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Abstract 
 
In this paper we consider the problem of interpreting the signs of the estimated coefficients in 
multivariate time series regressions where the regressors are correlated. Using a continuous 
time model, we argue that focussing on the signs of individual coefficients in such regressions 
could be misleading and argue in favour of allowing for the indirect effects that arise due to 
the historical correlations amongst the regressors. For estimation from discrete time data we 
show that the sign of the total impact, including the direct and indirect effects, of a regressor 
can be obtained using a simple regression that only includes the regressor of interest. 
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1 Introduction

In designing an experiment to measure the effect of some input variables, say
xj , j = 1, 2, .., k, on an outcome variable, say y, one tries to ensure that the
individual inputs are orthogonal and have maximal variance. In contrast the
observational time series data used in economics are typically realisations from
highly correlated continuous stochastic processes not subject to such experimen-
tal control. There is thus an issue of how to measure the effect of a particular
variable, say xi, and determine the sign of that effect. The standard procedure
in a multiple linear regression context is to use the estimated regression coef-
ficient of xi. This measures the effect of a hypothetical change in xi, holding
xj , j 6= i, constant, as if we were in fact able to conduct an experiment and
make the inputs orthogonal. But in almost all economic applications we are
not able to control the inputs and to use the same language in the two different
settings can be misleading. We argue that in time series analysis rather than
focussing on the signs of individual coeffi cients in such multiple regressions,
holding the other variables constant, we should measure a total impact effect
which allows for the indirect induced changes that arise due to the historical
correlations amongst the regressors. The limitation of the usual ceteris paribus
approach (which relies on assuming other variables are held constant) lies in the
fact that it ignores the stochastic inter-dependence of the regressors which we
need to allow for in time series economic applications.1 Similar issues arise in
the derivation of impulse response functions for the analysis of dynamic models
and have been discussed by Koop, Pesaran and Potter (1996) and Pesaran and
Shin (1998). We follow a similar line of reasoning below, but focus on impact
effects rather than responses over time.
The effects we are interested in are usually characterised as derivatives and

to clarify the counterfactuals that we are considering, we first examine what we
mean by the effect of a variable in a continuous time model, which allows us
to be precise about the nature of the derivatives of the underlying stochastic
processes that enter a multivariate regression.2 We then consider estimation,
which uses discrete data, using the linear case as an example.

2 A stochastic regression model in continuous
time

Suppose that the outcome variable, y(t), and the k regressors, xj(t) are sto-
chastic processes observed over continuous time, t, and we are interested in
identifying the effects of a small change in the focus regressor, xi(t), on y(t).
Assume that

y(t) = F (x1(t), x2(t), ..., xk(t)) + u(t), (1)

1 In Latin we want the effect to be mutatis mutandis rather than ceteris paribus.
2 In pure cross section regressions where the regressors are randomized and/or matched

across units, the issues raised in this paper might not arise. Here our focus is on time series
regressions.
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where F (.) is twice differentiable function and x(t) = (x1(t), x2(t), ..., xk(t))′ is
a realization of a stochastic process. To simplify the discussion, further suppose
that x(t) follows the multivariate drift-diffusion process

dx(t) = µtdt+ Ω
1/2
t dB(t), (2)

where µt and Ωt are the mean and the covariance matrix of dx(t), respectively,
and B(t) is a k × 1 vector of Brownian process, assumed to be distributed
independently of u(t), where dxi(t) = xi(t+dt)−xi(t), du(t) = u(t+dt)−u(t),
and dt represents a small time increment such that (dt)

2 and its higher powers
are negligible. Applying Ito’s lemma to y(t) gives

dy(t) =

k∑
j=1

∂F (x(t))

∂xj(t)
dxj(t) +

1

2

k∑
r=1

k∑
s=1

∂2F (x(t))

∂xr(t)∂xs(t)
dxr(t)dxs(t) + du(t). (3)

This is a stochastic differential equation that maps the changes in all k regressors
on the outcome variable. Thus, the effect of a change in xi(t) on y(t) is not
confined to its direct effect, but also involves the indirect effects through the
correlation of dxi(t) with the other regressors, represented in (2). Also,given the
stochastic nature of the processes, all the increments dy(t), dx1(t), ..., dxk(t),
and du(t) are random draws and cannot be set to zero, even if the regressors are
orthogonal. In this stochastic setting it is more appropriate to consider mean
changes to y(t) as a result of mean incremental shifts in xi(t). Accordingly, we
propose to measure the effect on y(t) as a result of an incremental change to
xi(t) by

E [dy(t) |dxi(t) ] =

k∑
j=1

∂F (x(t))

∂xj(t)
E [dxj(t) |dxi(t) ] (4)

+
1

2

k∑
r=1

k∑
s=1

∂2F (x(t))

∂xr(t)∂xs(t)
E [dxr(t)dxs(t) |dxi(t) ]

+E [du(t) |dxi(t) ] ,

where E [. |dxi(t) ] denotes the conditional expectations operator. Given that
x(t) is known at time t, the partial derivatives are also known and can be taken
outside the expectations operator. In the context of regression models it is
typically assumed that the regressors are exogenous so E [du(t) |dxi(t) ] = 0.
The above expression should be compared to the partial derivative of F (.)

with respect to xi(t), namely ∂F (x(t))/∂xi(t), used in the literature to mea-
sure the effects of xi(t) on y(t). The two expressions, E [dy(t) |dxi(t) ] and
∂F (x(t))/∂xi(t), coincide only under very restrictive assumptions typically not
satisfied in economic applications.

2.1 Some examples

In the specific case of the linear model, (1) is:

y(t) = β0 + β1x1(t) + β2x2(t) + ...+ βkxk(t) + u(t), (5)
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(3) is:

dy(t) =

k∑
j=1

βjdxj(t) + du(t). (6)

Then taking expectations (4) is:

E [dy(t) |dxi(t) ] =

k∑
j=1

βjE [dxj(t) |dxi(t) ] + E [du(t) |dxi(t) ] . (7)

Again assuming exogeneity E [du(t) |dxi(t) ] = 0, and writing the conditional
expectations of the other regressors as:

E [dxj(t) |dxi(t) ] = γji(t)dxi(t), i 6= j, (8)

where γji(t) can be derived from the parameters of (2), the total impact effect
on y(t) of an incremental change in xi(t) can be written

E [dy(t) |dxi(t) ] = λi(t)dxi(t); (9)

where

λi(t) =

k∑
j=1

βjγji(t), with γii(t) = 1, (10)

which may have a different sign from βi.
As a second example suppose that we have two variables and an interaction

effect so that (1) is:

y(t) = β0 + β1x1(t) + β2x2(t) + β12x1(t)x2(t) + u(t), (11)

then (3) is

dy(t) = [β1 + β12x2(t)] dx1(t) + [β2 + β12x1(t)] dx2(t) (12)

+β12dx1(t)dx2(t) + du(t)

Then taking expectations conditional on, dx1(t), a given small incremental
change in x1(t), and for given values of x1(t) and x2(t) we have:

E [dy(t) |dx1(t) ] = [β1 + β12x2(t)] dx1(t) + [β2 + β12x1(t)]E(dx2(t) |dx1(t) ]

+β12E(dx1(t)dx2(t) |dx1(t) ) + E(du(t) |dx1(t) ].

Once again letting E [dx2(t) |dx1(t) ] = γ21(t)dx1(t), then with exogenous re-
gressors we obtain

E [dy(t) |dx1(t) ] = {[β1 + β12x2(t)] + [β2 + β12x1(t)] γ21(t)} dx1(t) (13)
+β12γ21(t) [dx1(t)]

2
, (14)
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and since for small increments [dx1(t)]
2 is negligible relative to the earlier terms,

the impact effect of a small change in x1(t) on y(t) is given by

λ1(t) = [β1 + β12x2(t)] + [β2 + β12x1(t)] γ21(t).

As a third example, suppose that we have a quadratic function of a single
regressor, so that (1) is:

y(t) = β0 + β1x(t) + β2 [x(t)]
2

+ u(t). (15)

Clearly here it does not make any sense to ask what is the effect on y(t) of a
change in x(t), holding x(t)2 fixed. Then (3) takes the form

dy(t) = [β1 + 2β2x(t)] dx(t) + β2(dx(t))2 + du(t), (16)

and since for small increments [dx(t)]
2 is negligible, we have

E [dy(t) |dx(t) ] = [β1 + 2β2x(t)] dx(t),

which is the standard result.

3 Estimation of impact effects in the linear case

Consider now the problem of estimating λi(t) using observations yt, xjt, for
j = 1, 2, ..., k; obtained at discrete time (intervals) points t = 1, 2, ..., T . The
discrete-time regression model corresponding to (5) is given by

yt = β0 +

k∑
j=1

βjxjt + ut, (17)

for t = 1, 2, ..., T where we assume that the classical assumptions hold, namely βi
are fixed constants, ut v iid(0, σ2), and E(ut | xjt) = 0 for all j and t. We shall
also assume that the relationships between the regressors are linear, such that
γji are fixed constants. The analysis can be readily extended to simultaneous
equation systems and dynamic models.3 To estimate the overall (direct and
indirect) impact effect of xit on yt, as given by λi in (10), we first note that in
the context of the linear regression model, (17), we have

E(yt |xit ) = β0 +

k∑
j=1

βjE(xjt |xit ) (18)

= β0 + β′E(xt |xit ).
3There is a large literature devoted to deriving the exact discrete model satisfied by obser-

vations generated by a continuous time model, e.g. Bergstrom (1984).
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To model the interdependence of the regressors and obtain estimates for γji
in (8), we adopt the linear approximation for E(xt |xit ) which we write as4

E(xt | xit) = µ+
Cov(xt, xit)

σii
(xit − µi),

where

Cov(xt, xit) =


σ1i
σ2i
...
σki

 = σi.

Using these results in (18) we have

E(yt | xit) = β0 + β′
(
µ−σ−1ii σiµi

)
+ σ−1ii β

′σixit.

Therefore, the overall impact effect of xit on yt, corresponding to (10) is also
given by (using γji = σji/σii)

λi = σ−1ii β
′σi =

k∑
j=1

βjγji. (19)

Notice that this simplifies to βi only when xit is orthogonal to all the other
regressors.
This analysis should be regarded as an approximate solution since, as as-

sumed above in the continuous time case, the covariance matrix of the regres-
sors may vary over time. But for the purpose of checking the sign of the impact
effects against our a priori knowledge of them this may not be a serious problem.
To estimate the overall impact effect, λi = σ−1ii β

′σi, we first note that

σi = Σsi,

where si is a k× 1 selection vector with all elements equal to zero except for its
i-th element which is set equal to unity. Consistent estimates of the elements of
Σ are given by

σ̂ij=

∑T
t=1(xit − x̄i)(xjt − x̄j)

T − 1
,

where x̄i is the sample mean of xit. In matrix notation

Σ̂ =
X′MX

T − 1
,

whereX is the T×k matrix of observations on (xjt, j = 1, 2, ..., k),andM = IT−
ι(ι
′
ι)
−1
ι′,with ι′ = (1, 1, ..., 1)′. The OLS estimator of β is given by

β̂ = (X′MX)
−1

X′My,

4This expression is exact if the distribution of xt is multi-variate normal.
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where y = (y1, y2, ..., yT )′. Hence

λ̂i = σ̂−1ii β̂
′
σ̂i = σ̂−1ii y′MX (X′MX)

−1
(

X′MX

T − 1

)
si

=
y′MXsi

(T − 1) σ̂ii
=

∑T
t=1(yt − ȳ)(xit − x̄i)∑T

t=1(xit − x̄i)2
,

which is the same as the OLS estimate of the coeffi cient of xit in the simple
regression of yt on an intercept and xit :

yt = β0 + λixit + vit, vit v iid(0, ω2i ). (20)

Again λi can be of the opposite sign to βi.
5

Although the overall impact effect, λi, can be estimated from simple regres-
sions, when computing their standard errors (and the associated t-ratios) we
need to take account of the multi-variate nature of the underlying regression
model given by (17). To see this note that under (17) we have

y =β0τT + Xβ + u,

where τT = (1, 1, ..., 1)′, and u = (u1, u2,..., uT )′ v iid(0, ω2IT ), where IT is an
identity matrix of order T . Hence

λ̂i =
y′MXsi∑T

t=1(xit − x̄i)2
=

s′iX
′M(β0τT + Xβ + u)∑T

t=1(xit − x̄i)2
,

=
s′jX

′MXβ∑T
t=1(xit − x̄i)2

+
s′iX

′Mu∑T
t=1(xit − x̄i)2

,

and under the above assumptions and for T suffi ciently large we have

λ̂i − λi
av N

(
0,

ω2∑T
t=1(xit − x̄i)2

)
, (21)

which has the same form as the asymptotic distribution of the OLS coeffi cient
of xjt in the simple regression of yt on xjt; but with the important difference
that ω2 is the variance of the error term, ut, in the multiple regression equation
(17) and not the variance of the error in the simple regression (20). In fact we
always have ω2 ≤ ω2j for all j. Therefore, when making inference about the
sign of λj , we cannot rely on the t-ratio of λj (say tj) computed from (20), but
we should adjust tj upward by the factor ωj/ω ≥ 1. Namely, the appropriate
t-ratio to be used for inference about the sign of λj is given by

t∗j = (ω̂j/ω̂) tj .

5Leamer (1975) shows that the coeffi cient of the focus variable, x2t, will not change sign,
when the control variable, x1t, is excluded if β̂2 is more significant than β̂1. McAleer, Pagan
& Visco (1986) provide necessary conditions for a change in sign of the focus variable if one
drops a control variable. Kennedy (2005) gives a range of cases where one gets the "wrong"
sign, some for this type of reason.
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where ω̂j and ω̂ are the unbiased estimators of ωj and ω based on the simple
and multiple regressions, (17) and (20), respectively. In some circumstances,
one may not have data on all the possible regressors, but may have some view
on the likely size of ω and thus may be able to put a bound on the adjustment.
When (17) is correctly specified and the full set of regressors is known the

appropriate standard error can also be obtained by estimating for j 6= i the
residuals ûji,t from

xjt = γ̂ij,0 + γ̂jixit + ûji,t

and estimating

yt = c+ λixit +

k∑
j=1,j 6=i

βj ûji,t + ut, (22)

where c is a constant. Since (22) is just a reparameterisation of (17), obtained
by adding and subtracting

(
γ̂ij,0 + γ̂jixit

)
, the least squares estimate of ut from

(22) is identical to the estimate from (17). Thus these residuals can be used
to obtain an unbiased estimator of ω2 which can be used in (21) to obtain an
estimate of the standard error of λ̂i. This procedure of orthogonalising control
variables with respect to the focus variable has been widely used in a number of
disciplines, though rarely in econometrics, and has been equally widely criticised
because the least squares estimate λ̂i gives a biased and inconsistent estimate of
βi, e.g. Freckleton (2002). This criticism is correct if the parameter of interest
is βi, but is irrelevant if the parameter of interest is λi as argued above.

4 Conclusion

In this paper we have argued that in multiple time series regressions the regres-
sion coeffi cients do not necessarily measure the parameter of interest because
the ceteris paribus assumption that underlies the controlled experimental set up
is not appropriate. In many cases the impact effect of interest is the total effect,
allowing the other regressors to adjust as one would expect them to from the
historical correlations. In linear models this gives the same estimate as would be
obtained by excluding the other control variables. The argument here is similar
to that made by Pesaran and Smith (2012) who suggest that if xit is a policy
variable and xjt, j 6= i, are other variables that are potentially influenced by the
policy variable, then xjt should be excluded from the equation used to estimate
the counterfactual, i.e. that λi above in (20) or (22) is the relevant parameter
estimate to use in constructing the counterfactual. For instance they consider
quantitative easing (QE) in the UK, where it is assumed that QE changes the
spread between long and short rates, xit, which influences other variables like
the exchange rate, xjt, while both the spread and these other variables influence
growth, yt. In this case these other variables should be excluded when estimating
the effects of QE.
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