (20)
(a,5)=(b;i)
2. For (b,i) € E,, we have
By = U Bimit,a,j- (21)
(a»j)GEm+1:
(a,5)Im=(b,1)

Proof. For the proof of (20) we may restrict to the case b # 0 as (20) is immediate from (16)
for b = 0. In the following, let (a,j) € Ep_1,0 for any m < n. To begin with, in (22) to (24)
we will discuss simple but important preliminaries that follow easily from the above setup.
Let first ¥ € Uso,a,j = Um—1,00,a,j be arbitrary. Using (17) and (18) we then have by (10) that

Z(azy) T Y(a, Y(ayy) — La,
xw,w% 3 Hx(aﬁ),y(aﬁ))H[Qw) (22)

BE€Vs0,q, 5
NgCNy



and, accordingly,

L(ay) T Yy Yar) ~ %)
[%’ym)) = Y | vap) + =5
R
Yam) = T(am)
i [o, _ ) (23)

Further, we get by (15) that

Z Z ‘Bm,(a,ﬁ),(jJ)‘ = Z ’Bmcl‘

BEVs0,a, 5 lE{O,l} (cvl)EEWL,O:]VC'mC]V"/7
NgCNy (e:D)lm—1=(a.5)

= > | Bineil (24)
()€ E . 0:(e,1)<((a,7),(5,0)),
(e:D)m—1=(a,7)
where the latter equality holds by (7). Next, let v € Us 4, such that (a,7v) # 0. Note that
depending on the above choice of (a, j) € Em—l,o this constitutes an additional restriction on
v only if @ = 0. Now, using (16) in (22) and (23), we find that for any i € {(4,0), (j,1)}

Bu@mi = 2, > Bu@s.inl+1im = 1B .60
BEUoo,a,j: lE{O,l}
NgCNy

+[07 ‘Bm,(a,y),i’) + Z ‘Bm—l,c,l’

(c,l)EEm,LO:

(e,1)=(as7)
= Z |Bmcl| + [0, |Bm,(a,'y),i|) + Z |Bm—1,c7l| (25)
(e,1)€ Em:(c,l)=((a,7),1), (e.)€Em _1,0:
(c,l)\,,,L,l:(a,j) (c,1)=(a,g)

where the latter equality holds by (24). Note that by (9) and the fact that (a,7) # 0 we may
restrict to E,, instead of E,, for the first sum in (25). We next consider the special case
(¢c,l) € Ep—1. Then,

T(e,B) T Y, T(c,B) T Y,
0,1Bm-1ca) = | T(c,B)s G )2 G )> U[ G )2 G ),y(c,ﬁ)
BEUoo,c,l
= U U Bueson— D [1Bu-rail
ﬁEUoo,c,l i€{071} (a,i)EE,,n,l:
(a,i)<(c,l)
== U Bmai - Z ‘Bm—l,a,i’ (26)
(a,i)EEmi (a,i)€Ey, _1:
(a,)|m—1=(c;D) (a,i)=<(e,l)

where the first equality is immediate by part 1 of Lemma 1 and (13), and the second equality
holds by (16) as we have ¢ # 0 by assumption. The third equality is a consequence of (15).
Note that in the second and third equality we also make use of (9) in order to justify the sets
E,,_1 instead of Em—l,O- Now, by (26) and (A1), we have for all (¢,1) € ENm_LO that

‘Bm—l,c,l’ = Z ‘Bmai‘y (27)

(a,i)GE_]m:
(a,))[m—1=(c,1)



and (20) for b # 0 holds by (25) and (27). Note that we use (27) in order to resolve the last
sum in (25), and that, in particular, (A1) is a necessary assumption even though (a,v) # 0.
In order to proof (21) consider (26) for m + 1 instead of m, i.e.

[0, |Bmcz|) - U Bm—i—l,a,j - Z |Bmaj| ; (Cv Z) € Ema (28)
(a»j)EEm+1: (a,j)EEm:
(a,5)Im=(c,1) (a,5)=<(cd)
and the assertion follows by (20). O

In particular, by (20) we have for m < n that
mei N Bmaj = (2)7 (b7 2)7 (auj) € Em,07 (b7 Z) 7é (a7j)‘ (29)

Using (A1), and (21) repeatedly yields for all (b,i) € E,, 0, m < n, that

By = U Bnaj- (30)
(a,j)EEn:a\m+17&O,
(a,5) lm=(b,1)

Note that the restriction a1 # 0 affects the case b = 0 only, cf. (A1) where the index (a, j)

does not run over a = 0. Further, using (19) repeatedly we have by (30) for all (b,) € Ey, 0,
m < n, and any j € {0,1}" with j|,, = ¢ that

2" Buyil = Y. |Bugl. (31)

a€Bn:(a,j)E€En,
a\m:b,a\m+17$0

Note that in (31) the summation is over a € B, only, and j is fixed. We shall assume
next that for a fixed n € Ny and all m < n, k € K,, and j € {0,1}" there is a unique

(97 (]7 1)) = (gmk]7 (]7 1)) € Em+1 such that

m
> 1 Bmit,ail =27 app i, (A2)
(a,i)eEm+1:i\m:j, p=0
(a,1)=(g,(4,1))
Lemma 4. Letn € No, k € K;,, i € {0,1}" and j = i|,—1. Assume (A1) and let (g,(j,1)) =
(Gn—1,k,5, (J; 1)) € Ey according to (A2). We have
Z ’Bnai’ Z 2_nanki-
a:(g,(5,1))=(a:)

Proof. By (31) for all i € {0,1}", n € Ny, we get that

n n—1
> 2Bl = 2" Y |Buail +2"Buogl
m=0 m=0 a:(a,i)EEn,a\mZO,
@l 4170
- 2n Z |Bnai|- (32)
a:(a,i)GEmo



Let k* = k},, € argmaxy, fn(k + [i]227"). Then, by (3) we have

n n p pl
B 1) = Y, =3 (S, e S
s=0 p=0 s=0 s=0
n
= S 2B,y (33)
p=0

where the third equality holds by (16). Combining (32) and (33) yields for all & € K,,
i € {0,1}" and j = i|,—1 that

n
Z |Bnai| = 2" Z Qs k*i|ls — Z |Bnai|
s=0

a:(g,(4,1))=(a,i) a:(a,1)=(g,(4,1))

n n—1
= 27" e, — 27" Gkl = 2 " (34)
s=0 s=0
where we use (A2) and (19) for the second equality. O

3 The Sequence S,,: Building Blocks and Properties

The sets Sy, n € Ny, are given in (5) where at this point for alln € No, k € K, i € {0,1}" and
for (g, (iln-1,1)) = (gn-1,k,i[nn_1+ ({ln—1,1)) € Ej according to (A2), we will define essentially

A= U {Bun (02 a4 X Bt X 1)} @9

b:(b,1) (a,5)=(byi), a:(a,i)
€E, J# 2(9,(ilp—1,1))

Here, the union is disjoint by (20). For the final definition of A,x; we refer to Corollary 2
below. In Fig. 2 we depict the sets Anﬁi and Bpp; up ton =2 for the coefficients discussed in
Example 1. Note that for all (b,7) € E, ¢ and all (¢,j) € Ep, 9, m < n, we have

Z ‘Bnaj’ + Z ’Bnai’

(a.) (b1, a(a,d)]m = (c.5)
J#i
> IBuail= > IBuail, (¢.5) < (0,0)|m
(a,5)=<(b,1) e m: (36)
Z | Brajl| + Z |Bnail,  else,
(@)= (oo

such that, by (20) and (35), we get

Z | Braj| + [O,min {2_"anki
(a,5)=(bs%)

Aui 1 Bui = Y Bl \Bnm}), (0. (i1 1)) < (i), (D)

a:(g,(ilp—1,1))<
(a,i)=<(b,i)

0, else.
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n=0 F-—————""""—"—-—-—-———————— k]
A40,0,0
) N
I )
Bi,1,0 Bi,1,1 Bi1,0,0 Bi,0,1
n=1 F-————"=——= e ———— i
A1,-1,0 CA1,—1.1 CA1,-11
k ) | —
A1,0,0
S |
A1,1,0 A1,11
e |
2.2 2 2 2 2. Z Z Z Z 2 2 Z 2. 2
.2 2 32 9@ 9.5 = ) ) ) ) S 9. 9
(=] (=] (=} (=} (=} (=} [=} [=} (=] (=] — — (=] (=] (=3
— — [=) o =} =} — — — — [=} [=} — — (=]
[E— - - - - - - - - = = o o S
R T B R B R A ) o~ o~ o o R AT
[ R T Q Q Q Q SO

= —— )

Tm
T
+
+
+

C Az _2,(0,0) C Az _2,(0,0) C Az 20,0

| ] — — | —] | ]
A2.0,(1,0)
—
A2 2.(1,0)

—t } } } —t
0 _L 1 1 2 3 19

120 20 10 15 20 120

Figure 2: Jointly successive construction of Byp; and Ap,k; (top to bottom) using (16) and (35) up to n = 2. The
corresponding coefficients are given in Example 1. In the figure by “C X” we denote a subset of a set X.

Next, we find that by Lemma 4 and (37) for all i € {0,1}", k € K,, there is a unique
(§7Z) = (gnkhz) - (97 (ﬂn—h 1)) = (gn—17k,i\n717 (i’n—17 1))7 (§7Z) = (072)7 such that

0 < 2_"(1”1%- — Z ‘Bnai| < |Bn7[}72| (38)
(97(i|n7171))<(a7i)<(g7i)

Hence, by (37) and (38)

B, (g, (i‘n—17 1)) = (bvz) = (f],i),

Apki N By = Z ‘Bnaj| + [07 ’Ankz N Bnbiuv (b7 Z) = (ga Z), (39)
(a,5)=(g,%)
0, else.

Note that (39) and (35) yield

b:(g,(iln-1,1))<(b,1) 2(7,9)

such that, in particular,

b:(g7(i|n7171))<(b7i)j(g7i)

Further, by (37) and (41) we find for later reference that

| Anki|l = 27" appi- (42)

11



Corollary 1. Assume (A1) and (A2). For alli € {0,1}" we have

Bhroi = U Bniti,a,- (43)

(‘laj)eénﬁ»l:
(a,3)In=(0,1)

Proof. Let k* =k}, as in the proof of Lemma 4, and let

(g, (i‘n—17 1)) = (gn—l,k*,i|n,17 (i’n—la 1)) € En
as in (A2). We now get by (34) for k = k* that for any ¢ € {0,1}"

2_"an,k*,i = E |Bnai| = g |Bnai| (44)
a:(g.(iln—1,1))=(a,i) as(a: (il 1.1
(a,i)=(0,1)

where the second equality holds by (8). Using further that from (A2) and (8) we have
(9: (iln-1,1)) < (0,7) we get by (37) that

An,k* K N Bn,O,i

= Z ’Bnaj‘ + |:07 min {2_nan,k*,i - Z ’Bnai‘y ’Bn,O,i‘ })

(a,5)=(0,) a:(g,(ilp—1,1))
<(a,1)<(0,7)

= > |Bugl +0,|Buoil) = Buos- (45)
(a,7)=(07)

Here, the second equality follows by (44) and the last equality corresponds to (20). By (45),
using (12) and (13) we find that g, g+ 0 = @n 00,04 Such that by (11), in particular,

Uk 0,i = Uso,0,i- (46)

Further, (46) and (14) yield
0 ¢ Uso,0,:- (47)

Now,

0,[Broil) = [0,qnk%04) = U [7(0,8), Y(0,8)) = U U Bit1,(0,8),(i.5)

BEUL* 0, BeUx 0,5 j€{0,1}
- Z Bnaj = U Bn-i—l,a,j - Z Bnaj- (48)
(avj)<(07i) (avj)€E7L+1: (ayj)<(07i)
(@,3)In=(0,7)

Here, the first equality follows from (45) and (13), the second equality holds by part 1 of
Lemma 1, and the third equality is a consequence of (16) where we use that by (14) 0 & Uy~ o,;-

The last equality holds by (46) and (15) where we again may restrict the union to F, 11 instead
of Ept1,0 by (14). Finally, (20) and (48) yield the assertion. O

Corollary 2. Assume (A1) and (A2). For all k € Ky, and j € {0,1}" there is a unique
(9, (4 1)) = (gnkj» (4, 1)) € Eps1 such that

Z ’Bn-i-l,a,i’ = 2_nzap,k,j\p' (49)

(a,)€Epy1:iln=7, p=0
(a,1)=2(g,(5,1))
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Proof. Let k € K, and (§,4) = (Gnkj»j) € Enp as in (38). Further, let z € arg maxgev,;, | NVgl-
Then, z # 0 by (14), and z is unique by part 2 of Lemma 1. By part 4 of Lemma 1 we have

ngj = {ﬁ S Uoo,g,j : Nﬁ - Nz} . (50)
Further,
0. anksi) = | Fesves)= 1 [esven)
BEUL 5,5 BEVo,g,5°
NgCENz
= U Bignon— D |Buil (51)
BE€U 55 1€{0,1} (a,1)=<(3,5)
NﬁgNz

where the first equality holds by part 1 of Lemma 1 and the second equality is a consequence
of (50). The third equality then follows by (16) and (14). Next, by (39) and (51) we get that

Ankj N Bné] = U U Bn+17(§7ﬁ)7(j7l)
BeUs 5,5¢ 1€{0,1}

NgENz
= U Bn—l—l,a,i = U Bn—i—l,a,i (52)
(a,9)€Ep y1:(a,d)|In=(3,4), (a,i)€Epy1:(a,1)2((3,2),(4:1)),
Na, 1SNz (a,9)[n=(3,5)

where the second equality holds by (15). Here, by (50) and (14) we have that 3 # 0 such that
(8) justifies the restriction to E,; instead of E, 1. The third equality is a consequence of
(7) and Lemma 2. Further, by (41) and (39)

bi(gnflyk’j‘nil ,(Gln—1,1))
=<(b,5)=<(3,5)

= U Bn-i—l,a,i © U Bn-i—l,a,i
(a,)€Epy1:iln=4, (a,9)€Bpy1:(a,4)2((3,2),(5,1)),
(9n—1,k,j],,_1 *Uln—1.1)=(@:D)]n=(3.7) (a,9)In=(3.)

= U Brt1,a,i (53)

(a,8)€Ep41:iln=4,(a,3)2((§,2),(5,1)),
(g7l*1,kyj\n71 JUln—1,1))=(a,i)|n

where the second equality follows from (21) and (52). Thus,
Z ‘Bn-i—l,a,i‘ = |Ankj‘ = 2_nankj (54>

(a,0)€ Epy 1:iln=4,(a,1) 2((3,2),(5,1)),
(gnflvkrj‘nfl y(Gln—1,1))=(a,i)|n

where the second equality holds by (42). Further, (A2) yields

n—1
—n+1 _
27y ap g, = > | By
p=0

(b)EBn:ly_1=dln_1,
(b:l)f(9n717k7j‘7L71 (Gln—1-1))

= > |Bni1.ail (55)

(a,)€Epy1:iln_1=dln—1,
(aﬂ')‘N§(9n,1’k’j‘n71 (Gln—1,1))
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where the second equality is a consequence of (21). Note that by (19)

1
3 > [ Bt 1,0l =

(a,i)EEn+1Zi\n,1:j\n71,
(ayl)\7lﬁ(gn,17k’j‘n71 y(Uln—1,1))

n—1
Z ’Bn—i-l,a,i’ =2"" Z Up,k,jlp+ (56)
p=0

(a,)€Epy1:iln=7,
(a'i)‘"j(gnfl,k,j\nfl (Gln—1-1))

Here, the second equality holds by (55). The assertion follows by (56) and (54) where we put

Gnkj = (Gnkj> 2)- (57)
O

Now, for (43) and (49) to hold for all n € Ny, by induction on Corollaries 1 and 2 it is sufficient
to note that (A1) and (A2) hold trivially in the case n = 0. In particular, for all n € Ny, we
now have

Bui= |}  Butias (58)

(a,j)EEn+11
(a,3)In=(0,1)

and for all n € Ny, k € K,, and j € {0,1}" there is a unique (g, (4,1)) = (gnkj> (jJ; 1)) € Ept1

such that n
Z |Bnit,asl =27" Z Up,k,jp* (59)

(a,1)€Ep 4 1:iln=4, p=0
(a,i)=(g,(4,1))

Combining (58) and (21) yields that for all n € Ny

Bnbz’ = U Bn—l—l,a,jy (b,Z) € En,Ov (60)

(a,5)€Bp 41
(a,5)In=(b,3)

and by a repeated applicaction of (60) we get that for all m,n € Ny, m < n,
mei = U Bnaj7 (b,Z) € Em,O- (61)

(a,3)€Enzaly, 4170,
(@,5)|m=(by%)

Lemma 5. For all m,n € Ny, k € K, and j € {0,1}™, i € {0,1}" with n # m or j # i we
have
A N Amkj = 0.

Proof. For m = n the assertion is immediate by (40) and (29). To prove the case m < n let
(b,) € Eno such that (b,7)|m+1 = (g kil (ilm,1)). Then, by (38) we have

(gm,k,i\”ﬂ (Z|m7 1)) = (§m+1,k,i\m+17i|m+1) = (gm+1,k,i|m+17 (i|m+17 1))|m+1

where the equality holds by (57). Now, (b,7)m+1 < (9m+1,k,ilmsrs (Hlm+151))|lm+1, and by the
second part in the proof of Lemma 2 the latter implies that (b,7)|m+2 < (Im+1,kifms> (Elm+1,1))
if m + 2 < n. Proceeding iteratively, we have that

(b7 Z) = (gn—l,k,i\nfp (i|n—17 1)) if (bv i)|m+1 = (gm,k,i\mv (Z|m7 1)) (62)
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Further, note that

Amkj = U Bm—i—l,b,z’ = U B (63)
(b;i)EEm+1Zi\m:j»(b»i)ﬁ(gmkj»(j»l)), (b»i)EEnii\mij»(b»i)\m+1ﬁ(gmkj ,(4,1)),
(gmflvk)j‘m—l JUlm—1,1)=<(b,9)|m (gmflvk)j\m—l J(Ulm—1,1)=<(b,9)|m

where the first equality follows from (53) and the second equality is a consequence of (61).
Now, comparing (40) and (63) for j = i|,, yields the assertion by (62). To finalize the proof
let j # i|m. By (35) we find that

Amkj - U mej = U Bncl (64)
bi(byj)EEm,O (Cvl)EEn,Oz”m:j

where the equality holds by (61). Using (29) the assertion follows by (35) and (64). The case
m > n follows by symmetry. O

Lemma 6. For all n € Ny and k € K,, we have
5=04c{0,1}*

Proof. For m < n € N we have by (61) that
U Bnbi = Bm(]ja ] € {07 1}m’ (66)
(b,3) € En:b| 4170,
(6,4)lm=(0,5)
such that (29) with (66) yields
Binoj N Bpor =0 for m # por j # 1. (67)

Consequently, we get that

U U Bimoj = U U U By = U B, (68)

m=0 je{0,1}m m=0 j€{0,1}™ (b,i)€ En:b|ymt170, (bi)eEn
(b,3)m=(0,5)

and by (20) and (7) for all 7 € {0,1}" it holds that

U Bypj U B”OJ U Bhpy.- (69)

(b,5)EEn [1]2<[2] (b,5)=(0,7)

Now, from (68) and (69) we find that for all 7 € {0,1}"

n—1
> Bul=>_ Y. [Buojl+ Y [Buyl (70)
(b7j)<(07i) szjE{Ovl}m [j]2<[i]2
such that by (16) and (70)

Buoi = [0, | Buoil) +Z > Bmojl+ D |Buojl- (71)

m=0;je{0,1}™ [1]2<li]2
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Next, using (66) we have for all ¢ € {0,1}"

U Bibi € B0, (72)
bi(bvi)EEnyb\m:Oy
b‘m+1750
and (67) and (72) yield
U B 0,ifm 2 U By, forall i € {0,1}". (73)
= b:(b,i)E€En 0

We get from (35) that A, C Ub:(b e B,y for all k € K,,, i € {0,1}", such that using
Lemma 5 Y

JUawcUU U BacUU U Buoun

C
$=04€{0,1}5 s=04i€{0,1}* b:(b,i)€Es 0 s=0m=0ie{0,1}
n s n
= U U U BvaJZU U Bs,O,i
s=0m=0 je{0,1}™ s=04€{0,1}*
n
= Y X Bd]. kex (7
s=0i€{0,1}s

where the second inclusion follows by (73), the second equality holds by (67), and the last
equality is a consequence of (71). Next, note that

Z Z |Bs,il = Z Z 2- s<mast(/€+H22 )_I]?ea%fs—l (k+[i]22_s)>

s=04€{0,1} s=01ie{0,1}*

Z D> 270 (fo (b4 [i227°) — forr (B + [2277))

s=04e{0,1}s kEZ

- Zn: SN 2 (fs (k+[]227") = for (B + [12277))

s=014e{0,1}" k€Z

- Z 22 "o (k4 [i]227" /fn Ydz < 1. (75)

1€{0,1}" keZ

IN

Here, the first equality follows directly from (16), and the first inequality is a consequence
of the fact that for ar < b € R we have 0 < maxy b, — maxy ap < Zk(bk —ay). As to the
second equality we use that for any j € {0,1}* we have fq(k+ [j]227°) = fs(k + [i]227"),
i € {0,1}", i|s = j, and |{i € {0,1}" : i|s = j}| = 2"75. The last inequality reflects the
assumption of unit Fréchet margins of the max-stable process generated by f. Finally, (74)
and (75) yield the assertion. O

4 A Useful Decomposition for the Sets A, ;

Recall from (16) and (35) that the sets B, and A,,x; are defined in a joint successive way.
The following notion of D;, ;,,1; Will generalize the sets A,k In contrast to (35), however, for

16



m < n they will require the corresponding sets B,;; to be already defined. More precisely,
we put

Dn,mki = U {Bnbz N ([07 2_nam,k,i|m) + Z ‘Bnai’

b:(b,3)EEn,0 a:(a,i)€Ey o:

(@,1)|m =(g,(ilm—1,1))

b Y 1Bl ) | (76)

(@,3)=<(by3),
i
for all n € No, m <n, k € K, and i € {0,1}" where (g, (ilm-1,1)) = (Gm—1,k,ifm_1+ (Ilm-1,1))
as in (59). In particular, we readily find by (76) that

Dn,mki C U Bnbi: (77)
b:(bi)€Fn.0

and (76) and (35) yield that Dy, nx; = Apki. Further, for ¢,5 € {0,1}", ¢ # j, we get by (29)
and (76) that
Dy ki N Dy pjetnj =0,  for all m,p < n € Ny, h € Np. (78)

Next, using (77) and (61) we have for all m < n, (b,j) € Ep and all i € {0,1}" with i|,, = j
that

Dn,mki N mej = Dn,mki N U Bnai = U (Bnai N Dn,mkz)
a:(a,i)€E7l,a\m+1;ﬁ0, a:(a,i)€E7l,a\m+17ﬁ0,
(a,i)|m=(b,j) (a,i)m=(b,5)

such that, for later reference,

U (Dn,mkz N mej) = U U (Dn,mkz n Bnai) (79)
i€{0,1}m: i€{0,1}7: a:(a,i)€Ep 0,(a,d) lm=(b,3),
ilm=j ilm=j (a,9) [ +170,il 1y 1)
where the union on i is disjoint by (76) and (29).
Lemma 7. For allm <n € Ny, k € K,, i € {0,1}" and j = i|,,, we have

Dn,mki - L’J Bmaj

a:(a,§)€Em 0
(9:Glm—1,1))=(a,5) 2(3,4)

where (97 (j‘m—la 1)) = (gm—l,k,j|m,17 (jm—la 1)) and (.ah]) = (gmkj7j)
Proof. Note first that (76) and (20) give

Dn,mki N Bnbi = Z ‘Bnaj’ + [07 ’Bnbz’)> N <[07 2_nam,k,i|m)
(a,3)=(b;1)
Y Bl ¥ \ijr). (30)
a:(a,i)GEnyo, (avj)‘<(_b77:)v
(a,1)lm =(9,(Elm—1,1)) 37
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Next, applying (36) to (80) we find similar as in (37) that

Z | Bnaj| + [O,min {2_"am’k7i|m
(a,5)=(b,2)

Do ki O Bui = — Y Bl anbir}), (9 (ilm-1,1)) < (b, i)l

a:(g,(ilm—1,1))<(a,i)|m,
(a,i)=<(b,3)

0, else.

(81)
Further, using (19) repeatedly we get

Z ‘Bmaj’ =2"" Z ’Bnci’ (82)
(9,(Flm—1,1))=(a,5)=(5.4) c:(9,(dlm—1,1))=(c,8)[m =(g.4)
such that by (82) and (38) for all j € {0,1}™ and all ¢ € {0,1}" with i|,,, = j

ci(eri)en o,
(9, lm—1,1))=(c;3) [m =(3,9)

Now, by (81) and (83) for all (b,i) € E~'n70 with (b,7)|m =< (g, (ilm—-1,1)) or (§,%|m) < (b,7)|m
we have
Dn,mki N Bnbi = @ (84)

Finally, (77) and (84) yield that for all ¢ € {0,1}" with i|,,, = j

Dn,mki - U Bnbi = U Bmaj (85)
bi(b,i)€Ey, 0, a:(a,j)€ B, 0,
(9,(Glm—1,1))=(,) |m 2(35) (9,(Glm—1,1))<(a,5)=(3,5)
where the equality holds by (61). O

By (81) and (85) we may now state for later reference that
‘Dn,mkz‘ = 2_nam,k,i|m' (86)

Lemma 8. For allm <n € Ny, k € K, and j € {0,1}"™ we have

Amkj = U Dn,mki-

i€{0,1}n:
i|lm=j

Proof. Note that by (40) and Lemma 7 it is sufficient to show for all (b,j) € E~m70 with
(9, (jlm-1,1)) < (b,5) = (g,]) that

mej N Amkj = mej N U Dn,mki- (87)
i€{0,1}7:
ilm=j

To this end, we shall consider a twofold case differentiation. First, let

27 Ay — > | Brmaj| < |Bmb;l
a:(g,(jlm-1,1))=<(a,3)=<(b,5)
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Then, by (37)

mej N Amkj = Z ’Bmai’ + |:07 2_mamkj - Z ‘Bmaj‘>
(a,8)=(b,5) a:(g,(jlm—1,1))=(a,5)<(b,5)

= - Bai (88)

i€{0,1}7: ax(a,d)lm=(b),
ilm=3  (@0)|mt1=2(9.(:1))

where the second equality follows by (63) and (40). Now, (88) and a repeated application of
(19) yield that for all ¢ € {0,1}"™ with i|,,, = j

> Bl = 2 (2= Y (Bl

a:(a,i)|m=(b,j), a:(9,(jlm—1,1))=<
(a,9) |m+41=2(9,(5,1)) (a,5)=<(b,5)
= 2_namkj - Z ‘Bnci‘ (89)

c:(9,(Flm—1,1))=<
(e,1)lm = (b,5)

and by (89), in particular,

> |Bueil <27 — > | Bneil (90)

ci(e)2(a), c:(g,(Jlm—1,1))=(¢,8)[m = (b,5)
(c,1)[m=(b,j)

for all a € B, with (a,?)|, = (b,7) and (a,%)|m+1 =< (g,(4,1)). Further, by (89) we have for
(9,5, 1)) < (a,)|m+1 that

2" s — > |Bueil = > |Bueil 0. (91)

c:(g,(§lm—1,1))=<(c,i)|m=(b,5) ci(e,i)<(asi),
(c,1)[m=(b,j)

Now, by (20) we get

U B = U (0Bt X 1Bual)

a:(a,i)|m=(b,5), a:(a,i)|m=(b,5), (c,0)=(ayi)
(a,4)|m+12(9,(4,1)) (a,8)|m+12(9,(4,1))

= U < Z |Bncl| + |:07 min {2_namkj

a:(a,i)|m=(b,3)  (c,l)=<(a,i)

- > Busl = 3 Bl B} ) )

c:(g,(§lm—1,1))=<(c,)|m=(b,5) ci(e,i)<(asi),
(e,1)lm=(b,5)

= U (Dn,mk’i N Bnai) (92)
a:(a,i)|lm=(b,7)

where we use (89) to (91) for the second equality and (81) for the last equality. Next, by (88)
and (92) we find that

mej N Amkzj = U tJ (Dn,mkz N Bnai)

1€{0,1}": a:(a,i)|m=(b,j)

i|lm=j

= By N ) Diks (93)
iE.‘{O,l}.n:
1m=J
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where the last equality holds by (79). To conclude the proof consider now the case 27 a1 —
Za:(g,(j\mfl,1))<(a,j)<(b,j) ‘Bma]‘ > ’me‘]‘ Then, we have by (37) that

mej N Amkj = Z ‘Bmai’ + [07 ’me]‘)
(a,9)=(b,7)

= mej = U U Bnai (94)

ie.{O,l}TL: a:(a,i)EEn,a\m+1;ﬁO,
ilm =3 (@)l =(b,7)

where the second equality is a consequence of (20) and the last equality holds by (61). In
particular, using (94) and applying (19) repeatedly we find that

> |Buail = 2" 7" Byl <27 "amij — Y Bl (95)

a:(a,i)GE_/‘nyo,a\m+1;ﬁ0, C:(gy(‘j‘m—lyl?)<
(a,i)[m=(b,3) (c,i)m=(b,j)

where the inequality merely reflects the above assumption for the second case. Now, for any
a € B, such that (a,i)|, = (b,j) we have by (95) that

2_namkj - E : |BTLC7«| - E |Bncz| > |Bnai|- (96)
ci(g,(dlm—1))=< ci(e,i)<(a,i),
(¢,2)lm=(b,7) (¢y3)[m=(b,j5)

Hence, we get that

) Brai = ) ( > |Bncl|+[0,|Bnm|)>

a:(a,i)EEn’o,a\m+1#07 (a,i)EE7l’0,a\m+1¢0, (Cvl)'<(a7i)
(@,)|m=(b,5) (@,)|m=(b,7))

- U Z | Bret| + [O,min{T"amkj

(a,9)€Ep 0,alm170, (c,1)=(a,i)
(a,i)|m=(b,7)

- Z |Bncz| - Z |Bncz|>|Bnaz|}>

ci(9,(4lm—1,1))=< ci(e,i)=<(a,i),
(c,i)|m=(b,j) (c,1)lm=(b,5)
= U (Dn,mkz N Bnai) (97)
a:(a,i)EEn’O,a\erl;éO,
(a,1)|m=(b,5)

where the first equality holds by (20) and the second equality follows from (96). The last
equality corresponds to (81). Now, similar to the above, the result follows by combining (94)
and (97) first, and using (79) to conclude. O

Note that by (77) and (29) we get that

U Dn,mki N U Bnbi = Dn,mkia (XS {07 1}n’ (98)
i€{0,1}" b:(b,3)EEn,0

such that (98) and Lemma 8 yield an alternative representation of D;, ki, namely

D mki = Amkifm N U By for all i € {0,1}".
b(b,i)€En o

20



By Lemma 8 and Lemma 5 we have

U Amkj = U Dn,mkia m<ne N07 LS Km- (99)
jE{O,l}m ie{O,l}"

Further, Lemma 8 yields that Dy, i C Apij for all j € {0,1}™, k € K, and all i € {0,1}"

with i|,, = j. Then, the fact that for all n € Ny, k € K,, and ¢ € {0,1}" we have
Dn,mki N Dn,pki = @, m <p<n, (100)

holds by Lemma 5.

5 Main Result

In the following theorem we shall make use of the sets S,, given in (5) where the unions are
now seen to be disjoint by Lemmata 5 and 6.

Theorem 1. The sequence of sets (Sp)nen, TS is monotonic, and

27 Z Z En:a&k,i\s - ¢fn(h) =S, N (S, —h)], neNy helZ

keKnie{0,1}" s=0

Proof. By Lemma 6 we have

‘Sn N (Sn - h)’ = Z U U Aski N U U As,k—l—h,i

keZ |s=0iec{0,1}s s=0ie{0,1}s
n n
=2 U Ubuw 0 U Dusirn
k€Z |ie{0,1}" s=0 1€{0,1}" s=0

n n
- Z U ( U D"vski N U Dn,s,k—i—h,i)
s=0

keZ |ie{0,1}» =0

=2 >

k€Z ie{0,1}"

n n
U Dn,ski N U Dn,s,k—i—h,i
s=0 s=0

(101)

where the second equality holds by (99), and (78) gives the third equality. Next, note that
(76) and (100) yield

n
U Dn,ski = U {Bnbz n ( Z |Bnaj|
s=0

b:(b,3)EEn,0 <a,j;;5b,i),

N LZJO ([0, 2 ki) Y |B"“i|>> }

a:(a,i)GEnVO:
(a,9)]s=(g,(i[s—1,1))

— 1) {Bnbm< > |Bnaj|+[0,2—"§:a57k,is>>} (102)

b:(b,i)EEn70 (avj;_jégbvi), s=0
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where the second equality holds by (59) and (19). Using (102) we get that

n n n
U Dn,ski N U Dn,s,k—i—h,i = U Dn,ski
s=0 s=0 s=0

if and only if

n n
E Us ki), < E Qs kt-h,ilss
s=0 s=0

for any n € No, h € Z, k € K,, and i € {0,1}". By (86) we further have

U Dn,ski =27" Z as,k,i\s' (103)
s=0 s=0
Now, comparing (101) and (4), and using (103) yields the assertion. O

Corollary 3. For any extremal coefficient function ¢ of a dissipative maz-stable process on
Z there exists a measurable set S C R such that

2—¢(h)=|SN(S+h), heZ.

Proof. By the results of [1], see the introduction, there is a measurable function f such that

2—¢(h) = /min{f(s),f(s + h)}ds, h e Z. (104)

Starting from this function f we will construct a function v which satisfies (104) instead of
f, and may be approximated by (3). Let (£;) be a sequence of simple functions with values

0= k‘(()j) < k{j) < ... < kﬁﬂg < k‘gg_ﬂ = o0, and §; T f. We may assume without loss of
generality that

¢i(x) = Z K91 (ky” < flz) < k:gi)l) . (105)
i=0

Let the mapping ¢ : RZX[%1) — RR s f be defined by f(z) = f(|x],z — |z]). Consider
the set K; = {k‘éj), ... ,kggﬂ}z and impose an ordering on RZ%, hence on Uj K, such that
the ordering of the margins is preserved, i.e., for all k € Z, wl,wlgl),wg) e R, [ # k, and

) (2)

1
w,i < wy’ we have

(1) (2
(' sy W—2, W1, Wy, ", Wi 1, WE42, - - ) < ( sy We—2, W1, Wy, * Wit 1, WE42, - - )

Let, for w = (..., w_1,wo,w1,...) € Kj,

d) =

N e )™ <{wi}>‘

1E€EL

and put
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Then, we have for h € Z that
[ mintas(s), 2565 + ) s
= Z d) Zmin{wz,wz+h} = /min{gj(s),fj(s +h)}ds.

wEKj 2€ZL
Furthermore, the definition (105) of the &; and the introduced ordering imply that
SIS Y T VI EE
lDEKj:lD<w’ lZ}EKj+1ZlI)<w IDEKj+1ZlDS’LU lZ)EKjZ’LT)<w”

for all w € Kj;1 and w',w” € K; with w’ < w < w”. Hence, 7; is monotonically increasing
to some measurable function 7. Since for each j the function v; can be approximated by a
sequence of step functions f,, satisfying (3) the limit v can also be approximated by such a
sequence. This proofs the assertion of the corollary. O
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