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Abstract 
 
This paper presents a choice model based on a model for the behavior of brain cells that is 
based on neurological findings. The paper shows that it is possible to define choice as the 
result of a series of interconnected cellular processes, instead of framing the problem from the 
point of view of a single optimizing agent. Many of the desirable attributes of the latter are 
preserved. Under specific conditions identified here, the aggregate behavior of individual 
brain cells is similar to what a traditional rational optimizing agent would choose. This model 
is a first step to understand decision-making in terms of cellular interactions. 
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1. Introduction 

This paper derives decision-making behavior purely from the mechanics of interconnected brain 

cells, and the behavior of brain cells as documented by the neurological evidence. The main result is 

that choice can be modeled without assumptions such as the maximization principle and preference 

axioms. Instead, choice emerges from information processing by brain cells, who receive and send 

information towards other cells until an action is performed. The model is a first step to understand 

decision-making in terms of cellular interactions. Moreover, the paper finds that under specific 

conditions the combined behavior of brain cells is similar to what an optimizing agent would 

choose.  

While classical economics is largely interested in the strategies chosen by rational agents, 

neuroeconomics analyzes decision-making from a biological perspective (see [1], [2]). Some 

economists doubt how much they can rely on the present corpus of neuroscience, since its predictive 

power is still low. More importantly, they wonder how complex behavior (such as market behavior) 

could be modeled without a general theoretical framework (see [3], [4]). 

A growing consensus in neuroscience suggests that the brain makes decisions by following a cycle 

that starts with the construction of a representation of the problem and the potential actions that can 

be followed. Later, the courses of actions under consideration are evaluated and one of these is 

selected. Finally, the outcome observed after the implementation of the selected action is used to 

improve the quality of future decisions (see [13] for a review). Our model takes this cycle as 

granted, assuming the brain assigns values to potential actions and later makes a choice over actions. 

We model choice according to the following findings: memory retrieval is a slow process (see [14] 

and [15]). The brain stores prescribed guides for actions (see [16] and [17]), conceives new 

situations and remembers past experiences (see [18]). The brain feels pleasure in a physical and 

measurable way (see [19]). Possible rewards are played in the brain before they become realized 

(see [20]). And a similar calculation to expected utility is performed in the brain (a physical and not 

as if calculation) (see [21], [22], [23], [24], [25], and [26]). 

The individual brain cell model used in this paper combines continuous spike-generation 

mechanisms and a discontinuous ‘after-spike’ reset of state variables (see [12] for a review on 

hybrid spiking models of neurons). This model is not meant to be accurate but sufficiently realistic 

and simple to permit a tractable model of decision-making based on brain cells. The result is a 

model where behavior is derived purely from the mechanics of interconnected cells, and yields a 

tractable set of formulae that summarizes choice.  

Although every cell acts independently of one another, our analysis of this model finds that 

decision-making may be similar to what an optimizing agent would choose. An analogy may be 

provided by a perfectly competitive market, where each agent and firm chooses independently their 

consumption and production respectively. Nevertheless, this market allocates resources as if a 

maximizing agent were present, namely a benevolent planner, as proved by Arrow and Debreu 

(1954).  



3 

 

 

 

This paper draws on several strands of the literature. One part of the neuroeconomics literature is 

interested in the conflicts between brain systems, which are treated as if they were rational agents 

(see [5] for a survey), Another part incorporates some of the physiological constraints faced by the 

brain in the decision-making process (see [6] for a review). Theoretical neuroscience is concerned 

with the construction of mathematical and computational models of the brain that characterize what 

nervous systems do and determine how they function (see [7] for an introduction). Finally, 

computational neuroscience is interested in the use of computational techniques to model biological 

neural networks, although it also includes attempts to understand the brain and its functions through 

theoretical constructs (see [8]). [9] models the process through which the brain maps evidence 

received from the outside world into decisions, using the standard expected utility approach, and 

incorporates biological constraints. [10] models choice assuming that “cognitive limitations cause 

people to focus their attention on some but not all aspects of the world”. Similarly, [11] replaces the 

prior used in classical expected utility with a function that selects “similar” events from memory, 

instead of taking into account every possible outcome. 

Section 2 presents the model in two main steps: first, a general model of a brain cell is presented, 

and then the model is specialized into three different types of cells, to which a general class of 

interconnection is added, in order to mimic the three stages in the decision making cycle, in lined 

with the biological evidence. The mathematics are developed in Appendices. Section 3 presents the 

main proposition, obtained by analyzing the model. This proposition identifies a set of conditions 

under which the aggregate behavior of the model is equivalent to the one predicted by expected 

utility theory. Section 4 summarizes and concludes. 

 

2. A tractable Neurological Model of Choice 

We model the brain in terms of cells and their connections. The number of cells and connections is a 

natural number. The model is not meant to be fully accurate since it also aims at tractability. 

Cells receive and send information to other cells through connections. Each cell may receive 

information pulses from other cells or the outside world. Each cell is filled with an inhibitory 

substance, which acts as brakes that prevent approaching pulses from continuing to the next cells. 

Although this substance stops information from continuing, the amount of this substance decreases 

at a rate that depends on the structure of the cell, and the amount and nature of the information 

received in the different information pulses that arrive. When the amount of inhibitory substance 

becomes sufficiently small, the cell fires a new pulse towards other cells that are connected with it, 

by relaxing the sending cell’s membrane. This pulse contains processed or modulated information. 

Different information may be sent towards different cells. The emission of the information pulse 

allows an immediate fill-up of the cell with inhibitory substance. 
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A cell is defined at any moment by the information it holds and the amount of inhibitory substance 

kept in its interior. Connections are defined by the information pulses sent from one cell to another 

at a given moment. 

Each cell   is a mathematical construct defined at any moment   by: 

 Information contained in it,       
  

 Inhibitory substance,          

 The maximum amount of inhibitory substance that the cell may retain,        

 The rate of decrease of inhibitory substance as it receives information,      
        

 How information is processed when sent from cell   to cell  ,                    

 The interval of time the cell fires information,        

The state of each connection     at time   is defined by: 

 The information sent from cell   to cell  ,     
       

 

 The information received by cell   from cell  ,    
       

 

 The amount of time needed for information sent from cell   to cell  ,        

 The group of cells that share a common output information channel,     , such that 

whenever one of them fires, all of them are immediately refilled with inhibitory substance.  

To understand how cells relate to each other we will need to simulate how outside-world 

information travels our neural network model. To do so, we will derive      , the frequency with 

which cell   throws pulses towards other cells. This will allow us to create a tractable model of 

information processing in the whole neural network. 

We model the process experienced by a single cell with the following equations: 

        

 
 
 

 
   

      

  
           

         

 

                         

 

 

    
  

     
       

         
           

                                              

                                                                          
 

  

 

(1) 

Where    
          

       , describes the information pulse sent by cell   to cell  , which means that 

information is not lost, but travels at limited speed. 

The rate of decrease of inhibitory substance    describes how much time is it needed to clear   . 

When    becomes zero cell   sends information     
  

 to cell  . Finally,               describes the 

instant at which the cell’s membrane is relaxed and is immediately filled with a fixed amount of 

inhibitory substance, called   . 
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The following charts exemplify how the amount of inhibitory substance,      , and one of the 

possible dimensions of the information pulse     
  

    may evolve in time. 

 

 

Figure 1: Evolution of inhibitory substance and information pulse over time. 

The following sections present models for each step in the choice-making cycle, all of which use the 

cell model presented here. The architecture of the model is shown below: 

 

Figure 2: Steps in the decision-making cycle. 

The architecture of the model is designed to emulate the decision-making cycle most accepted by 

neuroscientists. In this model  , the information about the world that is felt by the senses, stimulates 

representation cells. Later on, the final outputs of the representation network (the current situation, 

potential actions, possible outcomes and memories) are fed into valuation cells. In turn, valuation 

cells replay memories, reliving pains or pleasures, and send their assessment, together with a 

suggested action, to action-selection cells. Action-selection cells will “judge” suggested actions in 

terms of the pains and pleasures involved and send that signal to the nervous central system, which 

is assumed to execute the action. 

  

    

  / s(t) = 0  / s(t) = 0
 

       

 
 

 / s(t) = 0  / s(t) = 0

   

Representation

 

 

Valuation

 

Action
Selection
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2.1. Representation 

When new information is sensed, information pulses are fired towards the set of representation cells, 

which are, in turn, stimulated by these pulses. In particular, cell   stores representation       
  in a 

physical form and may sense outside information directly or through other representation cells.  

Each representation cell is modeled with the following equations: 

                       

 
  
 

  
       

  
    

     
     

         

 

   
            

            

    
  

     
        

         

 

                                     

                                                                                          

  

  

 

(02) 

Where   
  and   

  indicate the rate at which, in representation cell  , the inhibitory substance    

diminishes when pulses      sent from brain cell   and outside world information    arrive. Later, 

whenever    becomes zero, cell   will fire a pulse equal to                    towards cell  .  

It is important to point out that representation cells may encode all types of memories. For example, 

some cells may encode whole experiences and others only a few key features. Some cells may 

record automatic responses (in situation A, perform action B) and others may record situations (in 

situation A, action B was performed, and consequence C occurred). In the next section we assume at 

least some cells record automatic responses and others record situations.  

To calculate the impact of new outside world information let us calculate      , the frequency with 

which cell   throws pulses towards other cells. Using theorem 1, demonstrated in appendix A, it 

follows that: 

           
                     

 

   
         

(03) 

If we use matrices to simplify notation: 

                      (04) 

And thus: 

                    

 

 
(05) 

Notice that outside-world information may influence events far into the future, depending on the 

form of matrix   . As an example, if cells are interconnected forming loops, outside-world 

information will influence representation for a longer amount of time than if those same cells had 

been connected forming layers. 
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Outside-world information travels through the representation system as a whole by changing the 

firing frequency of neurons. This “information wave” will move at a certain and limited speed. 

Consequently, in this model decisions that use all available information are time-consuming, and 

thus, costly. In the following section we assume that, through the process of representation, the brain 

conceives guides for actions, new situations and remembers past experiences. 

2.2. Valuation 

At this point in the decision making cycle, the agent replays past or imagined memories. The main 

contribution of valuation cells is to feel how much pain or pleasure a representation evokes.  

At time   cell   receives information pulses from two representation cells,      and     .      

sends information containing a particular situation     
      

 and      information containing one 

automatic response  
   
      . When the inhibitory substance in cell   reaches zero it will fire towards 

cell   the automatic response     
      

 and the replayed pleasure of situation     
      

,        
       .  

An adaptation to the general model of a cell yields: 

                 

 
 
 

 
 

      

  
    

     
     

             
             

            

    
       

    
   
         

      
          

                                        

                                                                                

  

  

 

(06) 

where    
              

            and    
              

           .  

Moreover, we define     to be equal to one if cell k sends information towards cell   and zero if 

not, and   
  is the rate at which the inhibitory substance in valuation cell   diminishes. 

As will be seen in the following section,    
      

 will be used in the next phase as a suggested action-

signal and       
           will be used in a calculation similar to the assignment of utils to 

consequences in standard economic models. Unlike Classical economic models, there might be 

different valuation functions working at the same time. Namely,       
           may change with 

every cell  .  

The firing frequency of a valuation cell can be calculated using theorem 2, which is demonstrated in 

appendix B: 

                                 
   

   
             

   
             (07) 

The function   
 , which is the rate at which the inhibitory substance in cell k diminishes, will affect 

how much weight the valuation       
        is given in the decision-making process. As will be seen 

below, this calculation is very similar to a probability weighting. 
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2.3. Action selection  

In this part of the cycle, each cell behaves independently, and competes in letting their evaluated 

action-signals pass through. This is because all of these cells send their signals through a single 

channel. Thus, after any signal passes through, every action-selection membrane will relax and cells 

will be refilled with inhibitory substance. Therefore, the first evaluated action that is able to pass 

through the action channel is the one that will be performed by the organism. 

The following equations describe the process: 

                         

 
 
 

 
 
      

  
            

      

 

                       

  

    
      

       
                                           

                                                                                            

 

  

 

(08) 

Where,    
          

         
    

   
           

      
            

                          

                                     

   

As a simplification,      
  
              

          , the pain or pleasure signal, and        
       

   
         , the automatic response signal (in case cell k fires).  

We further simplify the problem by assuming that every valuation cell k that is linked to cell   

evaluates a unique suggested response. Equivalently,                         . A 

consequence of this simplification is that if a brain with this architecture possesses N action-

selection cells it can ponder in parallel a maximum of N automatic responses. 

If no action cell has “fired” in the time interval of length    theorem 3, demonstrated in appendix C, 

asserts that the amount of inhibitory substance in cell   will have decreased by  

                                  
            

 

    (09) 

The cell whose amount of inhibitory substance reaches zero first, will pass through the suggested 

action. Later, it will be observed as the action chosen by the organism. If cell  ’s inhibitory 

substance reaches zero, it means that since    (the last time it was filled with inhibitory substance)  

to the moment it fired ( ) the whole substance was absorbed: 

        
 

  

      
      

  

 

  

   
(10) 

Assume, without loss of generality, that cell    evaluated the performed action. This means that the 

entire amount of inhibitory substance in cell    was released, and   , the time that cell    needed to 

do so, was the smallest of all the potential times needed by action-selection cells to do so.  
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(11) 

This equation says that an action signal is sent by one cell only if it is the first of all action-selection 

cells to be removed of one hundred percent of its inhibitory substance. This creates a framework in 

which agents may or may not take action. In this setting there is a clear difference between not 

reaching a decision (the inhibitory substance never clears) and choosing to do nothing. 

Besides, although there is not an optimization process based on preferences, the process of decision-

making selects one and only one action. As will be seen afterwards, this process can be interpreted 

as an equivalent of the maximization principle in expected utility if some conditions are met.  

2.4. Understanding the process as a whole 

Here, the three steps are brought together to understand the whole process and how it relates to 

expected utility theory. The process of decision-making is performed by cells that work 

independently of one another. Nevertheless it is shown below that if certain conditions are met their 

aggregate behavior is equivalent to that of a classical optimizing agent. 

At the last step, action-taking cell    sends an order to other parts of the body to perform actions. As 

was shown previously, that order takes into account previous information such that: 

 
 

                         
            

 

  
  

  

      
 
    

  

 

(12) 

Where        
             is the pain or pleasure felt at time     by cell k and         is the rate 

at which that cell sent that information towards cell  . In addition, action-taking cell    is the only 

cell that sends an order, because that order sets every other action-taking cell to a neutral state. 

If cell   sends information towards cell  , then     is given by:  

                               
   

   
             

   
           (13) 

Where       and     are the firing frequencies of cells      and   . 

Thus, cell   sends an order when: 

                                 
      

                
                   

            

 

  
  

  

 
(14) 
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Next, we need to find the firing frequency of representation cells      and   : 

                    

 

 
(15) 

Where   is the vector of all firing rates of representation cells,    is a matrix that specifies how the 

firing frequency of each cell changes when other cells’ firing rate change, and    is a vector that 

contains how outside world information changes the firing rate of each individual cell. Thus, cells 

     and    will send information according to that specified rate. 

Thus, our complete model of choice is given by: 

         

 
  
 

  
                     

 

                                 
      

                
                   

            

 

  
  

  

      
 
    

  

 

(16) 

 

3. The main proposition 

Analyis of the model of section 2 yields the following: 

PROPOSITION 1: The aggregate behavior of cells according to (16) is equivalent to the one 

predicted by expected utility theory, if and only if the following three conditions are met: 

i. Information does not change in the evaluation period and it travels at the same speed (every 

representation is assessed at the same time and at the same rate). 

ii. Every outcome must be evaluated with the same and consistent criterion (experienced utility 

based on preferences).  

iii. Every evaluation must be exclusively based on expected outcomes.  

Proof: See Appendix D. 

In words, the condition that information does not change in the evaluation period and it travels at the 

same speed allows us to think of decision-making as if it happened between periods, just like 

expected utility does. The second condition, that every outcome is evaluated with the same criterion, 

plays the role of a consistent utility function when evaluating memories. The third condition is the 

standard assumption that the agent cares about consequences only; this is not so in other choice 

models (Prospect Theory, for example).  

In our model, the first cell that sends the signal of action-taking must have liberated the largest 

amount of inhibitory substance. The conditions explained in the previous paragraph assure that the 
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amount of inhibitory substance released by each action-selection cell changed depending exclusively 

on future consequences and evaluated each alternative at the same time and with the same criteria. 

In other words, ex-post, the amount of inhibitory substance that was released by each cell can be 

interpreted as an expected utility function. Moreover, the cell that released the highest rate of 

inhibitory substance also sends the signal to be executed as a chosen action, just like a maximizing 

agent would choose the action that corresponds to the largest utility. 

 

4. Summary and conclusion 

This paper models the process of decision-making by establishing three different types of cells and a 

general class of interconnection. This allows the simulation of the three stages of decision-making: 

representation, valuation, and action-selection. The main assumption of the model is concerned with 

the processing of information in each stage. 

In our model, memory retrieval is a slow process, the brain stores prescribed guides for actions, 

conceives new situations and remembers past experiences. The brain feels pleasure in a physical and 

measurable way and possible rewards are played in the brain before they become realized. Finally, a 

calculation that is similar to expected utility is literally performed by a specialized set of cells.  

Analysis of this simple model finds that, under specific conditions, the aggregate behavior of these 

brain cells is similar to the one of an optimizing agent. However, no cell is optimizing, at least in the 

standard way. This may be analogous to the hypothetical benevolent planner, which may seem to be 

governing a perfectly competitive market, although nobody is governing that market. 

The assumptions needed for the aggregate behavior of cells to be equivalent to the one predicted by 

expected utility are there: Information does not change in the evaluation period and it travels at the 

same speed; Every outcome must be evaluated with the same and consistent criterion; and Every 

evaluation must be exclusively based on expected outcomes.  

This simple model is a first step to connect choice behavior to the biology of cells. Gains from this 

research line includes understanding how biological constraints on cells, and on cellular interactions, 

may influence and limit the quality of human decision-making.  
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Appendices 

A.- Theorem 1: The average firing rate of a cell affected by individual information pulses 

In this setting, cell two receives impulses from cell one.  

 

Cellular processes are defined by: 

         

 
 

   
      

  
          

                    

    
  

     
       

                                              

                                                                    
 

  

Where    
           

        . 

The firing rate    is defined as the number of times cell   fires in a predefined interval of time. 

According to our model, this is directly related to the number of times the inhibitory substance       

reaches zero. Thus, an approximation for the average firing rate is the average rate of decrease of 

inhibitory substance, divided by the increase of inhibitory substance after new information is fired. 

An approximation of the average firing rate of cell 2 in a    period of time is:  

             
 

  
  

   

  
   

  
  

    

 

 
 

  
       

         
    

 

 

Now, since information pulses are received from cell 1: 

   
           

           
       

                                                  

                                                                    
  

Then, 

       
 

  
        

           
    

 

 

      
 

  
            

                 
      

   

 

 

Where                                        
                       

                                                                                           
  

In the special case where    
       is constant at the moment of firing, we find: 
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The last integral can be approximated as the average firing rate of cell 1 in that period multiplied by 

its firing interval  : 

      
 

  
           

                               

Finally, we find: 

                    
                          

                
                         

This result is consistent with units: firing rates and   are measured in the inverse of units of time and 

the firing interval   is measured in time units. 

 

B.- Theorem 2: The average firing rate of a cell affected by pairs of information pulses 

In this setting, cell 3 receives impulses from cells 1 and 2.  

 

Cellular processes at cell 3 are defined by: 

 

 
 
 

 
   

      

  
        

  
        

  
                     

 
   
      

      
  
        

  
                                             

                                                                                                       

 
  

Where    
           

         and    
           

        . Besides,    decreases only if both cells fire 

information at the same moment. 

The firing rate       is defined as the number of times cell i fires in a given interval. This is directly 

related to the number of times the inhibitory substance reaches zero. Again, an approximation of the 

average firing rate is the average rate of decrease of inhibitory substance, divided by the increase of 

inhibitory substance after new information is fired. 

An approximation of the average firing rate of cell 3 in a    period of time is:  
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Now, since information pulses are received from cells 1 and 2: 

   
           

           
       

                                                

                                                                    
  

   
           

           
       

                                                

                                                                    
  

The amount of inhibitory substance will decrease only if both cells send pulses. Therefore, 

       
 

  
        

             
           

    

 

 

      
 

  
            

                  
                  

      

   

 

 

Where         
                                                                 
                                                                                                                     

  

 

In the special case where    
  and    

  are constant at the moment of firing, we find that: 

       
 

  
           

                         
                          

      

   

 

The number of times cell 1 fires is its frequency multiplied by   . Thus, the time interval during 

which cell 1 fires is that number multiplied by its firing time. Similarly, that time multiplied by the 

firing frequency of cell 2 is the number of times cell 2 fires in that time interval. If we multiply that 

number by the firing time of cell two we find the total amount of times in which both cells fire 

together. Thus, we can approximate the last integral as: 

 

         
      

   

                          

 

Replacing this result, we find: 

 

                     
                         

                                 

 

                 
                    

                               
This result is consistent with units: firing rates and   are measured in the inverse of units of time and 

  in time units. 
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C.- Theorem 3: The average decrease of inhibitory substance in one cell 

We will show that the average decrease of inhibitory substance in a cell that does not fire an 

information pulse is related to the average firing rate of the previous cell. In this setting, cell two 

receives impulses from cell one.  

 

Cellular processes are defined by: 

         

 
 

   
      

  
          

                    

    
  

     
       

                                              

                                                                    
 

  

Where    
           

        . 

From the first equation, we know that, if cell 2 has not fired, its average decrease in inhibitory 

substance is given by: 

             
 

  
       

         
    

 

   

Now, since information pulses are received from cell 1: 

   
           

           
       

                                                  

                                                                    
  

Then, 

            
 

  
            

             
    

 

   

             
 

  
            

                
      

   

   

 

Where                                        
                       

                                                                                           
  

 

In the special case where     
   

 is constant at the moment of firing, we find: 
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The last integral can be approximated as the average firing rate of cell 1 in that period multiplied by 

its firing length: 

           
 

  
           

                                 

Finally, we find: 

                         
                            

 

                     
                          

 

This is consistent with units:      and    is measured in amount of inhibitory substance, firing rates 

and   are measured in the inverse of units of time and   and    are measured in time units. 

 

D.- PROPOSITION 1: Equivalency between choice based on cell behavior and Expected 

Utility 

We show that our model of choice based on cell behavior can be interpreted as a maximization of 

expected utility if the following conditions are met: 

1. Information does not vary over the period of evaluation and every representation influences 

action-selection cells through valuation cells at the same moment. This means that matrix    

is such that representation cells that send information to valuation cells do so at the same 

moment and the information flow is constant over time.  

2. Every outcome must be evaluated with the same and consistent criterion (experienced utility 

based on preferences). This means            for all cells k. 

3. Every evaluation is exclusively based on expected outcomes. This means that     
      

 is 

always a consequence and never a previous experience. 

Part I: If the above conditions are met, then the model is equivalent to a utility maximizing agent. 

The equation that describes the moment at which cell   fires is given by: 

                        
            

 

  
  

  

 

Condition 1 means that the rate at which inhibitory substance decreases is constant. Thus: 
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Where              is the time at which cell   would have fired a signal describing an automatic 

response if it were the first action-selection cell to do so. Then, 

      
 

 

 

              
        

 

It follows that, if          
   , then      

     
 
, the automatic response performed, must maximize 

the denominator, so: 

     
     

 
       

   

               
       

 

 

We can expand and re-write this last equation as: 

   
        

   

                
      

           
             

       

 

 

Besides, if        
              

        (condition 2), and     
      

 is always a consequence (condition 3), 

our formula becomes the equivalent of a linear transformation of an expected utility. 

In particular, the functional form of the subjective probability measure used to value expectations is 

of the form: 

      
           

      
               

      
           

      

                
      

           
       

 

Part II: If the above conditions are met, then the model is equivalent to a utility maximizing agent. 

The model shows actions     
     can be ordered as in preferences in terms of   , the time they need to 

clear the inhibitory substance in action-selection cell   (remember there is only one action per 

action-selection cell). Then:     
         

           
 
. 

Besides,    is defined by the formula: 

                                 
      

                
                   

            

 

  
  

  

 

The last formula can be re-written as follows (terms a to e): 
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(a) 

                   
                

                  
                

       

      
      

    

  

(b) 

                   
                 

                
         

 

  
(c)  

             
                

                     
          

  

  

 

 

  
(d) 

           
                       

                 
          

  

  

 

 

  
(e)  

Where  

 
 
 
 
 
 

 
 
 
 
           

                                 
      

                
          

         
        

 

       
           

         
  

  

        
        

 

       
        

              
  

  

        
        

 

 
          

       

 

                                                             

  

 

Thus,    will become a transformation of a expected utility function only if the last four terms in the 

equation are always equal to zero. Terms e)  and d) represent condition 1, term c) represents 

condition 2, and term b) represents condition 3. 
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