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Abstract 
 
Recent theoretical work in the economics of climate change has suggested that climate policy 
is highly sensitive to ‘fat-tailed’ risks of catastrophic outcomes (Weitzman, 2009b). Such 
risks are suggested to be an inevitable consequence of scientific uncertainty about the effects 
of increased greenhouse gas concentrations on climate. Criticisms of this controversial result 
fall into three categories: The first suggests it may be irrelevant to cost benefit analysis of 
climate policy, the second challenges the fat-tails assumption, and the third questions the 
behaviour of the utility function assumed in the result. This paper analyses these critiques, and 
suggests that those in the first two categories have formal validity, but that they apply only to 
the restricted setup of the original result, which may be extended to address their concerns. 
They are thus ultimately unconvincing. Critiques in the third category are shown to be robust, 
however they open up new ethical and empirical challenges for climate economics that have 
thus far been neglected - how should we ‘value’ catastrophes as a society? I demonstrate that 
applying results from social choice to this problem can lead to counterintuitive results, in 
which society values catastrophes as infinitely bad, even though each individual’s utility 
function is bounded. Finally, I suggest that the welfare functions traditionally used in climate 
economics are ill-equipped to deal with climate catastrophes in which population size 
changes. Drawing on recent work in population ethics I propose an alternative welfare 
framework with normatively desirable properties, which has the effect of dampening the 
contribution of catastrophes to welfare. 
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Since the publication of the Stern Review on the Economics of Climate Change (Stern, 2007),

economists have been heatedly debating the appropriate welfare framework for evaluating climate

change policy (Weitzman, 2007; Nordhaus, 2007; Dasgupta, 2008; Sterner & Persson, 2008; Dietz &

Stern, 2008; Heal, 2009). Choices of key parameters in the standard discounted utilitarian model–

the pure rate of time preference (PRTP), and the elasticity of the marginal utility of consumption

– were identified as key determinants of the radical difference between the policy prescriptions

offered by Stern, and those of his most prominent North American counterpart (Nordhaus, 2008).

In the thick of this debate, Weitzman introduced his ‘dismal theorem’ in an influential and much

debated paper (Weitzman, 2009b). In informal terms, the dismal theorem states that the evaluation

of climate change policy is highly sensitive to catastrophic outcomes, even if they occur with

vanishingly small, but ‘fat-tailed’1, probability. The dismal theorem suggests that such fat-tailed

risks are an inescapable consequence of Bayesian statistics, and our ‘structural’ uncertainty about

the response of the climate system to increases in greenhouse gas concentrations. It argues that

such risks can swamp all other effects on welfare, including those that arise from conventional

discounting, and make willingness to pay to avoid them formally infinite. Weitzman argues that

this has radical implications for the way we evaluate policies that aim to mitigate climate change,

and suggests that existing analyses based on integrated assessment models do not take sufficient

account of such catastrophic risks, and thus recommend mitigation policies that are not ambitious

enough.

This paper provides a critical analysis of Weitzman’s dismal theorem, and the by now sizeable

literature that comments on its content and interpretation. While the mathematical result Weitz-

man obtains (described in detail in section 2 below) is beyond reproach, the assumptions upon

which it is based are controversial, and have been heavily criticized. In section 3, I divide these

critiques into three categories – criticisms of the relevance of the dismal theorem for cost-benefit

analysis, criticisms of fat-tailed probability distributions, and criticisms of the behaviour of the

utility function it assumes. Critiques of the dismal theorem in the first two categories show that

the framework Weitzman employed is not robust to plausible changes in the assumptions of the

modeling. However, in both these cases, I demonstrate that the intellectual content of the dismal

theorem can be reinstated by appropriate extensions and modifications of Weitzman’s results, and

1We will refer to any probability distribution which decays polynomially in the tails (upper or lower, as appropriate)
as ‘fat-tailed’.
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by assessing the plausibility of the assumptions made in the criticisms themselves. Thus, I find

that criticisms based on these two strains of inquiry are ultimately unconvincing. Criticisms of the

behaviour of the utility function are however robust – the dismal theorem may be ‘resolved’ by

accepting that the traditional tool of constant relative risk aversion (CRRA) utility functions is not

up to the task of evaluating fat-tailed risks. I demonstrate that a generalization of the CRRA-like

utility functions assumed by the theorem – Harmonic Absolute Risk Aversion utility functions –

provides finite welfare measures even when risks are fat-tailed, and moreover makes policy eval-

uation relatively insensitive to the tails of the consumption distribution for a plausible range of

parameters. While such utility functions provide a technical resolution to the dismal theorem,

they highlight the fact that the theorem’s message is not so much a technical point about specific

utility functions, but an ethical and empirical point about what the appropriate utility function

for analysis of catastrophic risks should be. The key issue is: How should we ‘value’ catastrophic

outcomes as a society?

If we attempt to address this question via Harsanyi-style aggregation over the preferences of

diverse individuals, some counterintuitive results are possible. While individuals are unlikely to be

willing to pay large sums to avoid very low probability catastrophic risks, implying that CRRA

utility functions are indeed an inappropriate representation of their preferences, social willingness to

pay need not be similarly constrained. I demonstrate that even if every individual’s utility function

is bounded, aggregate social welfare may still be unbounded below at positive consumption levels.

This suggests that in some cases social evaluation of catastrophic risks is highly sensitive to the

preferences of the most risk-averse members of society, even if they make up a vanishingly small

fraction of the population. Thus, it is not a simple matter to reason from willingness to pay to

avoid catastrophes as elicited from a sample of the population to social preferences over catastrophic

risks.

In section 4 I suggest that the ethical issues raised by the dismal theorem run even deeper than

the choice of an appropriate social utility function. Any welfare analysis which admits catastrophic

impacts on consumption must also deal with population change. The role of population change is

not made explicit in the analyses of Weitzman and his critics – they implicitly assume an average

utilitarian population principle. Yet average utilitarianism has been heavily criticized by philoso-

phers and social choice theorists. I discuss an attractive alternative to average utilitarianism –
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critical level utilitarianism – which provides a more defensible approach to population ethics, and

dampens the effect of catastrophic risks on welfare. Section 5 concludes by suggesting that the

dismal theorem shows that the welfare framework that has thus far been standard in integrated

assessment modeling is an inadequate normative basis for climate policy analyses which account

for possible catastrophes. Nevertheless, alternatives with more desirable properties are available,

and could be implemented in the next round of economic analyses of mitigation policies. These

however require us to face up to ethical and empirical issues that have thus far been neglected.

1 Weitzman’s Dismal Theorem

Weitzman (2009b) phrases his analysis in terms of a two period model. Current consumption is

normalized to 1. Future consumption is given by the random variable c. Consider the following

welfare function:

W = U(1) + βEU(c) (1)

where U is the social utility function (which we will assume is concave and twice differentiable), E is

the expectation operator, and β ∈ [0, 1] is a discount factor on future utility. Suppose now that we

are able to transfer an infinitesimal amount δ of consumption into the future, with certainty. What

amount ε of current consumption should we be willing to sacrifice in order to make this transfer?

In other words, what is the relationship between the values of ε and δ that will leave total welfare

unchanged? Formally, this question is answered by setting

U(1− ε) + βEU(c+ δ) = U(1) + βEU(c). (2)

In the limit as ε, δ → 0, one finds

ε =

(
β
EU ′(c)

U ′(1)

)
δ. (3)

This expression tells us the marginal willingness to pay for a transfer of a certain infinitesimal unit

δ of consumption into the future. The stochastic discount factor M is defined as

M := β
EU ′(c)

U ′(1)
. (4)
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Weitzman proves the following theorem:

Theorem 1. Suppose that

• The coefficient of relative risk aversion η(c) := −cU
′′(c)
U ′(c) is strictly greater than zero as c→ 0.

• The consumption growth rate y := log c is distributed according to a probability density

function h(y|s) = 1
sf(y−µs ), where f is a normalizable function, µ is a known location param-

eter, and s is an uncertain scale parameter. Weitzman interprets s as a ‘generalized climate

sensitivity’ parameter – this will be discussed below.

• The prior on s is of the form p(s) ∝ s−k, where k > 0, and you are given a finite number n

of independent observations yn of the random variable y.

Then we can conclude that,

1. The posterior distribution for y, q(y|yn) ∝
∫∞
0 h(y|s)

∏
n h(yn|s)p(s)ds scales like |y|−(n+k)

as y → −∞.

2. The stochastic discount factor M →∞.

The first part of the conclusion of the theorem is a result due to Schwarz (1999), while the

second part had been pointed out by Geweke (2001) in the special case of some fat tailed para-

metric distributions (e.g. t-distribution, inverted-gamma distribution) for the posterior q(y|yn).

Weitzman’s contribution was to combine these two results, and give an interpretation of their con-

sequences for climate change economics. He suggests that the correct way to interpret this result

is that when there is what he terms ‘structural uncertainty’ (i.e. uncertainty about the parameters

of the distribution for future consumption), policy choice is heavily dependent on the catastrophic

tails of the distribution of future consumption, which in general are ‘fat’, i.e. decay to zero only

polynomially in consumption. In fact, he suggests, the effect of these catastrophic fat tails swamps

all other effects on the discount factor, including that of the PRTP (given by − lnβ in this model)

which had hitherto been the chief source of contention amongst economists.
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2 Criticisms and extensions of the Dismal Theorem

2.1 Marginal vs. total willingness to pay

Weitzman chose to frame his results in terms of the stochastic discount factor, which as demon-

strated in equation (3), determines willingness to pay for an infinitesimal certain transfer of con-

sumption to the future. The fact that his result is framed in terms of marginal, and not total,

willingness to pay, has been criticized by several authors, most notably Horowitz & Lange (2009)

and Karp (2009). They point out that the fact that marginal willingness to pay may be infinite is

of very limited relevance for cost-benefit analysis – all it implies is that one would certainly want to

transfer a non-infinitesimal amount of consumption to the future. Nordhaus (2011) also emphasizes

the absence of a policy variable from Weitzman’s analysis, and suggests that the dismal theorem

has no special consequences for policy choice. I reprise and generalize these authors’ arguments

below.

Suppose that we wish to determine the optimal transfer a from current consumption into future

consumption. Then we need to pick a to maximize

U(1− a) + βEU(c+ a). (5)

The first order condition is

U ′(1− a) = βEU ′(c+ a). (6)

Now ask yourself whether this equation has a solution at a = 0, which corresponds to the case of

an infinitesimally small transfer. The answer is clearly no, if the conditions of Weitzman’s theorem

on U and the probability distribution for c are satisfied. However, this in itself does not mean that

there is no solution other than the vacuous a = 1. In fact, when the conditions of Weitzman’s

theorem are satisfied, a solution a∗ ∈ (0, 1) to the first order condition (6) is guaranteed to exist

under very mild continuity conditions:

Proposition 1. Assume that U ′(0) =∞, U ′(x) is finite for all x > 0, and that U ′(x) is a continuous

function. In addition, assume EU ′(c) =∞. Then the first order condition (6) has a unique solution

a∗ ∈ (0, 1).

Proof. Let F (a) := βEU ′(c+a)−U ′(1−a). By assumption, F (0) =∞, F (1) = −∞. The continuity
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of U ′ implies that F (a) is continuous on [0, 1]. Therefore the intermediate value theorem tells us

that there exists a∗ ∈ (0, 1) such that F (a∗) = 0. The fact that F (a) is decreasing (since U is

concave) means that a∗ is unique.

For Horowitz & Lange (2009) and Karp (2009), this fact renders the dismal theorem uninterest-

ing. Karp (2009) in particular shows that the optimal transfer a∗ is about as sensitive to the PRTP,

as it is to the probability of catastrophe in a simple binary lottery. Using this result, he suggests

that even a moderate interpretation of the dismal theorem which suggests that catastrophic risks

can swamp the effect of the PRTP, is flawed. I am however hesitant to dismiss the dismal theorem

on these grounds. To see why, notice that this argument is predicated on the assumption that it is

possible to transfer a finite amount of consumption a into the future with certainty. This seems a

very strong assumption, especially so in the case of climate change, where catastrophic outcomes

are at least conceivable for a wide range of abatement policies, owing to the long residence time of

atmospheric CO2 (Solomon et al., 2009).

If we relax this unrealistic assumption, it is relatively straightforward to extend the dismal

theorem to apply to policy choice, rather than policy evaluation. Consider a generalization of the

decision problem in (5), in which this time it is no longer certain that a sacrifice of an amount

a of current consumption gives rise to a certain payoff in the future. We will model the effect of

a sacrifice of size a on the distribution of future consumption through the distribution function

q(c; a), which specifies the distribution of future consumption c for each value of the policy variable

a. The decision problem is now to choose a to maximize

U(1− a) + β

∫ ∞
0

U(c)q(c; a)dc. (7)

The first order condition for this problem is:

U ′(1− a) = β

∫ ∞
0

U(c)
∂q(c; a)

∂a
dc. (8)

Define

I(a) :=

∫ ∞
0

U(c)
∂q(c; a)

∂a
dc. (9)

We identify three cases of interest:
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1. I(a) is finite for all values of a

2. I(a) diverges for a ∈ [0, d], but is finite for a ∈ (d, 1], with d ∈ (0, 1).

3. I(a) diverges for all a ∈ [0, 1].

In case 1, both marginal and total willingness to pay are finite, and an optimal value of a exists.

In the second case, marginal willingness to pay is infinite, but total willingness to pay is finite and

greater than or equal to d – this is analogous to the case examined by Karp (2009). In this case the

optimal value of a must be greater than d. In the third case, both marginal and total willingness

to pay are infinite, and there is no a < 1 which satisfies the first order condition.

To make these three cases concrete, and tie them to some physical and economic parameters,

consider the following set of assumptions: Suppose that future consumption depends on the increase

in global average temperature above preindustrial levels (T ) through a multiplicative damage func-

tion, i.e.:

c ∝ 1

1 +D(T )
(10)

Assume, as is standard in the integrated assessment modeling literature (e.g. Nordhaus, 2008; Hope,

2006; Weitzman, 2010) that D(T ) grows at most polynomially in temperature T , with leading order

exponent γ, so that for large T ,

c ∼ T−γ . (11)

Now pick a CRRA utility function,

U(c) =
c1−η

1− η
(12)

and assume that the temperature change T is distributed according to a probability density that

falls off like T−g(a) for large T , where g(a) is a nondecreasing function of a, and we require g(a) > 1

for all a in order for the temperature distribution to be normalizable. In this model, a may be

interpreted as the level of abatement spending. More abatement is assumed to flatten out the tail of

the distribution of future temperatures2. With these assumptions, the contribution to the integral

2It is of course possible that the tail becomes ‘thin’ at some finite value of a, in which case we may say that
g(a)→∞.
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I(a) from temperatures larger than T � 1 is:

I(a;T ) ∝
∫ ∞
T

(T−γ)1−η

1− η
∂

∂a

[
T−g(a)

]
dT

∝
∫ ∞
T

(T−γ)1−η
[
−(T−g(a) lnT )g′(a)

]
dT

∝
∫ ∞
T

T γ(η−1)−g(a) lnTdT.

Now for large T , we know that lnT grows more slowly than T θ for any θ > 0, so we can conclude

that for large T ,

I(a;T ) ∝
∫ ∞
T

T γ(η−1)−g(a)dT. (13)

We now make use of the following fact of integration:

∫ ∞
T

T−pdT converges if and only if p > 1. (14)

Thus, the integral I(a) converges3 if and only if,

g(a) > 1 + γ(η − 1). (15)

Our three cases correspond to three types of behaviour for the function g(a):

1. I(a) converges for all a → g(a) > 1 + γ(η − 1) for all a ∈ [0, 1].

2. I(a) converges only for a ∈ [d, 1]→ g(a) > 1 + γ(η − 1) only for a ∈ [d, 1].

3. I(a) diverges for all a ∈ [0, 1]→ g(a) < 1 + γ(η − 1) for all a ∈ [0, 1].

Notice how the critical value of g(a) at which the convergence properties of I(a) changes depends

on the parameter γ, which measures the steepness of the climate damages function, and η which

3It is easy to show that (15) also ensures that the original welfare function (7) exists. In the case where this
inequality is not satisfied however, the welfare function does not exist. Nevertheless, it is possible that an overtaking
criterion may single out some maximal policies. One can show that if a maximal policy exists (even if the welfare
function does not), it must be the policy a = 1. This is achieved by performing the above analysis with a modified
objective function with a finite upper integration limit T̂ < ∞. Clearly all the relevant qualities exist for finite T̂ ,
and the original problem is reclaimed in the limit as T̂ →∞. Assume that (15) is not satisfied at any value of a. Let
a∗(T̂ ) denote the solution (if it exists) of the first order condition (8) as a function of T̂ . We know that in the limit
as T̂ →∞, the right hand side of (8) tends to infinity. Then by the fact that marginal utility is bounded everywhere
except at zero, if limT̂→∞ a

∗(T̂ ) exists, it must equal 1. Thus when (15) is not satisfied, if a maximal policy exists it
must be a = 1. I thank Larry Karp from bringing this issue to my attention.
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measures the curvature of the utility function. Increases in either of these parameters decrease

the range of values of a for which the integral converges. In general, increases in either of these

parameters increase the importance of the tails of the distribution for T for welfare calculations.

To get a sense of the implications of (15), pick γ = 2, the value used in the DICE integrated

assessment model (Nordhaus, 2008). Next, consider the theoretical distribution for climate sensi-

tivity4 derived in Roe & Baker (2007) (see Section 2.2.2 below). This distribution falls off as T−2

for large T . Let a2 be the value of abatement that stabilizes CO2 concentrations at twice their

preindustrial level. Then, as we approach equilibrium, we have g(a2) ≈ 2. The inequality (15)

therefore implies that I(a2) converges only if η < 3/2. Thus, under these assumptions, we know

for certain that if η > 3/2, the optimal level of abatement spending must be larger than a2, i.e. it

is optimal to keep CO2 concentrations below twice their preindustrial level, given the assumptions

of this calculation. Moreover, if g(a) = 2 for all abatement levels5, η > 3/2 implies that welfare

diverges for all values of a.

The correct value for γ, and in particular the behaviour of the function g(a), are not very

well tied down in the existing literature. I would expect a γ > 2 – the damage function used

by Nordhaus (2008) has been argued to be implausibly flat (Ackerman et al., 2010), with 5◦C

of warming giving rise to only a 6.5% drop in economic output6. Weitzman (2010), in contrast,

estimates γ ≈ 6.7. This value of γ makes the dismal theorem even more difficult to dismiss than

in the example above, requiring η < 1.15 for convergence. As for g(a), I do not think we can rule

out the possibility of it being less than 1 + γ(η − 1), in which case the dismal theorem holds for

all values of a, and not just for marginal willingness to pay. Nordhaus (2011) claims that “when

we introduce policies, the analysis underlying the dismal theorem no longer applies directly”. The

analysis in this section demonstrates that, under the standard assumptions, Weitzman’s results are

easily extended to policy choice as well, and that one needs only moderate risk aversion for dismal

theorem like results to apply.

4Climate sensitivity is the amount of surface warming expected from a doubling of CO2 concentrations, in equi-
librium.

5If we believe the model of Roe & Baker (2007), this seems to be an inevitable conclusion, unless radiative forcing
is reduced to exactly zero at some abatement level, a virtual impossibility on any reasonable time horizon due to the
slow decay of atmospheric CO2. This is so since the quadratic tail in the temperature distribution arises only from
uncertainty in feedback processes, and the central limit theorem – more on this later.

6For comparison, earth’s average temperature was approximately 5◦C less than today at the time of the last
glacial maximum, when two thirds of the planet was covered in ice. It is not unreasonable to expect changes of
similar magnitude for a warming of 5◦C.
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2.2 Where do fat tailed probability distributions come from?

The analysis above shows that we cannot plausibly rule out a divergence in social welfare at all

abatement levels when consumption risks are fat tailed, and the utility function has the CRRA form.

Yet where do such fat-tailed risks come from? Two arguments have been proposed – an abstract

Bayesian argument, and an argument based on stylized models of the temperature response to

increases in greenhouse gas concentrations, which centers around the concept of climate sensitivity.

2.2.1 The Bayesian argument

The analysis in Weitzman (2009b) proceeds in the Bayesian paradigm, in which beliefs about the

uncertain value of future consumption are based on a set of observations (he uses this as a loose

proxy for scientific data or discoveries), a likelihood function that determines how observations

are treated as evidence, and a prior distribution over the parameters of the likelihood function.

This Bayesian framework is used to represent what Weitzman calls ‘structural uncertainty’ in

our knowledge. What he means by this is that the parameters of the distribution from which

consumption values are drawn are themselves uncertain. Thus, in arriving at posterior beliefs, we

need to account for the evidence our observations provide, given particular values of parameters of

the future consumption distribution, but then average over all possible values of these parameters

with an appropriate prior. For reasons to be discussed below, Weitzman thinks the appropriate

prior for the scale parameter of the consumption distribution is itself fat tailed.

Formally, by Bayes’ theorem, the posterior q(y|yn) for the growth in consumption y is related

to the likelihood function h(y|s) and the prior p(s) for the scale parameter via:

q(y|yn) ∝
∫ ∞
0

h(y|s)

[∏
n

h(yn|s)

]
p(s)ds. (16)

Schwarz (1999) showed that, when p(s) ∝ s−k (the Jeffreys prior), then q(y|yn) is fat tailed, i.e.

decays only polynomially, as y → −∞.

The crucial ingredient that leads to this result is the choice of prior, p(s). It is the fact that this

prior is itself fat-tailed that ultimately leads to a fat-tailed posterior as well. So, where does this

prior come from? The prior that Weitzman deploys is an example of an ‘uninformative’ prior. That

is, it is a prior that is supposed to represent a complete absence of prior knowledge. The argument
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that an uninformative prior for a scale parameters is best chosen to be of the form p(s) ∝ s−k is due

to Jeffreys (1946), and was elaborated on by Jaynes (1965, 1968). The treatment in Jaynes (1965)

is particularly compelling. Jaynes argues that if we are truly uninformed about the data generating

process, a transformation of the parameters of the probability law we use to describe it should

reveal no new information. He imposes translational and scale invariance on a general probability

law characterized by location and scale parameters, and shows that these symmetries uniquely

determine the prior on the scale parameter to be p(s) ∝ 1/s 7. Thus Jaynes’ procedure provides a

unique mapping between a choice of transformation group (i.e. symmetries of the probability law),

and the choice of prior.

Supposing one accepts this Bayesian approach, and Jaynes’ argument that lack of knowledge

should be represented by invariance of the system’s probability law with respect to a specified

transformation group, the only escape from a fat tailed prior for s can be either to argue that an

uninformative prior is inappropriate for the application in question, or that we have focussed our

attentions on the wrong transformation group. The first option is the one preferred by Geweke

(2001). I am wary of it in the case of the dismal theorem. In this case, the scale parameter s

is argued by Weitzman to be a ‘generalized climate sensitivity’ parameter – I will discuss this

in depth in the next section. For the moment, I simply point out that it is logically impossible

to define an informative prior for climate sensitivity that is independent of knowledge of climate

observations. Any informative prior, for example based on expert opinion (Frame et al., 2005), will

of necessity be informed by such knowledge. This should rightfully be represented in our choice of

likelihood function h(yn|s) (i.e. a choice of climate model and noise distribution over temperature

observations), and not in the prior. If we truly wish the prior to be independent of the observations

(as it must be if we are to use the observations to make inferences about s – we can’t use them

twice), it must represent a priori (in the Kantian sense), rather than a postiori knowledge. Hence

the appeal of abstract mathematical techniques for specifying an uninformative prior, which are

divorced from any knowledge of the data.

I believe that the second option – that we may have chosen the wrong transformation group

for the probability law – carries more weight. In standard statistical applications the choice of a

7Weitzman’s more general prior p(s) = s−k does not follow from Jaynes’ argument. Although Weitzman’s prior is
itself scale invariant, the full set of symmetries Jaynes imposes restrict it to k = 1. This point has little consequence
for the dismal theorem however, as the improper prior p(s) = 1/s is the most fat tailed of all the priors in the class
Weitzman considers.
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transformation group may be pinned down by thinking about the symmetries of the underlying

system that generates our data yn. For example, if the data are measurements of the locations

of a set of events, then one might reasonably expect our information about the system to remain

the same if we make measurements in meters or feet (scale transformations), and if we make them

in Paris or London (location transformations), if we are truly uninformed a priori. What is much

less clear is what the appropriate transformation group should be for the growth in consumption,

the variable in question in the dismal theorem. More specifically, it is unclear why one would

expect Weitzman’s ‘generalized climate sensitivity’ to act as a scale parameter for the distribution

of consumption growth, or indeed whether any such scale parameter exists. I can see no good

argument that pins down the transformation group for the probability law that governs consumption

growth, other than epistemically arbitrary considerations of simplicity and familiarity.

At a broader level, the transformation group method is not universally accepted as a satisfac-

tory solution to the problem of choosing uninformative priors. A common alternative is to use the

principle of maximum entropy (Jaynes, 1968). Remarkably, this principle recommends an exponen-

tial distribution as the prior for a continuous positive parameter such as Weitzman’s generalized

climate sensitivity. With such a prior, the posterior (16) will be thin-tailed. Thus, even taking

the Bayesian paradigm as read, Weitzman’s framing of the problem is controversial, and relies on

implicit assumptions which are not justified.

As a final remark on Weitzman’s chosen framework for representing a state of ignorance, it

is vital to recognize that the Bayesian approach, and the expected utility welfare framework it

feeds into, is by no means the only game in town in situations of informational paucity. It has been

argued (Ellsberg, 1961; Gilboa, 2009; Gilboa et al., 2009) that the normative application of expected

utility theory is only appropriate in situations of risk (where probabilities are known), rather than

uncertainty (where probabilities are unknown), a distinction going back at least as far as Knight

(1921). Strong Bayesians contest this, saying that Savage’s subjective expected utility axioms

define rationality in the face of uncertainty. If one holds this position, one is forced to describe

beliefs with a subjective probability distribution, even when there is no information upon which to

base such a choice. Hence the need to go through the mathematical gymnastics associated with

choosing an uninformative prior. If instead one is willing to accept that the domain of application

of expected utility theory is limited, then one must search for an alternative evaluation criterion
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that is appropriate in situations of ambiguity or ignorance. There are several such criteria available

(e.g. Savage, 1954; Arrow & Hurwicz, 1977; Gilboa & Schmeidler, 1989; Klibanoff et al., 2005),

which go variously under the names of ambiguity averse, or ignorant, decision rules. Applications

of these criteria to climate policy (e.g. Woodward & Bishop, 1997; Millner et al., 2010) show that

they can introduce quantitatively important new effects.

2.2.2 The climate sensitivity argument

I will now set the abstract Bayesian approach aside, and ask what climate science tells us about the

relevance of the dismal theorem. As the inequality (15) demonstrates, if the probability distribution

over future warming at any finite time in the future is fat tailed enough (no matter how stringent

our abatement policy), then a version of the dismal theorem applies. This holds for any such fat-

tailed distribution, whether it is justified on abstract Bayesian grounds, or derived from scientific

and impacts models8.

A commonly used summary statistic for the effect of increases in CO2 concentrations on tem-

perature is climate sensitivity. Climate sensitivity (S) is defined as the increase in global mean

surface temperatures that results from a doubling of CO2 concentrations, in equilibrium. Weitz-

man (2009b) motivates his argument for fat tails being relevant to climate policy by appealing to

scientific work on climate sensitivity estimation, which suggests that the distribution for S may

itself be fat tailed. In order to investigate this argument, I will work with a conceptual model of

climate sensitivity proposed by Roe & Baker (2007).

Much of the uncertainty about the long-term effects of increases in CO2 concentrations derives

from uncertainty about feedbacks in the climate system. An easily visualized example of a feedback

is the following: Imagine that CO2 concentrations are increased. This leads to a rise in temperatures

due to the increase in radiative forcing that results from more out-going long-wave radiation being

trapped by CO2 molecules. Now an increase in temperature may melt ice and snow. Since ice is

a highly reflective surface, whereas water is not, if some ice is lost when temperatures rise, the

amount of incoming radiation that is reflected back into space decreases. This gives rise to even

more warming than would have occurred purely due to the radiative forcing effect of CO2 molecules.

That is, there is a positive feedback in the system – increases in temperature give rise to changes

8In reality, these two approaches are of course not independent. See e.g. Frame et al. (2005).
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in the physical characteristics of the planet, which increases the amount of warming even further.

There are many feedback processes in the climate system, some positive, and some negative. The

net effect of all these feedbacks is widely believed to be positive (Roe & Baker, 2007).

Consider a very simple model of climate sensitivity’s dependence on the feedbacks in the climate

system. Formally, define

S =
∆T0
1− f

. (17)

where ∆T0 is the ‘grey-body’ climate sensitivity, and f measures the strength of feedbacks. The

grey-body sensitivity is the amount of warming that would occur if there were no feedbacks in

the climate system, and is easily calculated based on very simple energy balance considerations9.

Values quoted in the literature for ∆T0 are in the range 1.1–1.3◦C (Hansen et al., 1984; Schwartz,

2010). Roe & Baker (2007) observe that what we actually measure from the instrumental record is

the size of the feedbacks and not climate sensitivity itself. Assuming that the total feedback f is the

sum of a large number of independent feedback processes, the uncertainty in f is well approximated

by a normal distribution. Using the formula (17) to transform the probability density for f into a

probability density for S, they find that the distribution for S must be skew, and has a quadratic

fat tail, i.e. p(S) ∼ S−2 as S →∞.

Weitzman (2009b) uses arguments similar to these to argue that temperature distributions

are fat-tailed. There are however several criticisms of the manner in which Weitzman applies

these arguments to the economics of climate change, based on our scientific understanding of how

increases in CO2 concentrations affect temperature distributions (Nordhaus, 2011; Costello et al.,

2010; Newbold & Daigneault, 2010; Roe & Bauman, 2010). I will explore only one version of these

criticisms, which I believe is illustrative of the wider concerns on this front.

The key point to absorb about climate sensitivity is that even if we accept that its probability

distribution is fat-tailed, the fact that it is an equilibrium quantity means that it tells us only about

the amount of warming in the infinite future. Thus the focus on climate sensitivity as a legitimator

of the fat tails argument is probably misguided, as any blow-up in expected marginal utility will be

suppressed by an exponentially declining discount factor limt→∞ e
−ρt = 0. The possibility remains

however that temperatures may be fat tailed at finite time. However, there are some reasons for

9All one needs to know for this calculation is the Stefan-Boltzmann law, the solar constant, the values for the
effective emissivity and albedo of the earth, and the radiative forcing that results from CO2 doubling – all very well
established physics. See e.g. Hartmann (1994).
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believing that this is not the case. In order to understand this, one must first appreciate a second

crucial fact about the influence of climate sensitivity on temperature trajectories. It has been

argued on very general grounds based on dimensional analysis (Hansen et al., 1985), and confirmed

in climate models of all stripes (Baker & Roe, 2009; Held et al., 2010), that the atmosphere’s

adjustment time is proportional to S2. The adjustment time is a measure of the time it takes for

the system to reach equilibrium.

In order to understand the consequences of this fact, consider the following highly stylized

model10 of the temperature trajectory as a function of climate sensitivity S and time t:

T (t) = S

[
1− exp

(
−K
√
t

S

)]
, (19)

where K is a constant. Note that this trajectory is the warming pathway that would arise if the

concentration of CO2 were instantaneously doubled from its preindustrial value – it thus corresponds

to a very specific emissions pathway. This model incorporates three desirable properties – first,

the adjustment time is proportional to S2, second, ∂T
∂S > 0, i.e. temperatures are increasing in

sensitivity for all time, and finally, limt→∞ T (t) = S.

Notice the following fact about this model:

For any finite time t, lim
S→∞

T (t) = K
√
t. (20)

Thus in this stylized model, the amount of warming possible at any finite time t is bounded,

even if the distribution for S itself is unbounded. In general, it is reasonable to believe that any

model of the dependence of temperature trajectories on the climate sensitivity that accounts for

its effect on adjustment times will have this property. The important message of this stylized

analysis is that there may be physical constraints which bound temperature change at finite time.

10I am grateful to Gerard Roe for suggesting this model to me. It can be derived from the following differential
equation for temperature change:

c0
√
t
dT

dt
= R(t)− T

λ
. (18)

Here the factor c0
√
t represents the effective heat capacity of the oceans, which is known to grow with the square

root of time as heat fluxes at the earth’s surface diffuse into the deep oceans (Hansen et al., 1985). R(t) is radiative
forcing, which is equal to S/λ in the case of CO2 doubling, and λ is proportional to S. Setting the initial condition
T (0) = 0, the solution of this equation is (19). Weitzman (2009a) considers a similar model, except that he neglects
the
√
t factor, so the temperature trajectories he arrives at do not have adjustment times with the correct quadratic

dependence on S. See Baker & Roe (2009) for a more realistic, yet still analytically tractable, model.
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It has been argued (Costello et al., 2010; Newbold & Daigneault, 2010) that bounded temperature

distributions can dispense with the dismal theorem. The model in (19) has the benefit of proposing

an (admittedly stylized) physical mechanism that bounds temperature distributions, rather than

assuming an ad hoc bound as Costello et al. (2010) and Newbold & Daigneault (2010) do.

While I agree that it may be possible to rule out fat tailed temperature distributions on physical

grounds (at least for some well defined emissions pathways), I do not agree that this rules out fat

tailed consumption distributions, or indeed consumption distributions that put non-zero weight

on zero consumption (Dietz, 2010). I believe the objections expressed in Costello et al. (2010);

Newbold & Daigneault (2010); Roe & Bauman (2010) are an artifact of the unrealistic behaviour

of their damage functions for large temperatures. Following the standard assumptions in the

integrated assessment literature (Nordhaus, 2008; Weitzman, 2010; Hope, 2006), their analyses

assume multiplicative damage functions that imply that consumption is non-zero for any finite

temperature. This seems a highly unrealistic choice – for example, it implies that consumption will

still be above zero when the average temperature reaches the boiling point of blood! If instead one

accepts that the damage multiplier hits zero at some finite temperature TH , the dismal theorem

is back in play. This is so because, as one can see from (20), the maximum possible value of

warming grows unboundedly as t→∞, even for the relatively moderate case of a doubling of CO2

concentrations. Thus there will eventually be a time at which there is a non-zero probability that

T > TH , provided the distribution over S has support on [0,∞). Of course, for utility functions

with coefficient of relative risk aversion bounded above zero, this will ensure that expected marginal

utility diverges at this time, and so the dismal theorem reappears. Dietz (2010) demonstrated that

the PAGE integrated assessment model (Hope, 2006), used in the analysis of Stern (2007), is able

to produce scenarios in which consumption is driven to zero at finite time for climate sensitivity

values as low at 3◦C, adding to the plausibility of this story.

Weitzman (2009a) seems to have taken the criticisms of his result based on neglecting the

dynamics of temperature trajectories on board. He goes to considerable lengths to show that a

combination of factors – additive damage functions and uncertainty about the PRTP11 – can still

give rise to the dismal theorem even if temperature distributions remain bounded for all finite time,

11Dasgupta (2001) is critical of the use of models with many possible pure rates of time preference, such as those
in Weitzman (2009a); Li & Löfgren (2000). Heal (2009) also emphasizes that in general this approach leads to
dynamically inconsistent plans. Thus it is not clear that this is a legitimate approach to normative welfare analysis.
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and the distribution over discount rates places an infinitesimally small weight on a zero discount

rate. This is an interesting mathematical result about the limiting behaviour of certain functions,

but it is perhaps overly sophisticated for the application at hand. Provided we accept that there

is some temperature TH at which consumption hits zero, and there is positive weight on T > TH

at finite time, a dismal theorem like result it guaranteed. Weitzman’s work shows that this is not

a necessary condition for a divergence in the welfare function – one can send TH → ∞ and have

probability distributions that place zero weight on the worst events (and the lowest discount rates)

and still obtain a divergence. This result is valuable, but to obtain the essential economic insights

of the dismal theorem, one needs far less mathematical machinery than Weitzman employs: Any

positive probability of zero consumption, no matter how small, implies welfare diverges for utility

functions with a coefficient of relative risk aversion greater than or equal to one. 12

The upshot of this analysis – of both the Bayesian argument, and that based on toy scientific

models – is that if we interpret the dismal theorem in the narrow sense in which it is presented in

Weitzman (2009b), then its conclusions are not robust. Changes to the Bayesian framework used to

justify it can cause it to disappear, as indeed can properly accounting for the physics of the climate

system. However, such a narrow interpretation does not do the dismal theorem justice. Weitzman

(2009b) is careful to describe his modeling work as an abstract parable, suggesting we should focus

on the broad-brush message, rather than the technical content, of the theorem. I believe this is the

correct way to interpret his result. As we have seen, if we allow for consumption approaching zero

at finite (but very high) temperature, as must be the case, and are not able to make transfers to

the future with certainty (as seems plausible), then existing criticisms of the dismal theorem fail to

persuade.

2.3 The role of the utility function

The previous section highlighted arguments for and against fat tailed probability distributions in

the economic analysis of climate change. Much of the debate about the applicability of Weitzman’s

results has focussed on these issues. In this section, I argue that a more pertinent line of inquiry

may be to interrogate the role that the utility function plays in the dismal theorem. Indeed, taking

the conventional expected utility welfare framework as read at this point, this is the main content

12All we require is that limc→0 η(c) ≥ 1, and not that the coefficient of relative risk aversion be greater than 1 for
all c.
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of Weitzman’s result – it shows that welfare calculations are highly sensitive to the behaviour of

the utility function at low consumption levels, and that the widespread CRRA utility function is

perhaps ill suited to applications with fat-tailed risks.

The fact that the expected utility model of choice under uncertainty cannot be trusted to

provide meaningful results for certain utility functions has been appreciated since Menger (1934)

demonstrated that one requires utility functions to be bounded in order to be able to rank arbitrary

lotteries. In fact, Menger (1934) showed that for any unbounded utility function, a variant of the

St. Petersburg paradox exists. If we restrict attention to lotteries with finite expected payoffs, then

the constraints on the utility function may be weakened. Arrow (1974) showed that if the utility

function is concave, monotonically increasing, and bounded below, then expected utility exists for

all lotteries with finite expected payoff. Note that this result does not require marginal utility to

be finite at the origin – Arrow (1974) shows explicitly that this condition is not needed. Thus

utility functions which are finite at the origin, but have infinite marginal utility at the origin,

are still able to rank all lotteries of interest. In the case of CRRA utility functions (12), these

conditions are fulfilled only when η < 1. In order to extend this result to an existence result for

expected marginal utility (and thereby the stochastic discount factor), define V (c) = −U ′(c), and

assume that U ′′′ > 0, i.e. the decision maker is prudent (Kimball, 1990). Then V (c) is increasing

and concave, and provided V (0) = −U ′(0) is finite, expected marginal utility will exist for all

lotteries with finite expected payoff. In the case of a CRRA utility function (for which U ′′′ > 0 is

always satisfied), U ′(c) = c−η, and thus V (0) is not finite for any value of η. With these results

in mind, the dismal theorem is unsurprising – we are simply pushing a particular choice of utility

function beyond its region of usefulness. Arrow (2009) and Nordhaus (2009) come to much the

same conclusion.

2.3.1 HARA utility functions

There are alternative choices of utility function that are almost as easy to handle analytically

as the CRRA utility function, and do not suffer from this difficulty. Weitzman (2009b) himself

discusses a ‘value of statistical life’ cut-off parameter D such that U(c) = 0 for all c < D, and

Pindyck (2011) performs a set of illustrative welfare calculations with a similar model that places

a cut-off on marginal utility, and demonstrates (unsurprisingly), that depending on the position
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of the cut-off, fat-tailed distributions may in fact be preferred to thin-tailed ones. Both of these

approaches provide a technical resolution to the dismal theorem, but suffer from some drawbacks,

as they require assuming that the utility function is not everywhere differentiable. As we shall see

below, this is by no means a necessary assumption.

Consider the smooth Harmonic Absolute Risk Aversion (HARA) utility function, which is widely

used in the finance literature (see e.g. Gollier, 2001):

U(c) = ζ

(
ν +

c

η

)1−η
, where ζ

(
1− 1

η

)
> 0. (21)

⇒ −cU
′′(c)

U ′(c)
= c

(
ν +

c

η

)−1
. (22)

Clearly, this utility function has a coefficient of absolute risk aversion that is decreasing in con-

sumption, and a coefficient of relative risk aversion that is increasing in consumption. In the limit

ν → 0, the HARA utility function approaches a CRRA utility function (12). Notice however that

for all ν > 0, the coefficient of relative risk aversion for the HARA function is equal to zero when

c = 0. Moreover, it is easy to see that U (n)(0), the n-th derivative of U at the origin, exists for

all n. Thus both expected utility and expected marginal utility exist for this utility function for

arbitrary finite mean probability distributions for consumption.

To illustrate how the stochastic discount factor M depends on the parameters of the HARA

utility function, suppose that y = log c is a Cauchy distributed random variable13 – a prototypical

example of a fat-tailed distribution, considered by Weitzman (2009b) and Costello et al. (2010). In

Figure 1, we plot the logarithm of the stochastic discount factor (4) as a function of the parameter

ν in (21). Of course, limν→0M = ∞ – this is obviously not representable on the curve in Figure

1. What the figure shows is that M varies by a factor of about 108 between ν = 10−3 and ν = 1.

Thus, under this choice of utility function, social evaluation of fat-tailed consumption risks will

be extremely sensitive to the choice of ν for low values of ν. However for ν greater than about 1,

evaluation of fat-tailed risks is relatively insensitive to the value of ν – this suggests that the HARA

utility function with ν > 1 might provide a good alternative to CRRA utility functions when risks

are fat-tailed. Note that the HARA utility function provides finite answers even when there is a

non-zero chance that consumption is identically zero at finite time, e.g. if damage multipliers hit

13The Cauchy distribution is the same as a Student’s t-distribution with 1 degree of freedom.
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Figure 1: Logarithm of the stochastic discount factor M , as a function of the parameter ν of the
HARA utility function (21). η = 4, ζ = 1, β = 1 in this figure, and consumption growth is assumed
to be Cauchy distributed.

zero at finite temperature.

While the analysis above shows that welfare evaluations (i.e. the computation of a welfare

function, or the stochastic discount factor, for a given policy) may still be very sensitive to the tails

of a distribution when the utility function is bounded (i.e. for a small value of ν in (21)), this does

not mean that welfare comparisons (i.e. policy choices) are also heavily dependent on the tails. In

fact the following result, due to Chichilnisky (2000), implies just the opposite:

Theorem 2. Let x(t), y(t) be lotteries over a random variable t ∈ R with probability measure

µ(t). Then if preferences over lotteries can be represented by expected utility functionals with a

bounded utility function,

x � y ⇐⇒ ∃ε > 0 : x′ � y′ where x = x′ and y = y′ a.e. on any Σ ⊂ R : µ(Σc) < ε.

In the words of Chichilnisky (2000), “expected utility is insensitive to small probability events”,

provided of course that the utility function is bounded. Thus, even if the ν parameter of the

HARA utility function is arbitrarily close to zero, implying that welfare measures are very large
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negative for fat-tailed risks, the ranking of alternative policies is independent of these very low

probability outcomes. Thus boundedness of the utility function, even at a very large negative value

(i.e. ν � 1), dispatches with the dismal theorem entirely for the purposes of policy choice.

For Weitzman, the approach to resolving the dismal theorem via bounding the utility function is

unsatisfactory. In his words, “It is easy to put arbitrary bounds on utility functions...that arbitrarily

cut off or otherwise severely dampen...low values of C. Introducing...these changes formally closes

the model in the sense of replacing the symbol +∞ with an arbitrarily large but finite number.” As

Figure 1 shows, this is not the case if one allows for utility functions with coefficient of relative risk

aversion that tends to zero for low c. In this case one can choose perfectly reasonable parameter

values that guarantee that the stochastic discount factor is not only not ‘arbitrarily large’, but of

order 1 for fat-tailed risks. Moreover, policy choice is independent of low probability events in this

case. This modeling choice is only ‘arbitrary’, if one is wedded to the CRRA utility function as the

normative baseline of welfare calculations.

The widespread focus on the CRRA utility function is perhaps an instance of the ‘tools-to-

theories’ heuristic (Gigerenzer, 1991), in which an analytical tool – the CRRA utility function – is

elevated to the status of a theory, in this case of normative welfare analysis. If we believe the axioms

of expected utility theory, as elucidated by von Neumann & Morgenstern (1944), and especially

Savage (1954), we should evaluate uncertain prospects with expected utility functionals. However

these axioms are silent as to which utility function, or indeed which probability distribution, is

appropriate for a given application. It is up to us to furnish expected utility theory with a utility

function that is true to our tastes, and a probability distribution that is true to our beliefs. Thus,

if we feel that the CRRA utility function does not represent our preferences in the case of catas-

trophic climate change, we should not hesitate to replace it with another utility function that does.

Nordhaus (2009) performs some illustrative calculations that suggest that our willingness to pay

to avoid catastrophes is not very large (he considers the case of payments to avoid killer astroids),

suggesting that the CRRA utility function may be too cautious to reflect individual preferences.

2.3.2 Aggregation of heterogeneous preferences

Although HARA utility functions may provide a more acceptable representation of individual pref-

erences, it is social preferences that should enter welfare calculations. Indeed it is unclear in the
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analysis presented thus far exactly where the utility function comes from, and what it represents.

Does it include prioritarian ethical judgements about welfare inequality, or measure only the em-

pirical risk preferences of a representative agent (Kaplow & Weisbach, 2011), and more generally,

how does it relate to the preferences of the individuals that make up society? Clearly, in addressing

this question, we should draw on the resources provided by social choice theory.

It is important to stress that even though individuals’ utility functions may all be bounded at

c = 0, this does not imply that society’s welfare is similarly constrained. The analysis of HARA

utility functions presented above assumed a homogenous population, each member of which has the

same attitude to risk; or, equivalently, that a single representative agent may be identified whose

risk preferences are given by the HARA utility functions examined above. This assumption masks

some of the complexity of welfare analysis under catastrophes. Assuming an anonymous social

ordering, and that the Harsanyi (1955, 1978) social aggregation axioms hold, we should aggregate

over the expected utility obtained by all individuals in order to arrive at social welfare under the

catastrophic risk. Treating this aggregation exercise as a fait accompli can be misleading. In fact,

one can show that even if every individual’s utility function is bounded for all c, aggregate social

welfare may still diverge (or be very sensitive to the tails of the distribution over c). This suggests

that it is not a straightforward matter to simply presuppose a HARA social utility function because

our individual willingness to pay to avoid catastrophe, or that of a sample of the population, is

small.

A simple example will suffice to make this point. Suppose that each agent in a heterogenous

population consumes the same amount in all states of the world, but each has a different utility

function14. Suppose that agents’ utility functions are:

U(c;φ) = −(v + c)−φ. (23)

where v, φ > 0. Clearly, U ′ > 0, U ′′ < 0, and U (n)(0) is bounded for all agents. Assume an

anonymous social ordering, that each agent has the same value of v, and that the density of

individuals with preferences φ is given by w(φ). Then a social planner who evaluates consumption

14Note that Harsanyi’s axioms do not require these utility functions to be interpersonally comparable.
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risks would need to compute the following aggregated expected utility integral15:

V =

∫ [∫
U(c, φ)p(c)dc

]
w(φ)dφ (24)

=

∫ [∫
U(c, φ)w(φ)dφ

]
p(c)dc (25)

where p(c) is the consumption risk (we normalize the total population size to 1). Suppose now that

w(φ) is a gamma distribution, with parameters (θ, k), and consider the inner integral in (25). This

evaluates to

∫
U(c, φ)w(φ)dφ = − 1

θkΓ(k)

∫ ∞
0

(v + c)−φφk−1e−φ/θdφ (26)

∝ −
∫ ∞
0

φk−1 exp

(
−φ
[
ln(v + c) +

1

θ

])
dφ (27)

Now in order for this integral to be finite, we require c > c∗, where

c∗ := e−
1
θ − v (28)

Thus if 1/θ < ln(1/v), the social welfare function diverges at c∗ > 0, provided p(c) puts positive

weight on c < c∗, even though each individual’s utility function is bounded for all c. Since 1/θ =

mean(φ)
var(φ) for the gamma distribution, the divergence occurs if v < 1, and the mean of w(φ) is smaller

than ln(1/v) times its variance.

Note that this result is in stark contrast to the well known Arrow-Lind theorem on public risk

bearing (Arrow & Lind, 1970) – the reason being that in this case the risks to individuals are

correlated (the relevant case for applications to climate change), whereas the Arrow-Lind theorem

assumes uncorrelated, and therefore diversifiable risks. The result has a similar flavour to the

dismal theorem, in that it relies on the extremes of the distribution of φ to generate a divergence

in expected social utility16. It is thus subject to some of the same criticisms – e.g. perhaps it is

unreasonable to assume that the distribution of φ has full support on [0,∞), or that v < 1, or

15Fubini’s theorem guarantees that if the integral converges, we can change the order of integration. A simple
reductio ad absurdum argument makes the result that follows water-tight.

16In fact, some might say that this is a stronger result than the dismal theorem. It shows that social welfare may
diverge at a positive value of c, even for exponentially decaying distributions over φ. No fat tails in sight here.
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indeed that the Harsanyi aggregation theorem is a reasonable basis for social choice17 (Weymark,

1991). Excepting these objections, its conceptual message is clear – social evaluation of correlated

risks can be highly sensitive to those individuals who are highly risk averse, even if they make

up an infinitesimal fraction of the population. This adds a complication to the already difficult

issue of social aggregation when catastrophic risks are involved. It is not a simple matter to reason

(as Nordhaus (2009, 2011) does) that since spending on, for example, asteroid defense systems, is

small, social willingness to pay is similarly constrained. Such spending decisions are made by small

samples of the population, which have a very low chance of including the most risk-averse members

of society.

3 The elephant in the room: Population change

The HARA utility functions discussed in the last section provide a technical resolution to the

dismal theorem, but they do not resolve the ethical problems it raises. Correctly interpreted, the

dismal theorem says that social evaluation of fat-tailed risks depends sensitively on how we choose

to treat catastrophic outcomes. If we believe such outcomes to be infinitely bad for society, then

they can dominate all other ethical choices in a conventional welfare analysis based on expected

utility theory. If they are not infinitely bad, we still face the difficult task of deciding how to ‘value’

a catastrophe that wipes out the whole human race (and other species as well). For example, if

one adopts the HARA utility function, one still needs to justify a particular choice of ν. As the

previous section demonstrated, this is a by no means trivial exercise in social choice.

In this section, I want to suggest that the ethical problems that the dismal theorem raises

run deeper than simply deciding on the behaviour of the social utility function for low values of

consumption. There is an implicit assumption in Weitzman’s welfare framework (and that employed

by his critics), as represented by equation (1), which is by no means innocuous. This assumption

relates to how the welfare function (1) accounts for population change.

Many applications of welfare economics need not concern themselves with population change,

as they are concerned with marginal projects which are unlikely to affect which ‘potential persons’

17Note however that a similar result would obtain if instead of adopting Harsanyi’s aggregation theorem, we took a
Rawlsian approach to distributive justice, and maximized the utility of the least well off individual in society. Under
catastrophic risks, this would be the individual with φ→∞, for whom U(c;φ)→ −∞ for c < 1− v, U(c;φ)→ 0 for
c > 1− v. Thus social welfare would still diverge if p(c) puts any weight on c < 1− v.
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come into being. However if there is any situation in which concerns about population change are

likely to be relevant, then it has to be catastrophic climate change. Indeed, almost by definition, a

climate catastrophe would entail a drastic, perhaps total, collapse in the earth’s population. The

idea that we can consider states of the world in which consumption is drawn down to zero without

accounting for a change in population is manifestly absurd.

The only way in which it is possible to interpret Weitzman’s welfare function (1) as accounting

for population change, is if we interpret it as adopting an average utilitarian approach to population

ethics. That is, an uncertain prospect is evaluated by computing the average utility of all people

who happen to be alive in that prospect, and welfare is just the expectation of these average

utilities. Then the function U(c) that appears in (1) is just the average utility of a set of identical

agents when their consumption is c. But is average utilitarianism a defensible approach to welfare

evaluations when population varies?

3.1 Population principles and the dismal theorem

Since the publication of Derek Parfit’s ‘Reasons and Persons’ (Parfit, 1984), formal approaches to

population issues in social choice theory have been gaining momentum18. Two recently published

books (Broome, 2004; Blackorby et al., 2005) provide good overviews of the welfarist19 approach to

the problem. Blackorby et al. (2005) in particular set out a list of axioms that one might reasonably

want variable population social welfare functions, or population principles, to satisfy, and provide

representation results for various subsets of these axioms. They also prove several impossibility the-

orems which show that some combinations of these axioms cannot provide consistent and complete

social orderings. Dasgupta (2001) provides an alternative perspective on population ethics.

A key new concept that is introduced when considering welfare functions that account for

population change is the critical level. Suppose that social welfare at a point in time may be

represented by a function P (Ū , N), where Ū is average utility and N is population size. This is the

case for all population principles of interest20 (Blackorby et al., 2005). Now imagine adding a single

18Of course, population issues have always been central to economics (Malthus, 1798; Sidgwick, 1907), and had been
treated formally before Parfit (e.g. Dasgupta, 1969). However Parfit’s book provided the impetus for an axiomatic
approach to the problem that is rooted in social choice theory.

19I use the term ‘welfarist’ to refer to the consequentialist welfare function type approach to social evaluation,
which both these books largely follow. Strictly speaking, neither book is restricted to a purely welfarist approach,
as both consider cases in which non-welfare information, e.g. birth date, affects social choice. For a deontological
approach to population issues, see Kamm (1993, 1996).

20We do not consider generalized utilitarian rules. Such rules depend on the nonlinear average Ūg =
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individual to a population, holding the utility of all other members of the population constant. The

critical level is defined as the utility level of the additional individual which leaves total welfare

unchanged, i.e. his existence is socially neutral if his utility is at the critical level. Formally, the

critical level of a population principle P (Ū , N), evaluated at a given level of average utility and

population size, is defined as the utility level C(Ū , N) which satisfies

P (Ū , N) = P

(
NŪ + C(Ū , N)

N + 1
, N + 1

)
. (29)

As an example, consider average utilitarianism, for which P (Ū , N) = Ū . In this case C(Ū , N) = Ū ,

i.e. the critical level is equal to the average utility of those who live, and is independent of population

size. Average utilitarianism thus entails a strong dependence between the value of additional

population, and the welfare of those alive. This conflicts with two key independence axioms: utility

independence, and existence independence.

Utility independence requires rankings of alternatives to be independent of the utility of in-

dividuals whose utilities are the same in both alternatives. Existence independence is a stronger

requirement, which insists that rankings are also independent of the existence of individuals with

the same utility in both alternatives. To see that average utilitarianism violates both these axioms,

consider two different utility profiles: U1 = (a, b), U2 = (a, c, d). Clearly U1 � U2 iff a+b
2 > a+c+d

3

under average utilitarianism. This ranking depends on the value of a, and therefore violates utility

independence. Moreover, if a did not exist, U1 � U2 iff b > c+d
2 . It is easy to see that both these

inequalities cannot hold for all values of (a, b, c, d), and so existence independence is also violated.

The fact that the critical level for average utilitarianism depends on Ū implies that this welfare

function also violates a further desirable axiom – the negative expansion principle. Suppose, without

loss of generality, that we define U = 0 as the value of utility at which an individual’s life is just

worth living21. Then the negative expansion principle says that if we add an individual with U < 0

to the population, keeping everyone else’s condition unchanged, then social welfare should decrease.

Since the critical level for average utilitarianism is just average utility, which may be negative, it

is possible to add an individual with negative utility to the population and increase social welfare,

g−1
(

1
N

∑N
i=1 g(Ui)

)
, where the curvature of g measures aversion to welfare inequality.

21This requires us to assume that utilities are ratio-scale measurable, rather than cardinally measurable, a standard
assumption in population ethics.
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thus violating the negative expansion principle. In general, Broome (2004, chapter 13) argues that

population principles with critical levels that depend on average utility are undesirable.

The most commonly deployed alternative to average utilitarianism is classical utilitarianism,

whose population principle is P (Ū , N) = NŪ . This is the welfare function employed by the

much used DICE integrated assessment model (Nordhaus, 2008). The critical level for classical

utilitarianism is zero, and it satisfies existence, and therefore utility, independence. However it

exhibits Parfit’s repugnant conclusion; For every value of N , Ū > 0 and 0 < ε < Ū , the repugnant

conclusion implies that it is possible to find an M > 0 such that P (Ū , N) ≤ P (Ū − ε,N + M).

In words, a welfare function that exhibits the repugnant conclusion allows arbitrary reductions in

average utility (which keep Ū > 0) to be offset by increases in population size. It is clear simply

by looking at the product representation of the classical utilitarian welfare function, that the

repugnant conclusion is implied in this case. While it may be reasonable in some circumstances to

sacrifice some average welfare to promote a larger population, population principles that exhibit the

repugnant conclusion allow this logic to be pushed to undesirable extremes. Insisting on population

principles that avoid the repugnant conclusion places a brake on policies that promote population

size – there is always a point beyond which it is no longer desirable to trade utility for population.

Neither of the two most commonly used population principles seems to provide a satisfactory ap-

proach to population ethics. Average utilitarianism violates two compelling independence axioms,

as well as the negative expansion principle, while classical utilitarianism permits us to sacrifice all

individuals’ utility at the alter of population size via the repugnant conclusion. A simple alterna-

tive, critical level utilitarianism (CLU), avoids the pitfalls of both these principles, and is advocated

by Broome (2004). Blackorby et al. (2005, pp. 147-151) give an exhaustive discussion of CLU’s

desirable properties, relative to other population principles. CLU’s population principle is:

PCL(Ū , N) = N(Ū − α) (30)

where α > 0 is a constant, the critical level. CLU satisfies utility and existence independence,

avoidance of the repugnant conclusion, and the negative expansion principle. It does not, however,

satisfy a further requirement known as priority for lives worth living. Population principles which

satisfy this requirement have the property that all alternatives in which every individual’s utility
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is positive are ranked higher than all alternatives in which every individual’s utility is negative.

That CLU violates priority for lives worth living seems an acceptable compromise, and more de-

sirable than dispensing with either utility or existence independence, avoidance of the repugnant

conclusion, or the negative expansion principle. Indeed, priority for lives worth living seems the

least inevitable of the axioms discussed thus far. It implies a kind of reverse repugnant conclusion,

in that it insists that a population consisting of an arbitrary number of individuals with utility −ε

is ranked as worse than an alternative consisting of a single individual with utility ε, for any ε > 0.

Thus, it does not accept that population may be an end in itself, for example because there is some

existence value to the human species, and it may thus be worth maintaining some small population

with reproductive capacity, even if its constituents live unpleasant lives.

How would the dismal theorem be affected if we were to employ a CLU function to evaluate

climate policy? Let p(c,N) be the joint distribution over (c,N), then the CLU analogue of (1) is

WCL = Ū(1)− α+ β

∫
N
(
Ū(c)− α

)
p(c,N)dc dN (31)

= Ū(1)− α+ β

∫
N
(
Ū(c)− α

)
p(N |c)p(c)dc dN (32)

= Ū(1)− α+ β

∫
N̄(c)

(
Ū(c)− α

)
p(c) dc (33)

where N̄(c) =
∫
Np(N |c)dN is the mean of the distribution for N conditional on c, and p(c) is

the marginal distribution for c. Biological necessity requires that as c→ 0, N̄ must approach zero.

Thus catastrophic events are given less weight in welfare assessments with CLU welfare functions

than they are by average utilitarianism, since they correspond to low values of N̄ . This does not

however mean that catastrophic risks cannot dominate welfare. If Ū is unbounded below, fat-tailed

consumption risks may still theoretically lead to a divergence in WCL. However, this seems a much

bigger stretch for the CLU welfare function than it does for the average utilitarian function in (1),

as it requires the product N̄(c)Ū(c) to be sufficiently steeply curved for low c. If Ū(c) ∼ c1−η and

N̄(c) ∼ cθ as c → 0, a sufficient condition for WCL to be finite is that θ > η − 1. If population

declines exponentially as c→ 0, as seems very likely based on conventional population models, this

inequality is always satisfied. Nevertheless, we cannot unequivocally rule out a dismal-theorem like

divergence. The only sure way to guarantee that welfare converges for all possible risks is to require

that the utility function Ū be bounded.
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While the CLU welfare function provides a more acceptable framework for the analysis of

policies which may affect the size of future populations, it also requires new inputs, i.e. values for

the critical level α and the function N̄(c). N̄(c) is a purely empirical input, and may be estimated

(at least in principle), by examining the dependence of fertility and mortality rates on nutrition

levels (Fogel, 1997). α however is an ethical judgement about how good an individual’s life must

be for her existence to be socially desirable. Its value should not be too large (for obvious reasons),

nor too small, as small values of α approximate the repugnant conclusion. Much like the PRTP, its

value should be determined through public reason and debate. Choices for such ethical parameters

“should reflect conscious political decisions with respect to what are, after all, political questions.”

(Dasgupta et al., 1972, p. 120).

4 Conclusions

Weitzman’s dismal theorem, and his subsequent work on the climate damages function (Weitzman,

2010), has done much to show that existing analyses of climate mitigation policy based on integrated

assessment models are heavily dependent on poorly substantiated model assumptions, and may be

insufficiently sensitive to low-probability, high-impact, outcomes. These points are all well made,

however this paper has argued that perhaps the true message of the dismal theorem is to call into

question the appropriateness of standard welfare frameworks for the analysis of climate change

policy. Such concerns have been raised before (Heal, 2009) – the dismal theorem throws them into

the spotlight. Climate change is a mega-problem – it requires us to evaluate and compare market

and non-market impacts, come to terms with deep uncertainty, make inter-temporal trade-offs

far into the next century, divide mitigation responsibilities equitably, and contemplate potential

catastrophes. It is unsurprising that the old work-horse of a constant relative risk aversion expected

utility functional is not up to the task of providing normatively acceptable assessments of climate

policy. The dismal theorem makes this plain. While efforts to improve the empirical adequacy

of integrated assessment models are underway, it is vital that a parallel program examines the

ethical and formal foundations of such models. Accounting for deep uncertainty, social aggregation

problems, population change, and catastrophes are certain to be necessary components of a more

satisfactory approach. Any given treatment of these issues is likely to be controversial, yet not
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making them explicit is more problematic, as implicit, unjustified assumptions then determine

policy prescriptions.
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