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Following Becker’s [1968] seminal paper on the economics of crime and punishment, a

burgeoning literature has developed extending and testing his model in both the street

crime and regulatory context (see Polinsky and Shavell [2009] for a review). Much of the

empirical economics of crime literature has focused on the incentives and behavior of potential

offenders. Examples include the deterrent effect of increasing detection probability, such as by

increasing police on the street [Corman and Mocan, 2000, Di Tella and Schargrodsky, 2004],

referees on a basketball court [McCormick and Tollison, 1984] or inspections of oil transport

vessels1 and emissions at industrial facilities.2 Other examples include the deterrent effect

of increasing sanctions, such as imprisonment [Drago et al., 2009, Levitt, 1998] or fines

[Shimshack and Ward, 2005].

A smaller, but growing, literature has focused on the incentives and behavior of the en-

forcement agent. Recent anecdotes of industry pressure on (or even “capture” of) inspectors

in the nuclear, coal mining, and oil drilling industries highlight the importance of under-

standing the role that inspectors play in ensuring compliance. To our knowledge, all of the

previous studies on incentives and behavior of enforcers are based on individual behavior and

not group behavior.3 Yet, in many cases enforcement agencies send teams of enforcers, often

with the express goal of minimizing corruption [Klitgaard, 1988]. This paper provides new

insights into the productivity of teams and the inspector-offender relationship by examining

data on inspections of offshore production facilities in the Gulf of Mexico.

The aim of the present paper is twofold. First, we study the effect that an additional

inspector in an inspection team has on enforcement behavior and deterrence. Important

1See for example, Epple and Visscher [1984], Cohen [1987], Grau and Groves [1997], and Gawande and
Wheeler [1999]

2There is an extensive literature on the frequency of inspections in environmental compliance, see for
example, Magat and Viscusi [1990], Laplante and Rilstone [1996], Gray and Deily [1996], Helland [1998],
Earnhart [2004] or Cohen [1999] and Gray and Shimshack [2011] for reviews of this literature.

3A related literature has examined how varying the size of inspector groups has an impact on detected
violations. For example, McCormick and Tollison [1984] examine the impact of increasing the number of
basketball referees from two to three—and show that the accuracy of officiating improves and deters violators.
Levitt [2002] found no evidence that increasing the number of NHL referees changed the number of observed
infractions leading to a penalty. These studies have focused on whether groups offer more accurate assessments
and their deterrent effect, and are not focused on the behavior of the enforcer and their relationship with
the offender.
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limitations to investigating the effect of an additional inspector are endogeneity and selection

bias. Platforms that are thought to be poor performers may be sent more inspectors (in

anticipation of more violations) or fewer inspectors (in anticipation that violations will be

easy to detect). We use weather as an instrumental variable for the number of inspectors to

identify a causal effect of group size on the level of enforcement. Inspections of offshore oil

and gas platforms require the use of helicopters to take inspectors to production platforms;

however, whether a helicopter can fly depends on weather conditions. When weather permits

only a certain part of the Gulf to be accessed, while another part is inaccessible, then

inspection plans must be modified, and in the process more inspectors are sent on fewer

inspections.4 We find that increasing the number of inspectors in the inspection team results

in an increased number of severe sanctions, implying that enforcement would be increased

by adding manpower to inspections. We then use this variation in severity to examine the

effect on platform safety.5Using data on incidents such as oil spills, explosions, injuries and

fatalities that occurred at each platform, we find no evidence that more inspectors has an

effect on reducing the occurrence of reported incidents in the very short term (six and twelve

months).

The second aim of this paper is to examine the effect of reducing enforcer-offender famil-

iarity on enforcement behavior and deterrence. Using records of each inspector’s inspection

history, we calculate the number of times an inspector has visited the same platform before,

which is a good measure for the familiarity an inspector has with a facility. We examine

whether the enforcement actions and the platform safety record are affected by the number

of times an inspector has visited the same platform before. However, it may be the case that

more inspections of the same platform by the same inspector are driven by factors correlated

with the outcome of interest. For example, poor performers have more inspections in the

4We first learned this through a communication with a lead inspector, but it is also borne out in the data.
5Apart from the broad literature on the effects of environmental enforcement on deterrence, there are

other studies on the determinants of investments in safety, for example on the effect of OSHA regulations
on workplace safety [Viscusi, 1986], market restructuring on nuclear safety [Hausman, Forthcoming], and
profitability in the airline industry [Rose, 1990].

3



past and therefore are more likely to have more visits by the same inspectors. To obtain

causal estimates, we exploit the closure of an inspections office that resulted in platforms in

one district of the Gulf being inspected by less familiar inspectors. Since platforms in other

districts were not affected by this change, we can use a difference-in-differences approach

to estimate the impact of reducing familiarity on enforcement and deterrence. We find that

more familiar inspectors are less likely to issue enforcement actions. Furthermore, a reduc-

tion in the familiarity between inspectors and the regulated entity results in more stringent

sanctions being imposed. Yet, as in the case of inspector group size, we find no significant

impact of inspector-platform familiarity on reported incidents, such as oil spills, blowouts,

injuries and fatalities, within six and twelve months after an inspection. One potential ex-

planation is that the enforcement actions available to inspectors are not stringent enough to

alter investments in platform safety.

This paper relates to and builds upon several strands of literature. First, most studies on

inspections and enforcement have generally focused on deterrence, i.e., whether increased

enforcement activity is correlated with higher compliance and/or improved environmental

performance, see Gray and Shimshack [2011] for a thorough review. This stream of literature

examines deterrence at the extensive margin by measuring the effect of the frequency of

inspections and less so on the effect of increasing inspection intensity, which is the focus of

this paper. The investigation of the effects of increased inspection intensity is important for

the design of optimal inspection policy. Second, several studies have examined various effects

that might arise in a group setting. In the extreme, groupthink can result in a collective willful

blindness of bad news.6 On the other hand, teams may be more productive than individuals

[Hamilton et al., 2003] but could also be less productive in the case of free-riding [Alchian

and Demsetz, 1972]. Moreover, peer pressure within a group might influence members of the

team to conform to the group norm [Kandel and Lazear, 1992]. Also, Bernhard et al. [2006]

and Chen and Li [2009] find that individuals are more likely to punish violators when those

6See [Bénabou, 2013] for a theoretical model motivated by the Columbia accident being connected to
groupthink spurring overconfidence and denial.
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violations occur by an “outgroup” member as opposed to an “ingroup” member. To the

extent a group of inspectors identify with the regulated party, they might be less inclined to

punish a violator than a group of inspectors without such a strong identification. Consistent

with this hypothesis, we find that decreasing the familiarity between inspectors and the

regulated entity results in more stringent sanctions being imposed.

The paper also relates to the literature on corruption and rent-seeking. Becker and Stigler

[1974] noted that both criminal and regulatory offenders who face punishment for their vi-

olations have an incentive to influence the police officer or regulatory enforcement agency.

Corruption among both police and regulatory enforcement agents is well documented [Rose-

Ackerman, 1999]. Formal extensions to the Becker-Stigler model by Mookherjee and Png

[1995] and Bowles and Garoupa [1997] have further examined trade-offs between detection

probability, sanctions, and optimal enforcer compensation. While these formal models as-

sume monetary payoffs (e.g., bribery and corruption), influence may take on more subtle

forms of persuasion. A few empirical studies have examined these nonmonetary influences.

Makkai and Braithwaite [1992] studied nursing home inspectors and found that those who

self-identified with the industry on an attitudinal survey were more likely to issue positive

compliance ratings during an inspection. Garicano et al. [2005] empirically demonstrate bias

by soccer referees who are presumably under social pressure to favor home teams. In a closely

related paper, Jin and Lee [2011] finds evidence of collusive behavior between inspectors and

restaurants. Here, we provide a plausibly exogenous determinant of the familiarity between

the enforcer and the enforced in order to identify these effects.

The paper is organized as follows. In the next section we provide background information on

inspections in the Gulf of Mexico and discuss theoretical implications for optimal inspection

policy. Section 2 lays out our identification strategy to examine the impact of inspector

group size and familiarity on enforcement and incidents. In Section 3 we describe our data

and provide some summary statistics. In Section 4 we discuss our main results. Section 5

summarizes and draws some policy conclusions.
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1. BACKGROUND

1.1. Inspections in the Gulf of Mexico

Inspecting offshore oil and gas platforms (or also termed facilities) is a costly endeavor.

In 2010, the budget for inspections of the offshore oil and gas regulator was $23 million.7

However, there are over 3,000 offshore production platforms in the Gulf of Mexico alone,

which must be inspected at least once every year.8 As of 2011, these inspections were carried

out by a staff of only approximately 55 inspectors. Since the BP Deepwater Horizon spill in

2010, there have been calls for significant increases in the regulator’s budget and government

enforcement activity. The 2012 fiscal year total budget for the regulator doubled to $500

million, with the call to “hire new oil and gas inspectors.”9 An increase in the number of

inspectors could result in an increase in the number of inspectors that are sent to each

platform, but also allow for a reduction in the frequency of repeat visits of an inspector to

the same platform. Both changes would increase inspection intensity and thus potentially

lead to stricter enforcement actions and reduce the number of incidents. However, it may

also be the case that the more times inspectors have visited the same platform, the more

familiar they are with the platform’s flaws and prior violation history, making the detection

of violations easier.

Inspectors perform various inspections, not only of the fixed production platforms discussed

here, but also of mobile offshore drilling units (such as the Deepwater Horizon drilling rig),

meters measuring oil and gas flows, and miles of pipelines. To unify the type of inspection

examined in this study, we focus on the annual “production” inspections of production

platforms.10 Production inspections are required for all platforms at least once annually for

7At the time the regulator was called the Bureau of Ocean Energy Management (BOEMRE), formerly the
Minerals Management Service (MMS). On October 1, 2011, BOEMRE was split into two agencies, Bureau
of Ocean Energy Management (BOEM) with the responsibility of planning and leasing, and the Bureau of
Safety and Environmental Enforcement (BSEE) having responsibility for compliance inspections. Thus the
data analyzed in this paper will be attributed to BSEE, however at the time of the inspections the agency
was called MMS.

8Outer Continental Shelf Lands Act of 1953 (as amended).
9Budget of the United States Government, Fiscal Year 2012, p. 101.
10Note that nevertheless, we use data from all types of inspections in constructing variables on the inspec-
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compliance with safety regulations, accurate recordkeeping, and proper maintenance. The

primary goal of the production inspections is to verify that platforms are being operated in

a safe manner according to all laws and regulations listed in the National Possible Incident

of Non-Compliance (PINC) list.11

Figure 1 depicts the location of the offshore oil and gas platforms across the six different

districts of the Gulf (Corpus Christi, Houma, Lafayette, Lake Charles, Lake Jackson, and

New Orleans). Inspector groups travel to the platforms using helicopters which are stationed

at the district airports, indicated by the stars in Figure 1. An inspection group can range

from one to six inspectors. A typical inspection unfolds in the following way: in approaching

the platform with a helicopter, the inspector looks at the surrounding water for pollution, any

drilling, or vent gas [Offshore Energy and Minerals Management, 2009]. Upon landing, the

inspector walks around the platform to check its general condition, while reviewing the PINC

list to determine whether violations are occurring. After the walk-around, the inspector starts

the paperwork review and determines the operating ranges and safety device set points. If

there is more than one inspector in the group, one inspector reviews paperwork while any

other inspectors begin testing safety devices with the operator. The operator tests the devices

while the inspector verifies that the safety device is “set” within the allowable range and

“trips” at the set point or within the correct tolerance of the set point.

General violations and specific safety equipment failures are given “Incidents of Noncom-

pliance” (INCs). There are three different types of INCs: (1) a warning (W), in which the

operator is ordered to address the problem; (2) a component shut-in (C), requiring the oper-

ator to suspend the operation of a piece of equipment that is not functioning properly, which

may or may not hinder production; and (3) a facility shut-in (F), which requires cessation of

all production on the platform until the problem is mitigated and verified during a follow-up

inspection. Any violations are written on the inspection form, and the INCs are written and

given to the company representative, who reads the INC and is asked whether he or she has

tion history of inspectors.
11An example from this list is listed in the Appendix, Section A.
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any questions. The company representative signs the INC sheet and is told to return a copy

within 14 days. The inspector group then returns to the district office. A different inspector

in the district office verifies the data. The file clerk forwards completed inspection forms to

the supervisory inspector for his or her review.

Enforcement actions taken by Bureau of Safety and Environmental Enforcement (BSEE)

inspectors may be more than simple slaps on the wrist. Indeed, [Office of Inspector General,

Department of the Interior, 2010a] estimates that a facility shut-in costs a large production

platform over $900,000 a day. While the bulk of enforcement actions result in the less severe

INCs, warnings and component shut-ins, about 2.4% of all production inspections result in a

facility shut-in—which could amount to millions of dollars annually in costs to the industry.

Figure 1.— Districts, Platforms, and District Airports in the Gulf of Mexico.

1.2. Helicopter Flying Conditions and Closure of Corpus Christi Airport

Since the inspection of offshore production platforms relies upon the ability of helicopters

to transport inspectors to and from platforms, weather conditions may disrupt normal in-

spection schedules. Flights to unmanned structures are typically suspended when wind speed
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is 27–30 m/s (60–67 mph), and all flights are suspended when wind speed is higher than 30

m/s (67 mph) [International Association of Oil & Gas Producers, 2005]. On average, bad

weather results in inspectors only being able to fly 80% of the time [Offshore Energy and

Minerals Management, 2009]. However, there are also occasions when bad weather does not

completely ground flights, but instead alters the sample of platforms that can be inspected

on a given day by only preventing inspections of platforms in one location while permit-

ting inspections in another. Because the day’s inspections are decided at the inspections

office, before the inspectors leave for the airport; once inspectors reach the airport, weather

may preclude some of the day’s platforms from being inspected. Since the platforms to be

inspected are determined before weather conditions are known, if there is bad weather re-

stricting the flights to one area of the district, inspectors will be “doubled up” [personal

communication with a lead inspector]. Therefore, weather conditions can be used as an ex-

ogenous determinant of the number of inspectors while not influencing other conditions at

the platforms that are inspected.

We expect that the larger the geographical area, the more likely it is for weather to have

an effect on group size. The larger the area, the more likely it is for there to be enough

variation in weather that some of the planned inspections of the day would not be feasible.

As shown in Figure 1, the New Orleans district covers the largest area in the Gulf of Mexico,

however, drilling restrictions off of the coast of Florida have resulted in platforms not being

spread across the whole district. On October 1, 2003, the Corpus Christi inspections office

was closed, and all inspections for both Corpus Christi and Lake Jackson started to originate

from the Lake Jackson airport. After October 2003, Lake Jackson district therefore became

the district with the most dispersed platforms in the Gulf of Mexico. Thus, it is very likely

that after the closure of the airport weather becomes an important determinant of inspection

group size in the Lake Jackson district.

The closure of the Corpus Christi sub-district may also affect inspection intensity directly

through a decline in familiarity between inspectors and the regulated entity. Specifically, by
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pooling the two sub-districts, the average number of times that an inspector had inspected a

platform in the past is likely to decrease. Indeed, as we will show in more detail later, we can

exploit helicopter flying conditions and the closure of the Corpus Christi office to estimate

the impact of inspector group size and inspector familiarity on regulatory enforcement and

deterrence of incidences, such as oil spills, explosions, injuries and fatalities.

1.3. Theoretical Implications

There are several potential mechanisms through which increasing inspector group size

and reducing inspector familiarity might increase the intensity of inspections. In the case of

group size, more inspectors means that there are more eyes available to find violations and

if inspections are understaffed, then with more inspectors we would expect to see an even

shift increasing all types of enforcement actions (e.g. more warnings, component shut-ins

and facility shut-ins). However group size also changes other aspects of the inspection. For

example, the presence of more inspectors opens the possibility of free-riding; there could

be first-order free riding in the case of inspectors not performing their duty to detect and

issue INCs but there could also be second-order free riding in the case that inspectors do

not punish first-order free-riding.12 Another channel by which more inspectors would matter

arises because it would be harder to “capture” the inspectors, simply because there are more

inspectors to capture. If an operator protests the issuance of an INC, an inspector would

have to exert more effort to issue the INC. It is the duty of the inspector not to be swayed

by any protestations, so it is possible that when there are other members of an inspection

group present, the inspectors might be better able to avoid operator pressure and hence

more likely to write up the INC. In fact, there is anecdotal evidence that enforcement staff

are subject to industry pressure. For example, after the BP Deepwater Horizon oil spill,

an internal government investigation noted that inspectors in the Gulf of Mexico had been

offered gifts and employment opportunities by the regulated industry [Office of Inspector

12See Yamagishi [1986], Heckathorn [1989], Ostrom [1990], Henrich and Boyd [2001], Boyd et al. [2003].
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General, Department of the Interior, 2010b]. 13 But regulatory capture could also be driven

by a more subtle form of pressure. For example, facility personnel may make comments, such

as “there goes my bonus” or “my wife is sick, and I’ll lose my job,” to deter inspectors from

issuing violations (Office of Inspector General, US Department of the Interior [2010]).

Similarly, the less familiar an inspector is with the operator, the less likely an inspector

is to identify with the operator, and the less likely it is that the regulator is captured.

However, it is also possible that inspectors who are more familiar with the platform are

more likely to detect violations because they are better informed about the platform’s flaws

and prior violation history. According to a post-BP Deepwater Horizon investigation by the

Office of Inspector General, US Department of the Interior [2010], one inspector reported

arriving at a facility where his brother, who worked for the operator elsewhere, was flown

to the facility to act as the compliance officer. The inspector informed the company that

he could not conduct the inspection with his brother present and another person worked

with the inspector that day. In response to allegations about potential conflicts of interest,

the offshore regulator issued a new ethics policy in 2011 requiring individuals in the Gulf

district offices to recuse themselves in dealings with companies with a personal family or

past employment relationship. According to a news report, approximately 30% of district

employees recused themselves from one or more companies operating in the Gulf region in

2011.14 In this case, the less familiar an inspector is with the platform we would expect to

see an increase in enforcement actions being issued.15

2. EMPIRICAL STRATEGY

2.1. Identification Strategy for Group Size Effects

We are interested in whether increasing the number of inspectors conducting an inspection

has an effect on the enforcement actions taken as well as on the subsequent safety at the

13We do not have information on an inspector’s employment before or after being an inspector and so are
not able to examine whether “career concerns” are driving regulatory capture.

14“Ethics Policy Quantifies Oil Industry–Gov’t Ties,” Associated Press, July 26, 2011.
15Note that our data predate these changes and end in September 2010.
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platform. To examine these questions, we start by running ordinary least squares (OLS)

regressions of the following type:

(1) yi = ϕ+ ϑInspectorsi + Xi%+ µt + υp + εi

where i denotes the inspection and Inspectorsi is the number of inspectors that conducted

the inspection. We include controls for the platform, inspector, and operator in Xi. Platform

characteristics include age, distance to shore, water depth, production (in the month prior

to the inspection), an indicator for whether the platform is a major complex, whether it is

manned 24 hours a day, and the number of wells at the platform at the time of the inspection.

Inspector characteristics include an indicator for whether one of the inspectors is new and the

total number of inspections conducted in the past 5 years. Operator characteristics include

the number of other companies that have a working interest in the lease, the percent working

interest of the operator, and the number of other platforms operated by the operator, all

measured at the time of the inspection. We also include operator fixed effects, υp, to account

for any non-time varying unobserved characteristics of the operator. We include an indicator

for whether the inspection was unannounced, and whether the inspection occurred shortly

after a hurricane. We include a year-month fixed effect, µt to control for district-wide changes

over time. The term εi is a mean-zero error term, clustered at the platform operator level.

Our parameter of interest is ϑ, which measures the impact of an additional inspector on

the outcome variable yi. When examining the impact of inspector group size on enforcement,

yi denotes the aggregate number of INCs inspectors write during an inspection. However,

inspectors not only might change the aggregate number of INCs they write, but they also

might change the distribution of citations given; for example, they may shift from warnings

to component shut-ins or from component to facility shut-ins. To investigate changes in the

distribution of INCs, we break the number of INCs into subcategories including the number

of warnings, the number of component shut-ins, and the number of facility shut-ins issued

12



during an inspection. We also examine a weighted combination of the INCs using a formula

that the offshore regulator uses to calculate an Operator Safety Index: one facility shut-in is

equivalent to four warnings or two component shut-ins [Slitor, 2000]. When examining the

impact of inspector group size on deterrence, the outcome variable, yi, is the count of the

number of incidents such as oil spills, blowouts, injuries and fatalities that were reported

on platform p within a set time period after the inspection (t + m where m is six or twelve

months).

A problem arises in estimating equation (1) because the number of inspectors in a group

might not be randomly assigned. For example, it is possible that more inspectors are sent

to facilities that are prone to violations, and therefore the covariance between the number

of inspectors and εipt would be positive. In this example, the OLS estimate of the effect of

an additional inspector would be biased upwards. Therefore, to deal with the endogeneity

of the number of inspectors, we instrument for the number of inspectors using the standard

deviation in wind speed across the district on the day of the inspection (SDWINDi). As can

be seen in Figure 2, after the closure of the Corpus Christi office, the number of inspectors in

Corpus Christi and Lack Jackson per inspection is more closely correlated with the standard

deviation in wind speed across the district (the mechanism is described in Section 1.2).

Figure 2 shows quarterly averages of the standard deviation in wind speed at 8 a.m. as well

as the daily mean number of inspectors per inspection. As the standard deviation in wind

speed across the area increases, so does the number of inspectors sent on an inspection; this

is particularly pronounced after inspectors had to cover a larger geographical area.

Because larger inspection groups are sent when SDWIND is high, the difference in the

resulting INCs can be used to measure the local average treatment effect (LATE) of sending

more inspectors on the basis of bad weather [Imbens and Angrist, 1994]. Note that the LATE

is not necessarily equal to the average treatment effect. The LATE represents a weighted

average response of those platforms that had a change in inspector group size because of

weather, where the weight is proportional to the number of platforms that get an additional
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Figure 2.— Instrumenting for the Number of Inspectors with Variation in Wind Speed.
Quarterly data obtained by averaging the 8 a.m. standard deviation of wind speed across
Corpus Christi and Lake Jackson. Vertical line indicates when Corpus Christi was incorpo-
rated into the Lake Jackson district.

inspector [Imbens and Angrist, 1994, Angrist and Imbens, 1995]. The LATE does not tell

us about the effect of an extra inspector on those platforms that would not get an extra

inspector even in bad weather. Our first-stage equation models the relationship between

wind speed and the number of inspectors:

(2) Inspectorsi = α + βSDWINDi + Xiγ + µt + υp + εi,

where SDWINDi is the standard deviation in wind speed at 8:00 a.m. on the day the inspec-

tion takes place. Measuring the LATE requires a monotonicity assumption that variation in

wind speed would not result in fewer inspectors being sent to a platform. This assumption

is likely to hold in our case: if SDWIND is low, there are either no inspections because the

weather is bad everywhere or fewer inspectors per inspection because the weather is good in

all areas. If SDWIND is high, there are more inspectors per inspection because the weather
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is good in one area and bad in another. A second assumption for the LATE is that the in-

strument is as a good as randomly assigned and thus independent of treatment status. This

assumption would be violated if platforms that are inspected when variation in wind speed

is high systematically differ from the platforms that are inspected when variation in wind

speed is low. In the empirical analysis we will shed light on this concern by investigating the

effect of variation in wind speed on characteristics of inspected platforms. A final assump-

tion for measuring the LATE is that variation in wind speed affects enforcement actions

only through inspector group size (exclusion restriction). There would be a problem, for

example, if variation in wind speed also meant that there were high winds at the platforms

being inspected, which also resulted in a higher number of violations than otherwise would

have occurred under normal wind speeds. This is unlikely to be the case because if weather

were bad enough to cause structural damage, helicopters would be grounded and we would

have no observations of inspections in the first place. Nonetheless, in the empirical analysis

we will find that different measures of weather (mean wind speed across the district on the

day of the inspection, wind speed closest to the platform, and mean wave height across the

district) do not determine the number of enforcement actions. Nonetheless, we also include

an indicator for inspections that occurred after a hurricane in equation (2).

2.2. Identification Strategy for Familiarity

To examine whether enforcement actions depend on the inspector’s familiarity with the

inspected party, we use data on each inspector’s inspection history. Based on these data we

can calculate the number of times an inspector has visited the same platform in the past five

years, which captures the familiarity an inspector has with that particular platform. To test

whether inspector familiarity has an impact on enforcement actions, we could simply regress

the number and type of enforcement actions an inspector gives during an inspection on our

measure of familiarity. However, the estimates from this regression are likely to be biased for

two reasons. First, poor performers or older platforms would have had more inspections in the
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past and might also have had more enforcement actions. This would bias estimates in favor

of a finding that more inspections by the same inspector result in more enforcement actions.

Second, if inspectors have any leeway in choosing where to inspect, the repeat assignment of

inspectors to the same platform may be driven by unobservables correlated with the outcome

we are interested in.

To address these concerns, we exploit exogenous variation in the number of times an inspec-

tor has visited the same platform created by the closure of the Corpus Christi sub-district

office. With the closure of the airport, Corpus Christi was integrated into Lake Jackson and

the number of platforms inspected from Lake Jackson airport increased significantly. As a

consequence, the average number of times that an inspector had inspected a platform in the

past decreased in Lake Jackson after the airport closure. We rely on a difference-in-differences

(DID) approach to investigate how the decreased number of prior visits by the same inspector

affected enforcement actions taken and subsequent safety at the platform. The first difference

is over time, as the number of prior visits by the same inspector decreased after the airport

closure. The second difference is across districts; only platforms in Lake Jackson and Corpus

Christi were affected by the airport closure. These platforms define the treatment group.

The platforms in all other regions define the control group.

The DID comparison is implemented by estimation regressions of the following type:

(3) yi = α + βLJCCp × Post t + γ LJCCp + Xiδ + µt + υp + εi,

where LJCCp is a dummy equal to one for platforms in Lake Jackson (or the Corpus Christi

sub-district) and zero for platforms elsewhere in the Gulf and Postt is a dummy equal to

one after the airport closure, zero otherwise. Note that with year-month fixed effects, µt,

we do not include the Post indicator by itself. The outcome variable yi either denotes the

average number of repeated visits of the inspector team in the past five years, the number of

INCs by the subcategories inspectors issue during an inspection, or the number of incidents
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reported within a given time period after the inspection. Our parameter of interest is β,

which measures the effect of the airport closure on treated platforms relative to control

platforms using variation over time. We estimate equation 3 using data from January 2000

to September 2003 as the pre-period and October 2003 to December 2006 as the post period.

The identifying assumption is that trends in yi would have been identical in treatment and

control platforms in the absence of the airport closure. To shed light on the validity of this

assumption, we generalize equation (3) by replacing LJCCp×Postt with a set of treatment

times year interaction terms using all years of available data (1998 to 2010). Each coefficient

of these interaction terms measures the difference in the outcome variable in the Corpus

Christi and Lake Jackson district relative to all other districts in a given year relative to

the reference year (1998). The year 2003 is a transition year since the airport was closed in

October 2003. The interaction terms for the years 1999-2002 should be zero if the parallel

trend assumption holds. The interaction terms for the years 2004-2010 measure how the

impact of the airport closure evolves over time.

3. DATA AND SAMPLE CONSTRUCTION

3.1. Data

For our analysis we combine data from several sources. Records of inspections were provided

by the Bureau of Safety and Environmental Enforcement (BSEE). The dataset contains

information on every inspection conducted in the Gulf of Mexico and includes information

on the count and type of enforcement actions (INCs) taken. The dataset also contains the full

names of the inspectors conducting the inspection. This information is used to calculate the

number of times an inspector visited the platform in the past five years prior to the inspection,

which is our measure for familiarity between the inspector and the facility. We also calculate

the number of enforcement actions that a platform received in the past. We construct these

variables using the full dataset dating back to 1986. BSEE also provided us with a dataset

containing all serious accidents, fatalities, injuries, explosions, and fires. Incidents include

fires, explosions, blowouts, loss of well control underground and at the surface, collisions,
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spills of oil or drilling fluids, equipment failure, injuries, and fatalities. In the analysis we

examine all incidents together, and then injuries and fatalities.16 The regulations for incident

reporting were made more stringent on July 17, 2006, when operators were required to report

not only serious incidents, but also incidents that had the potential to be serious (e.g., any

incident involving structural damage to a platform, injury that led to an evacuation or days

away from work, or property damage exceeding $25,000).17

Two datasets18 containing platform characteristics from the Bureau of Ocean Energy Man-

agement (BOEM) were used to create a panel of every platform in the Gulf of Mexico from

the year the platform was first installed through 2010. The dataset contains information on

the distance to shore, water depth, lease number, and whether or not there are personnel

on board 24 hours a day or whether the platform is considered to be a “major complex”19

Production data for all wells in the Gulf of Mexico from 1996 to 2010 were also obtained

online from BOEM.20 This dataset contains a unique well identifier (the API well number),

monthly volume of oil and gas produced, and days on production. Using another dataset

available from BOEM on well characteristics,21 we assigned a platform identifier to the API

well numbers so that we could aggregate the monthly well production to monthly platform

production. Using the date that the wells were drilled we created a variable for the number

of wells at each platform at the time of the inspection.

Data on the ownership of the lease and the designated operator of a lease were obtained

online from BOEM.22 These data contain the working interest of all owners of Gulf leases,

including all ownership changes from the assignment date of the lease to present. We con-

16If an inspector discovers that an accident occurred and was not filed within 15 days, the INC they
are required to issue is a warning, but nonetheless, incidents are self-reported by platforms and there is
potentially under reporting.

1730 CFR Part 250, Final Rule (FR 19640), Minerals Management Service, U.S. Department of the Interior.
18“Platform Masters” and “Platform Structures” found online at

https://www.data.boem.gov/homepg/data center/platform/platform.asp
19Major complex is defined as a platform that has at least one structure with at least six completions or

two pieces of production equipment
20Production Data: http://www.data.boem.gov/homepg/pubinfo/freeasci/product/freeprod ogora.asp
21Borehole Data: https://www.data.boem.gov/homepg/data center/well/well.asp
22Lease Data: https://www.data.boem.gov/homepg/data center/leasing/leasing.asp
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structed variables for the number of companies that had an interest in the lease in that

year, and the mean percentage working interest in the lease. At any one point in time, how-

ever, there is only one designated operator of the lease. The operator, as defined by BOEM,

is either the leaseholder or the party designated (and approved) to operate a portion of a

given lease.23 A record of platform operators (received from BOEM) was used to determine

the operator of a platform at the time of the inspection. BOEM gives each subsidiary of a

company a different company identification number. For example, Shell Offshore Inc. has

10 subsidiaries in the Gulf of Mexico (including, for example, Shell Consolidated Energy

Resources Inc., Shell Deepwater Development Inc., Shell Oil Company), each of which has

a unique company number. In order to match the subsidiaries to their parent companies,

we used an unofficial list of parent-subsidiaries obtained from BOEM. For the remainder of

unmatched observations, the parent company found in BOEM’s operator safety summaries

was used. With this information we constructed variables for the number of platforms that

the parent company operates, and the working interest of the platform operator.

Finally, wind speed data over the Gulf were obtained from the National Data Buoy Center

(NDBC) of the National Oceanic and Atmospheric Administration (NOAA). Buoy stations

record hourly standard meteorological and wave data. Wind speed is the most often recorded

variable whereas temperature and wave height are often missing.24 There are eight NDBC

deployed buoys stationed off the coast of Texas. Only five of these buoys have data spanning

the dates studied. We use the wind speed recorded at 8:00 a.m. of the day of the inspec-

tion because helicopters transporting inspectors attempt to take off earlier than 7:15 a.m.

[Offshore Energy and Minerals Management, 2009].25

23A platform operator is typically the responsible party in the event of an oil spill. However, in some
instances a platform ties in production from a subsea lease that is miles away and could be leased to a
different operator. Under U.S. government regulations, all three parties (the surface platform operator, the
subsea lessee, and the pipeline right-of-way holder) are required to show oil spill financial responsibility.

24Although visibility, cloud ceiling, and the presence of lightning also determine whether flying is an
option, it is not possible to obtain these data over the Gulf of Mexico, and our estimation strategy depends
on distinguishing weather across the district.

25We convert wind speeds to 20 meters above the surface using the formula WSPD(20 meters) =
WSPD(z)( 20

z )1/7 where z represents the height above the surface at which observations are collected [U.S.
Army Coastal Engineering Research Center, 1984].
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3.2. Sample Construction

We construct different subsamples for each of the two estimation strategies. For our instru-

mental variable strategy we use production inspections of offshore platforms in Lake Jackson

after it subsumed the Corpus Christi subdistrict in October 2003 until December 2010. We

chose Lake Jackson because since 2003, compared to other districts in the Gulf of Mexico,

the platforms in Lake Jackson are spread over the largest area (see Figure 1 for a map of

the Gulf). In the other districts, which have more platforms and cover smaller areas, bad

weather would be more likely to result in the grounding of all flights, not just the grounding

of flights to a portion of the district. Therefore, in Lake Jackson it is more likely for there

to be variation in weather across the district, and thus more likely for weather to affect the

number of inspectors sent to a platform than in a geographically smaller district. Our sample

for the DID estimation strategy consists of production inspections across all districts in the

Gulf between January 1998 and December 2010. However, the analysis focuses primarily on

production inspections between January 2000 and December 2006, given that the airport

closure took place in October 2003.

We focus on annual production inspections, which account for 81% of the 13 different types

of facility inspections. We restrict the sample to only include these inspections because they

are more uniform in how they are conducted and in the type of INC issued. Nevertheless,

to ensure we construct the variables indicating a particular inspector’s history correctly,

we include data on all inspection types. Also, when the inspection has more than one in-

spector, the inspector variables are averaged over all inspectors in the group. For example,

the number of prior inspections in the past five years (Past InspectionsI) is the number of

prior inspections averaged over all inspectors in the group. These variables are cumulative

including all inspections from 1986 to the current inspection.

Table I reports summary statistics for the instrumental variable sample and the DID

sample by treatment and control region, before (January 2000 to September 2003) and after

the airport closure (October 2003 to December 2006). The variables for wind speed are
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only collected for the instrumental variable sample. As the first row shows, the mean of

our instrument for group size, SDWIND is 1.89 m/s. However, there is substantial variation

across time: the standard deviation of SDWIND is 0.923 and the minimum and maximum

values are 0.269 m/s and 6.29 m/s, respectively (not reported). Because information on

weather is missing for some inspections, the instrumental variable sample is smaller than the

DID sample for the Lake Jackson/Corpus Christi district after the airport closure (column

3). Despite the different sample sizes, there are only small differences in terms of observable

characteristics between the IV sample and the DID treatment, post-period sample.

A comparison of inspection and inspector characteristics across the different columns of

the DID sample reveals that before the airport closure there are only minor differences in

the number of INCs, the severity of the INCs, and the number of incidents and injuries

and fatalities between Lake Jackson/Corpus Christ and the rest of the Gulf. The pre-reform

differences in inspection outcomes are likely to be driven in part by differences in platform

characteristics. In particular, platforms in treatment districts tend to be further away from

the shore, have greater water depth, and are more likely to be active. After the airport

closure INCs are generally lower in treatment and control districts, except for component

shut-ins in treatment districts which are higher compared to the pre-period. The number of

incidents and injuries and fatalities are increasing over time, which is partly driven by the

2006 change which increased the number of incidents that were required to be reported (as

described in section 3).

4. RESULTS

4.1. Group Size Effects on Enforcement and Deterrence

Looking simply at the mean number of INCs per inspection by the number of inspectors

conducting the inspection (Table II), there is a positive correlation between the number of

inspectors and the severity of the enforcement actions taken. For example, the probability of

a component shut-in increases from 0.418 to 0.527 when moving from one to two inspectors,

and increases further to 1.124 with three inspectors and 1.214 with four or more. Of course,

21



TABLE I

Summary Statistics
IV DID

Treatment Control

Pre Post Pre Post
(1) (2) (3) (4) (5)

Outcome Variables:
No. Warnings .455 .547 .403 .43 .349
No. Component Shut-ins .483 .381 .461 .419 .293
No. Facility Shut-ins .0339 .0336 .0165 .0277 .0191
Weighted INCs 1.56 1.44 1.39 1.38 1.01
Incidents 12 Mo. After .109 .0408 .0624 .0441 .105
Injuries & Fatalities 12 Mo. After .0115 .0129 .0182 .0085 .0087
Weather Variables:
SDWSPD (m/s) 1.89
Mean WSPD (m/s) 7.27
WSPD at Closest Buoy 7.32
Hurricane (2 months post) .121 .0272 .173 .028 .164
Unannounced (Indicator) .0015 .0637 .0035 .0057 .003
No. Inspectors 1.36 1.12 1.28 1.48 1.58
Time Since Last Insp. (days) 342 333 345 337 340
Inspector Characteristics:
New Inspector (Indicator) .0314 .0329 .0416 .0159 .0237
Past InspectionsI (100s) 35.2 35.3 35 35.7 35.6
Cum. Inspections of P by I, past 5 yrs .598 1.39 .528 .614 .689
Platform Characteristics:
Platform Age (years) 14.9 12.8 13.9 19.4 20.8
Distance to Shore (miles) 43.8 44.2 43 31.5 31.8
Water Depth (1,000 feet) .191 .148 .169 .112 .117
Production (mmBOE in month prior) .0357 .0362 .0407 .0378 .0273
Major Complex (Indicator) .669 .598 .644 .447 .438
Manned 24 hrs (Indicator) .248 .195 .212 .18 .181
Number of Wells (t) 4.1 3.85 3.96 4.78 4.49
Inactive (Indicator) .26 .234 .238 .319 .37
Ownership and Operator:
No. of Lessees (t) 2.58 2.37 2.46 2.16 2.09
Working Interest of O (%) (t) 57 50.3 54.1 59.5 61.6
No. of P Operated by O (t) 127 135 133 213 188
Observations 2,008 1,398 1,153 10,499 8,639

Notes: IV-sample includes production inspections on offshore facilities in Lake Jackson/Corpus Christi October 2003 to August
2010. DID-sample includes production inspections in Lake Jackso/Corpus Christi (treatment group) and other districts of the
Gulf (control group) between January 2000 to September 2003 (pre-period) and between October 2003 to December 2006 (post-
period). P=Platform, O=Operator, I=Inspector, (O,I)=Inspections of Operator O by Inspector I. For all inspector variables
(I), if the inspection was conducted by a group, the variable is the average over all group members.

these numbers do not capture the causal impact of group size on enforcement but may

reflect that more inspectors are sent to platforms that are thought to be poor performers.

Consistent with this view, Table II shows that there is a positive association between the

number of inspectors and overall number of incidents and injuries or fatalities occurring. For

example, the probability of any incident occurring 12 months after an inspection increases

from 0.094 to 0.126 when a second inspector is added and increases further to 0.213 with

three inspectors and 0.286 with four or more. We therefore rely on variation in weather across

the Lake Jackon/Corpus Christi district after the closure of the airport, which provides us
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with variation in the number of inspectors that is independent of unobservable platform

characteristics.

TABLE II

Means (and Standard Deviations) by Number of Inspectors

One Two Three Four+
(1) (2) (3) (4)

No. Warnings .437 .448 .742 .714
(.993) (1.061) (1.418) (1.139)

No. Component Shut-ins .418 .527 1.124 1.214
(1.238) (1.368) (2.421) (1.477)

No. Facility Shut-ins .021 .049 .146 .071
(.211) (.250) (.490) (.267)

Weighted INCs 1.357 1.697 3.573 3.429
(3.245) (3.746) (6.250) (4.603)

Incidents 12 Mo. After .094 .126 .213 .286
(.368) (.486) (.593) (.469)

Injuries & Fatalities 12 Mo. After .008 .020 .022 .000
(.103) (.234) (.149) (.000)

Observations 1396 509 89 14
Notes: Sample includes production inspections in Lake Jackson October 2003 to August 2010. Means are reported with standard
deviations in parentheses. There is only one observation with six inspectors, and none with five.

Table III reports the first stage relationship between inspectors and the standard deviation

in wind speed in the instrumental variables estimation. The specification in column 1 only in-

cludes year-month fixed effects, the specification in column 2 also adds operator fixed effects,

and the specification in column 3 adds all exogenous variables described in detail in section

2.1. For our purposes, the important finding is that the number of inspectors is positively

related to wind speed variability, consistent with Figure 2. Independent of the specification,

we find a strong first stage relationship; parameter estimates are statistically significant and

remarkably similar whether using additional covariates or not. All specifications also pass

the weak instrument test given that the F-statistics is larger than the threshold value of 10

[Stock and Staiger, 1997]. As a placebo test, we use the standard deviation in wind speed

exactly one year after the inspection as the instrumental variable (column 4). In this case,

the coefficient on the standard deviation is insignificant in the first stage regression, the

F-stat for weak instrument is 1.23, and all coefficients in the second stage are insignificant.

Using the standard deviation in wind speed the day before (column 5) and the day after the

inspection (column 6) results in a first stage F-statistic of 0.14 and 0.26, respectively, and

all affected coefficients are insignificant.
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Table IV reports on our main regression results relating the number of inspectors to the

resulting enforcement actions. This table shows both OLS and IV results when including the

full set of control variables, but the results are very similar for specifications that only include

year-month fixed effects or year-month and operator fixed effects. The OLS estimates indicate

that adding an additional inspector has no significant effect on the number of warnings issued,

but leads to a significant increase in component shut-ins, facility shut-ins, and the weighted

combination of enforcement actions. The IV estimates are larger in magnitude than the OLS

estimates, but they are also less precisely estimated. As a consequence, in the IV estimation

only the most stringent enforcement actions, facility shut-ins, are statistically significantly

more likely to occur with more inspectors. The point estimate suggests that adding an

inspector increases the number of facility shut-ins by .243.

The coefficient on the number of inspectors in Table IV is always larger when using the

IV specification compared to OLS. Besides endogeneity, there could be two other reasons

driving this result—measurement error in group size and non-linearity in the effect of group

size. Our data contain detailed records of the number of inspectors on the platform and

therefore measurement error in the number of inspectors is not as likely as non-linearity in

the effects. The IV estimates use variation in the inspection group size induced by wind

speed, whereas OLS estimates use all the variation. If weather affects a particular level shift

in the group size and this level shift has a larger effect on enforcement, then the IV and

the OLS estimates will differ. Appendix B examines this issue in more detail and provides

evidence that non-linearities can explain the difference between IV and OLS estimates.

Table V reports the estimates on the effect of inspector group size on reported incidents

such as oil spills, injuries and fatalities occurring within 6 and 12 months of any inspection.

The first four columns report on all incidents, while the remaining columns report on a

subset— only those involving injuries or deaths. As before, the table shows both OLS and

IV results when including the full set of control variables. The OLS estimates are in all

cases very close to zero and statistically insignificant. The IV estimates are negative in
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TABLE III

First Stage: Number of Inspectors

Main estimates Placebo tests

(1) (2) (3) (4) (5) (6)
Std. Dev. WSPD .061** .057** .064*** -.016 .006 -.008

(.024) (.026) (.023) (.015) (.012) (.018)
Year-Month Effects Yes Yes Yes Yes Yes Yes
Operator Effects No Yes Yes Yes Yes Yes
Controls No No Yes Yes Yes Yes
n 2,008 2,008 2,008 2,008 2,008 2,008
Mean of Dep. Var. 1.364 1.364 1.364 1.364 1.364 1.364
R2 .114 .174 .248 .242 .242 .242
First Stage F-stat. 13.19 11.07 15.1 1.23 .14 .26

Notes: Sample includes production inspections in Lake Jackson between October 2003 and September 2010. Columns represent
OLS coefficients. Dependent variable is the number of inspectors. Robust standard errors are clustered by operator (for 91 oper-
ators). Controls include platform’s age, distance to shore, water depth, previous month’s production, count of wells, operator’s
number of leases, platforms and working interest, inspector’s count of past inspections, indicators for whether the platform is
inactive, a major complex, manned-24 hours, was in Corpus Christi, and whether the inspection was unannounced, conducted
by a new inspector, or occurred after a Hurricane. *** Statistically significant at the 1% level; ** 5% level; * 10% level.

TABLE IV

Impact of Group Size on Enforcement

Warnings Component Facility Weighted

OLS IV OLS IV OLS IV OLS IV
(1) (2) (3) (4) (5) (6) (7) (8)

No. Inspectors .069 .154 .216*** .517 .036** .243** .644*** 2.159
(.054) (.723) (.053) (.610) (.015) (.111) (.153) (1.720)

Year-Month Effects Yes Yes Yes Yes Yes Yes Yes Yes
Operator Effects Yes Yes Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes Yes Yes
n 2,008 2,008 2,008 2,008 2,008 2,008 2,008 2,008
R2 .190 .209 .106 .214
Mean of Dep. Var. .455 .455 .483 .483 .034 .034 1.556 1.556

Notes: Sample includes production inspections in Lake Jackson between October 2003 and September 2010. Dependent variables
are the number of warnings (W), component shut-ins (C), facility shut-ins (F), or Weighted, a weighted combination of all INCs
(Weighted=W+2C+4F). In the case of the IV estimates, No. Inspectors is instrumented for using weather. Robust standard
errors are clustered by operator (for 91 operators). Controls include platform’s age, distance to shore, water depth, previous
month’s production, count of wells, operator’s number of leases, platforms and working interest, inspector’s count of past
inspections, indicators for whether the platform is inactive, a major complex, manned-24 hours, was in Corpus Christi, and
whether the inspection was unannounced, conducted by a new inspector, or occurred after a Hurricane. *** Statistically
significant at the 1% level; ** 5% level; * 10% level.
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all specifications and quite sizeable in magnitude, but the coefficients are not statistically

significant. Together, the findings from tables IV and V suggest that while adding inspectors

to an inspection leads to more stringent enforcement actions, increasing inspector group size

seems not to have an impact on platform safety following an inspection. We explore possible

explanations for this finding in the concluding section.

TABLE V

Impact of Inspector Group Size on Deterrence

All Incidents Injuries & Fatalities

6 Mo. After 12 Mo. After 6 Mo. After 12 Mo. After

(1) (2) (3) (4) (5) (6) (7) (8)
OLS IV OLS IV OLS IV OLS IV

No. Inspectors .005 -.135 .000 -.112 -.001 -.083 -.002 -.013
(.012) (.114) (.020) (.190) (.004) (.084) (.007) (.054)

Year-Month Effects Yes Yes Yes Yes Yes Yes Yes Yes
Operator Effects Yes Yes Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes Yes Yes
n 2,008 2,008 2,008 2,008 2,008 2,008 2,008 2,008
R2 .172 .241 .232 .322
Mean of Dep. Var. .055 .055 .109 .109 .006 .006 .011 .011

Notes: Sample includes production inspections in Lake Jackson between October 2003 and September 2010. Dependent variables
are the number of all incidents and a subset of incidents – injuries & fatalities – within 6 months and 12 months after an
inspection. In the case of the IV estimates, No. Inspectors is instrumented for using weather. Robust standard errors are
clustered by operator (for 91 operators). Controls include platform’s age, distance to shore, water depth, previous month’s
production, count of wells, operator’s number of leases, platforms and working interest, inspector’s count of past inspections,
indicators for whether the platform is inactive, a major complex, manned-24 hours, was in Corpus Christi, and whether the
inspection was unannounced, conducted by a new inspector, or occurred after a Hurricane. *** Statistically significant at the
1% level; ** 5% level; * 10% level.

One potential concern with estimating the model is that platforms that are inspected when

variation in wind speed is high systematically differ from platforms that are inspected during

good weather. Such selection behavior would violate the assumption that the instrument is

as a good as randomly assigned. As shown in Table VI, baseline characteristics, such as the

distance to the shore or the age of the platform, do not to vary across platforms inspected

on highly variable days, suggesting that this concern is unfounded. It is also not the case

that the instrument is affecting the familiarity of the inspection group and the inspected

platform (last column of Table VI) implying that our estimate of the effect of group size on

enforcement is not confounded by a change in familiarity. Another potential worry is that

wind speed may have a direct effect on the outcome of an inspection, which would violate the

exclusion restriction. We show in Table VII that the mean wind speed in the district on the

day of the inspection, the wind speed closest to the platform, and the average wave height do
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TABLE VI

Baseline Characteristics by Standard Deviation in Wind Speed

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Dist. Age Depth Prod. Major Manned Wells INCs(t-1) C.C. Repeat

Std. Dev. WSPD .553 -.056 .008 .003 .001 -.019 -.214 .056 .001 -.004
(.731) (.276) (.015) (.007) (.013) (.014) (.140) (.072) (.009) (.024)

Year-Month Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Operator Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
n 2,008 2,008 2,008 2,008 2,008 2,008 2,008 2,008 2,008 2,008
R2 .385 .410 .377 .300 .206 .273 .349 .113 .426 .261

Notes: Columns represent OLS coefficients with robust standard errors clustered by operator (for 91 operators). Dependent
variables are platform characteristics: distance to shore, age, depth, past month’s production, whether the complex is a major
complex, whether it is manned 24 hours a day, the number of wells present, a weighted average of the INCs from the most
recent prior inspection (INCs=W+2C+4F), an indicator for whether the platform was in the Corpus Christi sub-district (CC),
and the number of repeat visits of an inspector to the same platform in the past 5 years. Year-month and operator fixed effects
included in all regressions (coefficients not reported). Sample includes production inspections in Lake Jackson October 2003 to
August 2010. *** Statistically significant at the 1% level; ** 5% level; * 10% level.

not have an effect on the enforcement action taken.26 This also follows the reasoning that if

weather were bad enough to cause structural damage, helicopters would be grounded and we

would have no observations of inspections in the first place. It still could be possible that high

variation in wind speed coincides with incidents of non-compliance issued because of damage

from hurricanes. We find that an indicator for inspections that occurred after a hurricane are

statistically insignificant in determining the number of inspectors or the enforcement action

taken.27

4.2. Effect of Familiarity on Enforcement and Deterrence

To examine the impact of familiarity on enforcement and deterrence, we exploit the closure

of the Corpus Christi airport in October 2003 after which all inspections for both Corpus

Christi and Lake Jackson started to originate from the Lake Jackson airport. As the left

Panel of Figure 3 illustrates, there is a sizeable drop in repeat visits of an inspector to the

same platform in the Corpus Christi and Lack Jackson district after the airport closure,

which suggests that there was also a drop in the familiarity of inspectors and the inspected

26In the specification shown in Table VII, all covariates that are included in the main regression (Table IV)
are also included; however, not including these covariates also does not result in statistical significance on
mean wind speed on the day of the inspection, the wind speed measured at the buoy closest to the platform,
nor the average wave height. Due to space constraints the weighted average of the INCs is not included, but
all coefficients are also statistically insignificant in the weighted average INC regression.

27We also tried various intervals ranging from one week to 16 weeks after a hurricane. The final specifica-
tions presented in the paper include an indicator for any inspection that occurred within eight weeks after
Hurricanes Lili, Ivan, Dennis, Katrina, Rita, Gustav, and Ike.
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TABLE VII

Direct Effect of Weather on Enforcement

Warnings Component Facility

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Mean WSPD .003 .006 -.002
(.014) (.013) (.003)

WSPD at Closest Buoy .002 .006 .000
(.009) (.012) (.003)

Mean Wave Height -.020 -.017 -.006
(.065) (.061) (.017)

Year-Month Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Operator Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
n 2,008 2,000 1,787 2,008 2,000 1,787 2,008 2,000 1,787
R2 .188 .189 .208 .202 .202 .205 .101 .101 .103
Mean of Dep. Var. .455 .456 .464 .483 .484 .485 .034 .034 .035

Notes: Sample includes production inspections in Lake Jackson between October 2003 and September 2010. Dependent variables
are the number of warnings (W), component shut-ins (C), and facility shut-ins (F). Robust standard errors are clustered by
operator (for 91 operators). Controls include platform’s age, distance to shore, water depth, previous month’s production,
count of wells, operator’s number of leases, platforms and working interest, inspector’s count of past inspections, indicators for
whether the platform is inactive, a major complex, manned-24 hours, was in Corpus Christi, and whether the inspection was
unannounced, conducted by a new inspector, or occurred after a Hurricane. *** Statistically significant at the 1% level; ** 5%
level; * 10% level.

platforms. To examine the effect of the airport closure in more detail, we replace LJCCp ×

Postt in equation 3 with a set of LJCCp-year interaction terms. The right panel of Figure

3 plots the coefficient estimates of these interaction terms. The estimates for the period

before the airport closure are not significantly different from zero, providing evidence for

the parallel trend assumption. Consistent with the left panel, there is a significant and long-

lasting decline in repeat visits after 2003; even seven years after the airport closure repeat

visits are significantly lower in the Corpus Christi and Lake Jackson district.

How did the reduction in inspector familiarity with the inspected entity affect enforcement

actions? The answer to this question is provided in Table VIII which reports estimates of

equation (3) for different enforcement actions (as well as repeat visits and inspector group

size) using data from the years 2000-2006, three years before and after the airport closure.

Column 1 shows a statistically significant reduction in the number of repeat visits in Lake

Jackson-Corpus Christ in the post-closure period. On the other hand, the average inspector

group size is not affected by the airport closure, as illustrated in column 2. Columns 3-5

suggest that the reduction in repeat visits, and not group size, led to a significant increase

in component shut-ins and in the weighted average of INCs.
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Figure 3.— The Corpus Christi inspections office was closed in 2003, after which the
number of repeat inspections significantly decreased.

TABLE VIII

Impact of Reducing Repeat Visits on Enforcement Actions

Repeat Inspectors Warnings Component Facility Weighted
(1) (2) (3) (4) (5) (6)

LJCC × Post Closure -.883*** .048 -.055 .231*** -.007 .381*
(.210) (.043) (.080) (.077) (.009) (.219)

LJCC .751*** -.338*** -.030 -.215*** -.009 -.496***
(.143) (.029) (.067) (.045) (.008) (.163)

Year-Month Effects Yes Yes Yes Yes Yes Yes
Operator Effects Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes
n 21,689 21,689 21,689 21,689 21,689 21,689
R2 .175 .183 .114 .109 .037 .138
Mean of Dep. Var. .689 1.488 .404 .368 .024 1.237

Notes: Sample includes all production inspections in the Gulf of Mexico between January 2000 and December 2006. The
indicator LJCC includes platforms that were in the Lake Jackson or Corpus Christi sub-districts. Post Closure= 1 if the
inspection occurred after October 2003. The dependent variables are Repeat (=the number of prior visits the inspector made to
the same platform in the past 5 years); Inspectors=the number of inspectors; the number of Warnings (W) issued; Component
shut-ins (C); Facility shut-ins (F); or Weighted, a weighted combination of all INCs (Weighted=W+2C+4F). All specifications
include all control variables as discussed in the main text. Robust standard errors are clustered by operators (for 181 operators).
*** Statistically significant at the 1% level; ** 5% level; * 10% level.

Overall these results lend support to the claim that the less familiar an inspector is with

the operator, the less likely an inspector is to identify with the operator, and the less likely it

is that the inspector is captured. To examine whether the increase in inspection intensity has

an effect on platform safety, Table IX reports OLS estimates of equation 3 using as outcome

variables the number of incidents (including oil spills, blowouts, and injuries and fatalities)

and the number of injuries and fatalities occurring within 6 and 12 months after an inspection.

Unlike the case of inspector group size, we find that reducing inspector familiarity leads to a
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significant decrease in reported incidents 6 and 12 months after an inspection, suggesting that

reducing familiarity may be a more effective measure to improve platforms’ safety behavior

than increasing group size. Columns (3) and (4) indicated that reducing inspector familiarity

has no effect on the number of injuries and fatalities; none of the estimates of the interaction

term LJCCp × Postt are significantly different from zero.

TABLE IX

Impact of Reducing Repeat Visits on Deterrence

All Incidents Injuries & Fatalities

(1) (2) (3) (4)
6 Mo. After 12 Mo. After 6 Mo. After 12 Mo. After

LJCC × Post Closure -.015** -.023* .004 .002
(.007) (.012) (.006) (.011)

LJCC -.003 -.008 .002 .005
(.006) (.010) (.003) (.005)

Year-Month Effects Yes Yes Yes Yes
Operator Effects Yes Yes Yes Yes
Controls Yes Yes Yes Yes
n 21,689 21,689 21,689 21,689
R2 .083 .138 .012 .019
Mean of Dep. Var. .028 .058 .005 .009

Notes: Sample includes all platforms in the Gulf of Mexico. The indicator LJCC includes platforms that were in the Lake
Jackson or Corpus Christi sub-districts. Post Closure= 1 if the inspection occurred after October 2003. Dependent variables
are the number of all incidents and a subset of incidents – injuries & fatalities – reported within 6 months and 12 months after
an inspection. All specifications include control variables as discussed in the main text. Robust standard errors are clustered
by operators (for 181 operators). *** Statistically significant at the 1% level; ** 5% level; * 10% level.

The estimates in Tables VIII and IX are only informative about the impact of reducing

inspector familiarity if trends in INCs and incidents would have been similar in control and

treatment districts in the absence of the airport closure. To shed light on the validity of this

assumption, we replace the indicator for the post period in equation 3 with year indicators,

and plot the estimates of the interaction terms from regressions of enforcement actions,

incidents within 12 months, and injuries and fatalities within 12 months in Figure 4. In

all six subfigures, the coefficients in the pre-period are not significantly different from zero,

suggesting that trends in the outcome variables of interest are similar in the Lake Jackson-

Corpus Christi district and the control districts prior to the airport closure. Consistent with

the estimates in Tables VIII and IX, there are only small changes in enforcement actions

right after the airport closure. Component shut-ins and weighted INCs tend to be higher

after the airport closure, but the coefficient estimates are not statistically significant except

for the last two years (2009 and 2010).
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Figure 4.— Difference-in-Differences Coefficients for (Treatment * Year Indicators)

5. CONCLUDING REMARKS

There is an extensive literature on the effectiveness of increasing the frequency of inspec-

tions and/or inspection resources to improve environmental outcomes. At the same time,
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anecdotal evidence and concerns are often raised about the relationship between an inspec-

tor and the inspected party and the potential for regulatory capture. Yet, little attention

has been given to the allocation and organization of inspection resources. In this paper we

examine two parameters important in the design of inspections—the effect of increasing the

number of inspectors and the effect of decreasing the familiarity between the inspectors and

the inspected party. While we focus on offshore oil platforms, the concern that inspectors

are not being optimally employed is ubiquitous across regulatory agencies.28

Given concerns of endogeneity we construct an instrumental variable based on exogenous

weather-related changes in the number of inspectors sent to inspect a platform. We also

exploit the agglomeration of two inspection offices to obtain an exogenous determinant of

the number of times an inspector has visited the same platform. We find more inspectors

result in more severe sanctions being issued by the inspectors. While we do not have data

on the costs and benefits of inspectors and compliance, our results suggest that at the very

least, the level of staffing of inspectors in the Gulf of Mexico was inadequate to detect all

violations. We also find that reducing the repeat visits of the same inspector to the same

platform results in more severe sanctions being issued. Both of these results are consistent

with inspectors undergoing industry pressure not to issue violations.

While we find more violations would be detected if more inspectors were sent on an in-

spection or familiarity between the inspector and the inspected party is reduced, we do not

find evidence that increasing the enforcement actions results in fewer self-reported incidents

(such as oil spills, injuries and fatalities). There are several possible reasons for our findings,

which are ripe for further research. First, it is possible that the sanctions issued to oil and

gas platforms were not stringent enough during the time period of our study to reduce the

risk of more accidents. Indeed this was a conclusion made after the BP Deepwater Horizon

by the director of the offshore regulatory agency, who stated that “sanctions that are cur-

28For example, see “Internal Audits Reveal Federal Enforcement Lapses,” Energy and Environment Daily,
April 18, 2011 on the Mine Safety and Health Administration (MSHA) and Tom Zeller, Jr., “Nuclear Agency
Is Criticized as Too Close to Its Industry,” New York Times, May 7, 2011.
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rently available to deter and punish violations of safety and environmental standards and

regulations, must be substantially strengthened” [Bromwich, 2010]. Since then, the average

inspection in the Gulf has received more INCs, however civil penalties have not increased

in frequency or magnitude and attempts to raise the penalties have not been authorized

by Congress.29 Second, it is possible that while the number of self-reported incidents is un-

changed, the number of actual incidents has decreased. Government enforcement agencies

often rely upon self-reports of incidents they would not otherwise detect. Thus, the more

stringent enforcement brought about by changing the number or mix of inspectors might

induce both deterrence and increased self-reporting. This is plausible since failure to report

an incident is itself a law violation, and enhanced scrutiny by inspectors might cause firms

to both take better care to comply with the law and to self-report incidents if they happen.

29According to a report analyzing enforcement actions before and after the BP
oil spill, prepared by staff members of the House Natural Resources Committee “
Dangerous Drillers: Offshore Safety Lapses Continue Three Years After BP Spill,”
http://democrats.naturalresources.house.gov/sites/democrats.naturalresources.house.gov/files/2013-05-
10 BP Spill DangerousDrillers.pdf
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APPENDIX A: EXAMPLE FROM THE POSSIBLE INCIDENT OF NON-COMPLIANCE (PINC) LIST

In the PINC list, there are guidelines governing many aspects of oil and gas operations including testing

and checking specific components’ functionality, personnel training, record-keeping, drilling operations, and

oil spill response plans. Below is an example of a general environmental protection guideline listed in the

PINC list.30

Does the operator ensure activities authorized in this part are carried out in a manner that provides for

protection of the environment?

Inspection procedure:

Visually check the waters surrounding the facility when en route to, approaching, departing, or passing a

facility by boat, helicopter, or fixed wing aircraft. Look for sheens, slicks, wastes, and other pollutants origi-

nating from the facility, risers, or pipelines. During the facility inspection, check the water for signs of any

pollutants.

If noncompliance exisits

• Issue a warning (W) INC if:

The cause of the discharge has been identified and corrected prior to the inspection or observation,

and no further pollution is occurring.

• Issue a component shut-in (C) INC if:

A specific component has been determined to be the cause of pollution and the pollution is ongoing at

the time of the inspection or observation.

• Issue a facility shut-in (S) INC if:

More than one specific component has been determined to be the cause of the pollution and the pollution

is ongoing at the time of the inspection or observation.

The PINCs outline the enforcement actions to be taken upon different degrees of non-compliance. The

inspector must take these actions; however, one might imagine that there could be circumstances when the

interpretation of the definition of a specific component or the timing of the incident might influence the

enforcement action taken.

30For the full list of PINCs, see:
http://bsee.gov/uploadedFiles/BSEE/Enforcement/Inspection Programs/OFFICEPINCLIST JBA
%20Changes%20Included.pdf
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APPENDIX B: WHY ARE THE IV ESTIMATES LARGER THAN THE OLS ESTIMATES?

As Table IV in the paper illustrates, the IV estimates on the impact of inspector group size on enforcement

actions are always larger than the corresponding OLS estimates. Besides endogeneity, there could be two

other reasons driving this result: measurement error in group size and non-linearity in the effect of group size.

As discussed in section 4.1, measurement error in the number of inspectors is not as likely as non-linearity

in the effects, and therefore we examine this in more detail. The IV estimates use variation in the inspection

group size induced by wind speed, whereas OLS estimates use all the variation. If weather affects a particular

level shift in the group size and this level shift has a larger effect on enforcement, then the IV and the OLS

estimates will differ. We find that the instrument has the largest effect in increasing the number of inspectors

from one to two (Table X, column 1), less of an effect in moving the number of inspectors from two to three

(column 2), and no statistically significant effect in moving from three to four or more (column 3).

To examine whether there are non-linearities in the enforcement actions by inspection group size, we

estimate the OLS specifications in Table IV using dummies for each level of group size instead of the count

of inspectors. This approach gives us a separate coefficient on each group size level: moving from one to two

or more, three or more, and four or more inspectors (Table XII). In most cases, F tests reject the null that the

coefficients are equal. Therefore, it appears that the true relationship between the enforcement actions and

the number of inspectors is non-linear, but because we do not have enough instruments, we have estimated a

linear model and restricted the effect to be constant. Weights for IV estimators in the presence of non-linearity

have been derived by Angrist and Imbens [1995], Heckman et al. [2006] and Lochner and Moretti [2011].

Following Lochner and Moretti [2011] we re-weight the OLS estimates of in Table XII using estimated IV

weights, and use a general Wald test, robust to a non-linear relationship between the endogenous regressors

and the dependent variable, to test for exogeneity.31 The re-weighted OLS coefficients are larger than the

OLS estimates (Table XII), however the re-weighted OLS coefficients are still smaller than the IV estimates.

Using the general Wald test, we cannot reject the null hypothesis of exogeniety. Therefore, we have some

confidence in the OLS estimates, however, the IV estimate, which is the weighted average of the marginal

effects is still useful for guiding inspection policy.

31If the true relationship between the number of inspectors and enforcement is non-linear, then the tradi-
tional Hausman test is uninformative.
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TABLE X

Instrument’s Effect on Level Shifts in Group Size

(1) (2) (3)
More than 1 More than 2 More than 3

Std. Dev. WSPD .041** .021** .001
(.020) (.008) (.001)

Controls Yes Yes Yes
n 2,008 2,008 2,008
Mean of Dep. Var. .30478 .05129 .00697

Notes: Each column represents a separate OLS regression of variation in wind speed on indicators for whether there were more
than 1, 2, or 3 inpectors in the group. All regressions include the same controls as in previous regressions. Sample includes
production inspections in Lake Jackson between October 2003 and September 2010. Robust standard errors are clustered by
operator (for 91 operators). *** Statistically significant at the 1% level; ** 5% level; * 10% level.

TABLE XI

Estimates at Each Level Increase in Group Size

(1) (2) (3) (4)
Warnings Component Facility Weighted

Two Inspectors .011 .098 .017 .273
(.061) (.062) (.016) (.172)

Three Inspectors .259 .645*** .119** 2.025***
(.176) (.237) (.050) (.600)

Four or More Inspectors .057 .582 .030 1.338
(.352) (.386) (.090) (1.288)

Controls Yes Yes Yes Yes
n 2,008 2,008 2,008 2,008
Mean of Dep. Var. .45518 .48257 .03386 1.55578

Notes: Each column represents a separate OLS regression of indicators for the size of the group on the enforcement actions
(W, C, F, and W+2C+4F). All regressions include the same controls as in previous regressions. Sample includes production
inspections in Lake Jackson between October 2003 and September 2010. Robust standard errors are clustered by operator (for
91 operators). *** Statistically significant at the 1% level; ** 5% level; * 10% level.

TABLE XII

Re-weighted OLS Coefficients

Warnings Component Facility Weighted
(1) (2) (3) (4) (5) (6) (7) (8)
OLS ROLS OLS ROLS OLS ROLS OLS ROLS

No. Inspectors .069 .101 .216*** .263*** .036** .049** .644*** .823***
(.054) (.057) (.053) (.084) (.015) (.019) (.153) (.241)

General Wald (p-value) .910 .696 .050 .402
Notes: OLS estimates are the same as found in Table IV. Re-weighted OLS estimates from derived by using IV weights to
calculate an average of the coefficients in Table . The General Wald test [Lochner and Moretti, 2011] compares the re-weighted
OLS in this table to the linear IV estimator (found Table IV).
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