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1 Introduction

It is a generally accepted fact that global temperature increased noticeably all through
the last three decades of the previous century. However, during the last ten to 15 years
(say from 2000 to 2012) the temperature data show fluctuations more around a constant
value or even a slight decrease. This observation triggered a sometimes heated discussion
concerning the appropriate interpretation and possible consequences for climate policies.
Some argue that the data indicate only a "pause" in the long-run increase in temperature
that is caused by cyclical fluctuations around an unchanged trend. This behaviour might
be traced back to a declining insolation due to the eleven years solar cycle as well as to
the rise of sulfur emissions during the last 15 years (Kaufmann et al., 2011), or to a heat
uptake by the oceans (Meehl et al., 2011). However, others claim that we should interpret
the recent temperature data as a sign of a trend reversal.

This situation is a typical example for the difficulties and problems arising when we try to
get a reliable estimate of the trend at the current end of a data sample. Here we have only
current and past data and one has to use an asymmetric filter. The situation is different
from that in the middle of a time series where we have past and future observations which
allow the use of a symmetric filter (for surveys of different filter techniques see Mills, 2006,
2009). Symmetric filters deliver much more reliable estimates of an unobserved component
like the trend of a time series. This means that asymmetric filters have some special
problems which are addressed in the following.

In this paper we compare two filters which are widely used in climatology with a filter which
is well-known in economics as the Hodrick-Prescott (Hodrick/Prescott, 1997). The first two
filters are the binomial filter and the Gaussian filter. Both are two-sided symmetric filters.
For the estimation of the trend value in a given period they use past, present and future
observations. The only possibility to estimate with a symmetric filter the trend at the end
of the sample is to extend the time series by forecasts. This procedure is not satisfactory,
since the quality of the trend estimation depends heavily on the quality of the forecasts.
For a reliable estimate of the current trend one needs at least 10 years of forecasts of the
time series. In many cases there may not exist a consensus concerning the appropriate time
series model used for forecasting. Consequently, the generated trend depends on arbitrary
assumptions.

The Hodrick-Prescott filter, that is based on the ideas of Whittaker (1923), Henderson
(1924) and Leser (1961), is the result of a well defined optimization problem. In the middle
of the time series (all observations which are far enough away from the end of the sample)
the filter is symmetric, at the end it gets more and more asymmetric. The properties of
the filter depend on a penalization parameter that has to be specified by the researcher.
We discuss a method how one can find a reasonable value for this parameter using spectral
analysis. A novel contribution to the literature is that we allow time-varying parameter
values. This enables us to improve the filter quality especially at the end of the time series
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and to get more reliable estimates of the current trend.

The paper is organized as follows. The first two sections summarize the binomial filter,
the Gaussian filter and the Hodrick-Prescott filter. Afterwards it is explained how the
penalization parameter of the Hodrick-Prescott filter is selected using spectral analysis and
why the Hodrick-Prescott filter is superior to the Gaussian filter in the frequency domain.
Afterwards the paper deals with the excess variability of the Hodrick-Prescott filter at the
margins of a time series and describes how it can be reduced by a flexible penalization.
Finally, empirical examples for the HadCRUT4 data for the northern hemisphere annual
average temperature are presented.

2 The binomial and Gaussian filter

Two widely used filters for modeling the trend of temperature data are the binomial filter
and the Gaussian filter. The binomial filter is for instance used by the Met Office Hadley
Centre for the construction of smoothed annual average temperature values. Gaussian filters
are for instance used in HISTALP project (Auer/Böhm/Schöner, 2001). Both filters are
low-pass filters which extract from an observed time series the trend, i.e. the fluctuations
with "low" frequencies. Low-pass filters let pass fluctuations with low frequencies with no
or only minor modifications and suppress fluctuations with high frequencies. In principle,
the filters are a sort of a finite symmetric weighted moving average. For the estimation
of the trend value in a given period they use N observations (N is an odd integer): The
current value, (N − 1)/2 past and (N − 1)/2 future values. If yt denotes the observed time
series, the estimated trend for period t, µ̂t, is calculated as

µ̂t =

n∑
j=−n

cjyt−j , (1)

where cj are the filter weights and n = (N − 1)/2.

2.1 The binomial filter

The filter weights cj of the binomial filter are given by the normalized binomial coefficients

cj =

(
N − 1

n+ j

)
/2N−1, j = −n, ..., 0, ...n. (2)

The factor 2N−1 ensures that the sum of the filter weights is one. This is a necessary
condition for all low-pass filters used for smoothing and for the extraction of the trend
component of a time series (Osborn, 1995). The formulation implies that the filter function
is symmetric, i.e. cj = c−j .

Alternatively, the filter weights can be calculated by the (N − 2) fold convolution of the
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sequence (0.5, 0.5) with itself (for the concept of convolutions see Gourieroux/Monfort,
1997, Appendix 7.4).

In the following we analyse the properties of filters in the frequency domain. The frequency
response function is the Fourier transform of the sequence of the filter weights and is defined
as (Mills, 2003)

a(ω,N) =

n∑
j=−n

e−iωjcj , (3)

where ω is the angular frequency and i is the imaginary unit (i2 = −1). Inserting formula
(2) for cj we get

a(ω,N) = 2−(N−1)
n∑

j=−n

(
N − 1

n+ j

)
e−iωj = 2−(N−1)

N−1∑
j=0

(
N − 1

j

)
e−iω(j−n) =

= 2−(N−1)eiωn
N−1∑
j=0

(
N − 1

j

)
e−iωj .

Using the Binomial theorem we could write the sum as (1 + e−iω)N−1.

From this we could derive (using Euler’s formula)

a(ω,N) = 2−(N−1)eiω(N−1)/2
[
e−iω/2(e−iω/2 + eiω/2)

]N−1
= 2−(N−1)

(
cos(ω/2)

2

)N−1
= cosN−1(ω/2). (4)

Additional information about the properties of a filter yields the gain function. This is
defined as

g(ω,N) =
√
a(ω,N)a(−ω,N). (5)

The gain is interpreted as the factor by which the amplitude of an oscillation with frequency
ω is damped or amplified. Considering the gain for a bandwidth of frequencies, usually
the interval [0, π], gives insight about the qualities of a filter as an instrument for trend
estimation. For a symmetric filter the gain is identical to the frequency response function.

For an application of the binomial filter the number of used observations, N , has to be
determined. One possibility is to choose N in order that for a prespecified frequency ω0

the gain function has a specific value c0, say 0.5. From the above formula for the frequency
response function we could calculate N as N = ln(c0)/ ln(cos(ω0/2)) + 1. As an example,
suppose you want to construct a filter for which the gain function is less than 0.5 for all
fluctuations with a periodicity less than 5 (that is with a frequency greater than 2π/5), then
N = 5.54. To ensure that N is an odd integer, we could round this number to 5 periods.
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2.2 The Gaussian filter

For large values of N the binomial filter converges to a Gaussian low-pass filter (Panof-
sky/Brier, 1958; Mitchell et al., 1966). The Gaussian filter is a bi-infinite filter. The filter
weights {cj} of the Gaussian low-pass filter are given by

cj = (2πσ2)−
1
2 exp

(
−j2

2σ2

)
, j = 0,±1,±2, ... . (6)

The normalization factor in front of the exponential function ensures that the filter weights
sum up to one. The only free parameter to be chosen by the researcher is σ2. The frequency
response function is given by the Fourier transform of {cj} as

a(ω, σ2) = exp

(
−ω2σ2

2

)
, (7)

where ω denotes the angular frequency.

An appropriate value for the free parameter σ2 can be obtained by a similar reasoning as in
the case of the binomial filter. One can show that the frequency response function is about
0.5 for fluctuations with a period of 5.3 times the standard deviation. Suppose you want
to construct a Gaussian filter for which the gain function has a value of 0.5 for a period of
5. Then σ has a value of about 5/5.3 ≈ 0.94.

In principle, the Gaussian filter requires a bi-infinite time series. However, since the filter
weights converge monotonically to zero, it is possible to use a finite filter as an approxima-
tion. One possibility is to use only the observations for which the filter weights are greater
than a prespecified percentage value of the weight for the central observation (say, 5 %)
and to rescale the used weights in order to get a sum of one.

3 The Hodrick-Prescott filter

3.1 Technical framework

The basic idea of the Hodrick-Prescott filter (Hodrick/Prescott, 1997, henceforth denoted
as HP-filter) is to decompose a time series {yt}Tt=1 in two components yt = µt + ct. µt is
the trend component and ct defines the rest, usually the sum of the cyclical component and
irregular noise. The trend µt is estimated by solving the following minimization problem:

min
µt

T∑
t=1

(yt − µt)2 + λ

T−1∑
t=2

[(µt+1 − µt)− (µt − µt−1)]2. (8)

In general the minimization problem consists of two parts. The first one aims to minimize
the squared difference between µt and yt, which results in a close fit of the trend to the
original series. The second part minimizes the squared second differences of µt. These can
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be seen as a measure for the volatility of the trend. Clearly there is a trade off between
both parts of the minimization problem. While the first part would generate a very flexible
trend function, the second part penalizes the volatility of the trend. This trade off is solved
by the so called penalization parameter λ, that puts weight on the second part.

Selecting a high value for λ emphasizes the second part of the minimization problem, which
results in a smooth trend estimation. On the other hand, for λ → 0, the trend is equal to
the original series {yt}Tt=1. Thus, the basic feature of the HP-filter is the selection of the
penalization parameter λ, as it completely determines the shape of the estimated trend.
Figure 1 shows trend estimations for a HP-filter with different values of λ, that was applied
to the HadCRUT4-data for the northern hemisphere yearly temperature averages from
1850-2012 (Morice et al., 2012):
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Figure 1: Trend estimations of HP-filter with different values of λ

Figure 1 shows that the volatility of the trend decreases as λ becomes higher. While it is
very wiggly for λ = 10, it is smooth for λ = 100000. In order to calculate the trend by
the HP-filter, it is more practical to write the filter in matrix notation. The solution of the
minimization problem in (8) can be written as (Mc Elroy, 2008):

µ̂ = (I− λ∆′∆)−1y, (9)

with µ̂ = (µ̂1, ..., µ̂T )
′, y = (y1, ..., yT )

′ and ∆ as a (T − 2)× T differencing matrix.

∆ =


1 −2 1 0 . . . 0 0 0

0 1 −2 1 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . 1 −2 1

 .

The product of ∆ and y yields the second differences of y.
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3.2 Selecting a value for λ

As pointed out in chapter 3.1, the decisive feature of the HP-filter is the selection of a value
for the penalization parameter λ. There are no general rules how to choose λ, however it
is possible to use spectral analysis for this selection. The basic idea of spectral analysis
is to decompose a time series into oscillations with different frequencies, which is called
the representation of the series in the frequency domain. Based on this decomposition, the
trend can be defined by those oscillations with high periodicities, while the rest consists of
oscillations with medium and low periodicities. This way it is possible to derive subjective
but nevertheless precise definitions of trend and cycle.

The HP-filter as a tool for trend estimation suppresses and eliminates high frequencies,
while it leaves low frequencies almost unchanged. This impact of the HP-filter on a time
series in the frequency domain can be described by the gain function, which is calculated
by the filter weights of the HP-filter. Given formula (9) the filter weights are contained in
the hat matrix H(λ) = (I − λ∆′∆)−1 ∈ RT×T , so that µ̂ = H(λ)y. Let hij denote the
jth element in the ith row of H(λ), then µ̂t is calculated as:

µ̂t =

T∑
j=1

htjyj . (10)

Given the filter weights hij the frequency response function for an estimation µ̂t and a
frequency ω can be calculated for a certain λ as (e.g. Mills, 2003):

at(ω, λ) =
T−t∑
j=1−t

ht,j+te
−ijω, (11)

from which the corresponding gain can be obtained as

gt(ω, λ) =

 T−t∑
j=1−t

ht,j+t cos(ωj)

2

+

 T−t∑
j=1−t

ht,j+t sin(ωj)

2
1
2

. (12)

Considering the gain for all frequencies within a certain bandwidth, usually [0, π], yields the
gain function. This gain function can be used as a measure in order to select an appropriate
value for λ. To this regard, first of all a definition of the trend component in the frequency
domain has to be made. The definition that the trend consists of frequencies lower than a
certain cut off frequency ωcf can be characterized by an ideal gain function. Such an ideal
gain function is shown in the left plot of Figure 2:
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Figure 2: Ideal gain function and gain function of a HP-filter

The left plot of Figure 2 shows an ideal gain function for a cut off frequency of ωcf = 0.314.
This cut off frequency would imply that the trend is defined by fluctuations with periods
of above 20 years. Such an ideal gain function can never be achieved by a real filter, as
this would require an infinite number of filter weights (Openheim/Schafer 1989). However
an ideal gain function can be used as a tool in order to find an appropriate selection for
the penalization of the HP-filter. To this regard the right plot of Figure 2 shows the gain
function of an HP-filter with λ = 100 that is applied to a series with 163 observation (what
is the same length as the HadCRUT4 northern hemisphere data set). Its gain function
is compared to the ideal gain function with ωcf = 0.314. Clearly the real gain function
cannot fully imitate the ideal one. However one can try to find an appropriate penalization
by selecting λ such that the real gain function is as close as possible to the ideal one.

To this point a so called loss is defined, that is a measure for the deviation between the
gain functions. Let g∗(ω) denote the ideal gain for frequency ω, then the loss for estimation
µ̂t is calculated as:

lt(λ) =

π∫
0

[g∗(ω)− gt(ω, λ)]2dω. (13)

Thus, the loss is the squared deviation between the ideal and the real gain function within
the interval [0, π]. Now λ can be selected such, that lt(λ) is minimized, i.e. the HP-filter
yields the best approximation of the ideal gain function. Note that similar approaches have
been made by Baxter/King (1999) for the so called Baxter-King filter and by Tödter (2002)
for the HP-filter. Minimizing (13) is numerical complicated for continuous frequencies,
however it can be easily approximated by a sufficient high number of discrete frequencies.
Let ω ∈ Rk×1 be a vector of discrete frequencies, e.g. ω = (0, 0.001, 0.002, ..., π)′, then (13)
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can be approximated by:

lt(λ) =
k∑
j=1

[g∗(ωj)− gt(ωj , λ)]2 · δ. (14)

k is the number of elements in ω, and δ defines the distance between the elements of ω,
i.e. δ = ωj −ωj−1. The minimization of (14) with regard to λ can be done by methods like
fisher scoring or Newton-Raphson. As lt(λ) is minimized with respect to one parameter
only, also a grid search is suitable.

Formula (14) is used to derive the optimal penalization parameter for series with 163 ob-
servations. Hereby the optimal λ’s for a set of cut off periodicities between ten and 50
years are calculated, where the loss is minimized for the medium (82th) estimation. The
resulting values for λ are shown in Table 1. Moreover, in order to show the performance of
the HP-filter in relation to the Gaussian filter, Table 1 compares the loss of the HP-filter
with those of the Gaussian filter for different values of n.
For the Gaussian filter σ is selected such, that its gain has a value of 0.5 for the given cut
off periodicities. This makes the Gaussian filter directly comparable to the HP-filters that
minimize lt(λ). That is because two gain functions are approximately as equal as possible,
when they have a gain of 0.5 for the same frequency (Harvey/Trimbur 2008). Thus, for
a given n, the Gaussian filters considered here yield gain functions that can be seen as
approximations of ideal gain functions with a certain cut off periodicity.

Table 1: optimal values of λ and loss for different cut off periodicities

periodicity λ loss HP-filter loss Gauss (n = 10) loss Gauss (n = 20)

10 9 0.0635 0.0828 0.0828
20 127 0.0307 0.0408 0.0414
30 637 0.0204 0.0303 0.0276
40 1984 0.0153 0.0364 0.0203
50 4756 0.0122 0.0475 0.0164

As Table 1 shows, λ increases with a higher cut off periodicity. While for a cut off periodicity
of ten years λ = 9 is sufficient, for a cut off periodicity of 50 years λ has to be set to 4756.
Comparing the loss of the HP-filter and the Gaussian filter, the HP-filter is clearly superior
with regard to approximating an ideal gain function. Even if a relative high loss of 20
observations at each margin is accepted, the loss of the Gaussian filter is still around 25
percent higher than the one of the HP-filter. In order to describe the differences between
the two filters, Figure 3 plots the gain functions of the HP-filter and the Gaussian filter
with n = 20 for the cut off periodicities in Table 1.
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Figure 3: Gain functions of HP-filter and Gaussian filter for different cut off periods

Clearly the gain function of the HP-filter stays longer at a value close to one for low
frequencies but then decreases more rapidly to zero than the gain function of the Gaussian
filter. As a consequence the HP-filter is more suitable for approximating an ideal gain
function than the Gaussian filter. Moreover, at a cut off periodicity of 50, the gain function
of the Gaussian filter oscillates for high frequencies. Thus, the HP-filter is preferable not
only as it is able to generate estimations at the margins of the series but also as it offers
a much more accurate gain function. It should be taken into consideration that Table
1 displays the optimal values for the estimation in the middle of the series. For other
estimations this might not be the optimal penalization, as the filter weights are not the
same for every estimation. Compared to the middle of the time series the weight structure
especially changes at the margins. How to account for a changing filter weight structure is
explained in the next sections.

3.3 Changing filter weight structures

A clear advantage of the HP-filter compared to the Baxter-King filter (Baxter/King, 1999)
or to the Gauss-filter is that it can render trend estimations for the most recent periods.
However, this feature is paid by an increasing asymmetry of the filter weights at the margins,
inducing an rising excess variability for these estimations. In this regard it is useful to
consider the HP-filter in the frequency domain, as spectral analysis allows to describe
and quantify the excess variability. As mentioned, the filter weights strongly change their
structure to the margins of the series, while they have a similar, almost symmetric shape
around the data middle. As an example this is shown in Figure 4, which displays the filter
weights of a HP-filter with λ = 1984, that is the optimal value for a cut off periodicity of
40 years and 163 observations (see Table 1).
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Figure 4: Filter weights of HP-filter for different time periods (163 observations)

The left plot of Figure 4 shows the filter weights for estimations near the middle of the data.
Clearly they have an almost equal structure. On the other hand the right plot displays the
filter weights for estimations close the end of the series. With an decreasing distance to
the margin the structure changes and the symmetry completely disappears. This change of
the filter weight structure affects the gain function of the HP-filter. To demonstrate this,
Figure 5 shows the gain function for different periods.
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Figure 5: Gain functions of HP-filter for different time periods (163 observations)

For the 82th and 100th estimation, the gain functions are almost identical. For both time
periods, high frequencies are completely suppressed. This is different for the 155th and
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163th estimation. Especially for the last estimation high frequencies are not completely
eliminated any more, which results in increased volatility of the trend function. However,
on purpose to describe the excess variability at the margins, it is not practicable to use the
gain function as one can hardly consider it for all estimations. A much more appropriate
measure is the loss function. The value of the loss can easily be depicted for all estimations
in one graph, which allows to evaluate the rising volatility at the margins. To this point
Figure 6 shows the loss functions for a HP-filter with different cut off periodicities that is
applied to a series with 163 observations.
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Figure 6: loss functions for different cut off periodicities

Obviously, the loss is rather low and almost equal for the estimations around the data
middle. As one approaches the margins of the series, the loss strongly increases which
describes the increasing excess variability for those estimations. Furthermore, as figure 6
shows, the number of estimations that is affected by the excess variability, depends on the
value of λ. It increases with higher values of λ. For λ = 9 only about the first and last
five estimations are affected, for λ = 4756 the loss is increased for about more than the
first and last 25 estimations. While the selection of λ affects the excess variability, this is
not true for the data length. Studies show that the number of estimations that show an
increased loss is independent of the length of the time series (e.g. Blöchl, 2013).

3.4 Introducing a flexible penalization

Section 3.3 showed that the loss function can be used as a measure to describe the ex-
cess variability at the margins. In order to reduce the excess variability now a flexible
penalization of the HP-filter is introduced (a flexible penalization was already suggested by
Razzak/Richard (1995) in order to account for breaks in the data). As Figure 6 showed
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the variability increases to the margins. This variability can be compensated by a flexible
penalization that sets higher values for λ at the margins. Such a changing penalization
can be introduced by changing the model framework slightly. Given formula (9), a flexible
penalization can be implemented by replacing the scalar λ by a vector λ ∈ RT×1, where
λ = (0, 0, λ1, ..., λT−2)

′.
µ̂ = (I− λ∆′∆)−1y. (15)

The first two elements of λ stand for the penalization of the intercept and the initial slope of
the trend. Both are zero as the intercept and the initial slope do not need to be penalized.
The parameters λ1, ..., λT−2 regulate to what degree the slope of the trend can change at
the points in time t = 2, ..., T − 1, i.e. λt determines how strongly the trend can change its
slope at the point in time t + 1. Setting the first and last few λ’s higher thus results in a
smoother trend at the margins, which reduces the excess variability.

An important question is how fast the value of λ shall rise to the margins. Figure 3
suggests, that a linear increase might be suitable. Furthermore a criterion is needed in
order to determine the pace of the rise of the penalization. This criterion should secure,
that the flexible penalization induces a decrease of the loss at the margins without affecting
the one around the data middle. To this regard it turns out that a appropriate criterion is

to minimize the cumulative loss for all estimations
T∑
t=1

lt(λ). This sum is minimized with

respect to the parameter vector λ, where the first and last few values of the penalization rise
linearly. Thus the last m values of the penalization can be described by a linear function:

λT−2−m+j = α+ βj, where j = 1, ...,m. (16)

The first m values of the penalization are defined analogously, i.e. λ1 = λT−2, λ2 =

λT−3, ..., λm = λT−1−m. The intercept α can be seen as given with regard to the cut
off periodicity, as the penalization shall not rise for estimations around the middle. Conse-
quently the penalization is completely determined by β. The cumulative loss is then given
to:

L(λ(β)) =
T∑
t=1

lt(λ(β)), (17)

where lt(λ(β)) =

k∑
j=1

[g∗(ωj)− gt(ωj ,λ(β))]2 · δ. (18)

For a given m, L(λ(β)) can be minimized with respect to β using minimization algorithms
like fisher scoring or Newton-Raphson. m cannot be included into the minimization as it
is an integer. Thus the minimization has to be done for different values of m, where this
value is chosen, that leads to the lowest cumulative loss. Performing this minimization for
the different cut off periodicities yielded the following results for m and β for series with
the same number of observations as the HadCRUT4 data set.
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Table 2: optimal values for m and β

periodicity α β m

10 9 14.49 6
20 127 137.22 13
30 637 490.81 20
40 1984 1180.79 27
50 4756 2283.44 34

The slope β clearly rises, when higher cut off periodicities and thus higher values of λ are
chosen. Furthermore m increases for higher cut off periodicities. This is in line with Figure
3 which shows, that the number of estimations affected by the excess variability rises, when
λ is increased. To show the effect of this flexible penalization, Table 3 summarizes the loss
in the data middle, at the margin and the cumulative loss for the fixed and the flexible
penalization.

Table 3: loss for fixed and flexible penalization

periodicity penalization l(82,λ) l(163,λ) L(λ)

10
fixed 0.0635 0.7381 12.2269

flexible 0.0635 0.3775 11.6428

20
fixed 0.0307 0.4731 7.0226

flexible 0.0307 0.2184 6.3586

30
fixed 0.0204 0.3385 5.3499

flexible 0.0204 0.1524 4.6803

40
fixed 0.0153 0.2635 4.5286

flexible 0.0153 0.1170 3.8562

50
fixed 0.0122 0.2160 4.0401

flexible 0.0125 0.0951 3.3664

As Table 3 shows, the flexible penalization could reduce the loss for the last estimation,
while it hardly affected the estimation in the middle of the series (82th estimation). More-
over the cumulative loss could be reduced in every of the five cases. The decrease of L(λ)
was between five and 17 percent, for the loss of the last estimation even around 50 per-
cent. To get a complete overview of how the flexible penalization affects the results, Figure
7 compares the loss of the fixed and flexible penalization for all estimations and cut off
periodicities.



4 Empirical application 14

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

0 50 100 150

0.
1

0.
3

0.
5

0.
7

10 years

estimation nr.

lo
s

s

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

● fixed
flexible

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

0 50 100 150

0.
1

0.
2

0.
3

0.
4

20 years

estimation nr.

lo
s

s

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

● fixed
flexible

●

●

●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

0 50 100 150

0.
05

0.
15

0.
25

0.
35

30 years

estimation nr.

lo
s

s

●

●

●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

● fixed
flexible

●

●

●

●

●

●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

0 50 100 150

0.
05

0.
15

0.
25

40 years

estimation nr.

lo
s

s

●

●

●

●

●

●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

● fixed
flexible

●

●

●

●

●

●

●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●

0 50 100 150

0.
05

0.
15

50 years

estimation nr.

lo
s

s

●

●

●

●

●

●

●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●

● fixed
flexible

Figure 7: loss functions for fixed and flexible penalization

Clearly the loss was reduced at the margins of the time series in every case. Furthermore,
for most estimations around the data middle, the results were hardly affected by the flexible
penalization. Only for few estimations the loss was increased slightly. Considering Figure
7 and the fact that L(λ) declined for every cut off periodicity, it turns out that the criterion
of minimizing L(λ) by a linear increase of the penalization to the margins is appropriate
to reduce the excess variability without worsening the results for estimations closer to the
middle of the series (a simpler approach to get a handle on the excess variability by flexible
penalization was already made by Bruchez (2003)).

4 Empirical application

The HP-filter with the flexible penalization is now used to estimate the trend of the Had-
CRUT4 data (Morice et al., 2012) for the northern hemisphere annual average temperature.
The trend component is calculated for each of the cut off periodicities of ten to 50 years,
where the penalizations derived in section 3.4 are used. The results are compared to the
"standard case" of a fixed penalization in order to point out the different implications of
the flexible penalization. First of all the trend component with a ten year cut off period is
estimated. The results are shown in Figure 8.

The left plot of Figure 8 shows the trend with a ten years cut off period for fixed and flexible
penalization. There are clear differences between both at the beginning of the series, while
the deviation is rather small at the end (A detailed graph is added in the appendix).
However, if one considers the right plot that shows the first differences of both trends, also
deviations at the end of the data can be observed. Both trend functions decrease since
2006, but the trend according to the flexible penalization decreases slower since 2010.
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Figure 8: Trend for ten years cut off period and first differences for fixed and flexible penalization

The right plot shows that, irrespective of fixed and flexible penalization the smoothed values
do not represent a "trend". The generated differences exhibit pronounced cyclical features
and do not represent the long-run development. In many cases we observe decreases of
the first differences, even in the period 1970 to 2000 for which a trend increase is generally
accepted.

Next, the trend with a cut off period of 20 years is estimated. Figure 9 shows the trend
estimations for the fixed and flexible penalization as well as their first differences.
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Figure 9: Trend for 20 years cut off period and first differences for fixed and flexible penalization
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For the trend with a cut off period of 20 years significant differences between both penaliza-
tions at the margins can be observed. The fixed penalization approach yields a trend that
starts to decrease from the year 2006, while the trend for the flexible penalization also rises
from 2006 onwards. Thus the flexible penalization corrected the trend estimation, inducing
a completely changed development of the long run temperature compared to the case of
fixed penalization. However, its growth has also slowed down since 1996, which can be seen
at the first differences on the right plot of Figure 9.

The trend with a cut off period of 30 years and the first differences are shown in Figure 10:
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Figure 10: Trend for 30 years cut off period and first differences for fixed and flexible penalization

Also for the trend with a cut off period of 30 years, there are obvious differences between
fixed and flexible penalization. Both trends show an increasing behaviour for the most
recent years. But the trend growth rate according to fixed penalization strongly decreased
since 1996, while there was only a slight decrease for the trend using the flexible penalization.

Next, the trend with a cut off period of 40 years is considered. The different trend estima-
tions and the first differences are shown in Figure 11. For the trend with a cut off period
of 40 years the differences between fixed and flexible penalization at the end of the series
are not as obvious as for those with cut off periods of 20 and 30 years. However, one can
see that the trend according to the flexible penalization increased more rapidly during the
last three or four years. This becomes obvious by considering the first differences. The
trend growth started to decrease during the last ten to 15 years. Hereby the trend growth
of the fixed penalization approach decreased strongly since 1996, while there is just a slight
decrease for the flexible penalization approach.
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Figure 11: Trend for 40 years cut off period and first differences for fixed and flexible penalization

Finally the trend with a cut off period of 50 years is estimated, that is shown in Figure 12.
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Figure 12: Trend for 50 years cut off period and first differences for fixed and flexible penalization

There seem to be no significant differences between the estimations. Both trend functions
show an almost linear increase since about 1970, while the trend according to the fixed
penalization even grows slightly faster during the most recent periods. Differences become
obvious, when the right plot of Figure 12 is considered. From the year 1998 onwards the
trend growth for the fixed penalization approach decreased strongly. On the other hand,
the growth of the trend according to the flexible penalization remained almost unchanged
during the most recent periods.
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Considering the estimations for the trend functions with cut off periods between 20 and 50
years, it can be seen that the "standard approach" of the fixed penalization would imply,
that the growth of the trend temperature has strongly decreased during the past ten to 15
years, or even that the trend temperature is already declining. The picture is completely
different, when the excess variability at the margins is reduced by flexible penalization. This
correction changes the implications of the trend estimations significantly. According to the
results of the flexible penalization, the decrease of the trend growth rate is much lower. For
cut off periodicities of 30 years or above, it seems to have only stabilized on a high level.
Thus, the correction of the excess variability contradicts the thesis of a turning point in the
northern hemisphere temperature. At least it shows, that more time is needed to clearly
identify the current situation as the beginning of a downturn of the trend temperature.

4.1 Summary and conclusion

It is a great challenge to get reasonable and reliable estimates of the long-run trend compo-
nent of a time series at the end of the data sample. An illustrative example is the current
fierce discussion concerning the correct interpretation of the global temperature data for the
last ten years. For periods far enough away from the end of the observed time series one uses
past, present and future values for the estimation of the trend (symmetric filter). However,
in carrying out a real-time estimation at the end of the sample one can only use asymmetric
filters. Asymmetric filters induce phase shifts and other distorted features (in comparison
to symmetric filters). For instance, for asymmetric low pass filters the maximum of the
gain function is generally not located at frequency zero but at a positive frequency what
might induce an amplification of cycles with periods not considered to be part of the trend
(see as an example the effects for the HP filter in Figure 5). In addition, fluctuations with
high frequencies (noise) are not totally removed.

In this paper we propose the use of a filter known in economics as the Hodrick-Prescott
filter for the estimation of the trend component of global temperature data. This filter
is based on a well defined optimization problem. It requires the pre-specification of a
penalization parameter for the second differences of the trend component which governs the
degree of smoothness of the generated trend. We derive suitable values for the penalization
parameter by interpreting the Hodrick-Prescott filter as an approximation to an ideal filter
and compare the results with the binomial and the Gaussian filter. An ideal low-pass
filter lets pass all fluctuations with frequencies below a given cut-off value without any
modifications and removes all fluctuations with frequencies greater than the cut-off value.
We consider cut-off frequencies for trends which comprise waves with periods greater than
ten, 20, 30, 40 and 50 years, respectively. In all cases the Hodrick-Prescott filter is closer
to an ideal filter than the binomial or the Gaussian filter.

In the middle of the time series the Hodrick-Prescott filter is symmetric, for periods more at
the border it gets more and more asymmetric. In order to mitigate the mentioned negative
effects of asymmetric filters we allow for time varying values of the penalization parameter.



4 Empirical application 19

To be more precise, we minimize a loss function based on the squared differences between
the gain functions of an ideal and the Hodrick-Prescott filter, respectively. As the result
we get increasing values for the penalization parameter towards the end of the time series.

In the second part of the paper we apply the proposed method for the estimation of the
trend component of yearly temperature data for the northern hemisphere from 1850 to 2012.
For cut-off periods of 10 and 20 years we get estimated trends for which the first differences
exhibit clearly strong cyclical features: The generated empirical trend component is not
what we would expect for a "true" trend. For cut-off periods of 30, 40 and 50 years the
estimated trends and their first differences show no cyclical behaviour and look similar.

For the following interpretation we concentrate on the trend with a cut-off period of 30
years (Figure 10). In case of the fixed penalization the value for the penalization parameter
λ is 637. In case of the flexible penalization only the observations in the middle of the time
series get the same weight. The first and the last 20 observations get higher values (for
example, for the first and the last observation the value of the penalization parameter is
about 10 500).

For the northern hemisphere temperature data the trend component decreased slightly
between 1850 and 1910 and then increased until the end of the forties of the last century.
After a slight decrease in the following 20 years we estimate a strong increase since about
the year 1970. The maximum of the increase in temperature (not in the level) occurred in
the second half of the nineties with a rise of 0.03 degrees per year for the fixed penalization
and 0.025 degrees for the flexible penalization. During about the last 15 years for both
penalization methods the pace of warming decreased somewhat but remained positive. For
our preferred flexible penalization method the estimated increase in the year 2012 is 0.02
degrees per year. When we apply the flexible penalization method to trends with cut-
off periods of 40 and 50 years we estimate for the last 15 year a roughly constant rise
in temperature of somewhat more than 0.02 degrees per year. In summary: Using data
until 2012 there is no indication of a change in the sign of the trend direction. The trend
component is still increasing, only the pace of the increase is somewhat lower but is still
positive.
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Figure 13: Estimated trend for fixed and flexible penalization from 1992-2012
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