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Abstract 
 
We describe a dynamic model of costly information sharing, where private information 
affecting collective-value actions is transmitted by social proximity. Individuals make 
voluntary contributions towards the provision of a pure public good, and information 
transmission about quality of provision is a necessary condition for collective provision to 
take place in a stationary equilibrium. We show that, unlike in the case of private goods, 
better informed individuals face positive incentives to incur a cost to share information with 
their neighbours; and that these incentives are stronger, and provision of the pure public good 
greater, the smaller are individuals’ social neighbourhoods. 
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1 Introduction

There is evidence that social interactions matter for voluntary contributions towards col-
lective goods (Brown and Ferris, 2007). Casual empiricism suggests the same – being tar-
geted by co-workers and acquaintances for fundraising towards various charitable causes
is a commonplace experience. Sociological research has long stressed the role of social
links in motivating individual behaviour (e.g. Wasserman and Faust, 1994), but has paid
little attention to the role of social connections in voluntary giving – a notable exception
being Galaskiewicz (1985). Although much recent work in economics has focused on the
role of interpersonal links in motivating economic behaviour in general, and voluntary
giving in particular, to the best of our knowledge there has been no investigation of how
social interactions affect giving towards third parties, and specifically of the question of
whether more social interaction leads to more voluntary giving.

This paper tries to fill this gap, formalizing the relationship between voluntary so-
cial interactions, information sharing and contribution equilibria. It describes a social
proximity-based mechanism of information transmission in groups of individuals who
consume a pure public good. In the mechanism we study, information about quality for
alternative modes of provision of a public good can spread from one individual to the
next just as it does for private goods. However, unlike in the case of private goods, better
informed individuals face positive incentives to incur private costs in order to transmit
information to their less informed neighbours, because this can bring about an increase
in collective provision, the benefits of which they partake in. In this setting, the sharing
of information has the characteristics of a local public good that is confined within indi-
vidual social neighbourhoods, even when voluntary contributions fund the provision of
a pure public good that spans all neighbourhoods. Thus, incentives to engage in costly
information sharing are stronger when social neighbourhoods are smaller; consequently,
large societies composed of comparatively small social neighbourhoods can sustain com-
paratively higher levels of private provision of collective goods.

These conclusions are in line with the view that individuals are more “engaged” in
collective choices in smaller communities than they are in larger communities;1 but our
analysis delivers a new theoretical argument for why the same conclusions may extend
to collective choices that are not local in nature.

Understanding how and why social connections can shape voluntary giving also has

1For example, a 2010 report on volunteering and charitable giving by the UK Department for Com-
munities and Local Government concludes that rural dwellers are significantly more likely to engage in
volunteering than are urban dwellers.
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implications for understanding how government policies affect private giving. As many
developed countries are increasing their reliance on the private sector to meet collective
needs, we see a shift in the use of public resources from the funding of public provision to
the subsidization of private provision. Our findings suggest that, in designing such sub-
sidies, policymakers may be able to leverage on the relationship between private giving
and social structure to maximize their impact.

Our paper is related to three main strands of literature: the literature on private con-
tributions towards collective consumption (Malinvaud, 1972; Bergstrom, Blume and Var-
ian, 1986; Andreoni, 1990; and subsequent contributions); the literature on social learning
(Banerjee, 1992; Ellison and Fudenberg, 1995; Banerjee and Fudenberg, 2001; and subse-
quent contributions); and the literature on strategic information transmission (originating
with Crawford and Sobel, 1982). Two recent papers that are somewhat related to ours are
Dutta and Chatterjee (2011), and Bramoullé and Kranton (2007). The first paper looks at
costless information transmission across consumers for the case of private goods; as we
have already noted, the public good case is fundamentally different from the private good
case – where no costly transmission of information can occur. The second paper focuses
on the provision of public goods in networks, with the structure of network links deter-
mining the scope of local public goods, and it fully abstracts from voluntary transmission
of information. Our line of questioning is quite different: we specifically study voluntary
information sharing in a dynamic environment with repeated signaling, and focus on a
scenario where the collective good provided is a pure public good – i.e. a public good
whose scope is independent of social links – and where social links are only relevant for
information transmission and social learning.

The paper is organized as follows. Section 2 develops a dynamic model of private
giving and costly information sharing in social groups. Section 3 derives results concern-
ing the relationship between neighbourhood size, information, and information sharing.
Section 4 discusses an alternative but equivalent specification, where private giving is
uniquely motivated by private “warm-glow” effects. It also presents a number of other
extensions: preference heterogeneity with respect to collective consumption, strictly con-
vex preferences. Section 5 derives implications for policy design. Section 6 summarizes
and concludes. An extension to the case of forward-looking agents is presented in the
Appendix.
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2 A model of private giving and information sharing
in social neighbourhoods

Theoretical literature on voluntary provision of public goods has highlighted two main
types of motives for private giving: consumption motives and outwardly orientated mo-
tives (e.g. “warm glow” or status signaling), with the latter typically being invoked when-
ever the former is unable to account for giving in large groups. In this paper we describe
an information-transmission mechanism of contagion in private giving that can be related
to both private consumption motives and warm-glow motives.

We examine information-related incentives on both sides of a given social link be-
tween two socially connected individuals, and then derive implications for the diffusion
of information and giving behaviour in a dynamic (indefinitely-repeated) setting.

Our analysis deliberately abstracts (by way of suitable assumptions) from the topolog-
ical structure of social links,2 and builds on assumptions that lead to stationary outcomes,
making it possible to characterize the “long-run” relationship between the density of so-
cial interactions, information transmission and collective provision outcomes. The model
is highly stylized and abstracts from many other dimensions of heterogeneity that are
relevant to real-world voluntary giving in order to concentrate on how the density of so-
cial interactions affects the sharing of provision-relevant information that is not publicly
observable.

Preferences, technologies and information structure

There is an economy with N individuals, i ∈ I ≡ {1, . . . , N}, and a countable number
of periods indexed by t = 1, 2, . . .. Each individual consumes both a private good and a
pure public good in each period, in amounts that are respectively denoted by xi,t and Gt.
Provision of the public good in period t is funded by private contributions, vi,t, made in
each period by each individual i ∈ I, out of her exogenously given period-t income, yi,t.

The public good is produced at a marginal cost of unity by M private non-profit
providers (charities), j ∈ J ≡ {1, . . . , M}, and sold at marginal cost. Individuals can make
contributions to a single provider in each period. Providers differ from each other only
with respect to the quality of their provision, qj,t ∈ {q, q}, with q > q, which measures
units of quality-adjusted provision for each dollar’s worth of provision through provider

2These considerations are likely to be important in reality; but the mechanism we highlight would also
underlie information diffusion in a social network with a stable, non-regular topological structure (see the
discussion on this point in Section 4.5).
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j.3 Thus, given each individual i’s contribution, vi,t, to her selected provider at t, j(i, t),
and given period-t quality realizations, qj,t, the effective level of collective consumption
experienced by all individuals at t equals Gt = ∑i qj(i,t),tvi,t. Without loss of generality,
we assume q = 1 and q = 0.

The quality of provision of provider j at time t is ex-ante unobservable but is observable
ex post to individuals who have made positive contributions to provider j at t.4 Quality
of provision for provider j evolves stochastically over time, according to the following
conditional distribution: Pr

(
qj,t = q | qj,t−1 = q

)
= Pr

(
qj,t = q | qj,t−1 = q

)
= ρ >

1/2; i.e. quality remains the same from one period to the next with probability ρ > 1/2
and changes with probability 1 − ρ. Any given individual can only identify provider
j if she has contributed to it at t − 1. This means that the only portion of i’s history
that determines her information set at t is the pair (j(i, t − 1), qj(i,t−1),t−1), where j(i, t)
denotes the provider selected by i in period t. As we are concerned here with transmission
of private information on provision quality, we can abstract from other determinants of
quality that are non-stochastic or public information.5

We assume that quality evolves independently across providers. Thus, with M large,
and given our assumption of symmetric transition probabilities, the proportion of quality
types in the population will converge through time to 1/2 for each type.

All individuals have identical, risk-neutral preferences for private and collective con-
sumption within each period. These are represented by

U(xi,t, Gt, ei,t) = xi,t + θGt − ei,t, (1)

where ei,t is private effort directed towards information sharing (see below). Individu-
als have disposable income yi,t = y = 1 + µ (µ > 0) in all periods. Consumption is
bounded below to unity and therefore contributions must lie between zero and µ. We
assume 2 > θ > 1/ρ (the role of this assumption is explained below). In this specifica-
tion, individuals only care about their own contributions towards Gt and those of others
because of a consumption motive; in Section 4, we discuss how our analysis and results

3Heterogeneity with respect to quality could equivalently be modelled in terms of unobservable
marginal costs.

4Individuals that direct contributions towards a certain provider may not able to perfectly observe qual-
ity, but they would still receive more information about quality than individuals who do not make contri-
butions towards that provider. Thus, our assumption represents an extreme case that is presentationally
convenient.

5There may be persistent heterogeneity across providers, which would ultimately become public infor-
mation; but there are also new varieties being introduced and new providers of unknown quality, which
implies that information about providers depreciates and new learning occurs.
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carry over to a setting where individuals are motivated by warm-glow effects.
Within each period, t, nature assigns each individual i ∈ I a social neighbourhood,

Si,t, consisting of b individuals (excluding the individual herself), with 1 ≤ b < N.
Neighbourhoods can be overlapping, but the structure of social neighbourhoods is such
that each individual has exactly b neighbours. The b individuals that form individual i’s
neighbourhood at t are newly sampled at random from the population of N individuals
in each period. The configuration of social links in each period can therefore be repre-
sented as a regular graph of degree b, randomly sampled in each period from the set of
all possible regular graphs of degree b – a specification that can be thought of as a gener-
alization of repeated N-person random matching or repeated random sampling (in turn,
random sampling is commonly featured in analyses of social learning; e.g. Ellison and
Fudenberg, 1992).

In each period t, individuals can each choose to inform their neighbours, i′ ∈ Si,t, of the
quality they have experienced from provider j(i, t− 1), sending each a signal σi,i′,t = (j, q),
with j = j(i, t− 1). If they do so, they incur a cost c – translating into a higher ei,j in (1) – for
each neighbour they inform. A signal is truthful if the quality level reported corresponds
to the quality actually experienced by i, i.e. the signal reports q = qj(i,t−1),t−1.

Individuals are indefinitely-lived and myopic. This means that choices with respect to
sending costly signals in any given period only account for how those signals may affect
provision in that period (an extension to forward-looking signaling choices is presented
in the Appendix).

Sequence of actions and events

The sequence of actions and information sets in each time period t are as follows: (i)
at the beginning of each time period t, nature generates social neighbourhoods, Si,t, and
updates providers’ quality types, qj,t; (ii) each individual i ∈ I for whom vi,t−1 > 0 is fully
informed about qj(i,t−1),t−1, and can choose to send signals σi,i′,t, i′ ∈ Si,t, simultaneously
with the signaling choices of other individuals; (iii) each individual, i, receives signals
σi′,i,t from her neighbours, i′ ∈ Si,t, and updates her information set; (iv) each individual
i ∈ I selects a provider, j(i, t); (v) once they have selected a provider, individuals then
simultaneously make contributions, vi,t, to providers j(i, t); (vi) individuals who have
made positive contributions (vi,t > 0) observe provision qualities, qj(i,t),t, and everyone
experiences collective consumption Gt.6

6This means that average quality is observable by everyone, but only individuals that have made con-
tributions can link quality of provision of their chosen supplier to its identity.
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We will discuss within-period actions starting from contribution choices (v), and then
move backwards to provider selection choices (iv), and signaling choices (ii).

Contribution choices

Suppose individual i has selected provider j(i, t) = j′, and let Ei[qj′,t] ≡ q̃ be i’s expected
level of quality from provider j′ in period t given i’s information. Expected quality can
take one of three values, depending on the information i has. If j′ is a provider from whom
i has experienced high quality at t − 1, or if it is a provider that one of i’s neighbours
has signaled as being of high quality at t − 1, then q̃ = ρ > 1/2; if it is a randomly
selected provider, then, for t large enough (implying that the proportions of suppliers
of each quality type are the same types for both types), expected quality is q̃ = 1/2; if
it is a provider from whom i has experienced low quality at t − 1, expected quality is
q̃ = 1− ρ < 1/2.

Constrained utility maximization in period t then gives vi,t = 0 or vi,t = µ depending
on whether q̃ is less than or greater than 1/θ. Given our earlier assumption that 2 > θ >

1/ρ (or ρ > 1/θ > 1/2), contributions are vi,t = µ for q̃ = ρ and vi,t = 0 otherwise, i.e.
individuals only make positive contributions if the expected quality of provision from
their selected provider exceeds average quality, 1/2.

Selection of providers

Consider first individuals who have experienced high quality from their chosen provider
at t− 1, j(i, t− 1). If they receive no additional information, then, given that ρ > 1/2, they
would elect to go back to the same provider – since doing so yields a higher expected
quality than selecting a new supplier at random. If they are tipped off by a neighbour
concerning a supplier that has delivered high quality at t− 1, and they believe the infor-
mation to be truthful, they are indifferent between switching to this alternative supplier
and sticking to j(i, t− 1).

Consider next individuals who have experienced low quality from their chosen pro-
vider at t − 1. If they receive no additional information, given that 1 − ρ < 1/2, they
would choose a new supplier – since doing so yields a higher expected quality than going
back to the same provider. If they are tipped off by a neighbour about a supplier that has
delivered high quality at t− 1, i.e. if they receive a signal, σi′,i,t = (j′, q′) from one of their
neighbours, they must choose between acting on the advice received or selecting a new
supplier at random. As long as they take any signal received to be truthful (an issue that
we examine below), i.e. if j′ = j(i, t− 1) and q′ = qj(i,t−1),t−1, selecting j′ will deliver a
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higher expected quality than selecting a supplier at random; so they will select j′.
If an individual simultaneously receives multiple signals from different neighbours,

then, as long as those signals can be taken to be truthful, it is irrelevant which particular
signal the receiver acts upon. Thus we will assume that one signal is selected at random.
This is without loss of generality: below we show that information-sharing equilibria
feature only truthful signals, implying that the choice of tie-breaking rule is immaterial.

Information-sharing choices

An individual who has experienced high quality from her chosen supplier at t− 1 may
be willing to incur a cost to share information about her provision experience with her
neighbours because she will benefit from the effect that better information has on her
neighbours’ contribution choices: if any given one of i’s neighbours, i′ ∈ Si,t, has no
information, her contribution is vi′,t = 0, whereas, if i′ has information about a sup-
plier that has delivered high quality at t − 1, then she makes a direct a contribution
vi′,t = µ towards that supplier, resulting in a higher payoff for i. Denoting by E[G−i′

t ]

the period-t expected, quality-adjusted level of provision from the contributions of all in-
dividuals other than i′, the public good-related component of the payoff experienced by
i when i′ is uninformed is θE[G−i′

t ] ≡ Φ; when i′ is informed, the corresponding level
is θ
(
E[G−i′

t ] + ρµ
)
≡ Φ = Φ + θρµ > Φ. So, if the effort cost, c, of sending an infor-

mative signal to her neighbours is not too high relative to the expected gain θρµ ≡ Ψ, i
may choose to voluntarily incur that cost – a choice that may be interpreted as “fundrais-
ing”. In an analogous setting where private information about supplier quality concerns
private consumption, individuals would never incur a private cost to inform their neigh-
bours about their own consumption experience. It is only in the case of contributions to
collective consumption that the actions of uninformed individuals are of concern to better
informed individuals, inducing them to actively share their information with others.7

In the calculation of whether or not to send a signal to her neighbours, each informed
individual also has to consider the likelihood that her signal will make a difference for the
neighbour who receives it. As discussed above, any neighbour receiving the signal will
only find it valuable if she has experienced low quality in period t− 1 and is therefore un-
informed. Also, since additional informative signals convey no additional information,
the signal will only be valuable if the uninformed neighbour does not also receive an-

7In principle, an individual, i, could also choose to send signals about a provider j(i, t− 1) from whom
she has experienced low quality in order to prevent neighbours from selecting this provider. However, as
long as M is sufficiently large, the probability of a neighbour selecting j(i, t − 1) at random is negligible,
and so i will never have an incentive to incur a cost c to send a signal in this case.
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other signal from another neighbour. Thus, information-sharing decisions involve both
an assessment of the likelihood that neighbouring individuals are uninformed and of the
likelihood that they might also be targeted by others.

Let kt be the proportion of individuals in the population who, having experienced
high quality at t− 1, are able to identify a provider who was a high-quality supplier in
period t− 1, i.e. the proportion of individuals that have no need of further information.
Assume for now that kt is publicly known. Then, given that an individual’s neighbours
are a random sample of the whole population, the probability that each neighbour will
be able to make use of an informative signal is 1− kt, and the probability that each of
her b neighbours will be informed – and therefore will be in a position to send the signal
herself – is kt. Suppose then that all informed individuals other than i send a signal at
the beginning of period t with probability s−i,t. From the point of view of an informed
individual, i, the probability that any given neighbour will benefit from her signal is equal
to the probability of the neighbour finding any signal valuable, which equals 1− kt, times
the probability that this neighbour will not receive a signal from an informed neighbour
other than i, which equals (1− kts−i,t)

b−1. So, the expected net value to i of sending a
signal to one of her neighbours is

(1− kt)(1− kts−i,t)
b−1Ψ− c ≡ Λ(s−i,t, kt). (2)

An individual i will then always send a signal (si,t = 1) if Λ(s−i,t, kt) > 0, will never do
so (si,t = 0) if Λ(s−i,t, kt) < 0, and will be indifferent between sending and not sending a
signal (0 < si,t < 1) if Λ(s−i,t, kt) = 0.8

All of this presumes that individuals only send truthful signals. But an individual
might also have an incentive to send an untruthful signal, i.e. to signal high quality for a
provider that has delivered low quality. This is because, given that all individuals benefit
from the provision of collective consumption, and given that the contribution level se-
lected by an uninformed individual is zero, deceitfully inducing an uninformed individ-
ual to make a positive contribution to a randomly selected provider of expected quality
1/2 yields an expected public good-related benefit θµ/2 > 0. However, we show below
that untruthful signals can be ruled out in equilibrium.

8Here i is assumed to randomize her signaling choices independently for each of her neighbours; how-
ever, this is fully equivalent to a setup where i’s signaling choices are perfectly correlated across receivers,
i.e. where i sends signals to all of her neighbours with probability si,t or to none of her neighbours with
probability 1− si,t.
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3 Information sharing, information diffusion, and
neighbourhood size

In this section we address the question of how information sharing and private provision
are affected by neighbourhood size, b. For this purpose, we first characterize equilibria in
signaling and contribution choices in any given period (for a given kt), and then derive
stationary state conditions for an equilibrium of the dynamic game (with kt endogenous).

3.1 Within-period equilibria

Equilibrium information-sharing choices

We want to study how neighbourhood size affects information-sharing effort, si,t, on the
intensive margin, i.e. for si,t strictly between zero and unity. For a given, publicly known
kt, a symmetric mixed-strategy equilibrium in signaling choices with si,t = s−i,t = st,
0 < st < 1 (giving rise to contribution choices as described in the previous section) re-
quires Λ(st, kt) = 0.9 A corner (a pure-strategy equilibrium) where st = 0 can be ruled
out as long as signaling costs, c, are not too large; and a corner where st = 1 can be ruled
out as long as signaling costs, c, are not too small. Setting (2) equal to zero and solving

9 Symmetric equilibria are most natural in the context we are examining; but this framework also admits
asymmetric equilibria – in pure strategies only; and if we were to account for those, our results would
be stated in terms of weak rather than strong monotonicity. However, in our model the possibility of
asymmetric equilibria only stems from assuming that actions are discrete, a modelling choice we have
made purely for presentational simplicity. Suppose, for example, that instead we assumed effort, e, to be
continuous and to result in a signal being received with probability s(e) = f (e)/(1 + f (e)), with f (e) being
any increasing function such that f (0) = 0, implying s(0) = 0, lime→∞ s(e) = 1, and lime→0 s′(e) = ∞.
Then, in the case b = 2 (and omitting the time subscript), the payoff for an informed player, i, would
be (1− k)s(ei)(1− k s(e−i))Ψ − ei ≡ Πi, i = 1, 2. Here, the unique equilibrium would be a symmetric
equilibrium with positive ei’s (identified by dΠi/dei = 0, i = 1, 2) which is analogous to a symmetric
equilibrium in mixed strategies for the discrete choice case. Moreover, it can be argued that, in a setting with
anonymous players, asymmetric equilibria are ”non-focal”. In order to plausibly incorporate asymmetric
play in an anonymous setting, one would need to invoke the notion of a correlated equilibrium (Aumann,
1974), whereby players would ”take turns” about who sends the signal on the basis of public random
signal (effectively restoring symmetry and typically attaining a higher symmetric payoffs than otherwise
possible). However, the institutional conditions for players to be able to correlate their strategies in this
way are quite stringent, which is why correlated equilibria tend to be viewed as a theoretical curiosum in
the applied literature.
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for st, we obtain

st =
1
kt

(
1−

( c
(1− kt)Ψ

)1/(b−1)
)

. (3)

One can verify that this is strictly between zero and unity if and only if 1− kt > c/Ψ >

(1− kt)b.
Untruthful signals can be ruled out in equilibrium. Suppose that someone were to

send an untruthful signal when everyone else is sending truthful signals. Then, starting
from a belief that the signals that are sent are truthful, an uninformed individual receiv-
ing a single signal would act upon it; and an uninformed individual receiving multiple
signals would have to decide which particular signal to act upon. Earlier, we stated the
assumption that, when multiple signals are received, one particular signal is selected at
random; but we can generalize this tie-breaking rule and simply posit that, if a signal is
sent, and the receiver believes signals to be truthful, then that signal will be selected and
acted upon with a probability that is either positive or zero. Then, assuming that all in-
formed individuals other than i are sending truthful signals, the expected net value to i
of sending an untruthful signal to one of her neighbours is

(1− kt)(1− ktst)
b−1θµ/2 + Υ− c, (4)

where the first term represents the expected gain associated with the possibility that an
individual not receiving a signal from anyone else would act on the untruthful signal,
and Υ ≤ 0 is the expected loss associated with the possibility that an individual receiv-
ing multiple signals selects i’s untruthful signal over the truthful signal of a different
neighbour, resulting in a lower expected level of quality-adjusted provision.10 In an equi-
librium in strictly mixed strategies where Λ(st, kt) = 0, the signaling cost, c, must equal
(1− kt)(1− ktst)b−1θµρ; and, since θµ/2 < θµρ = Ψ, and Υ ≤ 0, we can conclude that
expression (4) must be negative. This implies that an equilibrium outcome must be one
where only truthful signals are sent, and where receivers have no reason to doubt the
signals’ truthfulness.11

10If sending an untruthful signal when all other signals are truthful generates a non-zero probability of a
receiver selecting a provider j for whom qj,t−1 = q, then Υ is strictly negative, otherwise it is zero.

11Since signals are costly to send, an outcome where all signals are untruthful and are disregarded cannot
be an equilibrium outcome – if signals are disregarded, then senders would opt to send no signals and save
the cost. An outcome where some signals are truthful and others are not can also be ruled out by analogous
arguments – i.e. given any mix of truthful and untruthful signals, and receivers’ beliefs consistent with that
mix, then withholding an untruthful signal is strictly payoff-improving for the sender. In our analysis, we
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Information sharing and neighbourhood size

For b = 1, the only value of kt compatible with an equilibrium in strictly mixed strategies
is kt = c/Ψ; in this case the equilibrium level of st is indeterminate in the short run (but, as
we will show in the next section, not in the long run, when st and kt are determined jointly
in equilibrium). For b > 1, we can rearrange condition (3) for a symmetric equilibrium in
strictly mixed strategies and express it as

ktst = 1−
(

c
(1− kt)Ψ

)1/(b−1)

. (5)

The left-hand side of (5) is a measure of information-sharing intensity in the economy –
information sharing per head per neighbour. This is negatively related to signaling costs,
c. Let rt ≡ ktst. Trivially, for a given st, a higher kt results in a higher rt; but rt, taken as a
whole, varies with kt as described by the right-hand side of (5):

Proposition 1 For b > 1, information-sharing intensity, rt = ktst, is negatively related to the
stock of information, kt, and to neighbourhood size, b.

PROOF: Denote the right-hand side of (5) with Ω(kt, b), and differentiate this with respect to kt and
b. Noting that Λ(st, kt) = 0 implies c/

(
(1− kt)Ψ

)
= (1− rt)b−1 < 1, we obtain, after substitution,

Ωkt = −
1− rt

(b− 1)(1− kt)
< 0; (6)

and

Ωb =
1− rt

(b− 1)2 ln
(
(1− rt)

b−1) < 0. (7)

The result that rt decreases in b for a given kt, also implies that st decreases with b. �

The intuition for this result is straightforward. Although private contributions are
made towards provision of a pure public good, information sharing with one’s neigh-
bours has the characteristics of a local public good. Specifically, it is a locally provided

abstract from asymmetric equilibria (for the reasons discussed in Footnote 9) as well as from pure-strategy
equilibria, but the same logic would apply to those: in an equilibrium where at least some of the players
who send signals send truthful signals, no individual would have an incentive to send an untruthful signal;
in an equilibrium where the only signals that are sent are untruthful, they would not be acted upon by
receivers, and hence senders would have no incentive to send them in the first place.
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good that is only indirectly purely public: an individual can only receive signals from
her neighbours, and so provision of information to neighbours is in itself not a pure pub-
lic good despite the fact that its benefits ultimately flow through the provision of a pure
public good. Since only neighbours can provide information to an uninformed individ-
ual, free-riding incentives with respect to information sharing remain contained within a
given neighbourhood. The larger an individual’s social neighbourhood, then, the greater
the free-riding incentives in information sharing.

3.2 Information diffusion

Information dynamics

Proposition 1 deals with the relationship between neighbourhood size and signaling choi-
ces for a given stock of information, kt. However, in a multi-period economy where indi-
viduals make repeated signaling and contributions choices – as detailed in Section 2 – the
stock of information is endogenous. In what follows, we look at the relationship between
neighbourhood size and information sharing when the endogeneity of kt is accounted for.

The stock of information, kt, evolves through time as follows:

kt+1 = ktρ + (1− kt)
(
1− (1− ktst)

b)ρ ≡ Γ(st, kt). (8)

The term ktρ in (8) represents the fraction of individuals who, having experienced high
quality at t− 1, do a repeat purchase at t and again experience high quality at t; the next
term represents the fraction of individuals who, having experienced low quality at t− 1,
receive an informative signal at t (which occurs with probability 1 − (1 − ktst)b), and,
having acted on it, experience high quality; since only informed individuals participate
in provision (whether they have personally gathered information or they have received
signals from neighbours), no new information can be gained by uninformed individuals
who receive no signals from neighbours.

Up to this point, we have assumed that the proportion of informed individuals, kt, is
publicly known. But given that quality realizations are only observable by contributors, kt

is not directly observable. However, since in a large economy the realized level of public
good provision, Gt equals ρkt with probability one, and since individuals experience (and
thus observe) the level of public good provision, they can perfectly infer kt from Gt at
the end of period t (i.e. after signaling and contribution choices for period t have been
made). On the basis of their knowledge of kt, individuals can then determine the level
of kt+1 from (8) before making their choices at t + 1. This amounts to kt being publicly
observable at the beginning of each period.
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In this setting, knowledge of good suppliers spreads to others – at a speed that de-
pends on the size of social neighbourhoods and the cost of information transmission. But
information always remains incomplete due to the fact that suppliers undergo quality
shocks; i.e. there is social learning, but it never leads to information being complete as
information “depreciates”.

Stationary states

A stationary state consists of an indefinite sequence of periods where information-sharing
choices are in equilibrium within each period given the amount of information about
high-quality providers in the economy, and where the amount of information stays the
same through time, i.e. where kt+1 = kt = k̂.

A stationary state can thus be characterized with reference to a fixed point, (ŝ, k̂), such
that

Λ(ŝ, k̂) = 0, (9)

and

k̂ = Γ(ŝ, k̂). (10)

This definition implicitly incorporates a condition on the consistent updating of beliefs
about kt, as previously discussed. We abstract from questions of global stability;12 how-
ever, numerical simulations for a parameterized example (discussed below) are indicative
of fast convergence.

Focusing on (9) and (10), we can totally differentiate the equilibrium conditions with
respect to r̂ ≡ k̂ŝ and b in order to derive an expression for the total derivative dr̂/db.
This is unambiguously negative:

Proposition 2 In a stationary state, information-sharing intensity, r̂ = k̂ŝ, is negatively related
to neighbourhood size, b.

PROOF: Solving for k̂ from (10) as a function of r̂, we obtain

k̂ = ρ
1− (1− r̂)b

1− ρ(1− r̂)b ≡ Θ(r̂, b). (11)

12Gale and Kariv (2003) derive global convergence results for a setup that is somewhat related to ours
but does not share the same formal structure.
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Expressing (9) as a function of k̂ and r̂ (rather than of k̂ and ŝ), i.e. as Λ̃(r̂, k̂) ≡ (1− k̂)(1− r̂)b−1Ψ−
c = 0, substituting (11) into it, and totally differentiating, we obtain

dr̂
db

= −
Λ̃k̂Θb + Λ̃b

Λ̃k̂Θr̂ + Λ̃r̂
=

(1− r̂) ln(1− r̂)
b− 1 + ρ(1− r̂)b < 0. (12)

�

The conclusion that a larger neighbourhood size results in lower information-sharing
intensity thus also applies to comparisons across steady states that take into into account
information dynamics.

The above result does not immediately imply that collective consumption is nega-
tively affected by an increase in neighbourhood size. The total expected surplus associ-
ated with collective consumption – gross of signaling costs – increases with the informa-
tion stock k̂. As shown earlier, for a given b, the stock of information is directly related
to information-sharing intensity, r̂; and, as just shown, information-sharing intensity de-
creases with b. However a larger b also has a direct positive effect of information diffusion
– the expression Θb is positive (we show this in the proof below); i.e., for a constant level
of information-sharing intensity, an increase in the number of social connections raises
learning and thus the stock of information.13 In principle, if this latter effect were to
dominate the former, information on supplier quality could, in a stationary equilibrium,
be positively related to neighbourhood size even if it is associated with a lower level of
information-sharing intensity. Our next result shows that this can never be the case:

Proposition 3 In a stationary state, the stock of information, k̂, about supplier quality, as well
as expected, quality-adjusted provision, E[Ĝ], are decreasing in the size of social neighbourhoods,
b.

PROOF: The total effect of an increase in b on k̂ is expressed by the total derivative

dk̂
db

= Θb + Θr̂
dr̂
db

. (13)

We have

Θr̂ =
ρ(1− ρ)(1− r̂)b−1b(

1− ρ(1− r̂)b
)2 > 0; (14)

13For a constant ŝ (or, equivalently, at a corner where ŝ = 1 ) the model becomes a pure social learning
model with no endogenous information-sharing effort.
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Θb = −
ρ(1− ρ)(1− r̂)b ln(1− r̂)(

1− ρ(1− r̂)b
)2 > 0. (15)

We can substitute these and (12) into (13); after simplification, we obtain

dk̂
db

=
ρ(1− ρ)(1− r̂)b ln(1− r̂)(

1− ρ(1− r̂)b
)(

b− 1 + ρ(1− r̂)b
) < 0. (16)

Since expected collective provision at t equals Nkt+1µ, which in turn equals Nktµ in a stationary
equilibrium, an increase in neighbourhood size also decreases expected provision of the collective
good. Information-sharing effort, ŝ, is also decreasing in b: using (12) and (13), we obtain

dŝ
db

=

(
dr̂
db
− ŝ

dk̂
db

) /
k̂ =

1− (1− r̂)b−1ρ
(
1− r̂ + (1− ρ)ŝ

)
ρ(1− ρ)(1− r̂)b−1 k̂

dk̂
db

. (17)

The expression in the denominator on the right-hand side of (17) is positive, and the expression

in the numerator is also positive for ŝ ∈ (0, 1), k̂ ∈ (0, 1) and ρ ∈ (1/2, 1), implying dŝ/db < 0.

As anticipated earlier, (9) and (10) together can deliver an interior solution for ŝ even when b = 1,

and so (17) may also apply to the case b = 1. �

Thus, larger social neighbourhoods unambiguously result in a lower level of expected
collective consumption – although this remains strictly positive as long as some signaling
takes place (i.e. as long as ŝ > 0).14 It should be noted, however, that in this model
there is no collective provision without learning, and there is no learning with empty
neighbourhoods: for b = 0, any individual who is initially contributing through a high-
quality supplier would at some point experience low quality from that supplier and, in
the absence of any informative signals from others, would permanently stop contributing.
So, learning and collective provision are promoted by small neighbourhoods but not by
empty ones.

This result can be illustrated by the following parameterized example. Consider a
scenario with ρ = 2/3, θ = 7/4 > 1/ρ, µ = 1/2, c = Ψ/2 = 7/24. For b = 2, we have
ŝ ' 0.45, k̂ ' 0.39, r̂ = ŝk̂ ' 0.18, E[Ĝ]/N ' 0.195. Convergence to the stationary state
starting from k0 6= k̂ is relatively fast: starting from k0 = 0.01, convergence to k̂, up to
the third decimal digit, is attained at t = 40; starting from k0 = 0.99 convergence is even
faster, with kt reaching k̂, up to the third decimal digit, at t = 21. Doubling neighbourhood
size to b = 4 results in ŝ ' 0.22, k̂ ' 0.36, r̂ ' 0.08, E[Ĝ]/N ' 0.18. Finally, for b = 8, we

14If signaling effort goes to zero, any individual who experiences low quality, even once, will perma-
nently cease to contribute – implying that both the stock of information and the level of provision will
decline to zero.
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have ŝ ' 0.11, k̂ ' 0.345, r̂ ' 0.04, E[Ĝ]/N ' 0.17.
Collective consumption is lower when social neighbourhoods are larger even if, as in

this setup, spillovers from collective provision are independent of neighbourhood size.
Social neighbourhoods are only relevant here for voluntary information sharing. An
increase in neighbourhood size increases free-riding incentives in information sharing,
reducing information diffusion about provider quality and thus expected provision, de-
spite the potential for a higher number of signals reaching any given individual in larger
neighbourhoods.

4 Extensions

So far the analysis has been carried out in a model where private contributions come
about purely from consumption motives that are perfectly aligned across individuals. In
this section we show how our analysis and results extend to alternative characterizations
of the motives underlying giving and information-sharing behaviour.

4.1 Warm-glow motives

In the linear specification of preferences that we have assumed, although the public good
is a pure public good, the choice of whether or not to contribute is structurally indepen-
dent of the level of contributions by others, i.e. donations by one individual do not crowd
out donations by others. This also implies that individual donations are independent of
group size. Our arguments, however, do not crucially hinge on ruling out free riding;
we are simply modeling situations where individuals have positive incentives to give (as
we observe them to do), given the contribution choices of others, and where acquiring
information can affect such incentives. In fact, our specification is fully equivalent to one
where preferences are strictly convex – implying that, in principle, free riding can occur –
consumption is bounded below to unity, and the marginal rate of substitution of private
for public consumption (UG/Ux) is greater than ρ for (xi,t = 1, Gt = Nµ), and is less
than 1/2 for (xi,t = 1 + µ, Gt = 0) – which means that the individual selects a donation
vi,t = µ if q̃ ≥ ρ and a donation vi,t = 0 if q̃ ≤ 1/2. Thus, our arguments only require
that individuals make positive donations (conditional on the information they hold) in
the ”region of interest”.

Nevertheless, with strictly convex preferences and in the absence of any further re-
strictions, private giving will tend to vanish as the number of donors gets larger. In order
to rationalize non-vanishing contributions in large economies, economists have hypoth-
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esized that individuals may also experience a private benefit (“warm glow”) from their
donations (Andreoni, 1990). In the following, we show that the above analysis and results
are robust with respect to the inclusion of warm-glow motives.

If warm glow only relates to the donation an individual makes, then it would simply
involve an additional, private benefit term, γgi,t, with gi,t ≡ qj(i,t),tvi,t, in (1), which would
lower the minimum level of the marginal rate of substitution between public and private
consumption (represented by θ in our linear specification) required to rationalize positive
donations. The rest of the model and analysis would be qualitatively unaffected. On the
other hand, if warm glow only arises from the donation individuals make and is their only
reason for giving, i.e. if γ > 0 and θ = 0, then no individual would have an incentive to
engage in costly signaling.

However, it seems plausible that individuals who derive warm glow from their own
direct contributions to collective consumption would also derive warm glow from any
positive effect on collective consumption that they brought about with their own informa-
tion-sharing efforts, i.e. from other individuals’ contributions for which they can “take
credit”. Then, if an individual sends an informative signal of quality to a neighbour, she
would also experience warm glow from that neighbour’s contributions in those realiza-
tions where the signal has value to the neighbour and affects her giving choice.

This idea can be modelled as follows. Let σ0 denote the empty signal, E(si,t, i ∈ I)
denote the event space given the mixed signaling strategies chosen by individuals, and
let Ei,h,t be the subset of realizations where σi,h,t 6= σ0 and σi′,h,t = σ0, i′ ∈ Sh,t, i′ 6= i, i.e.
those realizations where individual h receives a signal from i and not from anyone else in
her social neighbourhood, Sh,t. Also denote with εi,h,t ∈ Ei,h,t a specific realization in this
set. We then write the payoff of an informed individual i at t as

xi,t + γ

(
gi,t + ∑

h∈{h∈Si,t|εi,h,t∈Ei,h,t}
gh,t

)
; (18)

i.e., the individual assigns a marginal valuation of γ on her own quality-adjusted dona-
tions as well as on the donations of those neighbours for whom her signaling efforts have
“made a difference”.

In this case an informed individual’s expected payoff from sending a signal to a neigh-
bour is equal to the probability that the neighbour is uninformed times the probability
that the neighbour has not received a signal from someone else, times γρµ, minus the
cost of signaling, c; i.e. an expression that is identical to Λ(st, kt), as defined in (2), but
for the fact that the scalar θ is now replaced by γ. The analysis of information sharing
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equilibria can then proceed along the exact same lines as in the case where giving stems
purely from consumption motives, and the results and conclusions are also identical.15

The only difference between this alternative characterization and the one developed in
the previous sections lies in the interpretation of the neighbourhood size effect. As noted
earlier, when the benefits from information sharing derive from a collective consump-
tion motive, information sharing can be thought of as a local public good; accordingly,
an increase in the size of social neighbourhoods induces free riding in the provision of
this public good – the larger the size of social neighbourhoods, the more individuals can
rely on others to inform their neighbours. In contrast, when the benefits from informa-
tion sharing stem from a warm-glow motive, information sharing can be thought of as a
private good subject to local congestion; in this case an increase in the size of social neigh-
bourhoods directly reduces the warm-glow value of information sharing – the larger the
size of social neighbourhoods, the more difficult it is for an individual who sends an in-
formative signal to take credit for her neighbours’ contributions.

4.2 Heterogeneous preferences for collective consumption

An important aspect of information-sharing activities is the potential for informative sig-
nals to steer other people’s contributions towards goals that the sender favours. This is a
key dimension of fundraising behaviour: individuals who engage in fundraising towards
charitable causes do not just do it to share information with others, but also in the hope
of affecting the kind of charitable activities that other individuals will support.

We can incorporate this motive into our analysis by allowing for preference hetero-
geneity with respect to collective consumption. Suppose that there are two forms of col-
lective provision, 1 and 2, and that individuals have heterogeneous preferences with re-
spect to the two forms of provision; namely, half of the population (type 1) have a period-t
payoff equal to

xi,t + 2θ
(
αG1

t + (1− α)G2
t
)
− ei,t, (19)

15This also applies to the conclusion that only truthful signals are sent in a mixed-strategy equilibrium:
sending an untruthful signal can generate a warm-glow benefit, but sending a truthful signal generates a
larger benefit; thus, in an equilibrium where the net expected benefit of sending a truthful signal is zero, the
net expected benefit of sending an untruthful signal is negative, and so no untruthful signal will be sent.
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whereas the other half (type 2) have a payoff equal to

xi,t + 2θ
(
(1− α)G1

t + αG2
t
)
− ei,t, (20)

with α > 1/2 – meaning that, quality being constant, the first half would prefer to con-
tribute towards collective good 1, and the other half would prefer to contribute towards
collective good 2. In addition, we assume that

ρ(1− α)θ > 1 > (1/2)αθ, (21)

implying that an individual of a given type would make positive contributions towards
the collective good she does not favour through a known high-quality supplier but would
not contribute anything towards the good she favours through a supplier of unknown
quality: these are conditions under which informative signals have the potential to “sway”
contributors away from one collective good towards the other.16

Then, an individual, i, of a given type who has information about quality for a supplier
providing the collective good she favours would face even stronger incentives to engage
in costly signaling. This is for two reasons: (i) information sharing also increases the
chance that an uninformed neighbour, h, of a different type would opt to contribute to
the good she (individual i) favours, if the only signal h receives is i’s signal; and (ii) it
also increases the chance that an individual of the same type as i, who is only informed
about provision of the good she does not favour, would switch to her favoured good, if
she receives a signal from i. In other words, a fundraiser can be pivotal in her neighbours’
choice about which form of collective provision to support.

In addition, if individuals who are informed about the good that they favour engage
in information sharing with a positive probability that is less than unity (i.e. in an interior
outcome in strictly mixed strategies), individuals who have information about the good
they do not favour will not do so – since the expected gain from sending a signal in this
case is strictly less than for individuals who have information about their favoured good.
Thus, a smaller proportion of informed individuals will engage in information sharing,
which will in turn increase signaling incentives for those who do so.

As a result, information-sharing intensity and the overall level of collective provision
will rise. This result is formalized in the proof of the following proposition.

16When this condition is not met, the only relevant interactions are those between individuals who are of
the same preference type. Such a scenario has the same structure and properties as the single-good scenario
that we have already analyzed.
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Proposition 4 In a stationary equilibrium, if (21) is satisfied at α = 1/2, and for α lying in a
right-hand neighbourhood of 1/2: (i) information-sharing intensity, r̂, is increasing in α; and (ii)
expected, quality-adjusted provision, E[Ĝ1 + Ĝ2], is increasing in α and decreasing in b.

PROOF: Consider the signaling incentives for an individual of type 1. Let Λττ
t be the expected

net payoff in period t of an individual of type τ (τ ∈ {1, 2}) for sending a signal about quality
of the good she favours, and Λττ′

t (τ′ 6= τ) be the corresponding payoff for a signal about the
good she does not favour. Because the good she favours is valued more, it must be the case that if
Λττ

t = 0, then Λττ′
t < 0, and so in a symmetric mixed-strategy equilibrium individuals will only

send truthful signals of quality about the good they favour (we state this conclusion informally
for the time being, but we verify it formally later on in our proof). The expected payoff for an
informed individual of type 1 from sending a truthful signal about provision of good 1, if the only
signals are truthful signals sent by informed individuals of each type about the good that type
favours, is then(

1− k11
t + k12

t + k22
t + k21

t
2

)
21−b

b−1

∑
h=0

(b−1
h )
(
1− s1

t k11
t
)h(1− s2

t k22
t
)b−1−h 2αΨ

+
1− k11

t − k12
t

2
21−b

b−1

∑
h=0

(b−1
h )
(
1− s1

t k11
t
)h(1− (1− s2

t k22
t )b−1−h)2(2α− 1)Ψ

+
k12

t
2

21−b
b−1

∑
h=0

(b−1
h )
(
1− s1

t k11
t
)h2(2α− 1)Ψ− c ≡ Λ11

t , (22)

where k11
t and k22

t are the proportion of individuals of each type who, in the previous period, have
experienced a good outcome about the good they favour; k12

t and k21
t are the proportion of individ-

uals of each type who, in the previous period, have experienced a good outcome about the good
they do not favour; s1 and s2 are each type’s mixed signaling strategy; and (b−1

h ) is the binomial
coefficient b−1Ch = (b− 1)!/

(
(b− 1− h)!h!

)
. The first term in Λ11

t represents the expected gain
related to the possibility that, by sending the signal, the type-1 individual induces a fully unin-
formed individual (of either type) to contribute towards good 1; the second term represents the
expected gain related to the possibility that a signal about good 1 induces a same-type individual
(of type 1) who has only received signals about good 2 at t to switch to good 1 from good 2; the
third term represents the expected gain related to the possibility that a signal about good 1 induces
a same-type individual (of type 1) who has experienced high quality in the provision of good 2 at
t− 1 and has not received any informative signal at t to switch from good 2 to good 1 (which type
1 individuals value 2

(
α− (1− α)

)
= 2(2α− 1) more than good 2). The corresponding expected

payoff for sending a truthful signal about quality of provision of good 2 would have a similar
structure, but the first term would feature a factor 1− α rather than α > 1− α, and the last two
terms would involve type-2 rather than type-1 receivers, and would feature a factor 1− 2α < 0
rather than 2α− 1 – implying an expected loss. Thus, as initially posited, Λττ′

t < Λττ
t .
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Stocks of information for type-1 individuals evolve as follows:

k11
t+1 = ρk11

t + ρ(1− k11
t )2−b

b

∑
h=0

(b
h)
(
1− (1− s1

t k11
t )h); (23)

k12
t+1 = ρk12

t 2−b
b

∑
h=0

(b
h)
(
1− s1

t k11
t
)h

+ ρ(1− k11
t − k12

t )2−b
b

∑
h=0

(b
h)
(
1− s1

t k11
t
)h(1− (1− s2

t k22
t )b−h). (24)

The corresponding expected payoff, Λ22
t , for a type-2 sender, and the equalities defining the evo-

lution of information stocks for type-2 individuals are defined analogously.
In a symmetric stationary equilibrium, it will be the case that k̂11 = k̂22 = k̂ττ, k̂12 = k̂21 =

k̂ττ′ , and ŝ1 = ŝ2 = ŝ.17 Carrying out these substitutions, using the identities ∑n
h=0 (

n
h) = 2n

and 2−n ∑n
h=0 (

n
h)
(
1 − x

)h
= 2−n(2 − x)n = (1 − x/2)n – the latter derived from the identity

∑n
h=0 (

n
h)xn = (1 + x)n – and further simplifying, the conditions for a stationary equilibrium in

strictly mixed strategies can be re-written as(
(1− k̂ττ − k̂ττ′)

(
1− ŝk̂ττ)b−1 + (1− k̂ττ)(1− ŝk̂ττ/2)b−1(2α− 1)

)
Ψ− c = 0; (25)

k̂ττ − ρ
(

k̂ττ + (1− k̂ττ)
(
1− (1− ŝk̂ττ/2)b)) = 0; (26)

k̂ττ′ − ρ
(

k̂ττ′(1− ŝk̂ττ)b + (1− k̂ττ)
(
(1− ŝk̂ττ/2)b − (1− ŝk̂ττ)b)) = 0. (27)

Letting ŝk̂ττ = r̂ and solving for k̂ττ and k̂ττ′ as a function of r̂ from (26) and (27), we obtain

k̂ττ = 1− 1− ρ

1− ρ(1− r̂/2)b , (28)

k̂ττ′ = 1− k̂ττ − 1− ρ

1− ρ(1− r̂)b , (29)

k̂ττ + k̂ττ′ = 1− 1− ρ

1− ρ(1− r̂)b . (30)

The total in (30) equals the expression obtained from solving for k̂ as a function of r̂ in a scenario
with homogeneous provision.

For α = 1/2, both k̂ττ and k̂ττ′ come to refer to a common homogeneous stock of information;

17Asymmetric stationary equilibria in which there are positive stocks of information for both forms of
provision but where only one agent type engages in costly information sharing cannot exist: if one agent
type does not send costly signals, the information stock pertaining to the good which that agent type
favours must be zero in a stationary equilibrium (as in the linear case, there is always a stationary equi-
librium with zero information stocks). Starting from a positive information stock for only one form of
provision (say good 1), an outcome where only one agent type signals and where the stock of informa-
tion for the other form of provision remains zero can also be an equilibrium. Signalling incentives in that
case would still be captured by (22) – with k12 = k22 = 0. The same intuition with respect to effects of
neighbourhood size would apply.
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so we can write k̂ττ + k̂ττ′ = k̂. Moreover, for α = 1/2, (25) becomes

(1− k̂)
(
1− r̂)b−1Ψ− c = 0, (31)

which coincides with the corresponding condition for a scenario with homogeneous provision.
So, we conclude that, for α = 1/2, the stationary equilibrium values k̂ and r̂ coincide with those
in a scenario with homogeneous provision, and so do those for α approaching 1/2 from the right
– the only difference being that, for α close to but not equal to 1/2, only the stock k̂ττ gives rise
to information sharing and so ŝ = r̂/k̂ττ, whereas for α = 1/2 all informed individuals engage in
signaling and so ŝ = r̂/k̂.

Substituting (28) and (30) into (25) and totally differentiating with respect to r̂ and α, we obtain

[
dr̂
dα

]
α=1/2

=
2(1− r)2−b(1− r̂/2)b−1(1− ρ(1− r/2)b)2(

b− 1 + ρ(1− r̂)b
)(

1− ρ(1− r/2)b
) > 0. (32)

Multiplying the above by ∂(k̂ττ + k̂ττ′)/∂r̂ (as derived from (30)), and evaluating the resulting
expression at α = 1/2, we obtain[

d(k̂ττ + k̂ττ′)

dα

]
α=1/2

=
2bρ(1− ρ)(1− r)(1− r̂/2)b−1(

b− 1 + ρ(1− r̂)b
)(

1− ρ(1− r/2)b
) > 0. (33)

Finally, the expression for dk̂/db (obtained as in the proof of Proposition 3) is continuously differ-

entiable in α; this implies that, for α approaching 1/2 from the right, dk̂/db approaches (16). By

continuity, we can then conclude that there exists a right-hand neighbourhood of 1/2, Nε(1/2),

for some ε > 0, in which dk̂/db < 0. �

Thus, with reference to the implications of neighbourhood size for information-sharing
intensity and provision levels, this scenario yields qualitatively analogous predictions as
the basic specification we examined earlier – albeit with stronger signaling incentives.
The main virtue of this variant, however, is that it incorporates motives that are typically
thought of as being central to fundraising, namely the drive by fundraisers to steer others’
contributions towards forms of provision favoured by the fundraisers themselves.

Referring back to the example presented at the end of Section 3, for b = 2 and α

approaching 1/2 we obtain the same level of expected provision as in the homogeneous
good case, with stocks respectively equal to k̂ττ ' 0.25, k̂ττ ' 0.14 – adding up to the same
information stock level, k̂ ' 0.39, as in the homogeneous good case – and ŝ = 0.7 – giving
the same level of information-sharing intensity, r̂ = ŝk̂ττ ' 0.18, as in the homogeneous
good case – and a level of expected provision E[Ĝ1 + Ĝ2]/N ' 0.195. For b = 2 and α =

5/8 > 1/2, we have k̂ττ ' 0.35, k̂ττ ' 0.15, r̂ ' 0.29, E[Ĝ1 + Ĝ2]/N ' 0.25 > 0.195: other
things equal, heterogeneity in preferences results in a higher level of expected provision.
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4.3 Strictly convex preferences

In the preceding discussion, payoffs have been assumed to be linear in the level of col-
lective provision. Linearity is not at odds with the presence of a diffuse positive exter-
nality (a public good) that entails suboptimal levels of provision. But linearity does imply
that individual provision incentives are unaffected by the the provision choices of others;
specifically, it implies that any increase in the supply of the collective good, either coming
from government or from other private agents, does not “crowd out” provision by the re-
maining agents – as is the case with convex preferences (as reflected by a concave utility
function).

Abstracting for the time being from information sharing, and omitting time subscripts,
suppose that preferences are represented by the following strictly concave utility function:

ln(y− vi) + θ ln(G); (34)

and consider a scenario with a finite N and where there is no uncertainty in provision
outcomes. The first-order condition identifying the optimal level of contributions for in-
dividual i can be then written as

− 1
y− vi

+ θ
1

G−i + vi
= 0, (35)

where G−i = ∑h 6=i vh. This gives vi =
(
θy− G−i)/(1 + θ) and so dvi/dG−i < 0. Thus,

with concave preferences, i’s individually optimal level of provision is decreasing with
the level of provision of others, i.e. private contributions are strategic substitutes.

It can be shown that the arguments and results we have developed for the case with
linear preferences generalize to a scenario with concave utility. Focusing still on the loga-
rithmic utility case,18 in a scenario where only informed individuals contribute (as in the
linear case), we can derive the following result:

Proposition 5 With loglinear utility, an increase in neighbourhood size lowers information-
sharing intensity as well as the stationary-state level of expected collective provision.

PROOF: We assume the following concave payoff specification: U(xi, G, ei) = ln xi + θ ln G − ei

18This is analytically convenient, as it yields closed-form solutions for contribution levels. Neverthe-
less, the result we prove below for the logarithmic utility case can be generalized to arbitrary quasilinear
preferences – albeit at the cost of employing extra analytical machinery.
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(omitting time subscripts for the time being), under the parameterization θ = Nζ, with ζ > 0.19

We begin by supposing first that N is finite, and by abstracting from information-sharing choices.
The expected payoff of individual i, gross of information-sharing costs, is

ln(y− vi) + θE
[

ln(G−i + qivi)
]
, (36)

where E[.] is the expectation operator and where G−i is the realization of total provision resulting
from the contributions of all individuals other than i. The first-order condition for an interior
optimal choice of vi is

− 1
y− vi

+ θE
[

qi

G−i + qivi

]
= 0, (37)

We focus here on a scenario where ρ is large enough (and so 1− ρ small enough) that uninformed
individuals choose a zero contribution v = 0, which is analogous to the scenario we examined
for the linear case.20 In a symmetric equilibrium where all informed individuals each select a
contribution level v > 0 and all uninformed individuals each select a contribution level v = 0, and
for N approaching infinity we can write limN→∞ NζE

[
qi/(G−i + qivi)

]
= limN→∞ Nζρ/

(
E[G−i] +

v
)
= limN→∞ Nζρ/

(
(Nk− 1)ρv + v

)
= ζ/(kv); and so (37) approaches −1/(y− v) + ζ/(kv) =

0.21 This gives

v =
ζ

ζ + k
y ≡ v(k). (38)

Individual contributions are thus decreasing in k, i.e. they are smaller the greater the proportion of
individuals making positive contributions. Nevertheless, as in the linear case a higher k translates
into higher collective consumption: the effect of an increase in k on expected provision per head,
ρkv, is ρyζ2/(ζ + k)2 > 0.

To characterize information-sharing choices, we must consider the value to an informed donor
of having an additional informed donor, which is found by comparing the expected provision
outcome with Nk informed individuals with the corresponding outcome with Nk − 1 informed

19This parameterization implies that, consistently with the linear case, payoff effects of signaling choices
remain finite for N → ∞.

20The relevant condition is ρ ≥ (k + ζ)/(2k) (≥ 1/2). This is found by solving (37) for both agent types,
together with the condition G = ρNkv + (1/2)N(1− k)v, for N → ∞ – which gives v(k) = y

(
1−

(
1/2 +

k(ρ− 1/2)
)
/
(
ρ(1 + ζ)

))
, v(k) = y

(
ζ − 2k(ρ− 1/2)

)
/(1 + ζ) – and then solving v(k) = 0 for ρ.

21Contribution choices remain strategic substitutes even for N → ∞: letting ρ = 1, re-writing (37) as
−1/(y− vi) + θ/

(
(N − 1)ḡ−i + vi

)
= 0 (taking provision per head by other players, ḡ−i, as exogenous),

replacing θ with Nζ, taking the limit for N → ∞, and solving for vi, we obtain vi = y− ḡ−i/ζ, which is
decreasing in ḡ−i.
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individuals. The value to another donor of the marginal donor becoming informed is

lim
N→∞

Nζ
(

ρ ln
(
ρ(Nk− 1)v(k) + v(k)

)
+ (1− ρ) ln

(
ρ(Nk− 1)v(k)

)
− ln

(
ρ(Nk− 1)v(k)

) )
=

ζ

k
≡ Ψ(k). (39)

The net expected payoff to an informed individual of sending a signal at t is then

(1− kt)(1− kts−i,t)
b−1Ψ(kt)− c ≡ Λ(s−i,t, kt), (40)

i.e. an expression analogous to (2) but with Ψ(kt) = ζ/kt now depending inversely on kt rather
than being constant.

Proceeding just as in the linear case, we can then derive results analogous to Propositions 1-3.
In particular, with reference to the effect on k̂ of a change in neighbourhood size, we obtain

dk̂
db

=
1− (1− r̂)b

1− ρ(1− r̂)b
ρ(1− ρ)(1− r̂)b ln(1− r̂)(

1− ρ(1− r̂)b
)(

b− 1 + ρ(1− r̂)b
) < 0. (41)

Since the first ratio after the equality in (41) is less than unity, the above effect is smaller in absolute

value than the corresponding effect (16) for the linear case. �

In the concave utility case, changes in the stock information affect information-sharing
intensity through a second channel: a higher k lowers individual contributions by all
types and hence lowers the value of having an additional individual becoming informed,
Ψ(k). This is in addition to the effect directly associated with signaling incentives, just as
analyzed for the linear case – i.e. a higher k lowers the probability that individual signals
will be valuable to receivers. Thus, with concave utility, the negative first-order effect on
k̂ of an increase in b is dampened by a positive second-order effect stemming from the
fact that a lower k̂ raises the value of informative signals to senders.

5 Government subsidies

Many developed countries offer government support to private giving – typically deliv-
ered in the form of tax relief for donations, but also involving direct support for charities
and for fundraising activities.

In the equilibrium described in the previous sections private provision is the com-
bined result of private contribution choices and private information-sharing choices. A
natural question to ask is then whether government policies that aim to encourage private
provision should be targeted towards voluntary contributions or towards fundraising (or
both).
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We can look at this question in the context of a variant of our model in which private
signaling costs are monetary costs that reduce private disposable income rather than di-
rectly appearing as a non-monetary component of individuals’ payoffs. This means that,
if we assume that donations are bounded above to a maximum of µ, private consump-
tion by individual i in period t equals 1 + µ− ei,t, where ei,t includes all signaling costs
incurred. Other than for this difference in the interpretation of signaling costs, the result-
ing expression for individual payoffs is exactly as before (Section 2) – and so is the rest
of the analysis. We will use this framework to ask what is the maximum, aggregate level
of private provision that government can achieve by subsidizing contributions and then
compare it with what it can achieve by subsidizing fundraising instead.

Suppose first that the government subsidizes giving. Given that the maximum con-
tribution per individual is µ, that informed individuals make contributions µ, and that
uninformed individuals make zero contributions, the best the government can do is to
offer a subsidy that induces uninformed individuals to give, i.e. such that the net of sub-
sidy price is θ/2. By doing so, it will induce all individuals (informed and uninformed) to
contribute, which raises the level of expected collective provision. This, however, lowers
the benefit from information sharing: the expected payoff from signaling now becomes
(1− kt)(1− ktst)b−1θ(ρ − 1/2)µ − c < Λ(st, kt); so, as long as c is not negligible, indi-
viduals do not share information: if (1 − kt)θρµ > c > (1 − kt)θ(ρ − 1/2)µ, then the
conditions for an interior mixed-strategy equilibrium in signaling choices are met when
contributions are not subsidized, whereas with subsidization of contributions the opti-
mal signaling strategy is always st = 0 for any c > 0. Accordingly, when contributions
are subsidized information will evolve as kt+1 = ktρ + (1− kt)/2. Imposing kt+1 = kt,
we can then identify a stationary equilibrium information level equal to k̂′ = 1/(3− 2ρ).
Thus, government subsidies to private contributions can “crowd out” private fundrais-
ing efforts; on the other hand, by inducing uninformed individuals to give, government
subsidies to contributions induce them to experiment, which results in more information
being gathered through direct experimentation.

Suppose that, instead of subsidizing contributions, the government subsidizes sig-
naling (fundraising) costs. Specifically, suppose that the government offers a subsidy zt

that is just high enough to induce individuals to choose st = 1, i.e. a subsidy zt that
reduces the net-of-subsidy cost of signaling, (1− zt)c, to a level such that Λ(1, kt) = 0
(once c has been replaced by (1− zt)c). By ensuring that Λ(1, kt) = 0, such a subsidy
ensures that all signals are truthful. One can verify that this requires a subsidy such
that c(1 − zt) = (1 − kt)b. In this case, the stationary equilibrium condition becomes
k̂ = Γ(1, k̂) = ρ

(
1− (1− k̂)b+1); this identifies a stationary equilibrium level of informa-
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tion k̂′′. Note that, as b gets large, Γ(1, k̂) converges to k̂; this gives k̂′′ = ρ, which, for
ρ > 1/2, is greater than k̂′ = 1/(3− 2ρ). So, for b large enough, subsidizing fundraising
results in a higher level of collective consumption than does subsidizing contributions.
This result extends to finite values of b, as the following example shows.

Going back to the parameterization detailed at the end of Section 3, suppose now that
government subsidizes contributions. The best it can do is offer a subsidy of 1/8, which
results in all individuals giving. In this case, signaling effort is zero, independently of the
value of b, and we have k̂ = 0.6, and E[Ĝ] ' 0.3. For this value of k̂, the expected payoff
from signaling is negative.

Now suppose instead that the government subsidizes signaling costs, with a subsidy
just large enough to induce ŝ = 1 and Λ(1, k̂) = 0 for any given value of k̂. Then, for b = 2,
we have k̂ ' 0.635, E[Ĝ]/N ' 0.32 > 0.3. For b = 4, we have k̂ ' 0.664, E[Ĝ]/N ' 0.331;
for b = 8, we have k̂ ' 0.666, E[Ĝ]/N ' 0.333 > 0.3.

The above conclusion does not imply that subsidies to fundraising are necessarily a
more effective way of promoting private provision using a given amount of public funds.
While a systematic characterization of optimal government policies under budgetary con-
straints is beyond the scope of this paper – and the present setup is in any case too abstract
for studying this question – it is easy to point to scenarios where subsidizing information
sharing is comparatively more effective than subsidizing giving. Suppose, for example
that the per-capita public funds, F, required to grant government subsidies attract a pre-
mium, Nϕ(F), reflecting the (unmodeled) efficiency losses associated with collecting pub-
lic funds through taxation (the derivative ϕ′(F) is often referred to as the marginal cost of
public funds in the public finance literature); and suppose that ϕ′(0) = 0 and ϕ′′(F) > 0.
Also let FCS be the per-capita amount required to fund a general (anonymous) contribu-
tion subsidy that induces giving by uninformed individuals, i.e. FCS = µ(1− θ/2), and
let ∆ŪCS denote the change in the mean payoff associated with this change in contribu-
tions. If the function ϕ(F) is such that ϕ(FCS) > ∆ŪCS/N, a contribution subsidy will
not be worthwhile, whereas there will always be some positive level of subsidization of
information-sharing costs that is worthwhile: for N → ∞, the marginal effect dŪ/N of
a marginal increase in an information-sharing subsidy ξ that reduces the signaling cost
from c to c− ξ, starting from ξ = 0, equals −

(
dk̂/dc

)
Ψ−

(
dr̂/dc

)
c; this is positive (the

stationary-state, non-cooperative level of signalling is suboptimal22) and hence always
greater than ϕ′(0) = 0 – implying there will always be an interior optimum with ξ > 0.

22Totally differentiating the equilibrium conditions and simplifying the resulting expressions, we obtain
−
(
dk̂/dc

)
Ψ−

(
dr̂/dc

)
c =

(
1 + bρ(1− ρ)/

(
(1− k̂)

(
1− ρ(1− r̂)b)2

))
c > 0.
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6 Summary and discussion

We have described a model of private provision choices in the presence of interpersonal
information transmission, where private information on modes of collective provision can
be transmitted by social proximity, but where sending signals is an endogenous, costly
decision on the art of the sender. Unlike in the case of private goods, informed individ-
uals face positive incentives to engage in costly information transmission towards less
informed social neighbours. In this setting information sharing has the characteristics of
a local public good, even if contributions are directed towards the provision of a pure
collective good.

We have shown that in this model information-sharing incentives are stronger the
smaller are individuals’ social neighbourhoods, and this effect always dominates any
advantage that larger neighbourhoods may have with respect to the diffusion of infor-
mation, resulting in a lower level of provision of collective consumption at the economy
level. It is worthwhile noting that, in interpreting this result in the context of real-world
social connections, the size of communities need not be understood in a geographical
sense. What is relevant to our arguments is the size of social communities – which in-
clude communities of co-workers, on-line communities, and the like. Thus, for example,
while an increase in population density might be thought of as implying an increase in
the size of geographical social neighbourhoods, it might actually lead to more rather than
less information sharing if it is accompanied by a rise in the relevance of smaller, non-
geographical social communities in individuals’ social lives.

We have shown that these results generalize to a variety of settings: when there are
heterogeneous preferences, when preferences are strictly convex, and when agents are
forward-looking (discussed in the Appendix). To the extent that individuals are forward-
looking (patient) rather than myopic, they will also account for the non-local effects of
their information sharing efforts on future information stocks and future provision out-
comes – both directly and indirectly through the effect of information stocks on further
learning. In the Appendix we show that, other things equal, attaching a positive weight
to future outcomes raises information-sharing incentives and the stationary-state stock of
information, k̂; but the effect of changes in neighbourhood size is qualitatively the same
as in the myopic case, i.e. the results stated in Propositions 2 and 3 generalize to the
forward-looking case.

We have abstracted from the complications that would arise in a social networks with
stable links: the presence of stable links in a large network of individuals with repeated
signaling results in a high-dimensional mapping from individual histories (of observed
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signals) to beliefs about the distribution of information in the network. This makes it
difficult to provide a sharp characterization of equilibrium information-sharing choices
with information dynamics for the specific problem we are analyzing (beyond just de-
scribing the structure of such an equilibrium in general terms).23 Moreover, with stable
links, it is not the number of links but their relative locations (the topological structure
of the network) that matters for how much information is eventually accumulated and
transmitted. Thus, with stable links, one cannot just ask what the effect of neighbour-
hood size is on long-run information transmission; rather, the implications of alternative
network topologies must be considered for any given number of links. Nevertheless, it
can be shown that a mechanism analogous to the free-riding mechanism that we have
highlighted in Proposition 1 will be at work in every round of the relevant sequential
game even when links are stable.

Our results have been derived in a framework where private contributions to collec-
tive consumption arise solely from consumption motives, but we have shown that results
carry over to the case where giving stems from warm-glow motives. There are other pos-
sible interpretations of the motives for private giving that we have not examined here
– such as status signaling or reciprocity effects. It should be noted, however, that these
alternative interpretations of giving motives do not automatically extend to information-
sharing motives. Developing status signaling-based and/or reciprocity-based theories of
information sharing is left for future research.
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Appendix: Forward-looking agents

Proposition 6 When agents are forward-looking: (i) an increase in neighbourhood size lowers information-
sharing intensity and the expected level of collective provision; (ii) for a given neighbourhood size, an in-
crease in the discount factor increases information-sharing incentives and the expected level of collective
provision.

PROOF: Let preferences be represented by an intertemporally separable utility function expressed as the
present value of instantaneous utility discounted by a discount factor δ ∈ (0, 1]. We develop our argument
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starting from a scenario where N is finite and then derive limit results for N → ∞ (consistently with our
analysis of the myopic case). Also, for the sake of expositional simplicity, we assume from the outset that i’s
signaling choice is the same vis-à-vis all her neighbours, i.e. i either sends a signal to all of her neighbours
or to none of them (for N → ∞, this is equivalent to assuming that signaling choices are independent across
receivers; see Footnote 8).

Let ai,t ∈ {0, 1} denote a realization of the signaling strategy of agent i at t , with ai,t = 0 representing no
signal and ai,t = 1 representing an informative signal. We can then write the discounted expected indirect
utility for an informed individual i at time t – leaving out i’s income and direct contributions made by i
– as a function of the current total stock of information, Kt = Nkt, and of the realization, ai,t ∈ {0, 1}, of
her current information-sharing, mixed-strategy choice, si,t, for given current (symmetric) mixed-strategy
information choices, s−i,t, made by other informed individuals:

Ṽi,t(Kt; ai,t, s−i,t) = θµE
[
Kt+1

]
− ai,tbc + δE

[
V̄i,t+1(Kt+1)

]
, (42)

where E[.] is the expectation operator. The first term on the right-hand side of (42) is the expected value of
current collective consumption; this involves the stock Kt+1, which evolves from Kt according to Kt+1 =

K̃t+1(Kt; ai,t, s−i,t) (the structure of this mapping is discussed below for the case N → ∞, the focus of this
proof). The second term on the right-hand side of (42) is the cost of signaling. The third term on the
right-hand side of (42) is expected, discounted continuation utility from t + 1 onwards, given Kt+1 and the
mixed-strategy choice s̃t+1(Kt+1), i.e.

V̄i,t+1
(
Kt+1) = s̃t+1(Kt+1)Vi,t+1

(
Kt+1; 1, s̃t+1(Kt+1)

)
+
(
1− s̃(Kt+1)

)
Vi,t+1

(
Kt+1; 0, s̃t+1(Kt+1)

)
, (43)

where s̃t+l(Kt+l), l ≥ 1, denotes symmetric mixed-strategy information choices by all players in the relevant
sub-games;24 and where we are making use of the fact that E

[
Gt
]
= µE

[
Kt+1

]
.

Using (42), a symmetric, subgame perfect, mixed-strategy equilibrium in signalling choices with mixed
strategies, si,t = s−i,t = st ≡ s̃t(Kt), ∀t, is recursively identified by the condition

Ṽi,t(Kt; 1, st)− Ṽi,t(Kt; 0, st)− ∆EPVC = 0, (44)

where ∆EPVC is a term that accounts for the effect of the realization ai,t on the expected present value of
contributions made by i (the role of this term for N → ∞ is discussed below). Substituting the expressions
on the right-hand side of (42), we can write

Ṽi,t(Kt; 1, st)− Ṽi,t(Kt; 0, st) = ΨE
[
K̃t+1(Kt; 1, st)− K̃t+1(Kt; 0, st)

]
+δE

[
V̄i,t+1

(
K̃t+1(Kt; 1, st)

)
− V̄i,t+1

(
K̃t+1(Kt; 0, st)

)]
− bc. (45)

In turn, for N approaching infinity, the term K̃t+1(Kt; ai,t, st) can be approximated by the following expres-

24In a subgame perfect equilibrium, equilibrium strategies must account for the relationship between
current strategic choices and the equilibrium strategies that result from such choices in the continuation
game.
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sion:25

Ktρ + (N − Kt − b(1− Kt/N))
(
1− (1− (Kt/N)st)

b)ρ
+b(1− Kt/N)

(
ai,t + (1− ai,t)

(
1− (1− (Kt/N)st)

b−1))ρ ≡ Ξ(Kt, ai,t, st). (46)

Thus, for N approaching infinity, the first expectation on the right-hand side of (45) approaches

lim
N→∞

E
[
K̃t+1(Kt; 1, st)− K̃t+1(Kt; 0, st)

]
= lim

N→∞
E
[
Ξ(Kt; 1, st)−Ξ(Kt; 0, st)

]
= ρ b(1− kt)(1− ktst)

b−1. (47)

The first term on the right-hand-side of (45) is thus equal to b times the first term of (2) as defined earlier
for the myopic case.

If we next expand the second term in the right-hand side of (45) we obtain an infinite series, the first
term of which can be written as

δθµE
[

K̄t+2
(
K̃t+1(Kt; 1, st); s̃t+1(K̃t+1(Kt; 1, st))

)
− K̄t+2

(
K̃t+1(Kt; 0, st); s̃t+1(K̃t+1(Kt; 0, st))

)]
+δ
(

s̃t+1(K̃t+1(Kt; 1, st))− s̃t+1(K̃t+1(Kt; 0, st))
)

c, (48)

where

K̄t+1(Kt; st) = stK̃t+1(Kt; 1, st) + (1− st)K̃t+1(Kt; 0, st). (49)

For N approaching infinity, s̃t+1
(
K̃t+1(Kt; 1, st)

)
and s̃t+1

(
K̃t+1(Kt; 0, st)

)
converge to a common limit,

s̄t+1(kt+1), and so the second term on the right-hand side of (48) vanishes. Expanding the t + 2 period
difference within the expectation operator of the first term of (48) by using (46) in conjunction with (49),
noticing that for N approaching infinity the ratio Kt+l/N becomes independent of ai,t+l , factoring common
terms and simplifying the resulting expression, we can express (48) as

δΨ lim
N→∞

(
K̃t+1(Kt, 1, st)− K̃t+1(Kt, 0, st)

)(
1− kt+1 s̄t+1(kt+1)

)b. (50)

Now use (47) to substitute for limN→∞
(
K̃t+1(Kt, 1, st)− K̃t+1(Kt, 0, st)

)
; (50) becomes

δΨρb(1− kt)(1− ktst)
b−1(1− kt+1 s̄t+1(kt+1)

)b. (51)

Proceeding in the same way, the next term in the (series) expansion of the second term on the right-hand
side of (45) can be shown to equal

δ2Ψρ2b(1− kt)(1− ktst)
b−1(1− kt+1 s̄t+1(kt+1)

)b(1− kt+2 s̄t+2(kt+2)
)b; (52)

and so on for all subsequent terms in the series – i.e. the 1 + lth term in the series (l = 0, . . . , ∞) is

δlΨρlb(1− kt)(1− ktst)
b−1

l

∏
j=0

(
1− kt+l s̄t+l(kt+l)

)b. (53)

25The structure of (46) is analogous to that of (8). The second term on the right-hand side refers to those
individuals who are not in i’s neighbourhood at t – and are thus unaffected by i’s actions at t; the last term
refers to i’s neighbours at t.
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In a stationary equilibrium, with kt = kt+l = k̂ and st = s̄t+l(kt+l) = ŝ, l ≥ 1, we can thus write (45) as

b(1− k̂)(1− k̂ŝ)b−1
∞

∑
l=0

δlρl(1− k̂ŝ)lb Ψ− b c =
b(1− k̂)(1− k̂ŝ)b−1

1− δρ(1− k̂ŝ)b
Ψ− b c, (54)

(The last equality obtains because δ ∈ [0, 1), ρ ∈ (0, 1), (1− k̂ŝ)b ∈ (0, 1), and so δρ(1− k̂ŝ)b < 1.) Also, for
N → ∞, i’s signalling choice at t has a vanishing effect on the likelihood of i herself being informed (and
thus making positive contributions) in each of the following periods, and so the term ∆EPVC in (44) also
vanishes. Dividing through by b, the indifference condition for an equilibrium in strictly mixed strategies
can be then written as

(1− k̂)(1− k̂ŝ)b−1

1− δρ(1− k̂ŝ)b
Ψ− c ≡ Λ(ŝ, k̂) = 0, (55)

where the left-hand side coincides with the expression that was previously given in (2) when δ = 0 (the
myopic case). Note that the assumed random assignment structure implies that information sharers attach a
vanishingly small probability of interacting again with their social neighbours in future periods. Therefore,
forward-looking incentives have the same structure as myopic ones – with the exception that forward-
looking agents face a higher incentive to signal, as the stock of information is persistent over time.

Comparative statics on the steady state with respect to changes in b can then be obtained as before
(proofs of Propositions 2 and 3), using the condition Λ̃(r̂, k̂) = 0 (obtained from (55)) in conjunction with
(11). Proceeding as in the proof of Proposition 2, and manipulating terms, we obtain

dr̂
db

=
(1− r̂)(1− δZ2) ln(1− r̂)

W
, (56)

where Z ≡ ρ(1− r̂)b, and W ≡ (b− 1)(1− δZ2) + Z(1− δZ) + δ(Z− Z2). Since Z ∈ (0, 1) and δ ∈ (0, 1),
the expression W is positive. The numerator of (56) is negative, and so dr̂/db < 0, as in the myopic case.
Moving on to the effect of a change in b on k̂, proceeding as in the proof of Proposition 3, we obtain

dk̂
db

=
(1− ρ)Z

(
1− δZ

)
ln(1− r̂)(

1− Z
)
W

< 0. (57)

Next we look at how forward-looking preferences affect information sharing. We can first focus on the
total derivative

dk̂
dδ

= Θr̂
dr̂
dδ

, (58)

where

dr̂
dδ

= −
Λ̃k̂Θδ + Λ̃δ

Λ̃k̂Θr̂ + Λ̃r̂
=

(1− r̂)(1− Z)
W

> 0; (59)

since Θr̂ > 0 (as shown in the proof of Proposition 3), we conclude that an increase in δ raises the stationary-

state stock of information and collective provision. �
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