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Abstract 
 
When the repeated prisoner’s dilemma setup is generalized to allow for a unilateral breakup, 
maximal efficiency in equilibrium remains an open question. With restrictions of simple 
symmetry with eternal mutual cooperation, defection, or (matched) alternation on the 
equilibrium path, we describe the upper limit of discounted lifetime payoff and construct 
simple social conventions that, for a large set of parameters, achieve it. While all other well-
known equilibrium designs in the literature punish defections with a breakup and thus reach 
the optimum only in degenerate cases, exploited cooperators in ours allow defectors to 
compensate them by cooperating more in the future. 
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1.  Introduction 

Gains from cooperation benefit society as a whole. Yet, a self-interested individual can 

hardly escape the temptations to defect if it is a myopically dominant strategy. Various 

mechanisms that help incentivize cooperative behavior have been studied in the context of 

the infinitely repeated prisoner’s dilemma (PD) game. It is well known that privately imposed 

trigger strategies, like tit-for-tat (Axelrod, 1984), can sustain eternal cooperation within fixed 

partnerships.
1
 In settings where players are randomly re-matched into fresh partnerships a 

public record-keeping device (Rosenthal, 1979; Okuno-Fujiwara and Postlewaite, 1995; 

Takahashi, 2010)
2
 or punishment contagion (Kreps et al., 1982; Kandori, 1992; Ellison, 1994) 

can serve as a similar trigger to sustain cooperation. While the simplicity of fixed and one-

shot random matching paradigms is theoretically appealing, they do not accurately capture 

the realities of the most common partnerships in society such as friendships, marriages or 

employment and business relationships, which mostly exist on a voluntary basis. It is 

precisely this voluntary feature, where a defecting partner can unilaterally leave for the 

matching pool, that makes it impossible for her cooperative counterpart to exercise the sort of 

direct punishments prescribed by trigger strategies frequently encountered in the fixed 

partnership paradigm. The difficulty of cultivating cooperation in such relationships is further 

confounded in a large and complex society where collecting relevant information regarding 

individuals’ past histories is just too costly to be a feasible option. 

So, how could cooperation come about in partnerships where continuation is only 

voluntary? Cooperative behavior builds on reciprocity and thus it can only emerge if the costs 

of defecting continuously outweigh the benefits. In a voluntary partnership the costs include 

losing a perhaps cooperative counterpart, the resources and time spent on finding another 

willing partner in the matching pool, and the forgone business opportunities due to the 

gradual nature of developing mutual trust in a new stable relationship.
3
 As a result, the grim 

prospect of re-entering the matching pool can serve as a disciplinary device that elicits and 

                                                
1 In environments where signals are noisy, more sophisticated strategies supporting belief-free equilibria can be 

used to sustain cooperation (see, for example, Mailath and Morris, 2002; Piccione, 2002; Ely, Horner, and 

Olszewski, 2005). 
2 Also see Dixit (2003) for a discussion about private information intermediaries in the context of an asymmetric 

PD game. 
3 In Shapiro and Stiglitz (1984), workers receiving efficiency wages do not shirk, due to fear of being caught 

and fired, in which case they would expect to live with the far lower market clearing wage for extended periods. 

In Carmichael and MacLeod (1997), inefficient gift exchange between partners before they start to trust each 
other serves a similar role of making the partnership breakup costly. Ghosh and Ray (1996), Kranton (1996), 

and Watson (2002) have the partners only gradually increase their level of trust, a costly process a player already 

in a complete mutual trust stage would be loathe to repeat after being abandoned by the previous betrayed 

partner.  
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sustains long-term cooperation. The re-entry to the matching pool, to some extent, is thus 

conceptually similar to the trigger strategy in the fixed partnership paradigm.  

It is worth noting that, even though in voluntary partnerships it is the implicit offer of 

future cooperation that allows the threat of separation to elicit partners’ current cooperation, 

an offer of “right off the bat” cooperation can never be sustained as the equilibrium strategy 

of the whole population. Early cooperation indeed encourages players to take advantage of 

their cooperative counterparts through early defection followed by their escape to the 

matching pool. Therefore, the option of unilateral separation acts as a double-edged sword 

that not only enforces but also delays the cooperation. 

In order to maximize the lifetime expected payoff of a player in the matching pool, we 

investigate how the delay in full cooperation or the so-called trust-building phase can be kept 

at the minimum in a binary-action setting. The following are the specific research questions 

that we ask: What is the upper bound to the lifetime expected payoff a player in the matching 

pool can earn under all social conventions of simple symmetry with eternal mutual 

cooperation, defection, or (matched) alternation? Does there exist an equilibrium distribution 

that yields players the above maximal payoff?  

In order to address these questions, we assume that the economy is populated by a 

continuum of infinitely lived agents who have to decide if they will stay with the same 

partners to play a two-person prisoner’s dilemma game for at least one more period. While 

theoretically the population equilibrium may involve very complex behavior and outcome 

patterns, experience tells us that successful social conventions in human society are rather of 

simple forms.  Thus we focus on stationary population equilibrium, also called the social 

norm or convention, where once partners have come to trust each other and decided that they 

would want to stay together forever, their behavior has some symmetry in it, consistent for 

example with Kant’s principle of categorical imperative or the moral maxim of “Do unto 

others what you want done unto you” (Luke 6:31).
4
 In fact, if such a maxim is upheld within 

the same round, then mutual cooperation or mutual defection would be the expected stable 

outcome. Extending to two consecutive rounds, it allows for an additional symmetric 

outcome in which one player cooperates only in even and the other only in odd rounds of 

their partnership. Let us call it the social convention of simple symmetry if players have 

positive odds to end up in stable partnerships with eternal repetition of exactly one of the 

                                                
4 These are also called “moral Golden Rules”. 
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three symmetric outcome patterns, called eternal cooperation, eternal defection, and eternal 

alternation. To our knowledge, this is the only kind of social convention all studies in the 

related literature have ever dealt with.  

Social convention with eternal cooperation is intuitively the form which society will 

prefer to implement, for efficiency’s sake. Eeckhout (2006), Fujiwara-Greve and Okuno-

Fujiwara (2009) and Rob and Yang (2010) have designed different variations of this sort in 

recent studies. However, as we discuss in detail in Section 4 of this paper, their equilibrium 

designs generically cannot achieve the maximal lifetime expected payoff for social 

conventions with eternal cooperation. In fact, the literature spots no generic characterization 

of sustainable frontier of optimal equilibrium payoffs, not to mention any folk-theorem type 

result, once the more realistic feature of voluntary continuation is introduced into the standard 

repeated fixed-partnership setup. Our study provides a first such generic result and 

contributes towards eventually closing this glaring theoretical gap. 

In this paper, we construct two classes of social conventions in the form of subgame 

perfect equilibrium distributions, one each with eternal cooperation or alternation, and show 

that for a large parameter region of positive measure, the maximal lifetime expected payoff 

for social conventions of simple symmetry can be achieved. More specifically, in our social 

convention with eternal cooperation (EC), players play mixed actions at the initial state and, 

depending on the realized outcome, transition either back to the origin in the case of mutual 

defection, or to the absorbing state of EC in the case of mutual cooperation, or to the 

transitional states of alternation otherwise. In the transitional states, the previous defector is 

to cooperate while the previous cooperator mixes. The state of mutual cooperation is an 

absorbing one. Thus, the partners are expected to go through finite stretches of alternation 

between cooperation and defection with positive probability, before ending up with eternal 

cooperation with probability one. In some sense, alternation is interpretable as “within-

partnership punishment” of the defector of the previous round. In our social convention with 

eternal alternation (EA), by contrast, the partners stay together only after their actions in the 

stranger’s phase are different.  

In both types of social convention, the payoff at the origin is the same as the 

“equilibrium punishing” payoff for the defector from the previous round on the alternation 

path within the partnership. In some sense, this stick also serves as carrot at the same time, to 

coax the equilibrium deviator to subject himself to his partner’s one-period advantage taking 

as revenge, instead of heading to the pool himself. It is interesting to note that, in one 
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particular case within the optimal classes of social conventions, the partnership will never 

voluntarily break up, once past the very first stranger’s phase. Also, all off-equilibrium 

punishment for deviation can be kept within the partnership, without resorting to breakup.   

The rest of the paper is structured as follows. Section 2 discusses the game structure 

and different concepts of strategies and equilibrium. Section 3 discusses our novel social 

conventions with either eternal cooperation or eternal alternation, and characterizes the 

conditions for their optimality among all social conventions of simple symmetry. Section 4 

discusses in detail well-known designs of equilibrium in the literature and compares their 

payoff performance with ours. Section 5 provides further discussions on the model. Section 6 

concludes the paper. 

2. Basic Model of Voluntary Continuation Prisoner’s Dilemma 

Let   be the discount rate in an infinite horizon discrete time environment. There is a 

continuum of players who are either single or matched in bilateral partnerships that were 

formed in the past. At the beginning of each period, single players are randomly matched into 

pairs. All players then simultaneously make a binary decision            to cooperate or 

defect in a PD game with payoffs given by 

       

                

               

where     and    .  

After viewing the outcome of the PD game in period t, every player simultaneously 

makes a second binary decision          whether to stay    ) with the current partner. By 

letting     denote one’s partner’s stay decision, the pair is dissolved if and only if         , 

i.e. at least one of them decides to leave.5 However, if the partnership continues, both players 

proceed to face the same decision problems as in the previous round. For each player, let 

                                                
5 One interpretation of the parameter   is to assume that each player has a constant survival rate   per period 

and, once they die, the current partnership dissolves and a new player of the same behavior trait, i.e., using the 

same strategy, is reborn in the singles’ pool. As players have no say about their survival, for equilibrium analysis, 

it does not make much difference whether both partners die independently and thus their partnership is 

exogenously broken, or if their death is somehow correlated as if they are hit by a contagious killer flu. Formally, 
however, in the case of the exogenous partnership breakup, the surviving widow lives on to enjoy an additional 

payoff, while in the case of simultaneous death these same payoffs are earned by newborn replacements. Thus as 

long as the probability of partnership continuation is kept the same, both the old and the new players’ best 

responses are also the same. See also Mailath and Samuelson (2006) for similar reasoning. 
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                 and                              denote the stage outcome 

spaces.  

Decision      may vary with history                          
    

  of the previous 

  periods with             and            , while the stay decision     varies with history 

                           
    

    . Let    denote the empty history at the 

beginning of time and let   
      . Let       

  
    and       

  
   .  

Definition: Let     denote the probability to play C for any      and      the probability 

to stay for any     . A behavior strategy               is a pair of mappings 

        with             and           .  

 Note that a fixed-partnership can be viewed as a special case of the voluntary 

continuation framework with the restriction of        for all      in the above 

definition. 

Definition: Let                                 
      

  and           
  denote the  -

period continuation histories after   , respectively. Then,         is partnership 

independent, if        , i.e., the partnership breaks up in period  , implies         

           and                    for all        ,      and all    .   

In other words, the player’s strategy in the new partnership is not affected by his 

experience in the previous one, as if he is going back to the origin with empty history    each 

time the old partnership is broken up. Assuming partnership independence, the player no 

longer needs to worry about histories that contain the event of a breakup, i.e.,          for 

some t. In other words, any strategically relevant history of period t must have        

      . For expositional simplicity, we subsequently concentrate on the simpler form of 

history recording               
     and      

 
    unless noted otherwise.   

Thus, the strategically relevant part of any partnership independent behavior strategy 

can be restated as              with                      , whenever there is no 

danger of misunderstanding. Note that consideration of discounted payoffs over different 

future partnerships will not be affected by this simplified notion of behavior strategy, as we 

will see below. Technically, the C/D-decision part of history recording is exactly the same for 

     and  . As is common in the literature, for equilibrium analysis we are only interested 

in strategies of this kind. Furthermore, individual deviations using partnership dependent 
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strategies trivially will not benefit any player in any equilibrium based on partnership 

independent strategies.
6
 

Let   denote the set of all behavior strategies. Let    denote the set of potential 

histories of infinite length. For any     , let           be the player’s stage payoff when 

he plays   and his partner     in period  , then                    
 
    is the player’s 

expected lifetime payoff from this infinite history with discount rate  . 

Now, assume that the behavior composition in the singles’ pool with a continuum of 

players is stationary.
7
  The size of the pool is normalized to  . Let      denote the set of 

probability measures on any set  . Let        be the stationary strategy distribution in the 

pool. For any strategy    , let            denote the probability that       realizes in 

period t. Then, the expected payoff from the strategy   given the stationary population   is 

                                  
 
   .

8
 Now, we can define equilibrium concepts 

with these notations. 

Definition:        is a Nash equilibrium distribution if, for all         , we 

have               , for all     .  

Now, let                       denote the set of all continuation histories (or 

paths) at       and                           
 
    for all         be its expected 

continuation payoff calculated at time  . Let    
        ,

 
such that    

             

with                   for any   and      . Due to self-similarity of the events 

potential anywhere in the game, we always have        . Thus, the expected continuation 

payoff given     can be written as      
                    

             
 
   . Note 

that the term         
    is adapted to account for updated belief about the partner’s strategy 

                                                
6 Note although the singles’ pool in the equilibria we study is never empty, this may happen in situations when 

there is no breakup on the equilibrium path such as in one version of all-defection SPED. An off-path breakup 

may rematch the same partners from the last period with positive likelihood, which could challenge the 

assumption of partnership independence in degenerate case. This can be avoided by assuming continuous inflow 

of newborn agents or by introducing exogenous random breakup or death as a substitute for the discount rate. 

Our model setup is chosen for the sake of simple exposition only. See footnote 6 for more discussion. 
7 Stationarity of the pool population in equilibrium is a common and basic assumption in the literature. It is 

always self-consistent in the following sense. Let    be the likelihood that a partnership in the  -th period 

continues into    , for some given type   in a stationary population and         . Given the exogenous 

breakup rate of    , the share of   types whose partnership survived t periods can be recursively calculated at 

          , for        , with      being the initial size. Thus, after the process has gone on for infinitely 

many periods already, the total share of   that is expected to go back to the pool is hence    
      

        

 , as all terms but one in the sum cancel each other out. Note that this new solution to the stationarity issue is 

equally applicable to exogenous-type models like Ghosh and Ray (1996). 
8 Let             

 
denote the distribution over all possible histories of infinite length, induced by the player 

playing   within the pool of  . Assume accountability of            , then                 
        .  
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type based on the personal experience    playing   up until t, which is in general different 

from the stationary singles’ pool population  .  

Definition:        is a subgame perfect equilibrium distribution (SPED) if, for all   

      ,      
          

    , for all      and     . 

In general, behavior rules and patterns of outcome paths in SPED might be very 

complex. However, if the set of SPED behavior rules is to realistically establish itself as a 

social convention within a society, they cannot be too complex, with respect to both the rule 

description and the pattern of implied long-run outcome paths it aims to achieve. Also, it is 

inconceivable under such a social convention that the partners in a stable relationship never 

end up with some sort of symmetric outcome paths, for the sake of fairness and reciprocity 

common in moral maxims in society. Hence, our main focus is on realistic social conventions 

as defined below. Let          denote the set of all achievable continuation paths at    for 

someone with strategy         . 

Definition: A SPED p is called a social convention of simple symmetry if there is at least one 

         such that the player using   expects with positive likelihood to end up with 

exclusively experiencing the outcomes of either                           

               or                        , after some finite periods of transition. In 

other words, there is a finite period k where    realizes with positive likelihood under      , 

such that                          . 

In addition, to avoid the complexity of a general behavioral strategy, the literature has 

limited itself to the so-called Markov strategy as candidates for equilibrium behavior. Let 

         
  be a partition of   with     ,    

 
     ,        ,    , while 

       denotes the state that contains history  .  

Definition: A behavior strategy            is a Markov strategy (or finite automaton) if 

there is a finite partition   so that            implies           , for all   ,   . 

Equivalently, it can be written as           . 

In fact, any Markov strategy induces a Markov transition rule,            

where                    is the likelihood for the new state to be   , given that the state in 

the last round is   and the stage outcome is             . In other words, the action at the 

history (subgame)     under such a Markov strategy depends only on the state       the 
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player is currently in, but not on any particular path that led to it.
9
 Note also that a Markov 

strategy is not necessarily partnership-independent. In fact, it is easy to construct ( , ) that is 

sensitive to partnership changes. For example, the Markov strategy “play   in odd number 

periods and play   in even number periods while always leaving after one period” is not 

partnership-independent.  

3. Optimal Social Convention of Simple Symmetry 

What is the maximal lifetime expected payoff achievable in a SPED in the voluntary 

continuation PD game? We will provide a partial solution to this open question here. 

As a starting observation, note that given any equilibrium distribution   and 

equilibrium strategy         , the expected lifetime payoff in the strangers’ pool,    

      , cannot be higher than the payoff the player expects at any history in the future, i.e., 

                . Otherwise, the player would have a strict incentive to deviate at some 

history      by voluntarily going back to the pool instead of sticking to the same partner as 

prescribed by  . This limits the extent to which partners can punish each other within the 

partnership to sustain a high level of cooperation the way the standard trigger-strategy could 

in the fixed-partnership setup. Note that unconditional defection with or without breakup is 

always sustainable as a SPED, denoted by    , that yields the initial lifetime payoff       

on the equilibrium path of    . 

Still, the ideal social convention which people intuitively associate with PD is to 

sustain mutual cooperation forever, after some periods of feeling each other out. Indeed, a 

feature common to almost all known desirable equilibria in the literature is that agents 

eventually reach the state of eternal cooperation    . Once there, a player’s expected lifetime 

payoff becomes                    . For     to be sustainable,        is a 

necessary condition to ensure no breakup. On the other hand, deviating to defection yields 

    in the current period, plus no less than the expected lifetime payoff from re-joining the 

strangers’ pool next period,     . Thus, the condition of no deviation further requires 

           . It implies that in the presence of eternal cooperation the initial lifetime 

payoff    must be bounded from above by  

                  (1) 

                                                
9 As a matter of fact, any specific description of a Markov strategy starts with a complete transition rule, as it is 

oftentimes infeasible to start with an explicit partition of  . 
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Lemma 1: The initial lifetime payoff of any Nash equilibrium distribution with eternal 

cooperation on the path cannot exceed    . 

Another conceivable simple and symmetric outcome path as social convention is 

when the partners coordinate in alternately playing   or  , i.e.,     for one person and the 

matching mirror history of              for the partner. The continuation payoffs 

associated can be easily calculated as                     and             

   , respectively. We call this state eternal alternation. Assuming there is no incentive to 

break up on this path, it is trivial that the initial lifetime payoff    must be bounded from 

above by the smaller of these two numbers, namely,  

                       (2) 

Lemma 2: The initial lifetime payoff of any Nash equilibrium distribution with eternal 

alternation on the path cannot exceed    . 

In the following we characterize two classes of Markov strategies that are sustainable 

as SPEDs, one with eternal cooperation and the other with eternal alternation on the 

equilibrium path, and achieve the highest possible lifetime expected payoffs as given by 

Lemmas 1 and 2, respectively.  

Let us first discuss when the payoff upper bound     can be achieved in a SPED. 

Consider a 6-state set                               with the following actions and 

transition rules.    is the initial state. Players always return to this state after any partnership 

breakup or after two defecting partners at     agree to stay together. The outcome of the PD 

game determines the transition to subsequent states. There, each player first makes the 

decision on whether to stay, and then on whether to cooperate in the case where the 

partnership stays intact. If the partner cooperates, defecting players in state        transition 

to state     . In any other state, defectors stay in that state if both defect. Otherwise, players 

transition to state    where       ,   ,   , or     is the current stage-PD outcome of 

any state. Players play   with the probabilities                 and       

                  in the states    
and     , respectively. Players choose to stay 

with probabilities        and            in the states      and       respectively. In all 

other situations, players never leave and always cooperate. Fig. 1 is a flow diagram 

illustration of this strategy and its transition rules. Arrows denote events that can happen on 

the (equilibrium) play path. Dashed lines represent transitions due to partnership breakups, 

while solid ones denote transitions of players that agreed to stay and played the PD game 
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with their current counterparts. Off-equilibrium state transitions follow the dotted lines. Note 

that if a player is in state    , then his partner must be in state      or    , and vice versa. 

Once mutual cooperation emerges, both players enter state     and cooperation thus lasts 

forever. We denote this particular class of Markov strategies with eternal cooperation as  

   . 

 

Proposition 1: (1) If          , i.e.        then no SPED with eternal cooperation on 

the path exists. (2) If          , and          , then                      

  . (3) If     and          , then there exists a Markov strategy with eternal 

cooperation     that is a SPED and yields    .  

Proof of Proposition 1: To prove (1) recall that any player can always choose to defect and 

thus earn a lifetime payoff of at least  . Therefore, in any equilibrium each player must earn 

at least that much. (2) is straightforward by comparing     with    .  

Now, we prove (3). First, let    denote the expected payoff at the initial state    and    

with                       denote the expected payoff at the respective states 

conditional on the two players staying together to play the PD game. Along the equilibrium 

path, we have them expressed as follows: 

     B DD D   CD CC 

     

    

     

      

     B DD DC CD CC 

     

  

     

       

 

 

   

B DD DC CD CC 

            

        

 

   

B DD DC CD CC 

            

        

 

   

B DD DC CD CC 

          

       

Fig. 1. Eternal Cooperation Markov Strategy    : Each rectangle displays a state of the game with 

prescribed equilibrium actions (y, x). Boldface letters denote outcomes on the equilibrium path. Dashed arrows 

signal that breakup and return to the initial state    occurs with a positive likelihood. Solid lines with arrows 

show state transitions that follow the outcomes of the PD game. Dotted ones signal off-equilibrium transitions. 
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   (3) 

                                                (4) 

                                                         (5) 

              
                                              + 

                            
                                       (6) 

Note that equation (3) yields            . The equilibrium probabilities to 

cooperate and to stay,   ,    ,   and    , as specified in the description of     are chosen so 

that equations (4), (5) and (6) imply that          and                     

          It is straightforward to check that for any                      all four 

parameters fall within the interval      , which in turn makes     well defined. To prove that 

the strategy specified in this way constitutes a SPED, by the logic of dynamic programming, 

we need to check that no player at any state has an incentive to do a one-time deviation from 

the assigned action.  

First, note that as                                , no player strictly prefers to exit 

her partnership. Furthermore, as            , players in states     and      are 

indifferent about whether to leave their counterparts.  This guarantees the optimality of all 

prescribed stay/leave choices. Next, consider players’ incentives to cooperate. Playing   

yields                          in both states     and             

                            in both states    and      and         

    +         =   =      in both states     and     . Agents are thus always 

indifferent as to whether to defect or to follow the prescribed     choices. To summarize, 

given   ,    ,   , and     
as described and the Markov strategy using these parameters, 

nobody has a strict incentive to deviate to different actions at any state. This proves that this 

Markov strategy is a SPED. Moreover,       . □ 

The novel device to achieve the optimal payoff with eternal cooperation, in actual fact, 

is to build in a transitional loop of alternations between   and  . This transition allows for 

differentiated treatment of two players who have been choosing different actions in the 

previous round. In this way, we manage to find the proper amount of mixing between   and 

 , as well as between stay and leave at different states, to achieve 
 
          such that 

             If the partnership lasts forever, then with probability one it will end up in 

an eternal cooperation continuation path, i.e.,     is the (only) absorbing state.  
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As is apparent from the proof, there is a lot of flexibility within the class of    , both 

on and off the equilibrium path, to sustain    . On the equilibrium path, the design works 

with any           , as explicitly stated in Corollary 1 below. An increase in the leave 

likelihood of the defector of the previous round increases the chance that he is forgiven, 

which also shortens the expected length of the transitional loop of       alternation, but 

increases the probability that the partnership dissolves before the mutual cooperation is 

established. Note that, with      , the partnership never breaks up once on the       

path. 

Corollary 1: Given that        and                 are fixed,    is a SPED that 

yields     for any             and                        . 

Off the equilibrium path, continuations may vary greatly without destroying the SPED 

property. The specific form of     as illustrated in Fig. 1 is chosen to put them back into the 

same state within the partnership as much as possible, as if to make them correct their own 

mistakes in the very same situation in case partners went astray from the equilibrium path. 

Note that the partnership is intact following the (equilibrium) outcome of    in state   , 

even though the players are supposed to go back to state   , where they will behave in the 

same way as if they were strangers. 

Fig. 2 illustrates the content of Proposition 1 in the parameter space       with 

      fixed. Below the curve      , the combination of a small discount factor   and a 

large payoff from unilateral defection     prevents mutual cooperation from being 

sustainable in any subgame. Right from the line        , alternation dominates 

cooperation payoff-wise due to the relatively high   that increases     but reduces    . The 

     line further divides the remaining area into the submodular region   , the region with 

the darkest shade, and the supermodular region    , the region with the medium shade. Our 

    matches the maximal possible lifetime payoff     for all parameters inside region   .  

Note that when    , like in region    , the PD game becomes supermodular in terms 

of Takahashi (2010), or defensive in terms of Dixit (2003), in that the more likely a player is 

to cooperate, the smaller the incentive his partner has to defect.
10

 

                                                
10 In a random matching PD context with first-order information, Takahashi (2010) shows that it is a lot harder 

to sustain the all-cooperation population equilibrium if    , i.e. the payoff is submodular, with strict 
equilibrium. In a model with two populations, Dixit (2003) finds that under this aggressive condition, honesty in 

one population may induce dishonesty in the other. Similarly, in our model the     condition makes it more 

tempting to exploit one’s counterpart as the cooperation level increases. 
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Our strategy     as specifically constructed in the proof of Proposition 1 is not well 

defined in region    , as the parameter        cannot be smaller than  . This is because a 

relatively small   diminishes the benefits of the       alternations below the level that can 

sufficiently compensate the cooperating stranger facing defection so that her expected payoff 

matches the upper bound    . Without this optimality requirement, however, this basic 

structure can generate SPEDs in the region     as well.  For example, by setting      we 

easily obtain a class of SPED called cautious in Section 4. It is, however, an open question 

whether there are other social conventions of simple symmetry that achieve the payoff upper 

bound    . In the next section we will show that the delayed-cooperation SPED by Fujiwara-

Greve and Okuno-Fujiwara (2009) can indeed do so for a degenerate set of parameters.  Here, 

however, their class of strategy can be used in Proposition 2 below to show that the highest-

payoff social convention with simple symmetry in region     must always be a SPED with 

eternal cooperation. 

 
  
  

  

  

  

    

        

  

  

  
  

  

    
  

  

Fig. 2. Parameter Regions     and    with      . 

  

  

  

  
  

  

        
  

  

   
  

  

      

    



14 

 

Proposition 2: If    , and          , then there exists a SPED with eternal 

cooperation that has a higher initial lifetime payoff than any Nash equilibrium with eternal 

alternation, i.e., with       . 

Proof: Divide region     into an infinite number of partitions    
 ,           such that 

   
           s. t.    ,        , and                       , where      

     
 
   . In each partition    

  there exists a delayed cooperation equilibrium with   

periods of defection, as previously described in Fujiwara-Greve and Okuno-Fujiwara (2009). 

In such an equilibrium, all players defect during the initial   periods and cooperate thereafter; 

players leave if and only if their counterparts deviate from this pattern. It yields an initial 

lifetime payoff                                  . Because   

             , thus                         . Finally, as         the 

right-hand side is greater than    . □ 

Let us now discuss when the payoff upper bound     can be achieved in a SPED. 

Consider a 5-state set      
        

     
     

      
   with the following actions and 

transition rules.   
  is the initial state and players also transition to this state in the case of a 

partnership breakup. If players do not break up, with outcomes   �   , cooperators always 

transition to state    
 , while their defecting counterparts transition to state    

  (    
 ) from 

states   
  and       

  (otherwise). Players that defected or cooperated mutually stay in their 

previous round states or, in the case of being in the initial state    
 , they transition to state 

      
 . Fig. 3 is a flow diagram illustration of these transitions. Players always defect in state 

   
  and always cooperate in states    

  and     
   In states   

  and       
  players play   with 

a probability   
                         . In state     

  players stay with 

probability   
                                   .  This is the only 

situation where players voluntarily leave the partnerships; in all other cases they always stay. 

Note that once the two players find themselves in states    
  and    

 , then the alternation 

between    and    continues forever. We denote this particular class of Markov strategy 

with eternal alternation    . 
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Proposition 3: (1) If          , i.e.,          then no SPED with eternal alternation 

on the path exists. (2) If           and          , then                      . 

(3) If                                   , then there exists a Markov strategy with 

eternal alternation     that is a SPED and yields    .  

Proof of Proposition 3: Proofs to (1) and (2) are straightforward. To prove (3), let   
  denote 

the expected payoff along the PD stage games on the equilibrium path: 

    
          

  (7) 

    
   

   
         

  (8) 

   
        

    
  

       
     

      
             

    
       

    
     

                            
       

       
    

        
  

   
       

    
   (9) 

Equations (7) and (8) yield the payoffs from eternal alternations:    
   

   
      

and    
                 . The equilibrium probabilities   

  and   
  are chosen so 

that in state   
  cooperating and defecting players earn the same:   

        
   

     
        

    
       

    
        

      
    

        
  

   
       

    
  ; 

and so that a defector facing a cooperator is indifferent between starting a new partnership in 

the state   
  and continuing the partnership in states       

 ,    
  and   

   
 :    

         
  

Fig. 3. Eternal Alternation Markov Strategy     
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     . Our strategy     exists only if   

     and   
   . These conditions are 

satisfied if           and          , respectively.  

We complete the proof that     is a SPED by showing that no player has an incentive 

to deviate from the eternal alternation path in the remaining states. In states    
  and  

   
  a 

player does not benefit from playing  , as the resulting mutual defection yields her a zero 

payoff and only delays her lifetime payoff      for a period. A similar argument applies to 

deviation to   in state    
 . If          , then securing the mutual cooperation payoff of 

1 is no better than a period equilibrium payoff of         
   Finally, 

  
         

        
     

   
   
     

   implies that players do not ever benefit from leaving 

their current partnerships. It follows that     is a SPED with   
     . □ 

Fig. 4 illustrates Proposition 3 with       fixed. Line       separates the bottom 

region where the small discount factor   discourages a player from cooperating against a 

defector in the hope of being rewarded later on. To the left of the         line, eternal 

 
  
  

  

 

  

  

  

    

        

  

  

  

  

  

    
  

  

  

  

 

Fig. 4. Parameter Regions     and     with      . 
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cooperation payoff-wise dominates just as in Fig. 2. The remaining top-right region is further 

divided by line        . Our EA strategy     matches the maximal possible lifetime 

payoff     for all parameters inside the region   . In region     in Fig. 4 there does not exist 

any SPED with eternal alternation that yields    . This is because the presence of the 

alternation path requires that the partners must first determine who will cooperate in the odd 

periods, and who in the even periods. Thus it must be preceded by at least one round of PD in 

which mixed strategies are used to determine which player will be the defector in the next 

round. It follows that a player who is willing to cooperate earns at most     when matched 

with a defecting counterpart, and no more than        when matched with a cooperating 

one. If         then       <     and thus the cooperating player’s lifetime payoff can 

never match the upper bound    . 

 

Proposition 4: If          , then there exists a SPED with eternal alternation that has a 

higher initial lifetime payoff than any Nash equilibrium with eternal cooperation, i.e., with 

      . 

Proof: Consider the following SPED: strangers defect with probability         and 

cooperate otherwise; partners defect if they cooperated last period and vice versa. 

Cooperators stay with defectors but leave cooperators. Defectors stay with cooperators with 

probability            and leave defectors always. This equilibrium strategy yields the 

initial lifetime payoff         which is greater than    . □ 

Note, that this strategy looks structurally similar to our     as illustrated in Fig. 3. 

The difference is that once the   /   phase starts in our current best EA strategy, then it 

continues forever. In the strategy of Proposition 4, the current defector (cooperator to-be) 

always leaves with a constant positive probability and thus the alternation is with positive 

probability not eternal. In fact, without this modification,      in its originally specified form 

would not be well-defined. In this equilibrium, the payoff from   /   alternation is strictly 

smaller than    . Combining all the above results, we straightforwardly have the following 

conclusion. 

Theorem 1: Aside from the parameter regions           for     and           

for         (regions     and     in the figures), the payoff upper bound       

                for social conventions of simple symmetry can always be realized, with 

either     ,    , or    . 
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Fig. 5 shows all three regions where equilibrium strategies     ,     and always-defect 

match the upper bound       in grey. The additional dashed and dotted lines illustrate the 

limited sets of parameters where various previously known equilibria do so as well. These 

equilibria will be briefly discussed in the next section. Note that while in most meaningful 

interpretations of the PD game the total surplus in    must be non-greater than that in   , 

i.e.,      ,
11

 this condition does not guarantee that the optimal SPED must be from 

eternal cooperation. In fact, for sufficiently low discount rate, the     strategy beats the EC 

one for optimality even in this condition, because the needed transition phase for the former 

is much shorter [due to lower off-equilibrium payoffs] as illustrated in the proofs [of Prop. 

1+3].  

                                                
11 Characterization of behavior in the area of       that includes the whole     area only serves the purpose 
of theoretical completeness. 
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4. Comparison of well-known SPED in the Literature
12

  

In the last section, we characterized two classes of Markov SPED that achieve the highest 

possible lifetime payoff among all SPED that either have eternal mutual cooperation    or 

eternal alternation of       on the path. Fig. 6 illustrates the lifetime payoffs on an example 

where       and      . The upper bounds     and     are the two straight dashed lines 

that intersect at         . The lifetime payoff for our EC strategy is represented by a 

solid line     for             , and that for our EA strategy is      for   

                .  

Now, we wish to compare these with SPEDs that the recent literature has discussed. It 

turns out that all relevant equilibrium strategies ever discussed in the literature can be 

captured with the following class of Markov strategies,
13

  

                                             

with  denoting some partition of the time space. Table 1 summarizes all those strategies for 

comparison illustrated in Fig. 6. There are four classes of known equilibria aside from ours 

that sustain cooperation to some level.  

The first well-known class is called the delayed cooperation equilibrium, which has 

been analyzed by Fujiwara-Greve and Okuno-Fujiwara (2009) in great detail. In 

monomorphic form, this requires players in any partnership to defect     periods first, 

before simultaneously switching to eternal cooperation thereafter. For      this is also 

Eeckhout’s (2006) equilibrium            . In its polymorphic form, there are multiple types 

of players in the population. Type   players always defect until period   , and switch to the 

cooperation thereafter. If two players of different types   and  , where     , are matched in a 

partnership, the round    outcome of    is followed by players’ decisions to break up the 

partnership.  

                                                
12 Depending on potential length issue for publication, the authors would also consider to move this subsection 

into Appendix with a much shorter discussion of its content in the next section “Further Discussions”.  
13 Note that finer partition of the history space enables direct comparison of all existing SPED strategies in the 

literature. However, the necessary number of states for each SPE strategy is generally smaller than indicated in 

this formulation. For example, behavior variation in the delayed cooperation equilibrium by Fujiwara-Greve and 

Okuno-Fujiwara (2009) can be captured with 4 instead of 25 states as indicated here. In fact, had we started with 

this more encompassing form of optimal EC strategy, the task of checking equilibrium conditions for 17 states, 
instead of 6 as in Fig. 1, might have proven to be too overwhelming for us to achieve Prop. 1. In addition, our 

preferred version of     where partners return to previous equilibrium states once they find themselves off the 

path, is infeasible in this form of presentation. 
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The lifetime payoff of the monomorphic delayed cooperation equilibrium with   

periods of delay equals   
          . Thus, as the two horizontal dotted lines   

  and   
  

in Fig. 6 illustrate,   
  can only match the upper bound     if             .  For 

example,   
  is the best monomorphic equilibrium at       . Parameters where   

  

      and   
        are represented in Fig. 5 by dot-dashed and double-dot-dashed lines 

that start at            . Being a pure strategy, the monomorphic delayed cooperation 

strategy can match the     even inside the supermodular region      

 Fujiwara-Greve and Okuno-Fujiwara (2009) showed that, if a bimorphic equilibrium 

with a shorter delay exists, then it yields a higher payoff than the best monomorphic one. The 

dotted line   
   

 in Fig. 6 refers to the bimorphic form of delayed cooperation equilibria with 

types 1 and 2 and illustrates this phenomenon as its curve slightly cuts into the     area, 

where a one-period delay is no longer a SPED. Note that, in doing so,   
   

 never reaches the 

level of    , and hence cannot show up in Fig. 5. Indeed, it can be shown that no 

polymorphic delayed cooperation equilibrium can match    .
14

  

                                                
14 A detailed proof can be found in Appendix A. 

Table 1: SPED strategies in the literature.   = leave, and play   if one mistakenly stayed. 

In the case of a single number for an outcome state, it refers to      with             

being omitted. 

     :                          SPE payoff 

Optimal EC 
   

      
1  :    

1 
   

    
– 1  :        

Optimal EA 
  

  
  0 

1  :   
  

B 
   

    
– 1    

Delayed 

cooperation 

0 0          

– 1            
  

–      1     

Cautious   
 ,   

        1 –   
  ,   

  

Forgiving 
  

  
  

1 1 
1 

 1 
   

–      1 

Anti-symmetry 
  

  
  

1 1 0  1 
   

–     1  1 
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The second class called cautious equilibria corresponds to Eeckhout’s (2006) 

equilibrium             as well as that of Rob and Yang (2010). Here, players mix in the first 

period and continue with cooperation only after   , i.e., cautiously punishing both unilateral 

and mutual defections by breaking up the partnership. Fig. 6 confirms the result by Rob and 

Yang (2010) that for     there is always a good and a bad type of cautious equilibrium 

with payoffs shown as   
  and   

 . For     they never reach     and thus they do not 

appear in Fig. 5.
15

 

In  the third class called forgiving equilibria, players mix in the first period and start a 

mutual cooperation after    as well as after    and   , as if forgiving the defection of a 

single player. An example of this is Eeckhout’s (2006) equilibrium            . In the fourth 

class called anti-symmetric equilibria, players mix in the first period and start a mutual 

cooperation only after    and   , as if they punish each other for the initial symmetry. An 

example of this is Eeckhout’s (2006) equilibrium            . Fig. 6 shows that the 

equilibrium payoffs    and    of both these equilibria can reach the          . The dashed 

line in Fig. 5 shows that the forgiving equilibrium matches the upper bound for       

        ; the dotted line shows that the anti-symmetric one does so for       

          .
16

    

Proposition 5: (1) The monomorphic delayed cooperation equilibrium strategy achieves 

          ), if and only if           and          . (2) The forgiving equilibrium 

achieves           , if and only if             and               . (3) The 

anti-symmetric equilibrium achieves           , if and only if           and   

              . (4) However, parameters satisfying (1), (2) and (3) are degenerate in 

the sense that they have a measure of zero in the total parameter space. 

Detailed proofs for all statements in Proposition 5 can be found in Appendix A. 

Compared to these four classes, our Markov strategy with eternal cooperation incorporates a 

lot more fine-tuning to sustain the maximal possible lifetime payoff for social conventions of 

simple symmetry. In particular, it employs (matched) alternation between cooperation and 

defection as a form in which the temporary exploiter compensates the temporary sucker to 

keep the partnership intact, before they inevitably reach the promised land of eternal mutual 

cooperation. In fact, the EC equilibrium path may endogenously remain for a very long time 

on the transition path of alternation, getting shorter only when   approaches  . This matches 

                                                
15 A detailed proof can be found in Appendix A. 
16 Both proofs can be found in Appendix A. 
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quite well what Lei, Vesely, and Yang (in preparation) observed in a recent experiment, with 

         =              , that a lot of cooperative partnerships stably build up after    

outcomes. 

  

In our EA strategy agents pursue an arrangement that is superior to the mutual 

cooperation for given parameters. In general, our optimal EC/EA equilibria induce a lower 

expected rate of the worst outcome    during the transition phase, compared to others. 

Further illustration of behavior characteristics of different equilibria based on numerical 

examples can be found in Table B1 in Appendix B. 

5. Further Discussions 

Beyond simple symmetry. We speculate intuitively that the established upper bound       is 

also the overall upper bound beyond social conventions of simple symmetry, which can be 

  

 

Fig. 6. Comparison of Lifetime Payoffs for Equilibria with       and      . 
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shown for many specific long-run paths. For illustration, consider the symmetric path 

              where the cycle develops around first playing CD, and then DC, for   

consecutive times each. Following the proof logic for Lemma 2, the binding condition for no 

deviation is given by the willingness to stay (and cooperate) when the player expects to wait 

out the maximal   periods of defections by the counterpart. This yields        

                  

            
 , which reaches its maximum at    .   For general paths, we are yet to 

find a generic formal proof. 

In addition, outside the parameter region stated in Theorem 1 where our EC or EA strategies 

work, it is unclear whether       can be realized, beyond a degenerate set of parameters 

where delayed cooperation does it (see Proposition 5). It is left for future work to explore 

what would be the “second best” there.  

Indifference, belief free equilibrium, and robustness. One unique feature apparent from 

our proofs is that players are indifferent between actions   and   in all states under    . In 

addition, aside from the    and    states, the players are also indifferent between staying 

and leaving. In this sense, our     is reminiscent of the so-called belief-free equilibrium in 

the fixed partnership PD paradigm with public or private randomization (e.g., Ely et al., 

2005) or community information (Takahashi, 2010).  

In fact, since in the case of deviation our EC/EA strategies require the players to stay and 

return to the previous state, they can easily handle public random noises to the PD actions: 

they do not need to know whether the counterpart intentionally deviated from the SPE since 

there is no difference between on and off equilibrium behavior, given the specified state 

transition rules. In other words, their actions are independent of any belief that can be derived 

from past play histories or even whether they are on or off the equilibrium path. In this spirit, 

we conjecture that our EC/EA strategies still constitute SPE once the noise to actions is 

introduced in an explicit model setup. 

Breakup and neutral stability One seminal contribution by Fujiwara-Greve and Okuno-

Fujiwara (2009) is to introduce the notion of Neutrally Stable Distribution in the voluntary 

continuation PD paradigm. Vesely and Yang (2010) generalize their definition to include 

invasion with mixed strategies and demonstrate that their bimorphic delayed cooperation 

SPED is no longer neutrally stable. It turns out that a seemingly innocuous breakup such as 

off-equilibrium punishment in traditional trigger strategies may invite secret-handshake types 

of invasions that undermine the equilibrium in an evolutionary environment. This insight can 
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be interpreted as evolutionary justification for designs of social conventions that adhere to the 

maxim “the grass is not always greener on the other side”.  

Randomization and cheap talk. One intriguing idea to solve the optimal SPED problem 

may be the following. Assume there is an external, public randomizing device to coordinate 

actions in the partnership, so that both simultaneously play   with probability   as well as   

with     based on realizations of the device. If the device signals  , the state transitions to 

EC right away and forever ignores the device. If the signal is  , then both play   and restart 

the same process as if they were strangers. It can be shown that a randomized setup like this 

may indeed generically sustain    , say, with   , and nobody has an incentive to deviate if 

they have no other alternative but to blindly trust this external device. Note, however, for any 

randomization device           sustained this way in the population, the players in a 

partnership have strict incentive to agree to switching to any alternative device         . 

The reason is that for   to be sustainable nobody shall have incentive to deviate to defection 

after realization of the C signal, which is fully determined by the expected payoff in the 

singles’ pool calculated under the assumption that all other people adhere to this   device, but 

independent of the rate for the C-signal in the specific device used within one’s partnership. 

If they had the liberty to opt for another device, they would have a strong incentive to 

abandon the suggested one. However, if everybody is free-riding the system in this way, it 

collapses. In other words, no public randomization equilibrium   is robust if private cheap 

talk is allowed, as it is in real applications. Our EC and EA conventions are robust against 

this type of cheap talk, in contrast.
17

  

Renegotiation and bilateral rationality. The above discussion on cheap talk naturally leads 

to the issue of renegotiation-proof equilibrium. Note that none of the SPEDs discussed in the 

binary-action VCPD models in the literature satisfies the bilateral rationality condition, 

which Ghosh and Ray (1996) imposed on their social equilibrium and requires renegotiation-

proofness on the equilibrium path. Since    is on the equilibrium path of every SPED that 

sustains mutual cooperation in the long run, if the partners were to renegotiate and decide to 

skip the painful trust-building rituals and to switch to the EC path right away, nobody would 

have an incentive to deviate from this new agreement just as the partners would not 

individually deviate from the EC path in the equilibrium in the first place. This line of 

                                                
17 Note that allowing for cheap talk in a static game selects the Pareto frontier among all Nash or correlated 

equilibria. But this is not the relevant issue here, as any correlation device x fails to survive the simple and naïve 

cheap talk exercise. And this problem is not related to renegotiation-proofness issues discussed subsequently. 

The application of randomized device as suggested to the VCPD setup suffers a serious consistency problem. 
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reasoning is, however, undermined if there are a certain number of myopic players in the 

singles’ pool as assumed in Ghosh and Ray (1996). Assuming that such social equilibrium 

existed in binary-action setups, the efficiency it achieves would still be bound by       that 

we derived here.  

There are several reasons why we prefer not to impose this condition on our solution. 

First, our setting, like others in the binary-action framework, has an evolutionary 

underpinning, where players can be considered automata happily following simple rules – the 

social convention. Second, allowing people to be sophisticated and to renegotiate based on 

the common knowledge of mutual sophistication opens up a whole world of indeterminacy 

that is hard to deal with. If one opens the negotiation with “let bygones be bygones, and the 

grass is not always greener on the other side”, then the same line can be used again by the 

person who cheats on the partner in the first period of their new agreement. Furthermore, by 

the same logic based on which they deviated from the initial universal social convention, the 

sucker would again buy in. In the end, there would be no consistently convincing argument to 

justify their initial deviation from the norm in the first place. In some sense, the very same 

maxim of “the grass is not always greener on the other side” that is behind our EC solution is 

only cheap talk in this context. Sometimes, you just have to cut your losses. 

This being said, our optimal EC equilibrium is constructed so that the sucker cannot be 

strictly swayed by such cheap talk on or off the equilibrium path, as her prescribed 

equilibrium strategy already yields the same payoff as on the EC path. The logical 

indeterminacy occurs only in the case of   . 

6. Concluding Remarks 

A maximally sustainable level of efficiency is one of the primary issues, if not the very 

issue, to be solved in theoretical models in economics. In the repeated Fixed-Partnership PD 

paradigm, a special case of the voluntary continuation one, full efficiency of mutual 

cooperation forever can be achieved in SPE. One concern associated with Folk theorem types 

of results is to find the lower bound of the discount rate, so that all-C can still be sustained. 

Abreu (1988), for example, looks into the optimal punishment strategy that can sustain the 

lowest discount rate for this purpose. As a more natural and realistic extension of the FPPD, 

however, the voluntary continuation paradigm has the distinctive feature that full efficiency is 

never sustainable and that there is a glaring theoretical gap on the systematic characterization 
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of a maximally achievable level of efficiency. The main culprit can be found in the fact that 

the feature of unilateral breakup is a double-edged sword. It can be used by honest partners as 

a means of punishment of the norm deviator, as well as by the deviator as a path to evade the 

wrath of such betrayed partners. 

We offer a first attempt to partially close this gap in the present paper, under the 

binary-action setting. By focusing on SPEDs that sustain the intuitively appealing long-run 

paths, we first establish an upper bound for any sustainable lifetime payoff. We then show 

that this upper bound can be achieved for a large parameter set, and particularly in all but an 

extreme region of submodular conditions, with surprisingly simple behavior rules such as our 

Markov strategies     and    . In the spirit of Abreu (1988), we implicitly employ some 

kind of optimal punishment strategy. The novel feature in our design of optimal social 

convention is to keep the partnership as long as possible by giving the exploiter of the 

previous round a chance to repent and to make good with unconditional cooperation in the 

next round. It is interesting to note that once the novel behavioral patterns of our EC and EA 

equilibrium are pinned down with the help of the associated flow diagrams, the actual proofs 

are technically rather simple. As a byproduct of the strategy design, these optimal equilibria 

are also “belief free” and robustly applicable in a noisy condition.   

 

  



27 

 

Appendix A: Proofs  

Proof of Suboptimality of Polymorphic Delayed-Cooperation Equilibria 

Let   be the number of initial periods of defections of the type that starts cooperation the 

soonest. The initial lifetime payoff of that type is thus                         

   ], where   0,1 is the fraction of the population of this type over the total population. The 

lifetime payoff of the other types that defect for at least     periods equals     

                       ], where    is the lifetime utility after the     periods of 

mutual defections. Substituting     for    and     implies that                  

                                           . Thus, as in polymorphic 

equilibrium     , the assumption that    and     match the optimal     implies that   

               . Because    is smaller than    , then after     periods of mutual 

defections no player prefers to stay on the assumed equilibrium path. □ 

Proof of Suboptimality of Cautious Equilibria 

Let         be the fraction of players that cooperate in the stranger’s round. The initial 

lifetime payoffs of cooperating and defecting players are                      

    and    = 1+ +     respectively. Assuming that both these payoffs equal    , this 

implies that                  in the case of the cooperator, but a smaller     

           in the case of the defector. □  

Proof of Proposition 5 

(1) Consider the Delayed Cooperation Equilibrium with   periods of defection. The initial 

lifetime payoffs of all agents is                                . □  

(2) Consider the Forgiving Equilibrium. Let         be the fraction of players that 

cooperate in the stranger’s round. The initial lifetime payoffs of cooperating and defecting 

players are                       and                           , 

respectively. These payoffs equal each other as well as     if and only if     

          ,                and            . □ 

(3) Consider the Anti-Symmetric Equilibrium. Let         be the fraction of players that 

cooperate in the stranger’s round. The initial lifetime payoffs of cooperating and defecting 

players are                                and                  

         , respectively. These payoffs equal each other as well as     if and only if 

                ,           and                 . □  
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Appendix B:  Additional material  

Table B1. Equilibrium Comparison: Numerical Examples  

  1/3 2/3* 3/4* 751/1000 25/27* 1 16/9 

   
  1.52 [5, 34] 2.10 [5, 36] 2.24 [5, 36] 2.24 [5, 36] 2.54 [5, 37] 2.67 [5, 37] 4.00 [5, 39] 

   
   3.56 [81, 8] 3.11 [57, 16] 3.00 [50, 17] 3.00 [50, 17] 2.77 [34, 22] 2.67 [25, 25]   

   
   

 3.56 [81, 8] 3.11 [59, 14] 3.00 [54, 15] 3.00 [54, 15] 2.77 [43, 16] 2.67 [39, 17] 1.63 [10,13] 

  
    3.28 [71, 11] 2.22 [33, 17] 

        
  

  
    0.72 [7, 11] 1.33 [14, 14] 

        
  

  
   3.23 [73, 8] 3.11 [67, 8] 

        
  

  
   3.00 [75, 0] 3.00 [75, 0] 3.00 [75, 0] 

      
  

  
           

2.97 [74, 0] 
    

  

2.27 [51, 6] 2.63 [61, 4] 2.92 [72, 1] 2.94 [73, 1] 
    

  

  
  2.80 [61, 9] 2.78 [57, 9] 2.77 [57, 9] 2.77 [57, 9] 2.77 [55, 9] 

  
  

  
  2.25 [56, 0] 2.25 [56, 0] 2.25 [56, 0] 2.25 [56, 0] 2.25 [56, 0] 2.25 [56, 0]   

Note       and       are fixed for varying  .   
   refers to discounted lifetime payoffs 

of different SPEDs as defined above in Section 4.       refer to discounted average 

probabilities in %, i.e., expected length          , of mutual (  ) and unilateral (  ) 

cooperation. Hence,        and   are the discounted expected probabilities of the    

and    outcomes on the equilibrium path.     
   for Markov strategy     refers to cases of  

      and       . In the case of    
    

 with                           , there 

are two different SPEDs. Empty entries refer to no existence of the corresponding type of 

SPED. The highest numbers are underlined. (*) refers to examples of the degenerate 

parameters characterized in Proposition 5.  
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