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Abstract

Over the last four decades, several methods for selecting the smoothing parameter, generally
called the bandwidth, have been introduced in kernel regression. They differ quite a bit, and
although there already exist more selection methods than for any other regression smoother
we can still see coming up new ones. Given the need of automatic data-driven bandwidth
selectors for applied statistics, this review is intended to explain and compare these methods.1
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1 Introduction

Today, kernel regression is a common tool for empirical studies in many research areas. This is
partly a consequence of the fact that nowadays kernel regression curve estimators are provided by
many software packages. Even though for explorative nonparametric regression the most popular
and distributed methods are based on P-spline smoothing, kernel smoothing methods are still
common in econometric standard methods, for example for estimation of the scedasticity function,
estimation of robust standard errors in time series and panel regression models. Still quite recently,
kernel regression has experienced a kind of revival in the econometric literature on treatment
effect estimation and impact evaluation, respectively. Nevertheless, until today the discussion
about bandwidth selection has been going on - or at least not be closed with a clear device or
suggestion for practitioners. Typically, software implementations apply some defaults which in
many cases are questionable, and new contributions provide simulations limited to show that the
own invention outperforms existing methods in particularly designed cases. An explicit review
or comparison article can be found only about bandwidth selection for density estimation, see
Heidenreich, Schindler and Sperlich (2010) and references therein.

There are many, quite different approaches dealing with the problem of bandwidth selection for
kernel regression. One family of selection methods is based on the corrected ASE criterion and
uses ideas from model selection to choose an optimal bandwidth. To the best of our knowledge
this was first introduced by Rice (1984). A second family has become quite popular under the
name of cross-validation (CV) going back to Clark (1975). A disadvantage of the CV approach
is that it can easily lead to highly variable bandwidths, see Härdle, Hall and Marron (1988). A
recently studied way to improve it is the one-sided cross-validation (OSCV) method proposed by
Hart and Yi (1998). Alternatives to the ASE minimizing and CV approaches are the so-called
plug-in methods. They look rather at the asymptotic mean integrated squared error where the
unknown quantities, depending on the density of the covariate, f (x), the regression function m(x),
and the variance (function) of the conditional response, are replaced by pre-estimates or priors, cf.
for example Ruppert, Sheather and Wand (1995). Finally, there exist various bootstrap approaches
but mainly focusing on the local optimal bandwidth for which reason they a fair comparison is
hardly possible. Cao-Abad and González-Manteiga (1993) proposed a smoothed bootstrap, and
González-Manteiga, Martı́nez Miranda and Pérez González (2004) a wild bootstrap procedure,
both requiring a pilot bandwidth to be plugged in. As it is the case for the aforementioned plug-in
methods, if we have an appropriate pilot or pre-estimator, then the performance of these methods
is typically excellent, else not. Asymptotics including the rate of convergence of these methods
was first studied by Hall, Marron and Park (1992).

We review a big set of existing selection methods for regression and compare them on a set of
different data for which we vary the variances of the residuals, the sparseness of the design and
the smoothness of the underlying curve. For different reasons we concentrate on small and mod-
erate samples and restrict to global bandwidths. Due to the complexity of the problem we have
had to be rather restrictive and decided to concentrate on designs and models which we believe
are interesting (with regard to their smoothness and statistical properties rather than the specific
functional form) for social and economic sciences. We are aware that neither the set of methods
nor the comparison study can be comprehensive but hope it nevertheless may serve as a fair guide
for applied researchers. Note that most of them cannot be found in any software package. We are
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probably the first who implemented all the here reviewed selection methods.

Suppose we have random pairs (X1,Y1), . . . ,(Xn,Yn), n ∈ N, where the Xi’s are explanatory vari-
ables drawn from a continuous distribution with density function f . Without loss of generality, we
assume X1 < X2 < .. . < Xn. The Yi’s are response variables generated by the following model:

Yi = m(Xi)+σ(Xi)εi, i = 1, . . . ,n, (1)

with i.i.d. random variables εi with mean zero and unit variance. Further, σ2(x) = var(Y |x) is
finite, and the εi are independent of all X j. Assume one aims to estimate m(x) = E(Y | X = x) for
an arbitrary point x ∈ R.

Let K : R→ R be a kernel function that fulfills
∫

∞

−∞
K(u)du = 1,

∫
∞

−∞
uK(u)du = 0 and∫

∞

−∞
u2K(u)du =: µ2(K)< ∞. Furthermore, denote Kh(u) := 1

h K(u/h), where h ∈R+ is our band-
width and or smoothing parameter. When speaking of kernel regression, there exist slightly dif-
ferent approaches for estimating m(x). The maybe most popular ones are the Nadaraya-Watson
estimator proposed by Nadaraya (1964) and Watson (1964) and the local linear estimator. Think-
ing of least squares estimation, the first one approximates m(x) locally by a constant, whereas the
latter one approximates m(x) locally by a linear function. Before the local linear or more gener-
ally, the local polynomial smoother became popular, a well known alternative to the Nadaraya-
Watson estimator was the so-called Gasser-Müller estimator, see Gasser and Müller (1979), which
is an improved version of the kernel estimator proposed by Priestly and Chao (1972). Fan (1992)
presents a list of the biases and variances of each estimator, see that paper also for more details. It
is easy to see that the bias of the Nadaraya-Watson estimator is large when | f ′(x)/ f (x)| is large,
e.g. for clustered data, or when |m′(x)| is large. The bias of the Gasser-Müller estimator looks
simpler, does not have these drawbacks and is design-independent so that the function estimation
in regions of sparse observations is improved compared to the Nadaraya-Watson estimator. On
the other hand, the variance of the Gasser-Müller estimator is 1.5 times larger than that of the
Nadaraya-Watson estimator. The local linear estimator has got the same variance as the Nadaraya-
Watson estimator and the same bias as the Gasser-Müller estimator. When approximating m(x)
with higher order polynomials, a further reduction of the bias is possible but these methods re-
quire mode assumptions - and in practice also larger samples. For implementation, these methods
are less attractive when facing multivariate regression, and several considered bandwidth selection
methods are not made for these extensions. Most of these arguments hold also for higher order
kernels. When comparing the local linear with the Gasser-Müller and the Nadaraya-Watson esti-
mator, both theoretical approaches and simulation studies show that the local linear estimator in
most cases corrects best for boundary effects, see also Fan and Gijbels (1992) or Cheng, Fan and
Marron (1997). Moreover, in econometrics it is preferred to use models that nest the linear model
without bias and directly provides the marginal impact and elasticities, i.e. the first derivatives. All
this is provided automatically by the local linear but unfortunately not by the Nadaraya-Watson
estimator. Consequently, we will concentrate in the following on the local linear estimator. More
precisely, consider

min
β0, β1∈R

n

∑
i=1

(Yi−β0−β1(Xi− x))2Kh(x−Xi) (2)

where the minimizer can be expressed as a weighted sum of the Yi, i.e. 1/n∑
n
i=n wh,i(x)Yi. Denote

Sh, j = ∑
n
i=1 Kh(x−Xi)(Xi− x) j and consider the following two cases:
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• If

det

(
Sh,0(x) Sh,1(x)
Sh,1(x) Sh,2(x)

)
= Sh,0(x)Sh,2(x)− (Sh,1(x))2 6= 0 (3)

the minimizer of (2) is unique and given below.

• If Sh,0(x)Sh,2(x)− (Sh,1(x))2 = 0 we distinguish between

� x = Xk for a k ∈ {1, . . . ,n} but Xk does not have its neighbors close to it such that
Kh(Xk−Xi) = 0 for all i 6= k such that Sh,1(xk) = Sh,2(xk) = 0. In this case, the mini-
mizing problem (2) is solved by β0 = Yk, and β1 can be chosen arbitrarily.

� x 6= Xk for all k ∈ {1, . . . ,n}. Then the local linear estimator is simply not defined as
there are no observations close to x.

Summarizing, for our purpose we define the local linear estimator by

m̂h(x) =
1
n

n

∑
i=1

Wh,i(x)Yi (4)

with weights

Wh,i(x) =


nSh,2(x)Kh(x−Xi)−nSh,1(x)Kh(x−Xi)(Xi−x)

Sh,0(x)Sh,2(x)−Sh,1(x)2 , if Sh,0(x)Sh,2(x) 6= Sh,1(x)2,

n , if Sh,0(x)Sh,2(x) = Sh,1(x)2, x = xi

0 , else

if Wh,i(x)> 0 for at least one i. If Wh,i(x) = 0 ∀ i the local linear estimator is not defined. Note that
the matrix with entrances {Wh,i(X j)}i, j gives the so-called hat-matrix in kernel regression.

Thanks to the very limited set of assumptions, such a nonparametric regressor is most appropriate
for explorative data analysis but also for further statistical inference when model specification is
crucial for the question of interest, simply because model misspecification can be reduced here
to a minimum. The main drawback is, however, that if the empirical researcher has no specific
idea about the smoothness of m(x) but - which is commonly the case - he does not know how to
choose bandwidth h. Indeed, one could say that therefore the selection of smoothing parameters
is one of the fundamental model selection problems of nonparametric statistics. For practitioners
this bandwidth choice is probably the main reason for not using nonparametric estimation.

To the best of our knowledge there are hardly - and no recent - reviews available comparing ei-
ther theoretically or numerically the different existing bandwidth selection methods for regression.
Some older studies to be mentioned are Rice (1984), Hurvich, Simonoff and Tsai (1998), or Hart
and Yi (1998). Yang and Tschernig (1999) compared two plug-in methods for multivariate re-
gression, and more recently, González-Manteiga, Martı́nez Miranda and Pérez González (2004)
compared a new wild bootstrap and cross validation but with a focus on local bandwidths. None
of these studies compared several global bandwidth selectors for random designs. The aim was
typically to introduce a new methods and compare it with a standard method.

In the next section we briefly discuss three risk measures (or say objective functions) on which
bandwidth selection could and should be based on. In Section 3 and Section 4 we introduce
and discuss the various selection methods we could find in the literature, separately for the three
different risk measures. In Section 5 we present in detail extensive simulation studies to compare
all here discussed selection methods. Section 6 concludes.
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2 Typically used Risk Measures

We now address the problem of which bandwidth h is optimal, beginning with the question what
means ’optimal’. In order to do so let us consider the well known density weighted integrated
squared error (dwISE) and the mean integrated squared error (MISE), i.e. the expectation of the
dwISE, of the local linear estimator:

MISE(m̂h(x) | X1, . . . ,Xn) = E[ dwISE ] = E
[∫
{m̂h(x)−m(x)}2 f (x) dx

]
=

1
nh
||K||22

∫
S

σ
2(x)dx

+
h4

4
µ

2
2 (K)

∫
S
(m′′(x))2 f (x)dx+oP

(
1

nh
+h4

)
,

where f (x) indicates the density of X , ||K||22 =
∫

K(u)2du, µl(K) =
∫

ulK(u)du, and f the un-
known density of the explanatory variable X with the compact support S = [a,b] ⊂ R. Hence,
assuming homoscedasticity, the AMISE (asymptotic MISE) is given by:

AMISE(m̂h(x) | X1, . . . ,Xn) =
1
nh
||K||22σ

2(b−a)+
h4

4
µ

2
2 (K)

∫
S
(m′′(x))2 f (x)dx, (5)

where the first summand is the mean integrated asymptotic variance, and the second summand the
asymptotic mean integrated squared bias; cf. Ruppert, Sheather, and Wand (1995). That is, we
integrated squared bias and variance over the density of X , i.e. we weight the squared error by the
design. Finding a reasonable bandwidth means to balance the variance and the bias part of (5). An
obvious choice of for defining an optimal bandwidth is to say choose h such that (5) is minimized.
Clearly, the AMISE consists mainly of unknown functions and parameters. Consequently, the
selection methods’ main challenge is to find appropriate substitutes or estimates. This will lead us
either to the so-called plug-in methods or to bootstrap estimates of the AMISE.

For estimating a reasonable bandwidth from the data we have to find an error criterion that can be
estimated in practice. Focusing on practical issues rises not only the question of how to get appro-
priate substitutes for the unknown functions and parameters of (5) but also the question of why we
should look at the mean integrated squared error, i.e. a population oriented risk measure, when we
just need a bandwidth for our particular sample at hand. If one does not take the expectation over
the sample, i.e. considers the dwISE, one finds in the literature the so-called ASE (for average
squared error) replacing the integration over the density of x by averaging over the sample. So
this risk measure is a discrete approximation of the (density-weighted) integration of the squared
deviation of our estimate from the true function. We define our ASE by

ASE(h) =
1
n

n

∑
j=1

(m̂h(X j)−m(X j))
2 w(X j), (6)

where we introduced an additional trimming or weight function w to eliminate summands (m̂h(X j)−
m(X j))

2 where X j is near to the boundary. Having the explanatory variables ordered, we can sim-
ply set w(X j) = 1[Xl+1,Xn−l ] for a given l.By this means, we can reduce seriously the variability of
the ASE score function, see Gasser and Müller (1979). Denote the minimizer of ASE by ĥ0. Note
that the ASE differs from the MISE in two points; first we do not integrate but average over the
design, and second we do not take the expectation with respect to the estimator. If one wants to do
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the latter, one speaks of the MASE with optimal bandwidth h0. A visual impression of what this
function looks like is given in Figure 1. For the sake of illustration we have to anticipate here some
definitions given in detail at the beginning of our simulation Section 5. When we refer here and in
the following illustrations of this section to certain models, for details please consult Section 5.

Figure 1: ASE with w(X j) = 1[X6,X144] for n = 150 simulated data following Model 3

For now we denote a minimizer of any other score function by ĥ. Following Shibata (1981), the
bandwidth selection rule is called asymptotically optimal with respect to the ASE risk measure, if
and only if

lim
n→∞

ASE(ĥ)
ASE(ĥ0)

= 1 (7)

almost surely. If (7) is fulfilled, it follows easily that

ASE(ĥ)
ASE(ĥ0)

P→ 1 (8)

or nearly equivalently
ĥ
ĥ0

P→ 1, (9)

where P→ stands for convergence in probability. Note that optimality can also be defined with
respect to the other risk measures like MISE or MASE.

Before we start we should emphasize that we consider the ASE risk measure as our benchmark
that should be minimized. All alternative criteria are typically motivated by the fact that asymp-
totically they are all the same. We believe that in explorative nonparametric fitting the practitioner
is interested in finding the bandwidth that minimizes the (density weighted) integrated squared
error for the given data, she/he is not interested in a bandwidth that minimizes the squared error
for other samples or in average over all possible samples.

3 Choosing the smoothing parameter based on ASE

Having said that, it is intuitively obvious that one suggests to use ASE estimates for obtaining a
good estimate of the ’optimal’ bandwidth h. Therefore, all score functions introduced in this sec-
tion are approaches to estimate the ASE function in practice when the true function m is not known.
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An obvious and easy approach for estimating the ASE function is plugging into (6) response Yj for
m(X j). This yields the substitution estimate

p(h) =
1
n

n

∑
j=1

(m̂h(X j)−Yj)
2w(X j). (10)

It can easily be shown, that this is a biased estimator of ASE(h), see for example Härdle (1992),
chapter 5. One can accept a bias that is independent of h as in this case the minimizer of (10) is
the same as that of (6). Unfortunately this is not the case for p(h).

We present two approaches to correct for the bias. First the corrected ASE methods that penalizes
each summand of (10) when choosing h too small, and second the cross validation (CV) method
that applies the leave one out estimator. Furthermore, we introduce the most recent one-sided
cross validation (OSCV) method which is a remarkable enhancement of the classic CV.

3.1 The Corrected ASE

It is clear that h ↓ 0 leads to interpolation, i.e. m̂h(X j)→ Yj, so that the function to be minimized,
namely p(h), could become arbitrarily small. On the other hand, this would surely cause a very
large variance of m̂h what indicates that such a criterion function would not balance bias and
variance. Consequently, the corrected ASE penalizes when choosing h too small in an (at least
asymptotically) reasonable sense. We define

G(h) =
1
n

n

∑
j=1

(Yj− m̂h(X j))
2

Ξ

(
1
n

Wh, j(X j)

)
w(X j), (11)

where we use w(X j) = 1[Xl+1,Xn−l ] to trim near the boundary. Ξ(.) is a penalizing function with
first-order Taylor expansion

Ξ(u) = 1+2u+O(u2) , u→ 0. (12)

The smaller we choose bandwidth h the larger gets Wh, j(X j) and the penalizing factor Ξ
(1

nWh, j(X j)
)

increases. By conducting a first-order Taylor expansion of G and disregarding lower order terms
it is easy to show that G(h) is roughly equal to ASE(h) up to a shift that is independent of h.
The following list presents a number of proposed penalizing functions that satisfy the expansion
Ξ(u) = 1+2u+O(u2) , u→ 0:

• Shibata’s model selector ĥS = argmin
h∈R+

GS(h), see Shibata (1981)

with ΞS(u) = 1+2u . (13)

• Generalized cross validation (GCV) ĥGCV = argmin
h∈R+

GGCV (h), see Craven and Wahba (1979)

with ΞGCV (u) = (1−u)−2 . (14)

• Akaikes information criterion (AIC) ĥAIC = argmin
h∈R+

GAIC(h), see Akaike (1974)

with ΞAIC(u) = exp(2u) . (15)
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• The finite prediction error (FPE) ĥFPE = argmin
h∈R+

GFPE(h), see Akaike (1970)

with ΞFPE(u) =
1+u
1−u

. (16)

• Rice’s T (T) ĥT = argmin
h∈R+

GT (h), see Rice (1984)

with ΞT (u) = (1−2u)−1 . (17)

All these corrected ASE bandwidth selection rules are consistent for n→ ∞ and nh→ ∞ as h ↓ 0.
In practice they certainly exhibit some deficiencies. To mitigate the problems that may occur
for too small bandwidths, we will fix a data-adaptive lower bound for ĥ. Notice that for h ≤
hmin, j := min

{
X j−X j−1,X j+1−X j

}
(recall that the explanatory variables are ordered for the sake

of presentation), we get 1
nWh, j(X j) = 1 and 1

nWh,i(X j) = 0 for all i 6= j. In this case the j’th
summand of (11) is not defined if we choose Ξ(.) = ΞGCV (.) or Ξ(.) = ΞFPE(.) but is Ξ(1) finite
for all other penalizing functions such that the j’th summand of (11) gets zero. This shows that
for sufficient small bandwidths h the score function G(h) is either not defined or can be arbitrarily
small. This does surely not solve the problem of balancing bias and variance of the local linear
estimator. Therefore, we first calculate the infimum of the set of all bandwidths for which (11) can
be evaluated,

hmin,G = max{hmin,l+1, . . . ,hmin,n−l} . (18)

When minimizing G(h) for any of the above listed criteria, we used only the bandwidths h that
fulfill h > hmin,G, all taken from the grid in (18).

Figure 2: The Corrected ASE Functions for n = 150 independent data following Model 4 and
Model 10, respectively.

Figure (2) shows a plot of the corrected ASE score functions when using the Rice’s T penalizing
function. Not surprisingly, the optimal bandwidth that is related to the simulated smooth model
10 shows a clear optimum whereas the corrected ASE function corresponding to the rather wiggly
regression m(x) in model 4 takes it smallest value at the fixed (see above) minimum. However,
even the smooth model might cause problems depending on how the minimum is ascertained:
often one has at least two local minimums. These are typical problems of the corrected ASE
bandwidth selection rules that we observed for almost all penalizing function. Recall that the
models used for these calculations are specified in Section 5.
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3.2 The Cross-Validation

In the following we present the CV method introduced by Clark (1977). To the best of our knowl-
edge he was the first who proposed the score function

CV (h) =
1
n

n

∑
j=1

(Yj− m̂h,− j(X j))
2w(X j) , (19)

where m̂h,− j(X j) is the leave one out estimator which is simply the local linear estimator based
on the data (X1,Y1), . . .(X j−1,Yj−1), (X j+1,Yj+1), . . . ,(Xn,Yn). In analogy to the ASE function, the
weights w(·) are used to reduce the variability of CV (h). We again apply the trimming w(X j) =

1[Xl+1,Xn−l ] to get rid of boundary effects. It can easily be shown that this score function is a biased
estimator of ASE(h) but the bias is independent of h. This motivates the until today most popular
data-driven bandwidth selection rule:

ĥCV = argmin
h∈R+

CV (h) . (20)

As for the corrected ASE bandwidth selection rules, the CV bandwidth selection rule is consistent
but in practice, curiously has especially serious problems as n→∞. The reason is that this criterion
hardly stabilizes for increasing n and the variance of the resulting bandwidth estimate ĥ is often
huge. Clearly, for h < hmin, j := min

{
X j−X j−1,X j+1−X j

}
we have similar problems as for the

corrected ASE methods as then the local linear estimator m̂h(X j) is not defined. Therefore, (19) is
only defined if we fix h > hmin,CV with

hmin,CV := max{hmin,l+1, . . . ,hmin,n−l} . (21)

Although this mitigates the problems at the lower bound of the bandwidth scale (i.e. for bandwidth

Figure 3: The CV functions for n = 150 simulated data following Model 4 and Model 10, respec-
tively.

approaching zero), Figure 3 exhibits similar problems for the CV as we saw them for the corrected
ASE criteria. Figure 3 shows the CV score functions when data followed model 10 and model 4.
Again, for the wiggly model 4 we simply take the smallest possible bandwidth whereas for the
smooth model 10 we seem to have a clear global minimum.
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3.3 The One-Sided Cross Validation

As mentioned above the main problem of CV is the lack of stability resulting in large variances of
its estimated bandwidths. As has been already noted by Marron (1986), the harder the estimation
problem the better CV works. Based on this idea, Hart and Yi (1998) developed a new modification
of CV.

Consider the estimator m̂ĥCV
with kernel K with support [−1,1] that uses the CV bandwidth ĥCV .

Furthermore, we consider a second estimator m̃b with smoothing parameter b based on a (selec-
tion) kernel L with support [0,1]. Then define

OSCV (b) =
1

n−2l

n−l

∑
i=l+1

(m̃−i
b (Xi)−Yi)

2, (22)

where m̃−i
b (Xi) is the leave-one-out estimator based on kernel L. Note that l must be at least 2. This

ensures that in each summand of (22) at least l−1 data points can be used. Denote the minimizer of
(22) by b̂. The OSCV method makes use of the fact that a transformation h : R+→R+ exists, such
that E(h(b̂))≈ E(ĥCV ) and Var(h(b̂))<Var(ĥCV ). More precisely, (22) is an unbiased estimator
of

σ
2 +E

[
1

n−2l

n−l

∑
i=l+1

(m̃b(Xi)−m(Xi))
2

]
.

Therefore, minimizing (22) is approximately the same as minimizing

E

[
1

n−2l

n−l

∑
i=l+1

(m̃b(Xi)−m(Xi))
2

]
. (23)

In almost the same manner it can be argued that minimizing MASE(h) is approximately the same
as minimizing CV (h). We denote the minimizer of (23) by bn and the MASE(h) minimizer by hn.
Using the results in Fan (1992) for minimizing the MASE-expressions, dividing the minimizers
and taking limits yields

hn

bn
→
[
||K||22

(µ2
2 (K))2 ∗

(µ2
2 (L))

2

||L||22

]1/5

=: C,

see Yi (2001). Note that the constant C only depends on known expressions of kernels K and L.
One can therefore define the data driven bandwidth selector

ĥOSCV =C · b̂. (24)

According to which selection kernel is used one gets different OSCV-values. A list of recom-
mended and well studied selection kernels is given in Table 1, see also Figure 4. The transforming
constants C of L1 to L4 are given together with the values µ2

2 (Li) and ||Li||22 in Table 2.

As for the corrected ASE and CV bandwidth selection rules, the OSCV bandwidth selection rule
is consistent. Now consider the i’th summand of (22). Analogously to prior discussions, (22) is
only defined if b > bmin,lOSCV = max{Xl+1−Xl, . . . ,Xn−l−Xn−l−1}, so that for minimizing (22)
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Table 1: Selection kernels for left OSCV.

Kernel Formulae

One Sided Quartic L1(x) = 15/8(1− x2)21[0,1]
Local Linear Epanechnikov L2(x) = 12/19(8−15x)(1− x2)1[0,1]
Local Linear Quartic L3(x) = 10/27(16−35x)(1− x2)21[0,1]
opt. Kernel from Hart and Yi (1998) L4(x) = (1− x2)(6.92−23.08x+16.15x2)1[0,1]

Table 2: Selection kernels for left OSCV.

Kernel µ2
2 (L) ||L||22 C

L1 0.148571 1.428571 0.8843141
L2 -0.1157895 4.497982 0.6363232
L3 -0.08862434 5.11357 0.5573012
L4 -0.07692307 5.486053 0.5192593

we consider only bandwidths b > hmin,CV . Because of

hmin,G = hmin,CV

= max{hmin,l+1, . . . ,hmin,m−l}
= max{min{Xl+1−Xl,Xl+2−Xl−1} , . . . ,min{Xn−l−Xn−l−1,Xn−l+1−Xn−l}}
≥max{Xl+1−Xl, . . . ,Xn−l−Xn−l−1}
= bmin,lOSCV

= 1/C ∗hmin,lOSCV

≥ hmin,lOSCV

this problem is much less serious for the OSCV than for the other methods. Due to the fact that

Figure 4: The One Sided Selection Kernels used for left OSCV.

11



m̃b(x) uses only data that are smaller than the regression point x, the variance of m̃b(x) reacts much
more sensitive when decreasing b. This makes it more likely that the true minimum of (22) is larger
than bmin,lOSCV . And indeed, in our simulations the problem of not finding the true minimum did
not occur. Clearly, the OSCV score functions show a wiggly behavior when choosing b small due
to a lack of data when using data only from one side. Moreover, this selection rule overweights
the variance reduction. Figure (5) demonstrates the problem: while for Model 4 we observe a
clear minimum, for Model 10 we observe that the OSCV score function does not seem to visualize
a punishment when b is chosen disproportionately large. In what follows we will deal with this
problem and introduce modified OS kernels.

Figure 5: The OSCV Functions based on 150 independent data (Xi,Yi).

Note that the regression estimator used at the bandwidth selection stage, namely m̃b(x) in (24),
uses only the data Xi that are smaller than the regression point x. This explains the notion left
OSCV. For implementing the right OSCV, we use the kernel R(u) := L(−u). Note that this kernel
has support [−1,0] and therefore m̃b(x) uses only data at the right side of x. The transforming
constant C in (24) does not change. There is evidence that the difference of left and right sided
OSCV is negligible. Hart and Yi (1998) considered the kernel estimator proposed by Priestley
and Chao (1972) in an equidistant fixed and circular design setting and argued that the OSCV
score function using any left sided kernel L is the same as the OSCV score function, when using
its right sided version with kernel L(−u). Furthermore, they conducted simulations with a fixed
design setting using the local linear estimator and argued that in all simulations they had done, a
correlation of the minimizers of the left and the right OSCV score function of larger than 0.9 was
observed. Thus, in the theoretical considerations we only concentrate on the left sided OSCV and
assume that the corresponding right sided OSCV has the same behavior.

When implementing the OSCV method one has to choose the one sided kernel L. Hart and Yi
(1998) calculated the asymptotic relative efficiency, i.e.

ARE(K,L) = lim
n→∞

E((ĥOSCV − ĥ0)
2)

E((ĥCV − ĥ0)2)
(25)

for different kernels for L. The setting was a fixed design using the kernel estimator for estimating
m. They observed an almost twenty-fold reduction in variance compared to the CV method, when
simply using the right kind of kernel L. They introduced two optimal kernels. One of them is the
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one sided local linear kernel based on Epanechnikov that is originally used for boundary correction
in density estimation (see Nielsen (1999)). For finding the optimal kernel in our case we conducted
a simulation study, where we simulated 30 times the data (X1,Y1), . . . ,(Xn,Yn) for different data
sets and different n. We compared the left OSCV methods, when using the kernels listed up in
Table 1.

We calculated the bandwidths (ĥ0)i, (ĥCV )i and (ĥOSCV )i (i = 1, . . . ,30) and then estimated
ARE(K,L) by

ÂRE(K,L) =
∑

30
i=1((ĥOSCV )i− (ĥ0)i)

2

∑
30
i=1((ĥCV )i− (ĥ0)i)2

. (26)

The results in the case of n = 150 are given in Table 3. We observed that in seven out of the twelve
different cases using the kernel L4 is best, in only three cases L3 is best and kernel L1 is only best
in one case. When conducting the same simulation study with n = 50, n = 100 and n = 200 we
observed very similar results. Therefore, we decided to use kernel L4 in the following simulation
studies.

Table 3: The estimated ARE(K,Li) i = 1, . . .4 and n = 150.

Model ÂRE(K,L1) ÂRE(K,L2) ÂRE(K,L3) ÂRE(K,L4) Best

1 5.828767 0.801370 0.915525 1.061644 L2

2 96.290685 1.152327 19.722925 1.170663 L2

3 6.928571 1.103896 1.032468 0.714286 L4

4 2.051266 1.014796 1.013574 0.071266 L4

5 1.541477 0.427530 0.427530 0.413856 L4

6 2.025299 2.015951 1.000943 1.013723 L3

7 2.674820 0.424460 0.250360 0.283453 L3

8 1.519437 1.002538 0.998917 0.997350 L4

9 3.474171 2.652201 2.651982 2.927879 L3

10 3.945909 1.010591 1.000613 0.999650 L4

11 47.943458 45.635282 38.257424 30.616100 L4

12 1.484678 0.998468 0.524996 0.997636 L3

A plot of the left OSCV Function, when using kernel L4 is given in Figure 6. We observe that the
OSCV functions are very wiggly when we use the kernel L4 compared to using kernel L1. The
same wiggliness can be observed by using kernels L2 and L3. This behavior can also be observed
when plotting the OSCV functions based on other data sets.

Even though one-sided cross validation from the left or from the right should not differ (from
a theoretical point of view), in practice they do. To stabilize the behavior, Mammen, Martinez-
Miranda, Nielsen, and Sperlich (2011) proposed to merge them to a so-called double one-sided
or simply do-validation (half from the left-sided, half from the right-sided OSCV bandwidth) for
kernel density estimation and obtained amazingly good results with that procedure.
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Figure 6: The left OSCV function using kernel L4.

3.4 Notes on the Asymptotic Behavior

During the last two decades, a lot of asymptotic results for the corrected ASE methods and the CV
method have been derived. Unfortunately, these asymptotic results are often only derived in the
fixed and equidistant design case, when a kernel estimator or the Nadaraya-Watson estimator is
considered. However, it is not hard to see that the results discussed in the following carry over to
the local linear estimator which asymptotically can be considered as a Nadaraya-Watson estimator
with higher order kernels.

Rice (1984) considered the kernel estimator

m̂h(x) =
1
nh

n

∑
i=1

K
(

x−Xi

h

)
Yi (27)

proposed by Priestley and Chao (1972) in an equidistant and fixed design setting. Using Fourier-
analysis, he analyzed the unbiased risk estimator of p(h) introduced by Mallows (1976), and
proved that its minimizer fulfills condition (9). He made some smoothness assumptions on K and
m and considered bandwidths in the range of Hn =

[
an−1/5,bn−1/5

]
for given a,b. Furthermore,

he argued that this bandwidth selection rule is asymptotically equivalent to the corrected ASE and
the CV selection rules and therefore, the minimizers of the corrected ASE functions also fulfill
condition (9).

Härdle and Marron (1985) considered the Nadaraya-Watson estimator in a multivariate random
design setting. They proved the optimality condition (7) for the minimizer of the CV score func-
tion with respect to the ASE, ISE and MASE risk measures for the CV method. They made the
assumption of h belonging to a range of possible bandwidths that is wider than

[
an−1/5,bn1/5

]
so that the user of CV does not need to worry about the roughness of the underlying curve m.
Further assumptions are the existence of the moments E(Y k|X = x), a Hölder continuous kernel
K, i.e. |K(u)−K(ν)| ≤ L||u−ν ||ξ for a ξ ∈ (0,1) and an L > 0,

∫
||u||ξ |K(u)|du < ∞, the Hölder

continuity of f and m and that the density f is bounded from below and compactly supported.

If conditions (8) and (9) are fulfilled for the bandwidth selection rules based on the CV and the
corrected ASE score functions the question of the speed of convergence arises. Härdle and Marron
(1988) considered the fixed and equidistant design case. They assumed i.i.d. errors εi for which
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all moments exist, a compactly supported kernel with Hölder continuous derivative and that the
regression function has uniformly continuous integrable second derivative. Let ĥ be any minimizer
of a corrected ASE or the CV score function. Then, as n→ ∞,

n3/10(ĥ− ĥ0)
L→ N(0,σ2) (28)

and
n3/10(ASE(ĥ)−ASE(ĥ0))

L→Cχ
2
1 (29)

hold, where σ and C are constants depending on the kernel, the regression function and the obser-
vation error. It is interesting to observe that σ is independent of the particular penalizing function
Ξ() used. Taking the asymptotic rates of h’s and ASE’s into account, one finds that condition (28)
is of order n1/10 and condition (29) is of order n1/5. They also show that the differences ĥ0− h0

and ASE(ĥ0)−ASE(h0) have the same small rates of convergence. The authors conjecture that
the slow rate of convergence of ĥ and ĥ0 is the best possible in the minimax sense.

Chiu (1990) considered the unbiased risk minimizer using the kernel estimator in an equidistant,
fixed design setting with periodic regression function (so-called circular design). He made the
assumptions of independent errors εi for which all moments exist, some smoothness assumptions
on the symmetric kernel K and m completed by technical conditions for the circular design. He
only considered bandwidths belonging to a range that is slightly smaller than Hn. He pointed
out that the normal distribution is not a good approximation for ĥ because of its slow rate of
convergence. Having finite samples in mind, he reasoned that

n3/10(ĥ−h0)≈
bn/2c

∑
j=1

(Vj−2)wK( j), (30)

where V1, . . . ,Vbn/2c are i.i.d. χ2
2 -distributed random variables with weights wK( j) that only depend

on the kernel K. This approximation has got interesting implications. Having in mind that the
MASE minimizer is asymptotically the same as the ASE minimizer and that the unbiased risk
minimizer is asymptotically the same as the minimizer of the corrected ASE’s and the CV score
functions, it follows for example

n3/10(ĥCV −h0)≈
bn/2c

∑
j=1

(Vj−2)wK( j). (31)

When Hart and Yi (1998) computed the first twenty weights wK( j) ( j = 1,2, . . . ,20) and for the
quartic kernel K and n = 100, they observed that wK(1) and wK(2) are large and negative but
wK(3), . . . ,wK(20) much smaller and mostly positive. This confirms that the distribution of ĥCV is
skewed to the left.

Assuming some further smoothness assumptions on the one sided selection kernel L and some
technical conditions on L to be able to work with a circular design, they derived a similar result to
(31) for OSCV, namely

n3/10(ĥOSCV −h0)≈
bn/2c

∑
j=1

(Vj−2)wL( j). (32)

When they calculated the weights wL( j) ( j = 1,2, . . . ,20) in (32) for L4 and n = 100, they ob-
served that these were now smaller in magnitude and almost symmetric around zero, indicating a
symmetric distribution of ĥOSCV with small(er) variance.
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Yi (2001) proved the asymptotic stability of the OSCV selection rule. More precisely, let b0 be
the MASE optimal bandwidth using selection kernel L and b̂ be the minimizer of the unbiased risk
estimator. This is asymptotically the same as the minimizer of the OSCV score function, namely
b̂CV . Then, for Cb0−h0 = oP(b̂−b0) with constant C,

lim
n→∞

E((n3/10(ĥOSCV −h0))
2) =C2V (L), (33)

where V (L) is a constant that only depends on the selection kernel L. As before, he considered
only an equidistant fixed design case, assumed normally distributed i.i.d. errors, some smoothness
for m, K and L with symmetric and compactly supported kernel K, and further technical conditions
on m to be able to work with a circular design. Note that, when taking the rates of convergence of
ĥOSCV and h0 into account, one finds, that his limit theorem (33) is of order n1/5.

4 Choosing the smoothing parameter based on (A)MISE

In contrast to the cross-validation and corrected-ASE methods, the plug-in methods try to min-
imize the MISE or the AMISE. The conditional weighted AMISE of the local linear estimator
m̂h(x) was already given in (5). Minimizing w.r.t. h, leads to the AMISE-optimal bandwidth
(hAMISE), given by:

hAMISE =

(
||K||22 ·

∫
S σ2(x)dx

µ2
2 (K) ·

∫
S (m′′(x))2 f (x)dx ·n

)1/5

, (34)

where S = [a,b] ⊂ R is the support of the sample X of size n. One has the two unknown quanti-
ties,

∫
S σ2(x)dx and

∫
S (m

′′(x))2 f (x)dx, that have to be replaced by appropriate estimates. Under
homoscedasticity and using the quartic kernel, the hAMISE reduces to:

hAMISE =

(
35 ·σ2(b−a)

θ22 ·n

)1/5

, θrs =
∫

S
m(r)(x)m(s)(x) f (x)dx, (35)

where m(l) denotes the lth derivative of m.

The plug-in idea is to replace the unknown quantities by mainly three different strategies:

1. Rule-of-thumb bandwidth selector hrot :
The unknown quantities are replaced by parametric OLS estimators.

2. Direct-plug-in bandwidth selector hDPI:
Replace the unknown quantities by nonparametric estimates, where we need to choose ’prior
(or pilot) bandwidths’ for the two nonparametric estimators. In the second stage we use a
parametric estimate for the calculation of these bandwidths.

3. Bootstrap based bandwidth selection hSB and hWB:
The unknown expression are estimated by bootstrap methods. In case of the smooth boot-
strap (giving hSB), again the unknown expressions in (35) are estimated, while the wild
bootstrap method (hWB) directly estimates the MISE of m̂h and the minimizes with respect
to h. Both methods require a ’prior bandwidth’.
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There exist also a bandwidth selector which does not require prior bandwidths but tries to solve
numerically implicit equations. This procedure follows the solve-the-equation approach in kernel
density estimation, see Park and Marron (1990) or Sheather and Jones (1991). However, the results
of this bandwidth selector are not uniformly better than those of the direct-plug-in approach (see
Ruppert, Sheather and Wand (1995)) but require a much bigger computational effort, and are
therefore quite unattractive in practice.

For the first two strategies a parametric pre-estimate in some stage is required. We have opted
here for a piece-wise polynomial regression. For the sake of presentation assume the sample to be
sorted in ascending order. The parametric OLS-fit is a blocked quartic fit, i.e. the sample of size n
is divided in N blocks χ j =

(
X( j−1)n/N+1, . . . ,X jn/N

)
, ( j = 1, . . . ,N). For each of these blocks we

fit the model:

yi = β0 +β1xi +β2x2
i +β3x3

i +β4x4
i + εi i = ( j−1)n/N +1, . . . , jn/N,

giving
m̂Q j(x) = β̂0 j + β̂1 jxi + β̂2 jx2

i + β̂3 jx3
i + β̂4 jx4

i .

Then, the formula for the blocked quartic parametric estimator θ̂rs, with max(r,s)≤ 4, is given by:

θ̂
Q
rs(N) =

1
n

n

∑
i=1

N

∑
j=1

m̂(r)
Q j
(Xi)m̂

(s)
Q j
(Xi)1{Xi∈χ j}.

Similarly, the blocked quartic estimator for σ2 is

σ̂
2
Q(N) =

1
n−5N

n

∑
i=1

N

∑
j=1

(Yi− m̂Q j(Xi))
21{Xi∈χ j}.

To choose N we follow Ruppert, Sheather, and Wand (1995), respectively Mallows (1973): take
the N̂ from (1,2, . . . ,Nmax) that minimizes

Cp(N) =
RSS(N) · (n−5Nmax)

RSS(Nmax)
− (n−10N),

where RSS(N) is the residual sum of squares of a blocked quartic N-block-OLS, and

Nmax = max [min(bn/20c,N∗),1] ,

with N∗ = 5 in our simulations. Another approach to the blocked parametric fit is to use nonpara-
metric estimators for the unknown quantities in (35), see Subsection 4.2.

4.1 Rule-of-thumb plug-in bandwidth selection

The idea of the rule-of-thumb bandwidth selector is to replace the unknown quantities in (35)
directly by parametric estimates, i.e. for θ22 use

θ̂
Q
22(N) =

1
n

n

∑
i=1

N

∑
j=1

m̂(2)
Q j
(Xi)m̂

(2)
Q j
(Xi)1{Xi∈χ j}

=
1
n

jn/N

∑
i=( j−1)n/N+1

N

∑
j=1

(
2β̂2 j +6β̂3 jxi +12β̂4 jx2

i

)2
,
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and the estimator for σ2

σ̂
2
Q(N) =

1
n−5N

n

∑
i=1

N

∑
j=1

(Yi− m̂Q j(Xi))
21{Xi∈χ j}

=
1

n−5N

jn/N

∑
i=( j−1)n/N+1

N

∑
j=1

(
yi− β̂0 j + β̂1 jxi− β̂2 jx2

i − β̂3 jx3
i − β̂4 jx4

i

)2
(36)

The resulting rule-of-thumb bandwidth selector hrot is given by

hrot =

(
35 · σ̂2

Q(N)(b−a)

θ̂
Q
22(N) ·n

)1/5

,

which now is completely specified and feasible due to the various pre-estimates.

4.2 Direct plug-in bandwidth selection

In this approach the unknown quantities in (35) are first replaced by nonparametric estimates.
Then, for the nonparametric estimator of θ22 a bandwidth g is needed. An obvious candidate is the
bandwidth gAMSE that minimizes the AMSE (asymptotic mean squared error) of the nonparametric
estimator of θ22. Furthermore, a prior bandwidth λAMSE has to be determined for the nonparamet-
ric estimator of σ2. These prior bandwidths are calculated with a parametric OLS-block-fit.

A nonparametric estimator θ̂22(gAMSE) can be defined by

θ̂22(g) = n−1
n

∑
i=1

[
m̂(2)

g (Xi)
]2
, (37)

where we use local polynomials of order ≥ 2. As local polynomial estimates of higher derivatives
can be extremely variable near the boundaries, see Gasser et al. (1991), we apply some trimming,
i.e.

θ̂
α
22(gAMSE) =

1
n

n

∑
i=1

[
m̂(2)(Xi)

]2
1{(1−α)a+αb<Xi<αa+(1−α)b}, (38)

here the data are truncated within 100 · α% of the boundaries of support S = [a,b], for some
small α ∈ (0,1). The reason for this truncation is that local polynomial kernel estimates of higher
derivatives can be extremely variable near the boundaries, also recommended by Gasser et al.
(1991). Since for increasing α increases the bias, α must not be too large. In our simulations we
follow the proposition α = 0.05 of Ruppert et al. (1995).

The prior bandwidth gAMSE , i.e. the minimizer of the conditional asymptotic mean squared error
of θ̂22(g) is given by

gAMSE =

[
C2(K)

σ2 · (b−a)
|θ24|n

]1/7

(39)

where the kernel dependent constant C2(K) for the quartic kernel is

C2(K) =

{
8505

13 if θ24 < 0
42525

26 if θ24 > 0
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The two unknown quantities are replaced by (block-wise) quartic parametric fits. For the prior
estimation of σ2 one uses the same as for the rule-of thumb bandwidth selector (see (36)). For θ24

we use:

θ̂
Q
24(N̂) =

1
n

n

∑
i=1

N

∑
j=1

m̂(2)
Q j
(Xi)m̂

(4)
Q j
(Xi)1{Xi∈χ j}

=
1
n

jn/N

∑
i=( j−1)n/N+1

N

∑
j=1

(
2β̂2 j +6β̂3 jxi +12β̂4 jx2

i

)
·24β̂4 j.

This gives first an estimate for the gAMSE , and afterward for θ α
22.

The nonparametric estimator for σ2 is:

σ̂
2 = ν

−1
n

∑
i=1

[
Yi− m̂λAMSE (Xi)

]2
, (40)

where ν = n−2∑i wii+∑i ∑ j w2
i j with {wi j}n

i, j=1 is the hat-matrix of m̂λAMSE . The prior bandwidth
λAMSE is calculated as the minimizer of the conditional AMSE of σ̂2

1 , see Ruppert et al. (1995).
Hence, λAMSE is given by

λ̂AMSE =

[
C3(K)

σ̂4
Q(N̂)(b−a)(

θ̂ .05
22 (ĝAMSE)

)2
n2

]1/9

with the kernel dependent constant C3(K) = 146735
14339 .

Now, the direct-plug-in bandwidth hd pi is given by:

hDPI =

[
35

σ̂2(λ̂AMSE)(b−a)
θ̂ .05

22 (ĝAMSE)n

]1/5

.

4.3 Using smoothed bootstrap

The idea of is to apply bootstrap to estimate the MISE of m̂h or some specific parameters of the
regression or its derivatives. For a general description of this idea in nonparametric problems, see
Hall (1990) or Härdle and Bowman (1988), though they only consider fixed designs. Cao-Abad
and González-Manteiga (1993) discussed and theoretically analyzed several bootstrap methods
for nonparametric kernel regression. They proposed the smooth bootstrap as an alternative to wild
bootstrap because the wild bootstrap mimics the model when the design is fixed. If one refers to
the random design, i.e. not the ISE or ASE but MISE or MASE are of interest, hence the following
resampling method is proposed: Draw bootstrap samples (X∗1 ,Y

∗
1 ),(X

∗
2 ,Y

∗
2 ), . . . ,(X

∗
n ,Y

∗
n ) from the

two-dimensional distribution estimate

F̂n(x,y) =
1
n

n

∑
i=1

1{Yi≤y}

∫ x

−∞

Kg(t−Xi)dt,

where g is a prior bandwidth asymptotically larger than h, see below. Cao-Abad and González-
Manteiga (1993) state that, as the marginal density of X∗ is the kernel density estimate of X given
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the original data and bandwidth g, and the marginal distribution of Y ∗ is the empirical distribution
function of {yi}n

i=1, one has E∗(Y ∗ | X∗ = x) = m̂g(x), and a natural estimator for Var(Y |x) is

σ̂
2
g (x) =

1
n

n

∑
i=1

WgiY 2
i − [m̂g(x)]

2 =Var∗(Y ∗ | X∗ = x). (41)

For the estimation of σ̂ assuming homoscedasticity, we average (41) over x = X∗i . Additionally,
a nonparametric estimator for θ22 is calculated as in formula (37) using cubic splines on our
bootstrap sample and with the same pilot bandwidth g. With an estimate of σ2 and θ 2

2 at hand
we can use formula (35) to calculate a smooth bootstrap bandwidth ĥSB which is certainly still a
function of the pilot bandwidth.

4.4 Using Wild Bootstrap

For early papers about the resampling plan of the wild bootstrap, see Cao-Abad (1991) or Härdle
and Marron (1991). For its special use in bandwidth selection, see González-Manteiga, Martı́nez-
Miranda and Pérez-González (2004). We will use their estimation procedure of the MSE. As
we are not interested in obtaining bootstrap samples but in obtaining bootstrap estimates of the
MASE, there is no need to introduce the creating of bootstrap samples. The squared bootstrap
bias and the bootstrap variance can be calculated as

Bias∗h,g(x) =
n

∑
i=1

Whi(x)m̂g(Xi)− m̂g(x)

and

Var∗h,g(x) =
n

∑
i=1

(Whi(x))2(Yi− m̂g(Xi))
2,

where g is again a pilot bandwidth that has to be chosen. For the selection of bandwidth h we
are interested in the MISE or the MASE, an error criterion independent from x. For simplicity we
opted for the

MASE(g,h) =
1
n

n

∑
i=1

MSE∗h,g(Xi) (42)

with MSE∗h,g(x) =
[
Bias∗h,g(x)

]2
+Var∗h,g(x). To get consistent estimators, for both the wild and the

smooth backfitting, the pilot bandwidth g has to be larger (in sample-size-dependent rates) than
bandwidth h. Having chosen g, the MASE only depends on h so that minimizing (42) gives finally
the optimal wild bootstrap bandwidth ĥWB. It can be easily seen, however, that the necessity
of choosing a pilot (or also called prior) bandwidth, is the main disadvantage of the bootstrap
methods.

4.5 Notes on the Asymptotic Behavior

It is clear that consistency can only be stated for the case where proper priors were used. Con-
sequently, the rule-of-thumb estimator has no consistency properties itself, because of possible
inconsistency of the there applied estimator for θ22. We therefore will concentrate on results for
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the relative error of ĥDPI . Ruppert, Sheather, and Wand (1995) stated for the asymptotic behavior
of ĥPDI

ĥDPI−hMISE

hMISE

P−→ D, (43)

and that the method used to estimate ĥDPI , is of order OP(n−2/7).
Here, D is the error θ

−1
22

[1
2 µ4(K2,3)θ24G2 +σ2(b−a)||K2,3||22G−5

]
with g = Gn−1/7 the prior

bandwidth and G > 0 its constant. This consistency statement is based on (39), (40) with

σ̂
2(λ̂AMSE)−σ

2 = OP(n−1/2) ,

θ̂22(g)−1/5−θ
−1/5
22 '−1

5
θ
−6/5
22

[
θ̂22(g)−θ22

]
conditional on X1, . . . ,Xn. Both together gives

ĥDPI−hMISE

hMISE
'−1

5
θ
−1
22

[
θ̂22(g)−θ22

]
leading to our (43), see Ruppert, Sheather, and Wand (1995) for details. We know already from
results of Fan (1992) and Ruppert and Wand (1994) that

hMISE = hAMISE +OP(n−3/5)

so that one can conclude from (43) to consistency with respect to hAMISE . The theoretical opti-
mal prior bandwidth g is obtained by choosing G such that D equals zero – asymptotically not
achievable, see Ruppert, Sheather, and Wand (1995) for further discussion.

Cao-Abad and González-Manteiga (1993) studied in detail the statistical behavior of smooth boot-
strap. For early consistency results of the wild bootsrap, see Cao-Abad (1991). The consistency
of MSE estimation via wild bootstrap has been proved in González-Manteiga, Martı́nez-Miranda
and Pérez-González (2004). The optimal prior bandwidth for the both, the smoothed and the
wild bootstrap is of order n−2/9, see for example Härdle and Marron (1991). The specific expres-
sions however, see for example Cao-Abad and González-Manteiga (1993) or González-Manteiga,
Martı́nez-Miranda and Pérez-González (2004), depend again on various unknown expressions so
that we face similar problems as for hrot and hPDI .

4.6 A Mixture of methods

As already has been found by others, while some methods tend to over-smooth others under-
smooth. In kernel density estimation it is even clear that the plug-in bandwidth and cross-validation
bandwidth are negatively correlated. Heidenreich, Schindler and Sperlich (2010) studied therefore
the performance of bandwidths which are simple linear combinations of a plug-in plus a cross-
validation bandwidth. For kernel density estimation these bandwidths turned out to perform pretty
well in all of their simulation studies.

Motivated by these positive results we will also try out such mixtures of estimated bandwidths in
the context of kernel regression estimation. Like Heidenreich, Schindler and Sperlich (2010) we
will only consider linear mixtures of two bandwidths. In particular, we again mix a CV bandwidth
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or a corrected ASE -based one with a plug-in or bootstrap method based bandwidth. Depending
on the weighting factor α ∈ (0,1), the mixed methods are denoted as:

Mixmethod1,method2(α) = α · ĥmethod1 +(1−α) · ĥmethod2, (44)

where ĥ• denotes the optimal bandwidth to the respective method. We mix our bandwidth in
the three following proportions, i.e. α = 1/2, α = 1/3 and α = 2/3. As for all the others, we
calculate the according ASE value for the resulting new bandwidths to assess the performance of
the respective mix, see next Section.

5 Finite sample performance

Recall the MISE and MASE. Clearly, if
∫
( f (x))−1 dx is large, we expect a large integrated variance

and therefore, the optimal bandwidth gives more weight on variance reduction and is therefore
large. In cases of highly varying errors, i.e. a large σ2, the same effect is observed. When the true
underlying regression curve m(·) varies a lot, i.e.

∫
(m′′(x))2 dx is large, a large integrated squared

bias is expected so that the optimal bandwidth gives more weight on bias reduction and therefore,
chooses a small bandwidth. Clearly, some selection methods will do better in estimating the bias,
others in estimating the variance. The same will hold for capturing the oscillation, say m′′(·) or the
handling of sparse data areas or skewed designs. As a conclusion, a fair comparison study requires
a fair amount of different designs and regression functions.

For our data generating process we first have to choose the distribution of X . Then, we have
to consider which are reasonable functions for m(x). Finally, we have to assume a value for the
variance of the error term. We generated noisy data following the models Yi = 1.5 ·sin(k ·Xi)+σ ·εi

with ε ∼ N (0,1) for different k’s, different σ ’s and a uniform design, i.e Xi ∼ U [−1,1], or a
standard normal design, i.e. Xi ∼ N(0,1). We also considered the performance of the methods
where Xi ∼ 1/2 ·N (−0.6,1/4)+ 1/2 ·N (0.3,1/3). Because the results are almost identical to
the uniform distribution, we do not show the results of this design in the consideration below.

A list of all the models we used is given as:

Model σ Design k Model σ Design k

1 1 uniform 6 7 0.5 uniform 4
2 1 normal 6 8 0.5 normal 4
3 0.5 uniform 6 9 1 uniform 2
4 0.5 normal 6 10 1 normal 2
5 1 uniform 4 11 0.5 uniform 2
6 1 normal 4 12 0.5 normal 2

Random numbers following a normal mixture design are an example which may easily yield a
large integrated asymptotic variance. Furthermore, the data are bimodal (so that two clusters are
expected) and slightly skewed. Moreover,

∫
(m′′(x))2 dx becomes larger as k increases so that a

larger integrated squared bias is expected as k increases. The different σ ’s affect the integrated
variance of the local linear estimator.
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The aim of this section is to compare the small sample performance of all methods discussed in the
previous sections. Remember there different groups: cross-validation, corrected ASE, plug-in and
bootstrap. We also compare these methods with different mixtures of the classical cross-validation
(CV) criterion respectively several correcting ASE methods, with the rule-of-thumb and the direct
plug-in estimate (PI1 and PI2 resp.). The mixing procedure is to include one half of the optimal
bandwidth ĥCV resp. an optimal bandwidth of a corrected ASE method in different proportions
with the optimal bandwidth of PI1 or PI2, then we assess the corresponding ASE value for the
mixed bandwidth. The reason why this makes sense is that CV and corrected ASE methods tend
to oversmooth while the PI methods tend to undersmooth the true m(x).

All in all we present the following methods for estimation:

I cross-validation methods

1. CV: cross-validation

2. OSCV(L): one-sided cv (left)

3. OSCV(R): one-sided cv (right)

4. DoV: do-validation

II corrected ASE methods

5. Shib: Shibata’s model selector

6. GCV: generalized cv

7. AIC: Akaikes information criterion

8. FPE: finite prediction error

9. Rice: Rice’s T

III plug-in methods

10. PI1: rule-of-thumb plug-in

11. PI2: direct plug-in

IV bootstrap methods

12. SB: smooth bootstrap

13. WB: wild bootstrap

V mixtures of two methods

VI ASE: infeasible ASE

There are certainly many ways how to compare the selection methods. Just when have in mind
that different selectors are looking at different objective functions, it is already clear that it cannot
be fair to use only one criterion. Consequently, we had to compare the performance by different
performance measures, most of them based on the averaged squared error (ASE), as this is maybe
the one the practitioner is mainly interested in. More specific, the considered measures are:

m1: mean(ĥopt)

mean of the selected bandwidths for the different methods

m2: std(ĥopt)

standard deviation of the selected bandwidths

m3: mean
[
ASE(ĥ)

]
classical measure where the ASE of m̂ is calculated (and averaged over the 500 repetitions)

m4: std
[
ASE(ĥ)

]
volatility of the ASE’s

m5: mean(ĥ−hASE)

’bias’ of the bandwidth selectors, where hASE is the real ASE-minimizing bandwidth

m6: mean
[
(ĥ−hASE)

2
]

squared L2 distance between the selected bandwidths and hASE
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m7: mean
[
| ĥ−hASE |

]
L1 distance between the selected bandwidths and hASE

m8: mean
[
ASE(ĥ)−ASE(hASE)

]
= mean

[
| ASE(ĥ)−ASE(hASE) |

]
L1 distance of the ASE’s based on selected bandwidths compared to the minimal ASE

m9: mean
([

ASE(ĥ)−ASE(hASE)
]2)

squared L2 distance compared to the minimal ASE

In the following we will concentrate on the most meaningful measures, namely the bias of the
bandwidths selectors (m5), the means and standard deviations of the ASE’s (m3 and m4), showed
as box-plots, as well as the L1-distance of the ASE’s (m8).

Without loss of generality, we used the Quartic Kernel throughout, i.e. K(u) = 15
16(1−u2)21{|u|≤1}.

For both bootstrap procedures we tried several priors g but will present only results for the well
working choice g = 1.5 · ĥCV . The problems in choosing a bandwidth h which is too small already
described in Section 3 appear by using the local linear estimator m̂h(x). Hence, the correction of
the bandwidth grid, given in (18), is done in every case where this estimator is used for calculation.
All results are based on the calculations from 500 repetitions. In our simulation study we tried all
methods for the sample sizes n = 25, n = 50, n = 100, and n = 200.

We will first compare all methods without the mixtures. In order to summarize the different
methods of choosing the optimal bandwidth, we first consider the selected bandwidths and the
corresponding bias for each method separately. Afterward, we compare the methods by various
measures.

Before we start with the numerical outcomes for the different methods we should briefly comment
on the in practice also quite important questions of computational issues, in particular the com-
plexity of implementation and computational costs, i.e. the time required to compute the optimal
bandwidth along the considered methods. The fastest methods are the so-called corrected ASE
methods. The second best in speed performance are the plug-in methods, where the rule-of-thumb
plug-in is better than the direct plug-in. The fact that we only consider one-dimensional regres-
sion problems and local linear smoother allows for an implementation such that the CV methods
behave also quite good but certainly worse than the plug-in. In our implementation and for the
somewhat larger sample sizes (in the end, we only consider small or moderate ones) the slowest
were the bootstrap based methods, in particular the smooth bootstrap. The direct plug-in and the
smooth bootstrap method turned out to be quite complex in programming. Note that in general
for more complex procedures the numerical results should be better than for the other methods to
legitimate the computational effort.

5.1 Comparison of the bias and L1-distance for the different bandwidths (m5,m7)

Most of our numerical findings have been summarized in two figures: In Figure 7 we show the
biases (m5) and in Figure 8 the L1(h)-distances (m7) for all methods and models, but only for
sample sizes n = 25 and n = 200.

We first summarize the behavior of CV and GCV since they behave almost identically. For the
standard normal distribution (see right panel in Figure 7), they are oversmoothing for all cases.
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Figure 7: Comparison of the bias for sample sizes n = 25 (above) and n = 200 (below)

For the uniform distribution the bias changes signs for increasing sample size, i.e. the bigger n the
more tendency to undersmooth. Compared to all competitors, the L1-distances are relatively small
for all models, see Figure 8. Because of the almost identical behavior of these two methods we
will only show CV in the next subsections respectively in the pictures below.

OSCV-l, OSCV-r and DoV also oversmooth for the standard normal distribution but for larger
sample sizes the behavior improves considerably and compared to the competitors. Conspicuous
for the normal design is that for n = 25 with a high frequency of the sinus function the values
of m5 and m7 are very high. For the uniform distribution with n = 200 we cannot see any clear
tendency to over- respectively undersmoothing, and the L1-distance is almost zero, see also Figure
8. Because of the similar behavior of these three methods, and because DoV generally behaves
best, we will only consider DoV in the following.

The bandwidth selection rules AIC, FPE and Rice from the second group are oversmoothing for
the standard normal distribution. Only for n = 100, k = 2, and σ = 1 Rice undersmooths, and
has an almost zero bias (not shown in the Figure 7). For the uniform design the three methods
are almost always undersmoothing but in general show a good performance respective to the bias.
The most noticeable for these three methods is that for n = 25 they behave better than CV, GCV
and the one-sided CV methods, but for n = 200 the AIC, FPE and Rice are just as good as CV,
GCV and the one-sided CV (see also Figure 8). In comparison AIC, FPE and Rice seem to benefit
less from increasing sample sizes, i.e. although the bias respectively the L1(h)-distance is getting
smaller in absolute value it is not getting smaller in the same magnitude like CV, GCV and the
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Figure 8: Comparison of the L1-distance for n = 25 (above) and n = 200 (below)

one-sided CV methods. In general, due to the bias, AIC, FPE and Rice show the best performance,
i.e. they do not fail and are often the best. Because of the similar behavior of these three methods,
and because Rice mostly behaves best, we will only consider Rice in the next sections.

The Shib selection method is almost always undersmoothing for the uniform design. For the
standard normal distribution it is oversmoothing for n = 25 but for the bigger samples there is no
clear tendency. The main difference to the other ASE corrected methods is that Shib bandwidths
are worse for the uniform design, but a little bit better for the normal design.

The plug-in methods and SB are almost always undersmoothing over all designs and sample sizes.
They all undersmooth with a bias which is large in absolute value. For the standard normal design,
PI1 shows a good bias behavior for the smallest sample size n = 25 and is best for the high
frequency models. In general we can state for PI1, PI2 and SB that for n = 25 they are as good as
all the methods from group I and group II, but for increasing sample size the value of the bias and
the L1(h)-distance loose compared to the other selectors. Hence, in the end, PI1, PI2 and SB seem
to be worse than all the methods from the first and the second group.

The remaining method to be compared is the wild bootstrap “WB”. From Figure 7 it can be seen
that the values are often out of range except for model 11 for both sample sizes and model 9 for
n = 25. In Figure 8 it can be seen that WB can only keep up with the other methods for model
9 and model 11. These two models are the smoothest of all. But WB is never the best method
due to the bias and is best only for two special cases if we compare the L1(h)-distances (model 9
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for n = 25 and model 11 for n = 200). For the wiggly designs WB fails completely and chooses
always the largest bandwidth of our bandwidth grid.

5.2 Comparison of L1 and L2-distances for the different bandwidths (m6, m7)

We will now summarize the performance of the selection methods according to the measures
L1(h) and L2(h). In order to see the most important results, it is sufficient to concentrate on k = 6
and σ = 1 as all further results are almost identical to these with respect to the ordering of the
considered methods (compare once again Figure 7 and Figure 8). All in all we provide here the
comparison of the selection methods along models 1, 2, 9 and 10. In Figure 9 we have plotted the
resulting L1(h), and in Figure 10 the L2(h). For each of the four models we show the values for
all sample sizes, i.e. for n = 25,50,100,200.
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Figure 9: L1(h) for each four models varying the sample size

Considering the wild bootstrap method “WB”, we notice that it is only for model 9 (the smoothest)
not out of the range of our plots. But even for this model we had to use a wider plotting range,
because the L1(h) respectively L2(h) values turned out to be very large for basically all methods.
“WB” can only compete with the other selection methods in this case, but for n = 100 and n = 200
is even here the worst of all methods. The cross validation, say “CV”, method exhibits a pretty
good performance for model 1; for sample size n = 50 it is indeed the best. For model 2 and model
10 it shows only bad performances for n = 25 but good ones for the larger sample sizes. For model
9 it has an average behavior. This changes if we extend the cross validation idea to one-sided and
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Figure 10: L2(h) for each four models varying the sample size

do-validation. Indeed, for models 1, 2 and 10 “DoV” (and one-sided cross validation, where do-
validation is based on) behaves badly only for n = 25, because of the resulting lack of information.
It already behaves well for n = 50 and very well for not saying excellently for larger samples with
n = 100 and n = 200. For model 9 its L1(h)- respectively L2(h)-values are even very good for
n = 25. But for this very smooth model and sample sizes n = 50, n = 100 and n = 200 the plug-in
PI1 is the best selection method. For model 10 PI1 is the best just for n = 25. Finally, “Shib” and
“Rice” have an average behavior for all models and sample sizes, only for model 1 they are best
for small samples with n = 25.

Summarizing we can say that the cross-validation methods need a sample size of at least 50 to
perform well if we have a model that is not that smooth. For really smooth regression problems,
the plug-in “PI1” does well.

5.3 Comparison of the ASE-values (m3,m4)

In this subsection we summarize the results for the ASE-values of the different measures, i.e. the
bandwidth that has been chosen for the respective method is inserted in the formula for the ASE.
This is done because it enables us to compare rather the resulting regression performance than
the bandwidths selected by the different methods. Needless to say, that the smallest ASE-value is
reached with the benchmark, i.e. the true ASE optimal bandwidth. In our simulation we assumed
twelve different models, i.e. we know the true value for m(x) and the exact variance of the error
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term, what we do not in practice. For the same reasons we mentioned in the last subsection, the
results for k = 4 and σ = 0.5 are skipped in the following. Hence, we compare only the boxplots
of the selection methods along our models 1, 2, 9 and 10.
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Figure 11: ASE-values for X ∼U [−1,1] for all sample sizes
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Figure 12: ASE-values for X ∼ N(0,1) for all sample sizes

The main conclusions from the ASE-distributions can be summarized as follows. Varying the
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sample size, we can see from the boxplots, that for both designs, i.e. uniform design (see figure
11) and standard normal design (see figure 12), the means and median values for CV, DoV, Shib
and Rice decrease with increasing sample sizes and decreasing frequencies. With respect to the
inter quartile range (IQR henceforth) and the standard deviations it is almost the same with two
exceptions. The first one is the IQR of DoV for model 9 and n = 100 is smaller than for n = 200,
but there are more outliers for n = 100. The second one is Shib where the IQR increases with
decreasing frequency in the uniform design for n = 25, n = 50 and n = 100.

For the plug-in and the bootstrap methods the results look quite messy. With respect to the IQR
and the standard deviations, WB and PI1 clearly improve with increasing sample size. For PI2 it
is the same for model 1, 2 and 9, but for model 10 it is the other way round. For SB the IQR and
the standard deviation are getting larger with increasing sample size.

Now, we compare the methods for model 1 (see Figure 11, first row). DoV benefits most from
increasing sample size, i.e. for n = 25 DoV is worst of group I, group II and PI1, but for n = 200
DoV is the overall best. CV and Rice behave very similar, and they are the best selectors for
n = 25, and 2nd best for n = 200. Shib shows a good behavior for smaller sample sizes, but for
n = 100 and n = 200 it has the largest IQR of group I and group II. In general, the plug-in methods
behave worse than groups I and II, and only a little bit better than group IV.

The most noticeable of model 9 is that WB is the overall best method, there PI2 and SB behave
worst. That is because model 9 is the smoothest model, i.e. a large bandwidth is optimal in this
case. For n = 25 and n = 50 DoV is the best of I, II, and III, but for larger sample sizes CV and
Rice are doing better.

The results for model 2, the most wiggly design, can be seen in figure 12, first row. The most
interesting changes, compared to model 1, occur in the first four methods. There we have more
extreme outliers the bigger the sample size is. The reason for that is that these methods have
problems with outliers in the covariate X . Therefore, these outliers appear, if there is a random
sample having a big proportion of observations around zero but thin tails. The behavior of the
methods from group I and II is very similar, i.e. the chosen method does not have a big effect on
the results. Further outcomes are similar respectively identical to model 1.

Finally, we consider the results for model 10 (see figure 12, second row). We state the differences
to model 2 (for both X ∼ N(0,1)) and model 9 (for both k = 2). In contrast to model 2, the
extremity of outliers does only increase a little bit with increasing sample size which is due to the
fact that the model is smoother. The difference to model 9 is that WB is not the best method for
model 10. This is maybe due to the fact that model 10 is more wiggly than model 9. But for both
model 9 and model 10 selector WB does not fail completely in contrast to model 1 and model 2.
For WB we can therefore state that if m is smooth enough this method can be used to estimate the
bandwidth.

5.4 Comparison of the L1 and L2-distances of the ASE values (m8,m9)

If we look at Figures 13 and 14, we can conclude that there is nothing new with respect to the
comparison of the considered bandwidth selection methods. One interesting fact should be men-
tioned: the L1-distances do generally not decrease with increasing sample size. In model 2 the
L1-distances increase with increasing sample size for the plug-in and bootstrap methods. In model
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Figure 13: L1(ASE) for each four models varying the sample size
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Figure 14: L2(ASE) for each four models varying the sample size
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2 all L1 and L2-distances for WB are out of range. For this model PI1 is the best method for n = 25
but for all other sample sizes the CV and ASE-corrected methods behave better. PI2, WB and SB
behave worse than the CV and ASE-corrected methods for all sample sizes.

One interesting fact for the CV and ASE-corrected methods is that there is a gap between n = 25
and the other sample sizes. That means, if we have a normal design respectively a more wiggly
model (see model 1) combined with an extreme small sample size, PI1 will be a good method in
bandwidth estimation. Another mentionable fact is that for model 9, the smoothest model, WB is
the best method when looking at the L1 and L2 ASE values, see Figures 13, 14. For model 10 WB
is good, but not better than CV or corrected ASE based methods. That means that the decision of
using WB depends more on the smoothness of m than on the smoothness of the distribution of X .

We mentioned in the beginning of Section 5 that PI2 and SB are more complicated to implement,
and especially SB has a notable computation time. If we look at all the results we can say that PI2
and SB behave badly due to all the performance measures. Hence, there is no reason for using
these two methods for bandwidth estimation for the considered models.

5.5 Comparison of different mixtures
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Figure 15: bias(h)

Finally we tried to mix two methods in order to get better results than with only one method.
We tried to mix a method that tends to oversmooth with a method that tends to undersmooth
the data. An obvious candidate is to mix the optimal bandwidth of the classical cross-validation
(CV) respectively of a correcting ASE methods with one of the plug-in or a bootstrap optimal
bandwidth. Recall that CV and corrected ASE methods tend to oversmooth while the PI and
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Figure 16: L1(ASE)

bootstrap methods tend to undersmooth. The mixtures will be compared with DoV which in the
end is also a mixture, namely the left- and the right-sided OSCV method, respectively.

Depending on the weighting factor α ∈ (0,1), the mixed methods are denoted as in formula (44)
by Mixmethod1,method2(α). We only try to mix methods having a good performance. We also con-
sidered other mixtures, but the best results are obtained by mixing CV and Rice with PI1. Hence,
the results we present here are:

1 m11: MixCV,PI1(1/2)

2 m12: MixCV,PI1(2/3)

3 m13: MixCV,PI1(1/3)

4 m21: MixRice,PI1(1/2)

5 m22: MixRice,PI1(2/3)

6 m23: MixRice,PI1(1/3)

In fact, we did simulation for basically all two-folded mixtures but skip the presentation of all
the other methods for the sake of brevity and because they simply behave worse. Specifically, we
decided to show the following six different mixtures: three CV-PI1, and three Rice-PI1 mixtures.

In the Figures 15 and 16 we added DoV for obvious reasons mentioned above and because this
method exhibited a pretty good performance before. The bias behavior of PI1 is almost always
worst, the only exception is model 2 with a sample size of 25, where CV and DoV have the biggest
bias. As already mentioned, the aim to mix methods was, to get better results than with one single
method. But, we see, that the bias values of the mixtures are indeed better than for PI1 but worse
than for CV or Rice. Only for model 2, the most wiggly model, we can achieve the objective of
improvement. For the L1 values we get similar results, see Figure 16. In conclusion we can say,
that the additional effort of mixing different methods seems not to be justifiable.
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6 Conclusions

The problem of bandwidth choice is basically as old as nonparametric estimation is. While in the
meantime kernel smoothing and regression as been becoming a standard tool for explorative empir-
ical research, and can be found in any statistical and econometric software package, the bandwidth
selection can still be considered as an unsolved problem - at least for practitioners. Quite recently,
Heidenreich, Schindler and Sperlich (2010) revised and compared more than thirty bandwidth se-
lection methods for kernel density estimation. Although they could not really identify one method
that performs uniformly better than all alternatives, their findings give clear guidelines at least
for a certain class of densities like we typically expect and find them in social and econometric
sciences.

This article is trying to offer a similar revision, comparison and guidelines for kernel regression.
Though it is true that especially for large and huge data sets, today spline regression, and in
particular P-spline estimation is much more common than is the use of kernel regression, the
latter is still a preferred tool for many econometric methods. Moreover, it has been experienced a
kind of revival in the fairway of treatment and propensity score estimation, smoothed likelihood
methods and small area statistics (in the latter as a competitor to spline methods for reasons of
interpretation).

To the best of our knowledge we are the first providing such a comprehensive review and compar-
ison study for bandwidth selection methods in the kernel regression context. We have discussed,
implemented and compared almost twenty selectors, completed by again almost 20 linear com-
binations of two seemingly negatively correlated (with respect to signs of the bandwidth bias)
selectors of which the six best have been shown here. For different reasons discussed in the intro-
duction we concentrated our study on local linear kernel estimation.

We started with a review of the idea and definition of the methods, its asymptotics, implementa-
tion and computational issues. Probably the most interesting results are summarized in the last
section, i.e. Section 5. We could see which methods behave quite similar and found a certain
ranking of methods although – like in Heidenreich, Schindler and Sperlich (2010) – no bandwidth
selector performed uniformly best. Different to their study on density estimation, for regression
the mixtures of methods could not really improve compared to the single use of a selector, except
the so-called do-validation. This even turned out to be maybe even the best performing method
though it is not alway easy to implement nor computationally very fast.

For the rather small data sets considered, also the classical cross validation still performs well
but should be replaced by generalized cross validation for increasing sample size. Note that for
our context and estimator, CV and GCV behaved almost equivalently for the considered sample
sizes. Nonetheless, already here and although we had rather wiggly as well as rather smooth
functions under consideration, OSCV and especially DoV outperformed the classical CV. So it
did for almost all models and sample sizes also compared to the other methods, at least when
looking at the distribution of ASE, see Subsection 5.4. In our opinion, for the practitioner this is
the most important measure. It should be mentioned that in the reduced set of selectors, the method
proposed by Rice (1984) did also a pretty fair job for the models and sample sizes considered in
this article.
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