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Abstract

In this paper we construct simultaneous confidence bands for a smooth curve using

penalized spline estimators. We consider three types of estimation methods: (i) as

a standard (fixed effect) nonparametric model, (ii) using the mixed model frame-

work with the spline coefficients as random effects and (iii) a Bayesian approach.

The volume-of-tube formula is applied for the first two methods and compared

from a frequentist perspective to Bayesian simultaneous confidence bands. It is

shown that the mixed model formulation of penalized splines can help to obtain, at

least approximately, confidence bands with either Bayesian or frequentist proper-

ties. Simulations and data analysis support the methods proposed. The R package

ConfBands accompanies the paper.
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Mixed model; Penalization.
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1 Introduction

Penalized spline smoothing has received much attention over the last decade. Eilers and

Marx (1996) coined the term “P-spline” estimator for a version of the O’Sullivan (1986)

estimator with a simplified penalty matrix. The idea is to estimate the function of interest

by a linear combination of some spline functions. Thereby a generous basis dimension is

taken and penalization with an integrated squared derivative of the spline function helps

to avoid overfitting. A small parameter dimension, a flexible choice of basis and penalties,

and direct links to mixed and Bayesian models made this smoothing technique popular,

see Ruppert et al. (2003) for examples and applications.

The theoretical properties of penalized splines remained less explored. Some first result

can be found in Hall and Opsomer (2005), Li and Ruppert (2008) and Kauermann et al.

(2009). Recently Claeskens et al. (2009) showed that depending on the number of knots,

the asymptotic scenario of the penalized spline estimator is similar to that of either re-

gression spline or smoothing spline estimators. Thereby the optimal asymptotic orders

for the number of spline functions and for the smoothing parameter, as well as pointwise

expressions for the bias and variance were obtained. These new results can now be applied

for inference, in particular for the construction of simultaneous confidence bands.

In general, simultaneous confidence bands are constructed by studying the asymptotic

distribution of the maximal deviation supa≤x≤b |f̂(x) − f(x)|. The approach by Bickel

and Rosenblatt (1973) relates this to a study of the distribution of supa≤x≤b |Z(x)|, with

Z(x) a (standardized) Gaussian process satisfying certain conditions, which they show

to have an asymptotic extreme value distribution. This approach for the construction of

confidence bands has been used in the context of nonparametric estimation by, amongst

others, Härdle (1989) for M-estimators and Claeskens and Van Keilegom (2003) for local

polynomial likelihood estimators. Hall (1991) studied the convergence of normal extremes
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and found them to be slow, with the consequence that all those confidence bands do not

perform satisfactorily for small samples, and bootstrap methods are often applied (see for

example, Neumann and Polzehl, 1998; Claeskens and Van Keilegom, 2003).

Knafl et al. (1985) and Hall and Titterington (1988) developed confidence bands based

on large-sample upper bounds for the size of supa≤x≤b |f̂(x) − f(x)|. The main challenge

of this approach is to take into account the bias of a nonparametric estimator. Also the

choice of the smoothing parameter is a delicate matter. Eubank and Speckman (1993)

applied a similar technique to obtain confidence bands for a periodic twice differentiable

function, using a kernel estimator. Thereby the smoothing parameter was chosen data-

driven and the bias was approximated using the estimator of the second derivative of the

underlying mean function. Xia (1998) extended the approach of Eubank and Speckman

(1993) using local polynomial estimators.

Another attractive approach is to construct confidence bands based on the volume of

tube formula. Sun (1993) studied the tail probabilities of suprema of Gaussian ran-

dom processes, which can be used for the construction of simultaneous confidence bands.

It turns out that the leading coefficient in the approximation of the tail probability

P (supa≤x≤b |Z(x)| > c) for c → ∞ is connected through Weyl’s (1939) formula for the

volume of a tube of a manifold (also referred to as a Hotelling (1939) formula) to the

volume of the manifold embedded in a unit sphere. The main attraction of this method is

its straightforward extendability to more general and high dimensional settings. However,

the problem of the smoothing parameter choice and handling the bias still remains an

important issue. Sun and Loader (1994) suggested a bias correction for a particular class

of functions, but left the smoothing parameter choice open. Zhou et al. (1998, Theorem

4.2) used the volume-of-tube formula for estimation by regression splines (without using

a penalty), but did not account for the bias, which lead to undercoverage. We will use

this method for the construction of confidence bands for estimation by penalized spline
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estimators in the fixed and mixed model framework.

Bayesian confidence bands are constructed from a different perspective on the inferential

problem with as basis the posterior distribution. Though highest posterior density cred-

ible bands would be optimal from a theoretical perspective, they are generally hard to

obtain, in particular when the estimation is based on Markov chain Monte Carlo (MCMC)

simulation techniques (as will be the case in this paper and is common practice in complex

statistical models). In this case, the posterior density is not available and, as a conse-

quence, confidence intervals are typically constructed based on sample quantiles obtained

from the Monte Carlo output. The difficulty in constructing simultaneous confidence

bands then lies in combining the sample quantiles such that a simultaneous coverage for

a vector parameter is achieved. Besag et al. (1995) propose to combine appropriate order

statistics of the univariate samples. Crainiceanu et al. (2007) consider simultaneous con-

fidence bands when posterior normality for the parameter vector can be assumed. Held

(2004) constructs simultaneous posterior probability statements about vector parameters

based on a Rao-Blackwellized estimate of the posterior density. In principle the posterior

probabilities could be inverted to obtain a highest posterior density credible band but

the computational burden is high since additional simulations are required to obtain the

posterior density estimate.

In this work we demonstrate advantages of the mixed model formulation, which com-

bines both frequentist and Bayesian approaches. We develop a new approach for the

mixed model based confidence bands, as well as a new Bayesian simultaneous confidence

band. The confidence bands obtained in the mixed model framework are identical to the

Bayesian ones, up to an unaccounted variability due to variance estimation. Since the

Bayesian confidence bands tend to be conservative in the nonparametric setting (see Cox,

1993), we show how the confidence bands can be interpreted using the mixed model rep-

resentation of penalized splines. Thereby no explicit bias estimation is necessary and the
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smoothing parameter is estimated in the usual way from the corresponding (restricted)

likelihood.

We first introduce the curve estimators in Section 2, then, in Sections 3 and 4 we construct

confidence bands for each setting, where we obtain a new result for the mixed models as

well as for the Bayesian method. A comparison and discussion follows in Section 5, while

simulation results and a data example are contained in Sections 6 and 7.

2 Penalized splines in three frameworks

We wish to construct a simultaneous confidence band for an unknown smooth function

f(·) ∈ Cq([a, b]), which is a q times continuously differentiable function. We have obser-

vations (Yi, xi), with xi ∈ [a, b], i = 1, . . . , n, from the model

Yi = f(xi) + εi. (1)

The residuals εi are assumed to be independent and identically distributed as N(0, σ2
ǫ ).

We first introduce some notation and explain the three frameworks for penalized splines.

2.1 Penalized spline estimator

We denote by S(p + 1; τ) the set of spline functions of degree p with knots τ = {a = τ0 <

τ1 < . . . < τK < τK+1 = b}. This set consists of all functions that are a polynomial of

degree p on each interval [τj , τj+1], and are p − 1 times continuously differentiable. The

set S(1, τ) consists of piecewise constant functions with jumps at the knots.

A penalized spline estimator of degree p based on the set of knots τ is the minimizer over

S(p + 1; τ) of the penalized least squares function

n∑

i=1

{Yi − s(xi)}2 + λ

∫ b

a

{
s(q)(x)

}2
dx, (2)
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with q ≤ p. The spline functions form a set of dimension K + p+1. Denote by P (x, τ) =

{P1(x, τ ), . . . , PK+p+1(x, τ )}t a basis for S(p+1, τ). One example is the set of polynomial

and piecewise polynomial functions (1, x, . . . , xp, (x−τ1)
p
+, . . . , (x−τK)p

+), another example

is a basis of B-spline functions of degree p. With this notation, the spline function can

be written as s(x) = P (x, τ )θ, with an unknown parameter θ of length K + p + 1, that

is estimated by minimizing (2) over θ.

The penalty in (2) is the integrated squared qth derivative of the spline function, which

is assumed to be finite. Let D be the matrix such that
∫ b

a

[
{P (x, τ )θ}(q)

]2
dx = θtDθ.

Define the spline basis matrix P = {P (x1, τ)t, . . . , P (xn, τ)t}t, and the response vector

Y = (Y1, . . . , Yn)
t, then, for a given λ, the penalized spline estimator can be written as

f̃ = P θ̃ = P (P tP + λD)−1P tY , (3)

where the estimator f̃ = {f̃(x1), . . . , f̃(xn)}t.

The penalty constant λ plays the role of a smoothing parameter. It can be estimated with

any data-driven method that asymptotically minimizes the average mean squared error,

like (generalized) cross validation or the Akaike information criterion AIC. We then get

the penalized spline estimator that we denote by f̂ = P (P tP + λ̂D)−1P tY .

2.2 Penalized spline estimators as predictors in mixed models

A penalized spline estimator is equivalent to a best linear unbiased predictor (BLUP) in

the corresponding mixed model (Brumback et al., 1999). To show this, we first decompose

Pθ = P (F ββ + F uu) = Xβ + Zu, (4)

such that (F β, F u) is of full rank, providing uniqueness of transformation, and F t
βF u =

F t
uF β = F βDF β = 0, F t

uDF u = IK+p+1−q, ensuring that only coefficients u are pe-
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nalized. There are several approaches to obtain such a decomposition, for more details

consult e.g. Fahrmeir et al. (2004) or Durban and Currie (2003). If we assume that

Y ∼ N(0, σ2
ǫ In) and u ∼ N(0, σ2

uIK̃), K̃ = K + p + 1 − q this leads to the standard

linear mixed model with the BLUP

f̃m = P mθ̃m = P m

(
P t

mP m +
σ2

ǫ

σ2
u

Dm

)−1

P t
mY , (5)

where P m = [X, Z], θm = [β, u], Dm = diag{0p+1, 1K̃}.

If we replace further σ2
ǫ and σ2

u with the corresponding estimators in the mixed model,

this results in the estimated best linear unbiased predictor (EBLUP)

f̂m = P mθ̂m = P m

(
P t

mP m +
σ̂2

ǫ

σ̂2
u

Dm

)−1

P t
mY . (6)

Due to the construction of P m there always exists a square invertible matrix L such that

P = P mL and D = (L−1)tDmL−1. We therefore do not further distinguish between

the different forms for the model and penalty matrices. However, the notation with a

subscript ‘m’ as in f̂m and θ̂m will stress that that the estimators are obtained in the

mixed model framework. The smoothing parameter in this mixed model formulation

is the ratio of two variance components λ = σ2
ǫ /σ

2
u, which can be estimated from the

corresponding (restricted) likelihood.

2.3 Bayesian penalized splines

In a Bayesian framework, the penalties of the penalized splines relate to specific prior

distributions for the spline coefficients. For example, if a quadratic penalty of the form

1/(2σ2
θ)θ

tDθ is considered, this yields the special case of a Gaussian prior

π(θ) ∝ exp

(
− 1

2σ2
θ

θtDθ

)
,
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where the scaled penalty D/σ2
θ equals the precision matrix of the prior. Assuming nor-

mality for the responses Yi, the posterior π(θ|Y ) for the spline coefficients under this

prior is given by

π(θ|Y ) ∝ π(Y |θ)π(θ) ∝
n∏

i=1

exp

[
− 1

2σ2
ǫ

{Yi − P (xi, τ)θ}2

]
exp

(
− 1

2σ2
θ

θtDθ

)
, (7)

where π(Y |θ) corresponds to the likelihood of the observation model (1). By taking

logarithms and multiplying with −2σ2
ǫ , maximizing the posterior distribution in (7) is

equivalent to maximizing

n∑

i=1

{Yi − P (xi, τ )θ}2 +
σ2

ǫ

σ2
θ

θtDθ

and the corresponding maximizer is given by the penalized spline estimator (3). The

penalized likelihood estimator and the posterior mode coincide for a fixed variance and

smoothing parameter. Also similar to the mixed model interpretation of penalized splines

is that the smoothing parameter corresponds to the ratio of the error variance and the prior

variance. The mixed model representation is a simple reparametrization of the Bayesian

formulation of penalized splines that avoids the partial impropriety in the Gaussian prior

if D is rank-deficient. Fahrmeir et al. (2004) employ this connection to derive empirical

Bayes estimators based on mixed model methodology yielding posterior mode estimators.

In a fully Bayesian formulation, additional hyperpriors are assigned to the error variance

σ2
ǫ and the prior variance σ2

θ . The simplest and conjugate choices are inverse gamma

distributions and a standard choice is

σ2
ǫ ∼ IG(0.001, 0.001), σ2

θ ∼ IG(0.001, 0.001).

Inferences in the fully Bayesian approach are then typically based on Markov chain Monte

Carlo (MCMC) simulation techniques, see Brezger and Lang (2006) for details.

8



3 Simultaneous Bayesian Credible Bands

In this section we focus on Bayesian credible bands derived from MCMC simulation out-

put. In all approaches we assume that we are interested in computing simultaneous

credible bands for a collection of function evaluations f̂ = P θ̂ = {f̂(x1), . . . , f̂(xn)}t

based on simulation realizations f (j)(x1), . . . , f
(j)(xn), j = 1, . . . , J .

Note that the principle question in constructing a Bayesian confidence band is conceptu-

ally different from frequentist confidence bands. The construction is based on the posterior

distribution and one seeks a confidence region Cb such that

Pf|Y (f ∈ Cb) =

∫

Cb

πf |Y (f )df = 1 − α,

i.e. the coverage is defined in terms of the posterior distribution of f = {f(x1), . . . , f(xn)}t

given the observed data Y .

An obvious way to construct a simultaneous credible region for f̂ is outlined in Crainiceanu

et al. (2007). Suppose that f̂ is the posterior mean estimator and that the posterior

standard deviation for each point contained in f̂ has been computed. By assuming ap-

proximate posterior normality and deriving the (1 − α) sample quantile z1−α of

max
i=1,...,n

∣∣∣∣∣∣
f (j)(xi) − f̂(xi)√

v̂ar{f̂(xi)}

∣∣∣∣∣∣
, j = 1, . . . , J, (8)

a simultaneous credible region is given by the hyperrectangular

[
f̂(xi) − z1−α

√
v̂ar{f̂(xi)}, f̂(xi) + z1−α

√
v̂ar{f̂(xi)}

]
, i = 1, . . . , n.

These confidence bands implicitly rely on the approximate normality. In particular, the

standard deviation is used as a measure of uncertainty (assuming symmetry of the poste-

rior distribution) and the posterior mean is considered as a center point. Hence, the full
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posterior distribution information contained in the sample is not utilized.

Alternatively, we propose a new simultaneous credible band that avoids the assumption

of posterior normality but is still based on pointwise measures of uncertainty. To be more

specific, we base our considerations on the pointwise credible intervals derived from the

α/2 and 1− α/2 quantiles of the samples f (j)(x1), . . . , f
(j)(xn), j = 1, . . . , J . In a second

step, these pointwise credible intervals are scaled with a constant factor until (1−α)100%

of all sampled curves are contained in the credible band. The rationale is the follow-

ing. The pointwise credible intervals provide us with a measure of where information

on the estimated curve is sparse corresponding to wider intervals or dense corresponding

to narrower intervals. In the approach by Crainiceanu et al. (2007) this information is

obtained from posterior standard deviations. This, however, has the drawback that over-

and underestimation of the penalized spline are treated in a symmetric fashion whereas

the quantile-based approach allows for different uncertainty for over- and underestimation

of the curve. This may be of particular relevance in local minima and maxima, where

uncertainty may be attributed more strongly to one of the directions. While such differ-

ences may be generally small in Gaussian smoothing situations, they will typically become

more relevant in non-Gaussian observation models. A further advantage over the credible

band by Crainiceanu et al. (2007) is that our proposal does not depend on a specific point

estimator, since our credible band makes full use of the posterior sample information,

considering a 1 − α sample of the curves to determine the required scaling factor.

Both approaches define hyperrectangulars as credible bands. Note that Bayesian credible

bands are based on simulation output and will therefore become increasingly unstable

when the level α is reduced. In particular, larger samples are required as compared to

usual MCMC simulations where the focus is mostly on point estimators in combination

with pointwise credible intervals.
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4 Simultaneous confidence bands with the volume of

tube formula

4.1 The use of the volume of tube formula

The construction of simultaneous confidence bands using Weyl’s (1939) volume of tube

formula has been considered, among others, by Naiman (1986), Johansen and Johnstone

(1990) and Sun and Loader (1994). While rigorous proofs are given by Sun (1993), we

here sketch the basic ideas for completeness since these results will be used in Section 4.3.

Let us consider the regression model (1) and some unbiased estimator f̃(x) = l(x)tY with

var{f̃(x)} = σ2
ǫ‖l(x)‖2. Since f̃(x) is unbiased, Z(x) = {f̃(x) − f(x)}σ−1

ǫ ‖l(x)‖−1 is a

zero mean Gaussian random field with var{Z(x)} = 1 and

cov{Z(x1), Z(x2)} =

(
l(x1)

‖l(x1)‖

)t(
l(x2)

‖l(x2)‖

)
=

n∑

i=1

vi(x1)vi(x2), (9)

where
∑n

i=1 v2
i (x) = 1. The set Vn = {v(x) : x ∈ [a, b], v(x) = (v1(x), . . . , vn(x))}

is a one-dimensional manifold embedded in Sn−1, which is a unit sphere in R
n. Let

κ0 =
∫ b

a
‖ d

dx
v(x)‖dx be the length of Vn and define the vector ǫ = Y − f . Then, Sun and

Loader (1994) obtained that

α = P

(
max
x∈[a,b]

|l(x)tǫ|
σǫ‖l(x)‖ ≥ c

)
=

κ0

π
exp(−c2/2) + 2{1 − Φ(c)} + o{exp(−c2/2)}. (10)

If σǫ is unknown and is estimated with some σ̂ǫ such that νσ̂ǫ
2/σ2

ǫ ∼ χ2
ν , then

α ≈ κ0

π

(
1 +

c2

ν

)−ν/2

+ P (|tν | > c), (11)

with tν a t-distributed random variable with ν degrees of freedom. A value for c is obtained

from (11) and the simultaneous 100(1−α)% confidence band for f(x) for x in the interval
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[a, b] is constructed as

[f̃(x) − cσ̂ε‖l(x)‖, f̃(x) + cσ̂ε‖l(x)‖]. (12)

4.2 Simultaneous confidence bands for penalized spline estima-

tors

Consider now the penalized spline estimator with l(x) = P (P tP + λD)−1P t(x, τ). In

contrast to the setting of the previous section, l(x), as well as any other nonparamet-

ric estimator, is biased. A penalized spline estimator has two contributions to the bias.

The approximation bias is due to the spline representation of the true function, while the

shrinkage bias enters via the penalization. Subsequently we assume that sufficiently many

knots are taken, so that we can replace f(x) with P (x, τ )θ directly, with both the approxi-

mation bias and the standardized approximation bias, {f(x)−P (x, τ )θ}[var{f̃(x)}]−1/2 =

O(n−q(ν−1)/(2q+1)), being negligible. This is justified by Theorem 1 of Claeskens et al.

(2009) who showed that depending on some assumptions on the number of knots K, the

sample size n and the penalty λ the theoretical properties of the penalized spline esti-

mators are either similar to those of regression splines or to those of smoothing splines

with a clear breakpoint between the two cases. Our assumed situation is similar to that

obtained by fitting smoothing splines where this assumption is justified.

Thus, for the construction of confidence bands one rather deals with

PY

(
max
x∈[a,b]

|l(x)tǫ + m(x)|
σǫ‖l(x)‖ ≥ cb

)
= α,

with ǫ = Y −Pθ, the shrinkage bias m(x) = l(x)tPθ−P (x, τ )θ and a critical value cb that

accounts for the bias. The critical value cb is typically difficult to find due to the unknown

bias. Ignoring the shrinkage bias (which can get bigger in the boundaries as K grows)

leads to serious undercoverage, as is demonstrated in the simulation study presented in
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Section 6. Sun and Loader (1994) found that a plug-in correction with m(x) replaced by

an estimator and c obtained from (10), fails badly, being in some cases even worse than no

correction. They also suggested a bias correction procedure for a class of functions with

Lipschitz continuous m(x)/‖l(x)‖, based on the estimator of maxx∈[a,b] |m(x)|/‖l(x)‖. In

their simulation study with local polynomial regression estimates, the resulting coverage

of the confidence bands appeared to be conservative and highly dependent on the choice of

the smoothing parameter. Sun and Loader (1994) did not suggest a strategy for the best

smoothing parameter choice in their setting. Clearly, choosing a smoothing parameter

smaller than the optimal one in the mean squared error sense reduces the bias. However,

no general guideline is available how small the smoothing parameter should be chosen.

Note also that so far we assumed the smoothing parameter (λ or σ2
ǫ /σ

2
u) to be known.

Replacing smoothing parameter by its estimator introduces an extra source of variability,

which one has to account for.

In general, in this framework for penalized splines one faces the same problems as for any

other nonparametric estimator – need for the bias correction and appropriate smoothing

parameter choice. In the next section we consider simultaneous confidence bands which

result from the mixed model representation of penalized splines and propose a simple bias

correction for the standard nonparametric setting considered in this section.

4.3 Simultaneous confidence bands for the mixed model repre-

sentation of penalized splines

4.3.1 Confidence bands with Bayesian properties

Let us now consider the mixed model representation of penalized splines, i.e. we approxi-

mate f(x) by P (x, τ)θ = X(x)β+Z(x)u, with u ∼ N(0, σ2
uIK̃) as in (4). Here P (x, τ )θ

is random due to randomness of u. Note that Sun et al. (1999) worked with a similar
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mixed model, but they focused on the marginal mean of Y , which in our terminology

would correspond to approximating f(x) by X(x)β only. From the standard results on

mixed models it is known that

Z(x) ≡ P (x, τ )(θ̃m − θ)√
var{P (x, τ )(θ̃m − θ)}

=
P (x, τ)(θ̃m − θ)√

σ2
ǫ P (x, τ )(P tP + σ2

ǫ /σ
2
uD)P (x, τ)t

∼ N(0, 1).

Since cov(θ̃m − θ) = σ2
ǫ (P

tP + σ2
ǫ /σ

2
uD)−1, we find that Z(x) is a nonsingular Gaussian

zero mean random field with var{Z(x)} = 1 and

cov{Z(x1), Z(x2)} =

(
lm(x1)

‖lm(x1)‖

)t(
lm(x2)

‖lm(x2)‖

)
≡

K̃∑

i=1

vm,i(x1)vm,i(x2),

where lm(x) = (P tP + σ2
ǫ /σ

2
uD)−1/2P (x, τ)t is the K̃ × 1 vector and V K̃,m = {vm(x) :

x ∈ [a, b], vm(x) = (vm,1(x), . . . , vm,K̃(x))} is a one dimensional manifold embedded in

SK̃−1. We replace κ0 in (10) with the length of the mixed model manifold, κm,0 =
∫ b

a
‖ d

dx
vm(x)‖dx, to obtain that

α = PY ,u

(
max
x∈[a,b]

|lm(x)tǫm|
σǫ‖lm(x)‖ ≥ cm

)
= PY ,u

(
max
x∈[a,b]

|l(x)tY − P (x, τ)tθ|
σǫ‖lm(x)‖ ≥ cm

)

=
κm,0

π
exp(−c2

m/2) + 2{1 − Φ(cm)} + o{exp(−c2
m/2)}, (13)

with ǫm = (P tP + σ2
ǫ /σ

2
uD)1/2(θ̃m − θ) ∼ N(0, σ2

ǫ IK̃). An unknown σǫ can be replaced

by any consistent estimator leading to an expression similar to (11).

Hence, our proposed confidence band, obtained in the mixed model framework is

[f̃m(x) − cmσ̂ǫ‖lm(x)‖, f̃m(x) + cmσ̂ǫ‖lm(x)‖]. (14)

In practice, the smoothing parameter σ2
ǫ /σ

2
u has to be replaced with its estimator. The

following lemma shows that the variability due to smoothing parameter estimation can

be ignored in the mixed model framework for n sufficiently large. Our simulation study

14



in Section 6 confirms this.

Lemma 1 Under assumptions (A1)–(A3) listed in the appendix it holds

l̂(x)tY − P (x, τ )tθ

‖l̂m(x)‖
=

lm(x)tǫm

‖lm(x)‖ + Op

(
n− 1

4q+2

)
, (15)

l̂(x)tY − P (x, τ )tθ

‖l̂(x)‖
=

l(x)tY − P (x, τ )tθ

‖l(x)‖ + Op

(
n− 1

4q+2

)
, (16)

with l̂m(x) = lm(x; σ̂2
ǫ /σ̂

2
u) and l̂(x) = l(x; σ̂2

ǫ /σ̂
2
u).

The proof is given in the appendix.

Using the same mixed model framework for penalized splines, Ruppert et al. (2003)

suggested a Monte Carlo procedure for estimation of cm. Namely, a sufficiently large

number (N = 10, 000, say) of realizations of the random variable (θ̂m − θ)
approx.∼

N(0, σ̂2
ǫ (P

tP + σ̂2
ǫ /σ̂

2
uD)−1) are generated and the corresponding values of

C = max
j=1,...,M



 P (zj , τ)(θ̂m − θ)√
v̂ar{P (zj , τ)(θ̂m − θ)}





are calculated for a specified grid of x values z1, . . . , zM . Their critical value ĉm is the

empirical (1 − α) quantile of the hence obtained values C1, . . . , CN . A simultaneous

confidence band is given by the hyperrectangular

[
P (zj, τ )θ̂m − ĉm

√
v̂ar{P (zj , τ)(θ̂m − θ)}, P (zj , τ)θ̂m + ĉm

√
v̂ar{P (zj , τ)(θ̂m − θ)}

]
,(17)

for j = 1, . . . , M . Note that this approach also does not take into account the variability

due to variance parameter estimation. Hence, one can expect (14) and (17) to be approx-

imately equal. Obviously, (8) is in fact the Bayesian version of (17), where the variability

due to parameter estimation is taken into account. However, since in our simulation study

in Section 6 we found no significant differences between the results obtained immediately

from the tube formula and from (8), we believe that the tube formula offers an attractive
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alternative to the computationally intensive simulation based techniques.

4.3.2 Confidence bands conditional on spline coefficients

Let now treat u in (4) as fixed and consider the probability

α = PY |u


max

x∈[a,b]

∣∣∣P (x, τ )(θ̃m − θ)
∣∣∣

σǫ‖l(x)‖ ≥ cb


 = PY |u

(
max
x∈[a,b]

|l(x)tǫ + m(x, u)|
σǫ‖l(x)‖ ≥ cb

)
, (18)

where l(x) = l(x, σ2
ǫ /σ

2
u). Up to a smoothing parameter this is exactly the probability

discussed in Section 4.2. As already mentioned in Section 4.2, a plug-in correction of the

form

[
f̃(x) −

(
c + max

x∈[a,b]

m(x, u)

σǫ‖l(x)‖

)
σǫ‖l(x)‖, f̃(x) +

(
c − max

x∈[a,b]

m(x, u)

σǫ‖l(x)‖

)
σǫ‖l(x)‖

]
, (19)

with the bias replaced by its estimate and c obtained from (10), performs poor. Instead,

we suggest to ignore the bias in (18) and use in place of cb the critical value cm obtained

from (13). The following theorem justifies this.

Theorem 1 For the critical values cm and c, obtained from (10) and (13) respectively, it

holds

c2
m = c2 + 2

κm,0 − κ0

κ0

+ o[{κm,0 − κ0 + exp(−c2/2)}κ−1
0 ].

Additionally, if

(A4) κm,0κ0
−1 = maxx∈[a,b] ‖lm(x)‖2‖l(x)‖−2 + o(κm,0κ

−1
0 )

is fulfilled and the mixed model (4) with u ∼ N(0, σ2
uIK̃) holds, then

c2
m = c2 + max

x∈[a,b]

2 varu{m(x, u)}
σ2

ǫ‖l(x)‖2
+ o[{κm,0 − κ0 + exp(−c2/2)}κ−1

0 ]. (20)

The proof of the theorem can be found in the appendix. Comparing (19) and (20) we

conclude that the critical value cm ≤ c + maxx∈[a,b]

√
2
√

varu{m(x, u)}σ−1
ǫ ‖l(x)‖−1 auto-

matically accounts for the bias. Thereby |m(x, u)| is replaced by its approximately one
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and a half standard deviation. Assumption (A4) is easy to check in practice and it is in

fact fulfilled in most cases. Thus, one can build a confidence band for x in [a, b]

[f̃m(x) − cmσ̂ǫ‖l(x, σ2
ǫ /σ

2
u)‖, f̃m(x) + cmσ̂ǫ‖l(x, σ2

ǫ /σ
2
u)‖], (21)

which will have approximately coverage probability 1−α, under the condition that enough

knots are taken so that the approximation bias is negligible. Lemma 1 justifies replacement

of the smoothing parameter by its estimate. In fact, the confidence band (21) is similar

in spirit to the bias correction suggested by Sun and Loader (1994), but we avoid explicit

estimation of maxx∈[a,b] |m(x, u)|/‖l(x)‖, replacing it by the appropriately scaled standard

deviation of the bias.

5 Confidence bands in three frameworks

The confidence bands discussed in Sections 3 and 4 are obtained in different frameworks.

They rely on different assumptions about the function f(·), the corresponding estima-

tors use different smoothing parameter estimates and the interpretation of the confidence

bands is also different. In the standard nonparametric model with f(·) a fixed sufficiently

smooth function, the frequentist confidence bands are calculated with respect to the dis-

tribution of the data, given the function f(·). In other words, if one samples the data

with the same mean function f(·) many times, then one can expect that in 100(1 − α)%

cases the true f(·) will be inside the bands. In the Bayesian framework f(·) is considered

to be a sample path of a stochastic process and one is looking for the posterior probability

that the true f(·) is within the band, given the data. In the finite dimensional parametric

setting both intervals – frequentist and Bayesian – are asymptotically equivalent. The

well-known Bernstein-von Mises Theorem states that the posterior distribution of the fi-

nite dimensional parameter vector around its posterior mean is close to the distribution of
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the maximum likelihood estimate around the truth and herewith Bayesian confidence sets

have good frequentist coverage properties. Unfortunately, this is not true in the nonpara-

metric regression context. In particular, Cox (1993) has shown that the Bayesian coverage

probability for Bayesian smoothing splines with Gaussian priors tends to be larger than

(1 − α)100%. More results are available e.g. in Freedman (1999). So we expect to find

our Bayesian credible bands to be conservative. Note that the Wahba (1983)’s Bayesian

confidence intervals are pointwise and their coverage is close to nominal “on average”, i.e.

over all design points. See Nychka (1988) for more details.

The mixed model based bands are something intermediate. On the one hand, one can

consider them as an empirical version of the Bayesian confidence bands (with σǫ, σu and

β treated as fixed) having the same interpretation. On the other hand, one can view

the mixed model based band as a confidence band averaged over u. Thus, as shown in

previous section, the mixed model formulation of penalized splines can help to obtain

confidence bands which have asymptotically either Bayesian or frequentist properties.

Namely, the confidence band (14) is approximately equivalent to the Bayesian one (up to

an unaccounted variability due to the smoothing parameter estimation) and the band as

defined in (21) has frequentist properties. Our simulation results presented in Section 6

confirmed this.

The following theorem gives the asymptotic width of the intervals considered in our paper.

Theorem 2 Under assumptions (A1)–(A3) the width of the confidence bands (12), (14)

and (21) based on the volume of tube formula for a penalized spline estimator has the

asymptotic order Op(
√

log Kn−q/(2q+1)) = Op(
√

log nν/(2q+1)n−q/(2q+1)), ν > 1.

The proof is provided in the appendix. This theorem holds also if the smoothing parame-

ter is replaced by its estimator σ̂2
ǫ /σ̂

2
u, as follows immediately from Lemma 1. This result

suggests that the width of the interval is getting smaller with growing n and getting larger

with K.
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Up to a constant
√

ν/(2q + 1) this asymptotic order coincides with the one, obtained

by Eubank and Speckman (1993) for a twice differentiable function (q = 2), namely

Op(
√

log nn−2/5), which is slightly slower, than the optimal rate of (log n/n)q/(2q+1) ob-

tained by Hall and Titterington (1988). Eubank and Speckman (1993) stressed that Hall

and Titterington (1988) “chose a smoothing parameter designed to minimize the length

of their intervals, rather than MSE” and conjectured that their rate of
√

log nn−2/5 is the

best attainable with the smoothing parameter which minimizes the mean squared error.

If a larger smoothing parameter is taken, then the band will be narrower, but at the cost

of an increased bias. For penalized splines one can get narrow intervals not only by taking

a larger smoothing parameter but also by choosing a smaller K. However, K should not

be taken too small to avoid a growing approximation bias. More discussion on a practical

choice of K is contained in Section 6.

6 Simulations

To assess the performance of the discussed approaches we ran a simulation study. We

considered two functions. The first

f1(x) =
6

10
β30,17(x) +

4

10
β3,11(x),

with βl,m(x) = Γ(l + m){Γ(l)Γ(m)}−1xl−1(1 − x)m−1 was used in Wahba (1983) and

f2(x) = sin2{2π(x − 0.5)}

has been considered in Eubank and Speckman (1993) and Xia (1998). These functions are

shown in Figure 1. The x values are taken to be uniformly distributed over [0, 1]. Three

samples sizes were considered: a small one with n = 50, a moderate one with n = 250 and

a large one with n = 500. The errors are taken to be independent N(0, σ2
ǫ ) distributed
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with σǫ = 0.3. There are also simulation results available for σǫ = 0.1, but since there

were no significance differences found we do not report them here. We estimated the

curves with a different number of equidistant knots K = 15, 40, 100 and K = 200, de-

pending on the sample size. Thereby we used a B-spline basis of degree 3 and as penalty

the integrated squared second derivative of the spline function. The results for the 95%

confidence bands that are reported in Table 1 are based on a Monte Carlo sample of size

1000.

The rows labeled F represent the coverage probabilities and corresponding areas for

(a) (b)
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Figure 1: Functions used in the simulations: (a) f1(x), (b) f2(x).

the confidence bands built under the fixed effects nonparametric model without any bias

correction, as described in Section 4.2. Since the volume of tube formula assumes the

errors to be normally distributed but does not require n → ∞, we do not discover any

improvements in coverage with growing n, this holds for both functions. As expected

from the results of Theorem 2, the width (and thus the area) of the bands is getting

smaller as n increases and grows with K and we observe a slight improvement in the cov-

erage probability as K increases. This suggests to use more knots in practice to improve

the coverage. Overall we find that the confidence bands in the standard nonparametric

framework which ignore the bias have on average a 5 − −10% smaller coverage for all

combinations of n and K.
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The rows labeled C show the coverage probability of the mixed model based bands,

n = 50 n = 250 n = 500
K = 15 40 K = 15 40 100 K = 15 40 100 200

f1, F 0.882 0.904 0.876 0.905 0.890 0.888 0.869 0.885 0.899
(0.890) (0.928) (0.424) (0.443) (0.447) (0.315) (0.330) (0.329) (0.334)

C 0.932 0.941 0.937 0.951 0.958 0.931 0.954 0.962 0.955
(0.901) (0.937) (0.453) (0.494) (0.503) (0.335) (0.379) (0.386) (0.389)

M 0.959 0.970 0.947 0.988 0.991 0.944 0.986 0.993 0.994
(0.949) (1.007) (0.476) (0.559) (0.574) (0.345) (0.426) (0.441) (0.444)

N 0.951 0.958 0.949 0.984 0.990 0.944 0.982 0.989 0.995
(0.957) (1.008) (0.470) (0.559) (0.575) (0.341) (0.425) (0.442) (0.448)

U 0.951 0.957 0.946 0.979 0.990 0.948 0.984 0.987 0.991
(0.970) (1.021) (0.481) (0.570) (0.586) (0.349) (0.435) (0.452) (0.458)

f2, F 0.900 0.857 0.882 0.874 0.880 0.743 0.782 0.851 0.754
(0.713) (0.704) (0.341) (0.345) (0.347) (0.233) (0.244) (0.253) (0.239)

C 0.920 0.937 0.938 0.940 0.959 0.946 0.962 0.952 0.963
(0.680) (0.694) (0.351) (0.362) (0.365) (0.267) (0.278) (0.282) (0.283)

M 0.969 0.964 0.979 0.994 0.988 0.975 0.987 0.992 0.992
(0.737) (0.756) (0.389) (0.413) (0.419) (0.292) (0.316) (0.321) (0.322)

N 0.964 0.965 0.973 0.985 0.989 0.973 0.990 0.992 0.992
(0.758) (0.779) (0.395) (0.422) (0.427) (0.294) (0.322) (0.327) (0.329)

U 0.962 0.967 0.971 0.983 0.987 0.974 0.987 0.990 0.987
(0.769) (0.788) (0.403) (0.431) (0.436) (0.301) (0.330) (0.335) (0.337)

Table 1: Coverage probabilities and (areas) for f1(x) and f2(x), with nominal level 0.95
using F a fixed effect model, C a mixed model conditional on u, M a mixed effect model
and Bayesian method based on normal posteriors N and univariate credible bands U .

conditional on u, as discussed in Section 4.3.2. They should result in a coverage proba-

bility close to the nominal value, which we indeed observe for a sufficiently large K. As

expected, in the settings with small K the approximation bias is dominating, leading to

undercoverage. Thus, it is recommended to use many knots in this framework. One has

to remember, however, that the width of the interval is growing with K. Overall, we

find that the bias correction, resulting from the mixed model representation of penalized

splines is not only simple but is also efficient.

The rows labeled M represent the coverage probabilities and corresponding areas for the
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confidence bands resulted from the mixed model framework, as discussed in Section 4.3.1.

These bands appear to become more and more conservative as K grows. This agrees

with the finding of Cox (1993). Taking a small number of knots leads to a nearly para-

metric model where the smoothing parameter has little importance, which eliminates the

differences between the mixed model representation of penalized splines and its standard

nonparametric formulation. Thus, in the mixed model framework taking a moderate K

between 10 and 25, depending on the data, will imply less conservative bands from the

frequentist point of view. In general, one can recommend to use these bands for small

samples.

Finally, we consider the Bayesian confidence bands based on posterior normality (8) (de-

noted as N). These bands are conceptually close to the mixed model based bands, which

is also reflected in a similar behaviour. This supports the asymptotic results of Lemma

1, which suggest that the variability due to smoothing parameter can be ignored.

The confidence bands U are typically somewhat wider than the N bands but in general

yield a similar coverage. This behaviour is not too surprising since the U bands are based

on an observed sample of curves while the N approach is build upon the pointwise sam-

pling distributions.

Another method for the construction of Bayesian simultaneous credible bands can be

found in Besag et al. (1995). This approach is based on order statistics of the samples.

However, in our simulation study we found that the resulted credible bands suffer from

undercoverage and we refrain on giving more details here.

Overall, we found that the frequentist confidence bands without any bias correction lead

to undercoverage, while Bayesian confidence bands typically become conservative with

the growing K. The confidence bands based on the conditional mixed model result in

the confidence bands with the coverage which is at most close to the nominal one, given

sufficiently large number of knots. One can recommend to use about 35-50 knots for a
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function of moderate complexity. However, for small sample sizes and number of knots,

it is advisable to use Bayesian (or mixed model based) bands.

7 Example on the effect of age on cardiac preload

A reliable estimate for the cardiac preload is a prerequisite for an adequate treatment

of circulatory dysfunction. In our example, we are analyzing data that are collected

at the Department of Neurosurgery, Klinikum Bogenhausen in Munich, where cardiac

preload is measured using the transpulmonary thermodilution derived global enddiastolic

volume (GEDV). The GEDV represents a hypothetical measurement of the cardiac volume

that assumes all four cardiac chambers to be in diastole simultaneously. Data on 101

patients has been collected one day after a brain tumor surgery, see Wolf et al. (2009)

for a detailed description of the data. One of the aims of the study was to characterize

the dependence of GEDV on age for the population of patients. Instead of providing

uncertainty measurements for the GEDV level at a certain fixed age, the presentation of a

simultaneous confidence band allows to assess uncertainty of the estimation with respect to

the complete population of patients at different ages. Figure 2 presents the data at hand.

There are fewer observations available at both age extremes and we found that different

nonparametric estimates have different behavior at the boundaries, which itself is worth a

more detailed study. To demonstrate the performance of our methods, we estimated the

data with penalized splines using B-splines of degree three based on 40 equidistant knots

and a second order penalty. The mixed model based estimate is shown as a bold line and

solid lines are the bias corrected pointwise confidence bands based on the mixed model

formulation of penalized splines, see Ruppert et al. (2003). The dashed lines represent

a simultaneous confidence band obtained from (14) in the mixed model framework, see

Section 4.3.1. The dotted lines form the 95% confidence band using (21) conditionally on
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Figure 2: Data (points), mean estimate (bold) in the mixed model and a 95% confidence
bands using (14) in the mixed model, and using the conditional approach (21) in the
mixed model (dotted). Solid lines show pointwise mixed model based confidence bands.

u, as discussed in Section 4.3.2. This confidence band is somewhat narrower, especially at

the boundaries. We do not show the two other confidence bands (standard nonparametric

and Bayesian), since the corresponding mean estimates are somewhat different at the

boundaries, making the direct comparison difficult.

8 Discussion

In this paper we considered the construction of simultaneous confidence bands in three

frameworks for penalized splines. We used the volume of tube formula in the standard

nonparametric setting and for the mixed model representation of penalized splines. A

full Bayesian analogue of the mixed model representation of penalized splines, as well as
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a new approach for Bayesian credible bands were considered. We found that the volume

of tube formula for the mixed model formulation of penalized splines delivers results

nearly identical to the full Bayesian framework, but with considerably less computational

costs. While the confidence band with the volume of tube formula can be obtained within

a second, the Bayesian one requires minutes and the effort grows very fast with the

sample size. Our main finding is that the mixed model formulation of penalized splines

helps also to build the simultaneous bands with frequentist coverage, which automatically

accounts for the bias. Thereby no explicit bias estimation is necessary and the smoothing

parameter is estimated from the corresponding (restricted) likelihood. Our approach

appeared to be effective in the simulations, extremely fast and easy to implement. The R

package ConfBands that accompanies the paper allows to obtain all the confidence bands

discussed. Note that even though we explicitly assumed the normality of the data, the

volume of tube formula is robust to the violation of this assumption, more details are

given in Loader and Sun (1997).
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Appendix. Technical details

A.1 Proofs

We adopt the framework of Claeskens et al. (2009) and use the same assumptions.

(A1) Let δ = max0≤j≤K(τj+1 − τj). There exists a constant M > 0, such that

δ/ min0≤j≤K(τj+1 − τj) ≤ M and δ = o(K−1).

(A2) For deterministic design points xi ∈ [a, b], i = 1, . . . , n, assume that there exists a

distribution function Q with corresponding positive continuous design density ρ such

that, with Qn the empirical distribution of x1, . . . , xn, supx∈[a,b] |Qn(x) − Q(x)| =

o(K−1).

(A3) Kq = (K + p + 1 − q)(λC1)
1/2qn−1/2q > 1 for some constant C1 that depends only

on q and the design density and K ∼ C2n
ν/(2q+1) for some constant C2 and ν > 1.

For the subsequent proofs we will use the following identities

∂‖lm(x)‖−1

∂λ
=

‖lm(x)‖2 − ‖l(x)‖2

2λ‖lm(x)‖3
,

∂‖l(x)‖−1

∂λ
=

‖l(x)‖2 − l(x)tl̃(x)

λ‖l(x)‖3
,

∂l(x)

∂λ
=

l̃(x) − l(x)

λ
,

with l̃(x) = P (P tP + λD)−1P tl(x).

Proof of Lemma 1

Let us denote σ2
ǫ /σ

2
u = λm. Since λ̂m is a maximum likelihood estimator, a routine

calculation shows that

λ̂m
approx.∼ N

(
λm,

2λ2
m

tr(SS) − p − {tr(S) − p}2(n − p)−1

)
,

where tr(·) denotes the trace of the matrix and S = P (P tP + λmD)−1P t. We prove

equation (16) only, the proof of (15) is completely analogous. Applying the delta method
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results in

l̂(x)tY
approx.∼ N


l(x)tY , var(λ̂m)

(
∂l̂(x)tY

∂λm

)2

 ,

‖l̂(x)‖−1 approx.∼ N

(
‖l(x)‖−1, var(λ̂m)

(
∂‖l(x)‖−1

∂λm

)2
)

.

With this one finds

var
(
l̂(x)tY

)
=

[{l(x) − l̃(x)}tY ]2

tr(SS) − p − (tr(S) − p)2(n − p)−1
,

var(‖l̂(x)‖−1) =
{‖l(x)‖2 − l(x)tl̃(x)}2

2‖l(x)‖6{tr(SS) − p − (tr(S) − p)2(n − p)−1} .

To obtain the asymptotic orders we use the results of Claeskens et al. (2009). In particular,

from their Theorem 1 under assumptions (A1)-(A3) n−1
∑n

i=1 var{f̃(xi)} = n−1tr(SS) =

O(n−2q/(2q+1)) for Kq > 1. Thus, tr(SS) = O(n1/(2q+1)). The other terms in the denom-

inator of var(λ̂m) are clearly of a smaller order. Similarly, from Theorem 2 of Claeskens

et al. (2009) var{f̃(x)} = σ2
ǫ‖l(x)‖2 = O(n−2q/(2q+1)). With the arguments used in the

proof of the asymptotic order for var{f̃(x)}, it is not difficult to see that ‖lm(x)‖2 as well as

l(x)tl̃(x) have the same order O(n−2q/(2q+1)). Noting that {l(x)− l̃(x)}tY = (In−S)f̂(x),

we conclude that its asymptotic order is the same as that of the bias of f̂ (x), that is

O(n−q/(2q+1)), see Theorem 2 of Claeskens et al. (2009). Thus, we obtain

l̂(x)tY = l(x)tY + Op

(
n− 1

2

)
, ‖l̂(x)‖−1 = ‖l(x)‖−1 + Op

(
n

2q−1

4q+2

)
.

Finally

l̂(x)tY − P (x, τ )tθ

‖l̂(x)‖
=

l(x)tY − P (x, τ )tθ + {l̂(x) − l(x)}tY

‖l(x)‖
‖l(x)‖
‖l̂(x)‖

=

{
l(x)tY − P (x, τ)tθ

‖l(x)‖ + Op

(
n− 1

4q+2

)}{
1 + Op

(
n− 1

4q+2

)}
,
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proving the lemma.

Proof of Theorem 1

From (10) and (13) we conclude

κm,0

π
exp(−c2

m/2)− 2Φ(cm) + o{exp(−c2
m/2)} =

κ0

π
exp(−c2/2)− 2Φ(c) + o{exp(−c2/2)},

leading to exp(−c2
m/2) = exp(−c2/2)κ0κm,0

−1+o{exp(−c2/2)κ−1
m,0}. Taking the logarithm

from the both sides of the last equality and using the Taylor expansion of log(κm,0) around

log(κ0), we find

c2
m = c2 + 2

κm,0 − κ0

κ0

+ o[{κm,0 − κ0 + exp(−c2/2)}κ−1
0 ].

Note now that

varu{m(x, u)} = varu{P (x)(P tP + σ2
ǫ /σ

2
uD)−1σ2

ǫ /σ
2
uDθ} = σ2

ǫ (‖lm(x)‖2 − ‖l(x)‖2).

To obtain (20), it remains to use (A4).

Proof of Theorem 2

The width of the confidence band based on the volume of tube formula for penalized

splines at a fixed x is determined by the critical value c or cm and the standard deviation

σǫ‖l(x)‖ or σǫ‖lm(x)‖. From (13) and (10) follows that cm ∼
√

log κm,0 and c ∼
√

log κ0.

As discussed in the proof of Lemma 1, the standard deviation σǫ‖lm(x)‖ = O(n−q/(2q+1))

and σǫ‖l(x)‖ = O(n−q/(2q+1)). It remains to find the order of κm,0 and κ0. By definition

κm,0 =

∫ b

a

∥∥∥∥
d

dx

lm(x)

‖lm(x)‖

∥∥∥∥ dx =

∫ b

a

√
‖lm(x)‖2‖l′m(x)‖2 − {lm(x)tl

′

m(x)}2

‖lm(x)‖2
dx,

κ0 =

∫ b

a

∥∥∥∥
d

dx

l(x)

‖l(x)‖

∥∥∥∥ dx =

∫ b

a

√
‖l(x)‖2‖l′(x)‖2 − {l(x)tl

′

(x)}2

‖l(x)‖2
dx.
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Without loss of generality we can take p-degree (order p+1) B-splines as basis functions,

so that P
′

(x) in l
′

m(x) = (P tP +λD)−1/2{P ′

(x)}t and l
′

(x) = P (P tP +λD)−1{P ′

(x)}t

has components

P
′

i,p+1(x) =
p

τi+p − τi

Pi,p(x) − p

τi+p+1 − τi+1

Pi+1,p(x),

while

Pi,p+1(x) =
x − τi

τi+p − τi

Pi,p(x) +
τi+p+1 − x

τi+p+1 − τi+1

Pi+1,p(x).

Thus, according to assumption (A1) and noting that only p+1 elements of P (x) and P
′

(x)

are nonzero, ‖l′m(x)‖2 ∼ δ−2‖lm(x)‖2, {lm(x)tl
′

m(x)}2 ∼ δ−2‖lm(x)‖2 and ‖l′(x)‖2 ∼

δ−2‖l(x)‖2, {l(x)tl
′

(x)}2 ∼ δ−2‖l(x)‖2. With this κm,0 = O(nν/(2q+1)), κ0 = O(nν/(2q+1))

and the width of the confidence band based on the volume of tube formula for penalized

splines has the asymptotic order Op(
√

log nν/(2q+1)n−q/(2q+1)), ν > 1.

A.2 R Package ConfBands

Our paper is accompanied by the R package ConfBands, which uses an estimate of f(·)

from the gam function of the package mgcv of Simon Wood. In the implementation of the

volume of tube formula some parts of the code of libtube library of Catherine Loader are

used. To build the confidence band without any bias correction as described in Section

4.2, one needs to call scb(gam.object). To obtain the mixed model and the Bayesian

confidence bands functions scbM(gam.object) and scbB(gam.object), respectively, are

used. To obtain the frequentist confidence bands with the corrected bias using the mixed

model framework, one needs to specify scbM(gam.object,mixed=F). More examples are

provided within the package.
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(2009). Dependence of global end-diastolic volume on age and gender in awake and

spontaneously breathing patients. Critical Care Medicine. submitted.

Xia, Y. (1998). Bias-corrected confidence bands in nonparametric regression. J. R. Stat.

Soc. Ser. B Stat. Methodol., 60(4):797–811.

Zhou, S., Shen, X., and Wolfe, D. A. (1998). Local asymptotics for regression splines and

confidence regions. Ann. Statist., 26(5):1760–1782.

32


	Deckblatt_CRCPEG_Discussion_Papers 12
	ConfBands

