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Katsiaryna Schwarz∗

Tatyana Krivobokova
Georg-August-Universität Göttingen

21st September 2012

Abstract

This article develops a unified framework to study the (asymptotic) properties of

(periodic) spline based estimators, that is of regression, penalized and smoothing

splines. We obtain an explicit form of the Demmler-Reinsch basis of general degree

in terms of exponential splines and corresponding eigenvalues by applying Fourier

techniques to periodic smoothers. This allows to derive exact expressions for the

equivalent kernels of all spline estimators and get insights into the local and global

asymptotic behavior of these estimators.

Key words and phrases: B-splines; Equivalent kernels; Euler-Frobenius polynomials;

Exponential splines; Demmler-Reinsch basis.

1 Introduction

Spline based estimators have a long history in nonparametric regression. The idea of

smoothing splines traces back to Whittaker (1923) and has been developed further among

many others by Schoenberg (1964) and Reinsch (1967), as well as by Wahba (1975) who

popularized smoothing splines in statistics. Another spline based technique is regres-

sion (or least-squares) splines introduced in works of Hartley (1961) and Hudson (1966),

∗Courant Research Center “Poverty, equity and growth” and Institute for Mathematical Stochastics,
Georg-August-Universität Göttingen, Wilhelm-Weber-Str. 2, 37073 Göttingen, Germany
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among others. Over last two decades penalized (or low-rank) splines have become in-

creasingly popular, see Ruppert et al. (2003). Penalized splines combine projection onto

a low dimensional spline space (as by regression splines) with the roughness penalty (as by

smoothing splines) and circumvent herewith certain practical disadvantages of smoothing

and regression splines.

Investigation of the statistical properties of these three spline based estimators has been

based on very different approaches. Agarwal and Studden (1980) and Zhou et al. (1998)

studied both local and global asymptotics of the regression spline estimators making use

of the results of Barrow and Smith (1978), who found a sharp estimate of the error for

the best L2 approximation of a smooth function by a splines set. Another approach have

taken Huang and Studden (1993), who derived an equivalent kernel in the special case of

cubic regression splines.

For smoothing splines, Fourier techniques (Rice and Rosenblatt, 1981, 1983; Cogburn

and Davis, 1974), the reproducing kernel Hilbert spaces framework (Craven and Wahba,

1978) and the asymptotic correspondance of the smoothing spline minimization problem

to a certain boundary value problem (Utreras, 1983) have been employed to obtain L2

error bounds for the smoothing spline estimators. To understand the local properties of

smoothing spline estimators, asymptotic equivalent kernels have been extensively studied.

First, Cogburn and Davis (1974) obtained an asymptotic equivalent kernel for smooth-

ing splines on the real line, using Fourier techniques. Messer and Goldstein (1993) and

Thomas-Agnan (1996) extended this kernel to the case of a bounded interval. Later,

Eggermont and LaRiccia (2006) refined these two results.

The asymptotic properties of penalized spline estimators have got attention only re-

cently. It has been discussed in Claeskens et al. (2009) that depending on the number of

knots taken, penalized splines have asymptotic behavior similar either to regression or to
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smoothing splines. Kauermann et al. (2009) studied in more detail the “small” number

of knots scenario in the generalized regression context. Recently, Wang et al. (2011) have

shown that in the asymptotic scenario with the “large” number of knots, the equivalent

kernel for penalized splines is asymptotically equivalent to that of smoothing splines. All

these works used mixed approaches, combining techniques for regression and spline esti-

mators, depending on the asymptotic scenario.

In this article we study in a unified framework all spline based estimators: regression, pe-

nalized and smoothing splines. Obtained new explicit expression for the Demmler-Reinsch

basis for periodic splines allows not only to obtain the L2 risk, but also to derive exact

equivalent kernels for all spline estimators on R, not available before even for smoothing

and regression splines. This delivers interesting insights into the local asymptotic behav-

ior of the spline estimators.

The paper is organized as follows. Section 2 introduces necessary concepts and notations.

Section 3 gives the Demmler-Reinsch basis, its eigenvalues and the Fourier coefficients of

spline estimators. In Section 4 the L2 risk for periodic spline estimators is given, while

in Section 5 equivalent kernels are derived. Local asymptotics of spline estimators is

discussed in Section 6 and Section 7 concludes the paper. All proofs are given in the

Appendix.

2 Preliminaries and notations

Consider a nonparametric regression model for the data pairs (yi, xi), i = 1, . . . , N ,

yi = f(xi) + εi, (1)

with the standard assumptions on the random errors, that is E(εi) = 0 and E(εiεj) = σ2δij

with σ2 > 0 and δij as the Kronecker delta. Let the data to be equally spaced on
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the [0, 1] interval, i.e. xi = i/N , i = 1, . . . , N . The unknown regression function f

is assumed to be a periodic function with period 1. More precisely, f ∈ Pp+1 = {f :

f ∈ Cp+1(R), f (j)(0 + l) = f (j)(1 + l), l ∈ Z, j = 0, . . . , p}. To estimate f ∈ Pp+1

with splines, define first the partition of [0, 1] into K, K ≤ N , equidistant intervals

τK = {0 = τ0 < τ1 < · · · < τK−1 < τK = 1} with τi = i/K, i = 0, . . . , K. Without

loss of generality, assume K to be even and M = N/K (the number of observations in

each interval [τi, τi+1)) to be an integer. Further, the periodic spline space Sper(p; τK) of

degree p > 0 based on τK consists of functions s, such that s ∈ Cp−1[0, 1], s is a degree p

polynomial on each [τi, τi+1), i = 0, . . . , K − 1 and s(j)(0) = s(j)(1), j = 0, . . . , p− 1. The

periodic spline estimator f̂ of f is found as the solution to

min
s∈Sper(p;τK)

[ 1

N

N∑
i=1

{Yi − s(xi)}2 + λ

∫ 1

0

{s(x)(q)}2dx
]
, (2)

λ ≥ 0, 0 < q ≤ p. For K = N and p = 2q−1 the solution to (2) is the periodic smoothing

spline estimator (Wahba, 1975). If λ = 0 and K � N , (2) results in the periodic regression

spline estimator (Zhou et al., 1998) and a general estimator with K < N , p + 1 > q > 0

and λ > 0 is the so-called low-rank or penalized spline estimator (Claeskens et al., 2009).

Let Bc(x) be a cardinal B-spline of degree p (for the definition see Schumaker, 1981).

Here and subsequently, we suppress in the notation the degree of the spline p. Then the

periodic B-spline basis for Sper(p; τK) can be defined as

Bi(x) =
∞∑

l=−∞

Bc {K(x+ l − i/K)} , i = 1, . . . , K, x ∈ [0, 1].

The Fourier transform of Bc(x) is known to be sinc(x)p+1, where sinc(x) denotes sin(x)/x,

implying that the Fourier series of a periodic B-spline is given by

Bi(x) =
∞∑

l=−∞

sinc(πl/K)p+1 exp{2πil(x− i/K)}, (3)
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i = 1, . . . , K. In the following, we make use of the relationship

∞∑
l=−∞

sinc{π(z + l)}p+1 = Qp−1(z), (4)

where Qp−1(z) = 1 for z ∈ Z, while for z /∈ Z this is the polynomial of cos(πz) of degree

(p− 1) defined recursively via

Qj(z) = cos(πz)Qj−1(z) +
1− cos(πz)2

j + 1

dQj−1(z)

d cos(πz)
, (5)

j = 1, . . . , p − 1, with Q0(z) = 1 for p odd. If p is even, the recursive formula (5)

is applied with Q0(z) = cos(πz). The exact formulas for some first Q-polynomials for

odd and even p, as well as the proof of (4) are given in the appendix. In a somewhat

different context similar polynomials have been discussed in Gautschi (1971) who studied

attenuation factors in the approximation of the Fourier coefficients of f available on a

grid of N values f(i/N). In fact, Q-polynomials are closely connected to the well-known

Euler-Frobenius polynomials Πp(·), see Schoenberg (1973). For odd p this relationship is

simple:

Qp−1(z) = exp{izπ(p− 1)}Πp{exp(−2iπz)}/p!.

For p even it can be expressed as

Qp−1(z) = exp{πiz(p− 1)/2} cos (πz/2)p+1 Πp {exp(−πiz)} /p!

− (−1)p/2i exp{πiz(p− 1)/2} sin (πz/2)p+1 Πp {− exp(−πiz)} /p!.

In Figure 1, several first polynomials Qp−1(z) for odd and even p are shown. Further, we

introduce the exponential splines, see Schoenberg (1973), which are defined in terms of

Euler-Frobenius polynomials as

Φp(t, z) = zbtc
(
1− z−1

)p p∑
j=0

(
p

j

)
{t}p−j Πj (z)

p! (z − 1)j
, (6)

5



(a) (b) (c)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

z

ev
en

 Q
po

ly
no

m
ia

l

Q2
Q4
Q6

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
z

od
d 

Q
po

ly
no

m
ia

l

Q1
Q3
Q5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

z

M=1
M=1.5
M=2

Figure 1: (a) Qp−1 polynomials for p odd, (b) Qp−1 polynomials for p even, (c)
Q6(z)/Q3,M(z) for different M .

z 6= 0, z 6= 1, where {t} denotes the fractional part of t and btc is the largest integer not

greater than t. With the convention 00 = 1, one can also define Φp(t, 1) = 1. Note that

Φp{t, exp(2πiz)} =
exp(2πizt)

exp{πiz(p+ 1)}

×
∞∑

l=−∞

(−1)l(p+1)sinc {π (z + l)}p+1 exp(2πilt). (7)

This equation, as well as connection of Q-polynomials to Euler-Frobenius polynomials are

discussed in more detail in the appendix. Finally, we define

Qp,M (z) =
1

N

N∑
i=1

|Φp {i/M + (p+ 1)/2, exp(−2πiz)} |2. (8)

For M = 1 we find Qp,1(z) = Q2
p−1(z), since Φ {(p+ 1) /2, exp (2πiz)} = Qp−1 (z) from

(7). If M = N/K > 1, then Qp,M(z) varies between Q2p(z) and Q2
p−1(z), depending on

M . For example, for p = 1 and p = 3 one obtains

Q1,M(z) = Q2(z) +
2 sin(πz)2

3M2
,

Q3,M(z) = Q6(z) +
2{3 sin(πz)4 − 2 sin(πz)6}

135M4
+

8 sin(πz)6

189M6
,
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and in general Qp,M(z) = Q2p + O(M−p−1), so that for growing M polynomial Qp,M(z)

converges exponentially to Q2p(z), as the right hand side plot of Figure 1 demonstrates

for Q6(z)/Q3,M(z).

3 Demmler-Reinsch basis for periodic splines

We start by stating the lemma, which gives the explicit expression for the complex-valued

Demmler and Reinsch (1975) basis for the periodic spline space Sper(p; τK).

Lemma 1 For x ∈ R functions

φi (x) =
Φp{Kx+ (p+ 1)/2, exp(−2πii/K)}√

Qp,M(i/K)
(9)

i = 1, . . . , K form the complex-valued Demmler-Reinsch basis in Sper(p; τK), i.e. it holds

1

N

N∑
l=1

φi(l/N)φj(l/N) = δi,j (10)∫ 1

0

φ
(q)
i (x)φ

(q)
j (x)dx = µiδi,j, (11)

i, j = 1, . . . , K, with δi,j as the Kronecker’s delta and the eigenvalues

µi = (2πi)2qsinc(πi/K)2q
Q2p−2q(i/K)

Qp,M(i/K)
. (12)

Remarks

1.
∫ 1

0
φi(x)φj(x)dx = δijQ2p(i/K)/Qp,M(i/K).

2. Basis functions φi(x) is the scaled discrete Fourier transform of periodic B-splines,

i.e. φi(x)K
√
Qp,M(i/K) =

∑K
l=1Bl(x) exp(−2πiil/K). A similar basis for N = K

has been considered in Lee et al. (1992), who studied Fourier coefficients f̃i, given

in Theorem 1 of Section 4.
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3. Since φi(x) is the scaled discrete Fourier transform of a real-valued B-spline functions

and Qp,M(z) is a symmetric, positive function by definition, it holds that φi(x) =

φK−i(x) and µi = µK−i.

4. Even though the Demmler-Reinsch basis for periodic smoothing splines has been in

employed in Cogburn and Davis (1974) and Craven and Wahba (1978), no explicit

expressions for φi and µi have been derived there. For K = N and p = 2q − 1,

µi = (2πi)2qsinc(πi/K)2qQ2q−2(i/K)−1 and at the data points l/N , the Demmler-

Reinsh basis reduces to φi(l/N) = exp(−2πiil).

Thus, any s(x) ∈ Sper(p; τK) can be represented as s(x) =
∑K

i=1 βiφi(x) and the so-

lution to (2) results in f̂(x) =
∑K

i=1 β̂iφi(x) with β̂i = (1 + λµi)
−1ŷi, where ŷi =

N−1
∑N

l=1 yl φi(l/N). Using (7) and the definition of the complex-valued Demmler-

Reinsch basis (9), we can write

φi(x) =
1√

Qp,M(i/K)

×
∞∑

l=−∞

sinc{π(i/K + l)}p+1 exp{−2πix(i+ lK)}, (13)

so that

f̂(x) =
1√

Qp,M(i/K)

∞∑
l=−∞

K∑
i=1

β̂i sinc{π(i/K + l)}p+1 exp{−2πix(i+ lK)}.

Since β̂i = β̂i+lK and Qp,M(i/K) = Qp,M(i/K + l), the Fourier coefficients of the periodic

spline estimator are given by

ci+lK =
sinc{π(i/K + l)}p+1√

Qp,M(i/K)
β̂i =

sinc{π(i/K + l)}p+1ŷi√
Qp,M(i/K)(1 + λµi)

, (14)

where the cl satisfy f̂(x) =
∑∞

l=−∞ cl exp(−2πilx). From (14), one can immediately

obtain the Fourier coefficients for both extreme cases: periodic smoothing and regression

8



splines. In particular, for K = N and p = 2q − 1 (periodic smoothing spline)

ci+lN =
sinc{π(i/N + l)}2qy̌i

Q2q−2(i/N) + λ(2πi)2qsinc(πi/N)2q
,

with y̌i = N−1
∑N

l=1 exp(2πiil/N)yl and for λ = 0, K � N (periodic regression spline)

ci+lK =
sinc{π(i/K + l)}p+1ŷi√

Qp,M(i/K)
=

sinc{π(i/K + l)}p+1ŷi√
Q2p(i/K) +O(M−p−1)

.

4 L2 risk for periodic spline estimators

The L2 risk of a spline estimator can be decomposed as

R(f̂ , f) =

∫ 1

0

E{f̂(x)− f(x)}2dx =

∫ 1

0

Var{f̂(x)}dx

+

∫ 1

0

[E{f̂(x)} − sp(x)]2dx+

∫ 1

0

{sp(x)− f(x)}2dx,

where sp is the best L2[0, 1] approximation of f ∈ Pp+1 by Sper(p; τK). Thus, the R(f̂ , f)

consists of three summands: the integrated variance, the integrated squared shrinkage

bias and the integrated squared approximation bias. The shrinkage bias appears due

to the penalization involved in (2) and vanishes for regression splines (λ = 0). The

approximation bias is the error due to approximation of a continuous function f by a

spline. The sharp asymptotic behavior of the integrated squared approximation bias has

been proved in Barrow and Smith (1978). In particular, they have shown that

lim
K→∞

K2p+2

∫ 1

0

{sp(x)− f(x)}2dx =
|b2p+2|

(2p+ 2)!

×
(∫ 1

0

|fp+1(x)|1/(p+1.5)dx

)(2p+3)

, (15)

with b2p+2 as the (2p+ 2)th Bernoulli number. The following theorem gives exact expres-

sions for the integrated variance and the integrated squared shrinkage bias.
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Theorem 1 Let the model (1) hold, f ∈ Pp+1 and f̂(x) ∈ Sper(p; τK) be the solution to

(2) with xi = i/N , i = 1, . . . , N and τK = {i/K}Ki=0. Then, the integrated variance and

the integrated squared shrinkage bias of f̂(x) are given by∫ 1

0

Var{f̂(x)}dx =
σ2

N

K∑
i=1

Q2p(i/K)

Qp,M(i/K)(1 + λµi)2
(16)

∫ 1

0

[E{f̂(x)} − sp(x)]2dx =
K∑
i=1

Q2p(i/K)(λµi)
2|f̃i|2

Qp,M(i/K)(1 + λµi)2

∣∣∣∣∣1− f̂i − f̃i
f̃iλµi

∣∣∣∣∣
2

, (17)

with f̃i =
√
Qp,M(i/K)/Q2p(i/K)

∫ 1

0
f(x)φi(x)dx and

f̂i =
√
Qp,M(i/K)/Q2p(i/K)N−1

∑N
l=1 f(l/N)φi(l/N).

Note that the ratio Q2p(z)/Qp,M(z) is bounded and varies between 0 < Q2p(z)/Q2
p−1(z) <

1 for M = 1 and 1 for M → ∞, see the discussion at the end of Section 2 and the right

hand side plot in Figure 1.

From the equations (16) and (17) it is clear that the asymptotic behavior of spline based

estimators depends on λµK/2 = λ(2K)2qQ2p−2q(1/2)/Qp,M(1/2), similar to the results in

Claeskens et al. (2009). From (15), (16) and (17), one can find the asymptotic orders of

the components of R(f̂ , f) in two asymptotic scenarios.

Corollary 1 Let the assumptions of Theorem 1 hold. Then for p ≥ 2q − 1

R(f̂ , f) =

{
O (KN−1) +O (λ2) +O(K−2p−2), for λµK/2 = O(1),

O
(
λ−1/(2q)N−1

)
+O (λ2) +O(K−2p−2), for λµK/2 →∞,

so that for λµK/2 = O(1) and K = cN1/(2p+3), λ = O(N−ν), ν ∈ [(p + 1)/(2p + 3), 1]

imply R(f̂ , f) = O
{
N−(2p+2)/(2p+3)

}
. For λµK/2 → ∞ and λ = O

{
N−2q/(4q+1)

}
with

λ1/(2q)N →∞, K = cN ς , ς ∈ [1/(4q + 1), 1] it follows R(f̂ , f) = O
{
N−4q/(4q+1)

}
. Here c

denotes a generic positive constant.
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Corollary 1 states that depending on λµK/2, and thus on the number of knots K taken, the

asymptotic scenario of (periodic) spline based estimators is either similar to the (periodic)

regression spline asymptotics or to the (periodic) smoothing spline asymptotics. For small

K = cN1/(2p+3) with λµK/2 = O(1) the convergence rate of the estimator N−(2p+2)/(2p+3)

is the same as that for the regression splines (see Zhou et al., 1998) and λ is, in fact,

non-identifiable, i.e. can not be estimated consistently. Once more knots are taken so

that λµK/2 → ∞, the smoothing parameter λ controls the fit and the convergence rate

is N−4q/(4q+1), as was found for periodic smoothing spline estimators by Wahba (1975).

In this scenario K is non-identifiable, meaning that taking any K satisfying K = cN ς ,

ς ∈ [1/(4q + 1), 1] has no influence on R(f̂ , f). Apparently, the choice of p and q is

important for the convergence rate in each scenario. Taking p > 2q − 1 leads to a faster

convergence rate in the “small” number of knots scenario, while for p = 2q − 1 the

convergence rate in both scenarios is the same.

5 Equivalent kernels on R

Using (9), one can write the solution to (2) as f̂(x) = N−1
∑N

l=1W (x, l/N)Yl, where

W (x, t) =
K∑
i=1

φi(t)

1 + λµi
φi(x),

which is obviously in Sper(p; τK) for a fixed t (or fixed x). The space of periodic splines

Sper(p; τK) is a finite dimensional Hilbert space and thus has a reproducing kernel. With

respect to the inner product < f, g >= N−1
∑N

i=1 f(i/N)g(i/N) + λ
∫ 1

0
f (q)(x)g(q)(x)dx

for any N ≥ K the reproducing kernel for Sper(p; τK) is W (x, t).

In this section we consider W (x, t) for x, t ∈ R and define additionally

W(x, t) =

∫ K

0

φ(u, x)φ(u, t)

1 + λµ(u)
du,

11



where µ(u) = (2πu)2qsinc(πu/K)2qQ2p−2q(u/K)/Qp,M(u/K) and φ(u, x) = Φp{Kx+ (p+

1)/2, exp(−2πiu/K)}/
√
Qp,M(u/K). In fact, W (x, t) can be obtained by “folding-back”

W(x, t), that is

W (x, t) =
∞∑

l=−∞

W(x, t+ l). (18)

This can be proved by showing that the Fourier coefficients of both functions coincide.

The Fourier coefficients of W (x, t) as a function of t at a fixed x can be found from

W (x, t) =
∞∑

l=−∞

K∑
i=1

sinc{π(i/K + l)}p+1φi(x)√
Qp,M(i/K)(1 + λµi)

exp{2πit(i+ lK)},

simliar to the Fourier coefficients ci+lK of f̂(x), as given in Section 3. Since Qp,M(i/K) =

Qp,M(i/K + l), µi = µi+lK and φi(x) = φi+lK(x), we obtain

al(x) =
sinc{π(l/K)}p+1φl(x)√
Qp,M(l/K)(1 + λµl)

, l ∈ Z, (19)

for W (x, t) =
∑∞

l=−∞ al(x) exp(2πilt). From the Poisson summation formula∫ 1

0

∞∑
j=−∞

W(x, t+ j) exp(−2πitl)dt =

∫ ∞
−∞
W(x, t) exp(−2πitl)dt (20)

follows the equality of lth Fourier coefficients of
∑∞

j=−∞W(x, t + j) and of the Fourier

transform of W(x, t). Applying the Poisson summation formula again we obtain

W(x, t) =

∫ K

0

∞∑
l=−∞

sinc{π(u/K + l)}p+1φ(u, x)√
Qp,M(u/K){1 + λµ(u)}

exp{2πit(u+ lK)}du

=

∫ ∞
−∞

sinc{π(u/K)}p+1φ(u, x)√
Qp,M(u/K){1 + λµ(u)}

exp{2πitu}du. (21)

From (20), (21) and the inverse Fourier transform follows the equality of the Fourier

coefficients of
∑∞

j=−∞W(x, t + j) and al(x) in (19), which proves (18). The next lemma

gives exact expressions for W (x, t) and W(x, t).
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Lemma 2 Let

P2p(u) = Π̃p,M(u)

+ (−1)qλK2q(1− u)2qΠ2p−2q+1(u)/(2p− 2q + 1)! (22)

be a polynomial of degree 2p where Π2p−2q+1(u) is the Euler-Frobenius polynomial and

Π̃p,M(u) is a linear combination of certain Euler-Frobenius polynomials with its exact

expression given in the proof. Let also rj, r
−1
j , j = 1, . . . , p be the roots of P2p(u) with |rj| <

1. Then, denoting P
′
2p(rj) = ∂P2p(u)/∂u|u=rj , dx,t =

⌊
Kx−

{
p+1
2

}⌋
−
⌊
Kt−

{
p+1
2

}⌋
and

representing

zp−dx,tΦp{Kx+ (p+ 1)/2, z}Φp{Kt+ (p+ 1)/2, z−1} =

2p∑
l=0

αl({Kx}, {Kt})zl

for some functions αl(t1, t2) and x, t ∈ R, results in

W (x, t) = K

p∑
j=1

2p∑
l=0

αl ({Kx}, {Kt})
P
′
2p(rj)

×
r
(dx,t+l−1) modK
j + r

K+2p−2−(dx,t+l−1) modK
j(

1− rKj
) ,

W(x, t) = K

p∑
j=1

2p∑
l=0

αl ({Kx}, {Kt})
P
′
2p(rj)

r
|dx,t+l−1|+I{dx,t≤−l}(2p−2)
j . (23)

There is a closed form expression available for the roots of polynomial P2p for degrees

p ≤ 4. For these degrees both W (x, t) and W(x, t) can be obtained explicitly. For larger

degrees, approximate expression for the roots are given in Sobolev (2006). For p = q = 1

both functions have simple representations, for larger p and q they become much more

involved. In particular, for p = q = 1 one finds r1 = 1 − (
√

6/M2 + 3 + 36λK2 −

3)/(6λK2−1+1/M2), P
′
2(r1) =

√
(2/M2 + 1 + 12λK2)/3, α2(t1, t2) = α0(t2, t1) = t1−t1t2

13



and α1(t1, t2) = 1− α0(t1, t2)− α2(t1, t2).

Equivalent kernels obtained in Lemma 2 look very complicated, but they are exact and

hold for any p, q, M , K and λ. Known equivalent kernels for smoothing splines on R

correspond toW(x, t) with K = N →∞. Equivalent kernels for regession splines on R of

Huang and Studden (1993) are also exact, but were obtained in terms of a certain (rather

involved) linear combination of B-splines for p = 3 only. As Nychka (1995) notices, one

does not need to know the exact form of the kernel in order to study the pointwise bias

and variance of smoothing splines. Similarly, in the proof of our Theorem 3 for local

asymptotics of general spline estimators, it turns out that only the following Lemma 3 is

crucial.

Lemma 3 For x, t ∈ R, it holds for m ≤ min{p, 2q − 1} that∫ ∞
−∞

(t− x)mW (x, t) dt =

∫ 1

0

(t− x)mW (x, t) dt = 0,

while for m = min{p+ 1, 2q},∫ ∞
−∞

(t− x)mW (x, t) dt =

∫ 1

0

(t− x)mW (x, t) dt

= I{p≤2q−1}

{
2Bp+1

({
p+1
2

})
Np+1

−
Bp+1

({
Kx+ p+1

2

})
Kp+1

}
− I{p≥2q−1}

λ (2q)!

(−1)q
,

with Bp+1(x) as a (p + 1)-th degree Bernoulli polynomial and I{p≥2q−1} as an indicator

function.

6 Local Asymptotics on R

Let us define the variable kq = λ1/(2q)πK, which differs by a constant from (λµK/2)
1/(2q)

and in the same way determines the type of the spline estimator. In particular, kq = 0

corresponds to the regression spline estimator, kq = λ1/(2q)πN → ∞ to the smoothing

14



spline estimator and all intermediate values characterize penalized spline estimators. Be-

fore we present the results on the local asymptotics for spline estimators, let us introduce

a bandwidth h(kq), which is universal for all spline estimator and is defined via

h(kq)
−1 =

∫ K

0

dx

1 + λ(πx)2q
= λ−1/(2q)π−1

∫ kq

0

dx

1 + x2q
.

Bandwidth h(kq) is a smooth function of kq with a (rather complicated) closed form

expression available for each q. However, for our subsequent developments the following

representation will be more suitable.

h(kq)
−1 = λ−1/(2q)π−1

{
kq c1, kq < 1

π c2, kq ≥ 1,
(24)

with constants c1 = c1(kq) = 2F1[{1, 1/(2q)}; {1 + 1/(2q)},−k2qq ] and c2 = c2(kq) = c̃2 −

π−1kq
1−2q

2F1[{1, 1−1/(2q)}; {2−1/(2q)},−k−2qq ]/(2q−1), where c̃2 = π−1sinc{π/(2q)}−1

is independent of kq and 2F1 denotes the hypergeometric series (see Abramowitz and

Stegun, 1972). Both c1(kq) and c2(kq) are convergent and vary slow with kq, namely

c1(kq) ∈ (π/4, 1] and c2(kq) ∈ (1/4, 1/2]. Note that for the regression spline estimators

(kq = 0) the inverse bandwidth h(0)−1 = Kc1(0) = K and for the smoothing spline

estimators (kq →∞) the inverse bandwidth h(∞)−1 = λ−1/(2q)c̃2.

With this, we can define the equivalent kernel K(x, t) for the spline estimator f̂(x), x, t ∈

R, to be such that

W(x, t) =
1

h(kq)
K
(

x

h(kq)
,

t

h(kq)

)
.

It holds the following result.

Theorem 2 The equivalent kernel for spline estimators on R for p = 2q − 1 is given by{
c1K (c1x, c1t) = Krs(x, t)− k2qq K1(x, t), kq < 1

c2K (c2x, c2t) = Kss(t− x) + k1−2qq K2(x, t), kq ≥ 1,

where K1(x, t) and K2(x, t) are bounded functions given in the proof, Krs(x, t) is the re-
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gression spline equivalent kernel

Krs(x, t) =

p∑
j=1

2p∑
l=0

αl ({x}, {t})
P
′
2p(rj)

r
|dx,t+l−1|+I{dx,t≤−l}(2p−2)
j ,

with αl, rj, dx,t, P2p(u) = Π2p(u) defined in Lemma 2 and Kss(x, t) is the asymptotic

smoothing spline equivalent kernel (i.e. for N →∞)

Kss(x, t) = Kss(x− t) =

q−1∑
j=0

i exp [i |x− t| exp {πi (2j + 1) /(2q)}]
2q exp {iπ(2q − 1) (2j + 1) /(2q)}

.

From Theorem 2 follows that limkq→∞ c2K(c2x, c2t) = c̃−12 Kss {(x− t)/c̃2} and

limkq→0 c1K(c1x, c1t) = Krs(x, t), that is, K(x, t) varies smoothly between Krs(x, t) and

Kss(x, t), scaled with appropriate constants. This is visualized in Figures 2 and 3. Figure

2 shows Krs(x, t) for p = 1, 3 at t = 0, t = 0.3 and t = 0.5, as well as Kss(x − t) for

q = 1, 2. Obviously, Krs(x, t) is not translation invariant, in contrast to Kss(x, t). Figure

3 depicts the penalized spline kernel K(x, t) for M = 5 at t = 0 and t = 0.3 for different

values of kq and for p = 1, 3. As kq grows, K(x, t) becomes more symmetric and for kq = 5

is already non-distinguishable from the smoothing spline kernel shown in grey.

Finally, we proof the following theorem for the pointwise bias and pointwise variance of

the periodic spline estimator f̂(x) in terms of the universal bandwidth h(kq).

Theorem 3 Let the model (1) hold and f̂(x) ∈ Sper(2q − 1; τK) be the solution to (2)

with xi = i/N , i = 1, . . . , N and τK = {i/K}Ki=0. Then for f ∈ Pp+1, such that f (2q) ∈

C0,α([0, 1]), i.e. f (2q) is Hölder continuous with |f (2q)(x)−f (2q)(t)| ≤ L|x−t|α, ∀x, t ∈ [0, 1]

and α ∈ (0, 1], it holds at any x ∈ [0, 1]

E
{
f̂(x)

}
− f(x) = −h(kq)

2q f
(2q)(x)

(2q)!
C(kq, x) + o

{
h(kq)

2q
}

Var
{
f̂(x)

}
=

σ2

Nh(kq)

∫ ∞
−∞
K2 {x/h(kq), t} dt+ o

{
N−1h(kq)

−1} ,
16



where for kq < 1

C(kq, x) = c2q1
[
B2q ({Kx}) + (−1)q(2q)!π−2qk2qq − B2q (0)M−2q] ,

while for kq ≥ 1

C(kq, x) = c2q2
[
(−1)q(2q)! + B2q ({Kx}) π2qk−2qq − 2B2q (0)π2q(kqM)−2q

]
and

∫∞
−∞K

2 {x/h(kq), t} dt < C2/ log(γ−1), for some C ∈ (0,∞) and γ ∈ (0, 1), both

depending on kq, explicitly given in the proof of Lemma 4 in the Appendix.

Remarks

1. From the proof of Theorem 3 follows that under the same assumptions it holds also

for non-periodic f(x), if x ∈ (0, 1).

2. Integrating the squared bias and the variance results in an alternative expression

for the L2 risk for periodic spline estimators. Namely,

R(f̂ , f) =
h(kq)

4q

(2q)!2
‖f (2q)C(kq)‖2 + o

{
h(kq)

4q
}

+
σ2

Nh(kq)

∫ 1

0

∫ ∞
−∞
K2 {x/h(kq), t} dtdx+ o

{
N−1h(kq)

−1} ,
where ‖ · ‖ denotes the L2[0, 1] norm.

In this section we have obtained local asymptotic results for spline estimators of sufficiently

smooth fs on R, assuming equidistant design for knots and observations. This assumption

is dominating in the literature on equivalent kernels. However, we can follow Huang and

Studden (1993) to generalize the result. In particular, if the design points xi, i = 1, . . . , N

have a limiting density g(x) and the sequence of knots τK satisfies
∫ τi
τi−1

p(t)dt = 1/K, for

a positive continuous density p(t) on [0, 1], then the equivalent kernel for general spline
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estimator satisfies

W(x, t) =
1

g(t)h(kq)/p(t)
K
(

x

h(kq)/p(t)
,

t

h(kq)/p(t)

)
.

Another open question so far is the equivalent kernel K(x, t) on a bounded interval [0, 1].

However, Theorem 2 emboldens to make some conjectures on this issue. Let K[0,1]
rs and

K[0,1]
ss be regression and smoothing splines equivalent kernels on [0, 1]. For cubic splines

Huang and Studden (1993) have shown that K[0,1]
rs = Krs(x, t)+Kbrs(x, t), where Kbrs(x, t) is

some boundary term, not available explicitly. Moreover, K[0,1]
rs satisfies at the boundaries

all conditions for boundary kernels as given in Gasser and Müller (1984), confirming that

regression spline estimators do not have boundary effects. Messer and Goldstein (1993)

obtainedK[0,1]
ss = Kss(x, t)+Kbss(x, t), where the boundary termKbss(x, t) has a complicated

closed form expression for each q. This additional term Kbss(x, t) arises from matching

the natural boundary conditions at the end of the interval, illustrating the boundary

effects of smoothing spline estimators, unless the regression function satisfies the natural

boundary conditions. Since K(x, t) varies smoothly between Krs(x, t) and Kss(x, t), one

can expect that additional boundary terms in K[0,1] also vary smoothly between Kbrs(x, t)

and Kbss(x, t), so that the boundary effects of spline estimators grow as kq →∞.

7 Conclusion

We have developed a unified framework that enables to study all (periodic) spline based

estimators. Exact expressions for the Demmler-Reinsch basis and corresponding eigen-

values allowed not only to obtain the L2 risk of periodic spline estimators, but also exact

equivalent kernels for all spline estimators on R. Extension of these results to a non-

periodic case in the spirit of Rice and Rosenblatt (1983), as well as finding the equivalent

kernels on a bounded interval are interesting directions for further research.
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Figure 2: (a) Krs(x, 0) for p = 1, 3, (b) Krs(x, 0.3) for p = 1, 3, (c) Krs(x, 0.5) for p = 1, 3,
(d) Kss(|x− t|) for q = 1, 2.

A Proofs

Proof of equation (4)

It is known that
∑∞

l=−∞(z + l)−1 = π cot(πz)−1 and
∑∞

l=−∞(−1)l(z + l)−1 = π sin(πz)−1.
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Figure 3: For kq = 0, 1, 5 (a) K(x, 0) for M = 5 and p = q = 1 (top) and p = 2q − 1 = 3
(bottom), (b) K(x, 0.3) for M = 5 and p = q = 1 (top) and p = 2q − 1 = 3 (bottom).
The grey line corresponds to the smoothing spline kernel.

If p is odd, then

∞∑
l=−∞

sinc{π(z + l)}p+1 =
sin(πz)p+1

πp+1

∞∑
l=−∞

(z + l)−(p+1)

= (−1)p
sin(πz)p+1

p!πp+1

∂p

∂zp

∞∑
l=−∞

(z + l)−1 = (−1)p
sin(πz)p+1

p!πp
∂p

∂zp
cot(πz)−1.
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If p is even, then

∞∑
l=−∞

sinc{π(z + l)}p+1 =
sin(πz)p+1

πp+1

∞∑
l=−∞

(−1)l(z + l)−(p+1)

= (−1)p
sin(πz)p+1

p!πp
∂p

∂zp
sin(πz)−1.

With this one can easily recover the recursive equation for Qp−1(z) for p odd and even.

�

First Qp−1 for odd p are given by

Q2(z) = 1/3 + 2 cos(πz)2/3

Q4(z) = 2/15 + 11 cos(πz)2/15 + 2 cos(πz)4/15

Q6(z) = 17/315 + 4 cos(πz)2/7 + 38 cos(πz)4/105 + 4 cos(πz)6/315,

while for even p

Q1(z) = 1/2 + cos(πz)2/2

Q3(z) = 5/24 + 3 cos(πz)2/4 + cos(πz)4/24

Q5(z) = 61/720 + 479 cos(πz)2/720 + 179 cos(πz)4/720 + cos(πz)6/720.

Proof of (7) and connection of Q and Euler-Frobenius polynomials

The proof largely follows from Theorem 5 in Lecture 3 of Schoenberg (1973). From

formulas (1.1) and (1.4) given in the lecture follows the equality

exp (2πiz)− 1

exp (2πiz)− exp (x)

exp ({t}x)

xp+1
=
∞∑
l=0

{1− exp (−2πiz)}−l Φl {t, exp (2πiz)}
exp (2πiz btc)

xl−p−1.
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The residue of this function at 0 is

exp (−2πiz btc) {1− exp (−2πiz)}−p Φp {t, exp (2πiz)} ,

while the residues at poles 2πi (z + l) , l ∈ Z are

{exp (−2πiz)− 1} exp {2πi{t} (z + l)} / {2πi (z + l)}p+1 .

With this, from the Cauchy residue theorem, it follows

∞∑
l=−∞

{1− exp (−2πiz)} exp {2πi{t} (z + l)}
{2πi (z + l)}p+1

=
{1− exp (−2πiz)}−p Φp {t, exp (2πiz)}

exp (2πiz btc)
.

Multiplication by sin (πz)p+1 and simple simplifications prove (7).

To see the connection between Q and Euler-Frobenius polynomials for odd p, note that

after plugging t = 0 in (6) and (7)

p! exp {πiz (p− 1)}Πp {exp (−2πiz)}

=
∞∑

l=−∞

(−1)l(p+1) sinc {π (z + l)}p+1 . (25)

For even p use (25) and the fact that

∞∑
l=−∞

sinc {π (z + l)}p+1 = cos (πz/2)p+1
∞∑

l=−∞

(−1)lsinc {π (z/2 + l)}p+1

− sin (πz/2)p+1
∞∑

l=−∞

(−1)lsinc {π ((z + 1)/2 + l)}p+1 .

�

Proof of Lemma 1

Plugging the Fourier series of a periodic B-spline (3) into the discrete Fourier transform
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(DFT) of B-splines, we find

K∑
i=1

Bi(x) exp(−2πili/K) =
∞∑

m=−∞

exp(−2πimx)sinc(πm/K)p+1

×
K∑
i=1

exp{2πii(m− l)/K}

= K

∞∑
n=−∞

exp{−2πi(l + nK)x}sinc{π(l/K + n)}p+1

= K
√
Qp,M(l/K)φl(x),

where in the last equality the representation (13) has been used and n = (m − l)/K.

The properties of DFT ensure that the functions φi(x), i = 1, . . . , K are also the basis in

Sper(p; τK). Property (10) follows immediately from the definition of Qp,M(z). To show

the property (11) one can use again the representation in (13) to find√
Qp,M(i/K)φ

(q)
i (x) = (−2πii)qsinc(πi/K)q

×
∞∑

l=−∞

(−1)lqsinc{π(i/K + l)}p+1−q exp{−2πix(i+ lK)},

which implies the assertion and proves the lemma. �

Proof of Theorem 1

From the Parseval’s identity

Var{f̂(x)} =
K∑
i=1

∞∑
l=−∞

Var(ci+lK) =
K∑
i=1

∞∑
l=−∞

sinc{π(l + i/K)}2p+2

Qp,M(i/K)(1 + λµi)2
Var(ŷi)

=
σ2

N

K∑
i=1

Q2p(i/K)

Qp,M(i/K)(1 + λµi)2
.

Similar to developments in Section 3, the Fourier coefficients of sp(x) can be written as

sinc{π(l + i/K)}p+1f̃i/
√
Qp,M(i/K) for the Fourier coefficients f̃i = Q

1/2
p,M(i/K)Q

−1/2
2p (i/K)

∫ 1

0
f(x)φi(x)dx.
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With this, ∫ 1

0

[E{f̂(x)} − sp(x)]2dx

=
K∑
i=1

∞∑
l=−∞

∣∣∣∣E(ci+l/K)− sinc{π(l + i/K)}p+1f̃i/
√
Qp,M(i/K)

∣∣∣∣2

=
K∑
i=1

∞∑
l=−∞

sinc{π(l + i/K)}2p+2

Qp,M(i/K)

∣∣∣∣∣ f̂i
1 + λµi

− f̃i

∣∣∣∣∣
2

=
K∑
i=1

Q2p(i/K)(λµi)
2|f̃i|2

Qp,M(i/K)(1 + λµi)2

∣∣∣∣∣1− f̂i/f̃i − 1

λµi

∣∣∣∣∣
2

,

with f̂i = Q
1/2
p,M(i/K)Q

−1/2
2p (i/K)N−1

∑N
l=1 f(l/N)φi(l/N), proving the theorem. �

Proof of Corollary 1

Let λµK/2 = O(1). Then, since Q2p(i/K)/Qp,M(i/K) ≤ 1 for all i,

Var{f̂(x)} = 2
σ2

N

K/2∑
i=1

Q2p(i/K)

Qp,M(i/K)(1 + λµi)2
= O(KN−1).

In case λµK/2 →∞ the integrated variance can be bounded by

Var{f̂(x)} = 2
σ2

N

K/2∑
i=1

Q2p(i/K)

Qp,M(i/K)(1 + λµi)2

≤ 2
σ2

N

K/2∑
i=1

1

{1 + λ(4i)2qQ2p−2q(1/2)/Qp,M(1/2)}2
.

Approximating the latter sum by an integral as in Wahba (1975) will result in the rate

O(λ−1/(2q)N−1) if λ1/(2q)N →∞.

The integrated shrinkage bias in both asymptotic scenarios can be bounded by∫ 1

0

[E{f̂(x)} − sp(x)]2dx ≤ 2λ2
K/2∑
i=1

µ2
i |f̃i|2 = O(λ2).
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Optimizing R(f̂ , f) with respect to the parameters K and λ gives the optimal rates for

K and λ in both asymptotic scenarios. �

Proof of Lemma 2

First we aim to represent W (x, t) andW(x, t) as a ratio of two polynomials of exponential

functions. Basis functions φi(x) and φ(u, x), as well as Q polynomials, can be expressed

in terms of the Euler-Frobenius polynomials of exponential functions, as shown in Section

2. Moreover, from (6) and (8) we find that Qp,M(u) = exp(2πipu)Π̃p,M{exp(−2πiu)},

where Π̃p,M(1) = 1 and for u 6= 1, p even and M odd

Π̃p,M(u) =

p∑
j=0

p∑
l=0

Πj(u)Πl(u
−1)ul(u− 1)2p−l−j

(−1)p−lj!l! (p− j)!(p− l)!

×
2p−l−j∑
s=0

(
2p− l − j

s

)
2s
Bs+1 (M)− Bs+1 (0)

(s+ 1)(2M)2p−j−l+1
,

with Bp+1 denoting the (p+ 1)th degree Bernoulli polynomial. In all other cases

Π̃p,M(u) =

p∑
j=0

p∑
l=0

Πj(u)Πl (u
−1)ul(u− 1)2p−l−j

(−1)p−lj!l! (p− j)! (p− l)!
B2p−j−l+1 (M)− B2p−j−l+1 (0)

M2p−j−l+1 (2p− j − l + 1)
.

For M > 1 one can also use Qp,M(z) = Q2p(z) + O(M−p−1) and replace Qp,M(z) by a

much simpler Q2p(z). With this

W (x, t) =
K∑
i=1

exp (−2πidx,ti/K)
∑2p

l=0 αl({Kx}, {Kt}) exp (−2πiil/K)

P2p {exp (−2πii/K)}

W(x, t) =

∫ K

0

exp (−2πidx,tu/K)
∑2p

l=0 αl({Kx}, {Kt}) exp (−2πiul/K)

P2p {exp (−2πiu/K)}
du.

The coefficients of the partial fractional decomposition of 1/P2p are 1/P
′
2p (rj) and 1/P

′
2p

(
r−1j
)

correspondent to the roots rj and r−1j for j = 1, . . . , p. From the representation of

P2p as a function of cos2 (πi/K) = {exp (−2πii/K) + exp (2πii/K) + 2}/4 follows that
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P
′
2p(r

−1
i ) = −r2−2pi P

′
2p(r

−1
i ). Then

W (x, t) =

p∑
j=1

2p∑
l=0

αl ({Kx}, {Kt})
P
′
2p (rj)

Rn(j, l)

W(x, t) =

p∑
j=1

2p∑
l=0

αl({Kx}, {Kt})
P
′
2p (rj)

R(j, l),

for

Rn(j, l) =
K∑
i=1

[
exp {−2πi (dx,t + l) i/K}

exp(−2πii/K)− rj
−
r2p−2j exp {−2πi (dx,t + l) i/K}

exp(−2πii/K)− r−1j

]

R(j, l) =

∫ K

0

[
exp {−2πi (dx,t + l)u/K}

exp(−2πiu/K)− rj
−
r2p−2j exp {−2πi (dx,t + l)u/K}

exp(−2πiu/K)− r−1j

]
du.

To find Rn(j, l) we use the inverse discrete Fourier transform of the sequence rij, i =

1, . . . K, which can be obtained from the geometric progression formula, so that

Rn(j, l) = K
r
(dx,t+l−1) modK
j + r

K+2p−2−(dx,t+l−1) modK
j

1− rKj
.

R(j, l) follows from the Cauchy integral formula, where the contour integral is taken

counter-clockwise

R(j, l) =


K

(2πi)

∮
|z|=1

[
zdx,t+l−1

z−rj − r2p−2
j zdx,t+l−1

z−r−1
j

]
du = Kr

dx,t+l−1
j , (dx,t + l) > 0

K
(2πi)

∮
|z|=1

[
r2p−1
j z−(dx,t+l)

z−rj − r−1
j z−dx,t−l

z−r−1
j

]
du = Kz−dx,t−l+2p−1 (dx,t + l) < 0.

�

Proof of Lemma 3

From (21) and symmetry of the kernel W(x, t) =W(t, x) follows that

W(x, t) =

∫ ∞
−∞

a(u, x) exp (−2πitu) du,
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with a(u, x) defined as

a (u, x) =
sinc {π (u/K)}p+1 φ (u, x)√
Qp,M (u/K) {1 + λµ (u)}

=

∫ 1

0

W (x, t) exp (−2πitu) dt, u ∈ R, (26)

where the last equality is obtained using (18) and the Poisson summation formula. Note

that for u ∈ Z, function a (u, x) coincides with the u-th Fourier coefficient of W (x, t)

given in (19). Properties of the Fourier transform and (26) ensure that∫ ∞
−∞

(2πit)mW(x, t) exp(2πitu)dt =

∫ 1

0

(2πit)mW (x, t) exp(2πitu)dt

=
∂m

∂um

{
a(u, x)

}
.

Evaluating derivative of a (u, x) at u = 0 and grouping the terms we represent∫ ∞
−∞

(2πit)mW(x, t)dt = I1 + I2 + I3, (27)

where

I1 =
∂m

∂um

[
exp (2πixu)

{
1 +

sinc (πu/K)2p+2 −Qp,M (u/K)

Qp,M (u/K)

}]
u=0

I2 =
∂m

∂um

{sin (πu/K) sinc (πu/K)}p+1

Qp,M (u/K)

∑
l 6=0

exp {2πix (u+ lK)}{
(−1)l π (u/K + l)

}p+1


u=0

I3 =
∂m

∂um

[
−λµ (u) sinc (πu/K)p+1 φ (u, x)√

Qp,M (u/K) {1 + λµ (u)}

]
u=0

.

The idea is to represent each of these components as a product of sin (πu/K)n, n ∈ Z and

some function that is differentiable at 0. Here we use that Qp,M(0) = µ(0) = φ(0, x) = 1,

∂m

∂um
sin (πu/K)n

∣∣∣∣
u=0

=

{
0, m = 0, . . . n− 1

n! (π/K)n , m = n
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and the Fourier series of the periodic Bernoulli polynomials Bp+1({x}) = (−1)p(p +

1)!
∑

s 6=0 exp(−2πisx)/ (2πis)p+1. Moreover, to handle I1, the following expression for

Qp,M is needed

Qp,M (z) =
∞∑

l=−∞

∞∑
j=−∞

sinc {π (z + l)}p+1 sinc {π (z + l + jM)}p+1 ,

what can be obtained using the series of the exponential splines (7). After regrouping,

the last expression becomes

Qp,M (u/K) = sinc (πu/K)2p+2 + 2 {sin (πu/K) sinc (πu/K)}p+1

×
∑
l 6=0

(−1)lM(p+1)

{π (u/K + lM)}p+1 +
sin (πu/K)2p+2

π2p+2

×

M−1∑
j=1

{
∞∑

l=−∞

(−1)(j+lM)(p+1)

(u/K + j + lM)p+1

}2

+

{∑
l 6=0

(−1)lM(p+1)

(u/K + lM)p+1

}2
 .

Putting it all together,

I1 =

{
(2πix)m , m = 0, . . . p

(2πix)p+1 + 2(2πi/N)p+1Bp+1

({
p+1
2

})
, m = p+ 1.

The expression for I2 follows immediately from its representation

I2 =

{
0, m = 0, . . . p

−(2πi/K)p+1Bp+1

({
Kx+ p+1

2

})
, m = p+ 1.

To find I3, we use µ (u) = (2K)2q sin(πu/K)2qQ2p−2q(u/K)/Qp,M(u/K)

I3 =

{
0, m = 0, . . . 2q − 1

−λ (2π)2q (2q)!, m = 2q.

To get the result for
∫∞
−∞ (t− x)mW (x, t) dt =

∫ 1

0
(t− x)mW (x, t) dt one needs to ex-

pand (t− x)m and use (27). �

Proof of Theorem 2
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W(x, t) =

∫ K

0

φ(u, x)φ(u, t)

1 + λµ(u)
du = R

∫ 1/2

0

2Kφ(Ku, x)φ(Ku, t)

1 + λµ(Ku)
du.

Let first consider 0 ≤ kq < 1. Scaling W(x, t) with c−11 K−1, leads to

c1K(c1x, c1t) = R

[∫ 1/2

0

2φ(Ku, x/K)φ(Ku, t/K)du

−
∫ 1/2

0

2λµ(Ku)φ(Ku, x/K)φ(Ku, t/K)

1 + λµ(Ku)
du

]
= Krs(x, t)− k2qq K1(x, t),

where Krs(x, t) is the equivalent regression spline kernel on R and

K1(x, t) = R

∫ 1/2

0

2 sin(πu)2qQ2q−2(u)φ(Ku, x/K)φ(Ku, t/K)

π2qQp,M(u){1 + λµ(Ku)}
du

≤ 22qQ2q−2(1/2)

π2qQ4q−2(1/2)
Krs(x, t).

Using Qlq−2(1/2) = 2πlq(2lq−1)ζ(lq) for the Riemann zeta function ζ(lq) =
∑∞

i=1 i
−lq, one

can get explicit bounds for each q. For kq ≥ 1 we first introduce the following notation.

1. 1 + λµ(Ku) = {1 + λ(2πKu)2q}{1 + r1(u)}

2. φ(Ku, x)φ(Ku, t) = exp{2πiKu(x− t)}{1 + r2(x, t, u)}

3. rq(x, t, u) = {r2(x, t, u)− r1(u)}{1 + r1(u)}−1

Scaling W(x, t) with c−12 λ1/(2q) and using approximations defined above results in

c2K(c2x, c2t) =

∫ ∞
−∞

exp{2πiu(t− x)}
1 + (2πu)2q

du

+ R

∫ kq/2

0

2 exp{2iu(t− x)}
π{1 + (2u)2q}

rq(x, t, u/kq)du

− R

∫ ∞
kq/2

2 exp{2iu(t− x)}
π{1 + (2u)2q}

du = Kss(x, t) + k−2q+1
q K2(x, t),
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where Kss(x, t) is the smoothing spline kernel on R and

πK2(x, t) = k2q−1q R

∫ kq/2

0

2 exp{2iu(t− x)}
1 + (2u)2q

rq(x, t, u/kq)du

−
∫ ∞
1

cos{kqu(t− x)}
k−2qq + u2q

du.

The second component of πK2(x, t) is obviously bounded by 1. Now, let us consider

rq(x, t, u/kq). Since Q4q−2(u) ≤ Qp,M(u) ≤ Q2
2q−2(u) for odd p, the term r1(u) is bounded

by

(2ukq)
2q

1 + (2ukq)2q

{
sinc(πu)2q

Q2q−2(u)
− 1

}
≤ r1(u) ≤ (2ukq)

2q

1 + (2ukq)2q

{
sinc(πu)2qQ2q−2(u)

Q4q−2(u)
− 1

}
,

so that |r1(u)| ≤ 1− sinc(πu)2q/Q2q−2(u). Observing

Q2q−2(u/kq)sinc(πu/kq)
−2q = 1 + 2ζ(2q)(u/kq)

2q +O(k−4qq ),

we obtain |r1(u/kq)| ≤ ζ(2q)(2kq)
−2q+O(k−4qq ). Using the same techniques gives |r2(x, t, u/kq)| ≤

8ζ(2q)(2kq)
−2q + O(k−4qq ). In principle, one can also find a lower bound for 1 + r1(u/kq)

depending on q and kq, but it is enough to note that 1 + r1(u/kq) ≥ 1/2. Finally,

|rq(x, t, u/kq)| ≤ 18ζ(2q)(2kq)
−2q + O(k−4qq ) and hence, the first term in πK2(x, t) is also

bounded for any kq ≥ 1.

It remains to set Kss(x, t) and Krs(x, t). Thomas-Agnan (1996) already treated asymp-

totic equivalent kernels for smoothing splines on R and obtained the formula for Kss(x, t)

given in this theorem. Krs(x, t) is obtained from (23), scalingW(x, t) with K and setting

P2p(u) = Π2p(u). �

The following lemma will be used in the proof of Theorem 3.

Lemma 4 Kernel K(x, t), x, t ∈ R decays exponentially, i.e. there are constants 0 <
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C <∞ and 0 < γ < 1 such that

|K(x, t)| < Cγ|x−t|.

Proof of Lemma 4

Since K(x, t) is defined as a scaled with h(kq) function W(x, t), from (23) and (24) one

finds for kq < 1 that

c1K(c1x, c1t) =

p∑
j=1

2p∑
l=0

αl ({x} , {t})
P ′2p(rj)

r
|bxc−btc+l−1|+I{bxc−btc≤−l}(2p−2)
j ,

while for kq ≥ 1,

πc2K(πc2x, πc2t) = kq

p∑
j=1

2p∑
l=0

αl ({xkq}, {tkq})
P ′2p(rj)

r
|bxkqc−btkqc+l−1|+I{bxkqc−btkqc≤−l}(2p−2)
j .

Here polynomial P2p given in (22), rj = rj(kq) is a root of P2p with |rj| < 1. If kq is a

bounded constant then rj = rj(kq) 9 exp(−2πiu), u ∈ (0, 1) since

P2p {exp(−2πiu)} = exp(−2πipu)
{
Qp,M(u) + (2kq/π)2q sin(πu)2qQ2p−2q(u)

}
6= 0,

where the relationship between Euler-Frobenius and Q-polynomials has been used. Sim-

ilarly, rj = rj(kq) 9 0 and 0 < γ < 1 can be defined as

γ =

{
supj,kq |rj(kq)| , kq < 1

supj,kq
∣∣rj(kq)kq ∣∣ , 1 ≤ kq <∞,

while

C = sup
kq ,j

p(2p+ 1) supl,x,t αl({x}, {t})∣∣P ′2p{rj(kq)}∣∣ |rj(kq)|l+1
<∞.

For kq →∞ it is known from Theorem 2 that limkq→∞K(x, t) = Kss {(x− t)/c̃2} /c̃2. To

obtain the bound on the smoothing spline kernel Kss(x), the expression given in Theorem
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2 can be rewritten as

|Kss(x− t)| =

∣∣∣∣−I{q is odd} exp (− |x− t|)
2q

+

b(q−1)/2c∑
j=0

exp [− |x− t| sin {π(2j + 1)/(2q)}]
q

× sin

[
π(2q − 1)(2j + 1)

2q
− |x− t| cos

{
π(2j + 1)

2q

}]∣∣∣∣
≤ q + 1

2q
exp {− |x− t| sin (π/2q)} ,

so that one can set γ = exp [− sin{π/(2q)}/c̃2] ∈ (0, 1) and C = (q + 1)/(2qc̃2) < ∞ for

kq →∞. �

Proof of Theorem 3

E
{
f̂(x)

}
= E

{
1

N

N∑
i=1

W (x, i/N)Yi

}
=

∫ 1

0

W (x, t)f(t)dt+O
(
N−1

)
=

∫ ∞
−∞
W (x, t) f(t)dt+O

(
N−1

)
.

Expanding f(t) in a Taylor series around x and using Lemma 3 results in

E
{
f̂(x)

}
− f(x) =

∫ ∞
−∞
W (x, t) (x− t)2q f

(2q)(ξx,t)

(2q)!
dt+O(N−1)

=
f (2q)(x)

(2q)!

∫ ∞
−∞
W (x, t) (x− t)2qdt+Rξ(x) +O(N−1)

= h(kq)
2q f

(2q)(x)

(2q)!

∫ ∞
−∞
K (xh, th) (xh − th)2q dth

+ Rξ(x) +O(N−1),
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where ξx,t is a point between x and t,
∫∞
−∞K (xh, t) (xh − t)2q dt = −C(kq, x) given in the

Theorem 3, xh = x/h(kq), th = t/h(kq) and

Rξ(x) = h(kq)
2q

∫ ∞
−∞
K (xh, th) (xh − th)2q

f (2q)(ξx,t)− f (2q)(x)

h(kq)(2q)!
dt.

It remains to show that Rξ(x) = o {h(kq)
2q}. Using techniques similar to Huang and

Studden (1993),

Rξ(x) = h(kq)
2q

∞∑
l=−∞

∫ x+lh

x+(l−1)h
K (xh, th) (xh − th)2q

f (2q)(ξx,t)− f (2q)(x)

h(kq)(2q)!
dt

≤ h(kq)
2q+αCL

∞∑
l=−∞

∫ x+lh

x+(l−1)h
γ|xh−th|

|xh − th|2q+α

h(kq)(2q)!
dt

≤ h(kq)
2q+α 2CL

(2q)!

∞∑
l=1

γl−1l2q+α = o
{
h(kq)

2q
}
,

where the exponential bound on the kernel from Lemma 4 together with the Hölder

continuity of f (2q) have been used. Next, the variance of f̂(x) is given by

Var
{
f̂(x)

}
=

σ2

N2

N∑
i=1

W 2(x, i/N) =
σ2

N

∫ 1

0

W 2(x, t)dt+O(N−1).

Let us define K(x, t) via

h(kq)
−1K(xh, th) = W (x, t) =

∞∑
l=−∞

W(x, t+ l) = h(kq)
−1

∞∑
l=−∞

K(xh, th + lh),

for lh = l/h(kq). Then, using periodicity of W (x, t)∫ 1

0

W 2(x, t)dt =

∫ x+ 1
2

x− 1
2

W 2(x, t)dt =
1

h(kq)2

∫ x+ 1
2

x− 1
2

K2(xh, th)dt

=
1

h(kq)

{∫ ∞
−∞
K2(xh, t)dt+Rk(x)

}
,
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for

h(kq)Rk(x) =

∫ x+ 1
2

x− 1
2

K2(xh, th)dt−
∫ ∞
−∞
K2(xh, th)dt

=

∫ x+ 1
2

x− 1
2

{
K2(xh, th)−K2(xh, th)

}
dt

−
∫ x− 1

2

−∞
K2(xh, th)dt−

∫ ∞
x+ 1

2

K2(xh, th)dt.

Now, we can make use of K(x, t) =
∑∞

l=−∞K(x, t + l) and of the exponential decay of

K(x, t) found in Lemma 4 to bound terms in h(kq)Rk(x). That is,∫ x+ 1
2

x− 1
2

{
K2(xh, th)−K2(xh, th)

}
dt

=

∫ x+ 1
2

x− 1
2

∑
l 6=0

K(xh, th + lh)

{∑
l 6=0

K(xh, th + lh) + 2K(xh, th)

}
dt

≤ C2

∫ x+ 1
2

x− 1
2

∑
l 6=0

γ|xh−th−lh|

(∑
l 6=0

γ|xh−th−lh| + 2γ|xh−th|

)
dt

≤ h(kq)
C2γ1/h(kq) {4 + 2h(kq)

−1 log(γ−1)}
{γ1/h(kq) − 1}2 log(γ−1)

,

where the sum under the integral

∑
l 6=0

γ|xh−th−lh| =
(
γth−xh + γxh−th

)
γ1/h(kq)/

{
1− γ1/h(kq)

}
,

for t ∈ [x− 1/2, x+ 1/2] has been used. Also,∫ x− 1
2

−∞
K2(xh, th)dt +

∫ ∞
x+ 1

2

K2(xh, th)dt

≤ C2

{∫ x− 1
2

−∞
γ2(xh−th)dt+

∫ ∞
x+ 1

2

γ2(th−xh)dt

}

= h(kq)
C2γ1/h(kq)

log(γ−1)
.
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In a similar fashion one finds
∫∞
−∞K

2(xh, t)dt ≤ C2/log(γ−1). Putting it all together gives

|Rk(x)| ≤ C2γ1/h(kq)

log(γ−1)

[
1 +

4 + 2h(kq)
−1 log(γ−1)

{γ1/h(kq) − 1}2

]
= O

{
h(kq)

−1γ1/h(kq)
}

= o(1),

proving the theorem. �
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