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1 Introduction

Many product and process innovations can be considered as “complex” in-
sofar as they can be fragmented into a set of sub-innovations. Examples
of complex innovations are multi-stage production processes (where each
stage can be patented independently), production processes requiring the
use of different complementary components (where each component can be
patented individually), or processes combining the use of a specific ingredient
with a production method (where both the characteristics of the ingredient
and the production method can be patented).

Although the possibility exists to patent each sub-innovation, innovators
may decide to keep some or all of them secret. Examples abound in the food
industry where recipes, lists of ingredients or formula are kept secret, while
cooking, manufacturing or packaging processes are patented.1 Combinations
of patents and trade secrets are also documented in other industries. Arora
(1997) describes how firms in the organic chemical industry resorted to both
patenting and secrecy to protect their innovations. Jorda (2007) gives the
examples of the artificial manufacture of diamonds for industrial use (GE
patented much of the technology for making these diamonds but “also kept
distinct inventions and developments secret”), and of Premarin, a hormone-
therapy drug (Wyeth owned patents on the manufacturing process but also
held a number of related trade secrets). Perng Pan and Mion (2010) describe
the strategy of Coskata, a producer of biofuel, that “has several pending
patent applications on the bioreactor segment of the process”, while “[t]he
identity of the micro-organism fed into the bioreactor is protected by trade
secret”; it is further explained that “this does not rule out the possibility
of a patent on the biological component”. Another indication that complex

1Kentucky Fried Chicken holds secret the recipe of 11 herbs and spices that go into

its fried chicken, and owns, e.g., a patent on “Device and method for frying and grilling”

(EP 1648235 A1). Similarly, McDonald keeps secret the Big Mac special sauce, and

has patented “Method and apparatus for making a sandwich” (WO 2006068865 A3) and

“Device and method for cooking food on a grill” (WO 2007044330 A3). It is well known

that Coca-Cola’s syrup formula is a trade secret, but the company also owns patents

on “Coffee cola beverage composition” (EP 1736063 B1) and on “Beverage preservatives”

(EP 2037765 A1). Finally, the overall formula to obtain the Ferrero’s Nutella paste is kept

secret but packages for food or devices responsible for creating specific food are patented;

e.g., Ferrero holds patents on “A container with several compartments” (EP 1424289 B1)

and “Improved solid honey composition and process of manufacture” (WO 2009100497

A1).
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innovations are quite common is that the average number of US patents per
innovation is larger than 5 (Levêque and Ménière, 2007).

Objective. As illustrated by these examples, inventors of complex innova-
tions face a rich set of strategies when it comes to protect their intellectual
property. They may indeed choose between patenting and secrecy for each
fragment of their innovation, which theoretically opens up a large number
of combinations.2 However, the patent regime that is in force may restrict
these possibilities. For instance, a strict utility requirement may prohibit
the patenting of fragments of innovations, or a strict novelty requirement
may prevent inventors from patenting long held trade secrets.3

The objective of this paper is to provide a systematic study of the pro-
tection of complex innovations. From a positive point of view, we want to
analyze the innovator’s choice of patent/secrecy mix under various patent
regimes. From a normative point of view, our aim is to conduct a welfare
comparison of these various patent regimes. To this end, we build the fol-
lowing model. The starting point is the discovery of a complex innovation
by an inventor. As this innovation can be fragmented into sub-innovations,
the inventor has to choose which fragments to patent and which fragments
to keep secret. For simplicity, we consider that the innovation fragments
are interchangeable and symmetric, so that the inventor’s decision amounts
to choose the (continuous) fraction of the innovation that is protected. We
assume that the innovator faces a single imitator. That is, there is only firm
that has a sufficient absorptive capacity to appropriate the innovation and,

2In accordance with empirical surveys (see, e.g., Levin et al., 1987, or Cohen et al.,

2000), we take patents and secrecy as the two main instruments of, respectively, formal

and informal protection of intellectual property (IP). As reported by Hall et al. (2012),

other forms of formal IP are copyright, trademarks and designs, while alternative informal

appropriation mechanisms are lead time and complexity.
3A first requirement for patentability is that the invention be of practical use. A

second requirement is that the invention show an element of novelty; that is, it must

show some new characteristic that is not known in what is called the “prior art”, i.e.,

the body of existing knowledge in the technical field of the claimed invention (see, e.g.,

www.wipo.int/patentscope/en/patents/). According to Quinn (2012), a claimed inven-

tion can fail the utility requirement if the applicant fails “to disclose enough information

about the invention to make its utility immediately apparent to those familiar with the

technological field of the invention.” As far as novelty is concerned, whether and/or when

trade secrets are considered as prior art varies across countries and through time (see the

discussion in Section 4).
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thereby, compete with the inventor.4 In particular, the imitator is able, with
some probability, to discover or circumvent any part of the innovation that
has been kept secret; the imitator is also able to exploit any patented part
of the innovation as soon as the patent expires.

We consider and compare four different regimes of patent protection.
First, the binary patent regime corresponds to a strict utility requirement,
which leads the patent office to reject patent applications that only concern
a fragment of the innovation; as a result, the innovator is left with a binary
decision: seek patent protection for the entire innovation or for nothing. The
second regime, called the single patent regime, relaxes the utility requirement
by allowing patents on fragments, but imposes a strict novelty requirement,
insofar as the innovator cannot introduce more than a single patent for the
innovation, which covers either a part or the full innovation; the patent
office would reject any attempt to patent another fragment of the same
innovation as the second fragment would not be deemed as novel enough
with respect to the first one. Under these two regimes, the innovator faces
a static optimization problem as his decision is to choose, once and for all,
which parts of the complex innovation to patent and to keep secret.

When the novelty requirement is softer, the innovator’s maximization
problem becomes dynamic as it is now possible to patent at a later date
parts of the innovation that were previously kept secret. As we discuss it
in Section 4, the new Patent Reform Act in the U.S. (known as the Leahy-
Smith American Invents Act) implements such a softening of the novelty
requirement. It is then a so-called sequential patent regime that prevails,
where the innovator chooses both the fraction of the innovation to patent in
the first place, and the time at which a second patent is introduced.5 Two
different sequential patent regimes are considered according to whether the
innovator is granted prior user rights or not, i.e., whether or not the inno-
vator is allowed to continue using parts of the innovation that are patented
by the imitator.

One feature that proves crucial for the analysis of the four patent regimes
4According to Cohen and Levinthal (1990), the absorptive capacity is defined as a

firm’s ability to recognize the value of new information, assimilate it, and apply it to

commercial ends.
5In our baseline model, we simplify the analysis by assuming that the innovator can

only introduce two successive patents and that the second patent must cover the remainder

of the innovation. We relax these assumptions in Section 6.
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is the sensitivity of the innovator’s profit to the fraction of the innovation
that the imitator has access to. Quite naturally, we assume that the inno-
vator’s profit decreases in this fraction (as the more of the innovation the
imitator can exploit, the stronger the competition he exerts). What really
matters is whether the innovator’s profit function is concave or convex in
the fraction that the imitator can exploit. Intuitively, the innovator’s profit
function is concave if the benefit that the competitor obtains from the frac-
tion he has access to is convex (i.e., the imitator must learn a large fragment
of the innovation in order to exploit it); conversely, the function is convex
if the imitator benefits even from learning small fractions of the innovation,
and the marginal benefit of learning a larger part of the innovative process
is decreasing.

Results. The main results of our analysis are the following. First, in the
static optimization problem (corresponding to a strict novelty requirement),
we show that the innovator’s optimal conduct may involve mixing patenting
and secrecy; for this to happen, the innovator’s profit function must be con-
cave (i.e., the competitor needs to attain a critical share of the innovation
to be able to exploit it); the optimal mix contains then more patents when
the innovation is easier to reverse engineer, when the patent length is longer
and when the discount rate is higher. Otherwise, when the profit function is
convex (meaning that the competitor benefits from small increments in the
innovation), the innovator optimally makes a binary choice between patent-
ing the entire innovation (if secrets are relatively easy to leak) or keeping it
entirely secret (otherwise). Hence, if the innovator’s profit function is con-
vex in the fraction of the innovation that the imitator can exploit, softening
the utility requirement by allowing patents on fragments of innovations has
no effect whatsoever.

Second, when the novelty requirement is softer, the innovator dynami-
cally chooses which fraction of the innovation to patent and when to patent
the remaining fraction. Under prior user rights, strategies are again quite
simple when the innovator’s profit is convex in the imitator’s fraction: the
optimal dynamic patenting strategy is identical to the static strategy, mean-
ing that the innovator never introduces a second patent. However, if the
profit function is concave, the innovator may exploit the additional degree
of freedom of the soft novelty regime and optimally choose to patent se-
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quentially two fragments of the innovation. This situation happens when
the probability of reverse engineering the innovation is intermediate. We
note that the region of parameters for which the innovator chooses to frag-
ment the innovation is larger in the dynamic patenting regime than in the
static regime; intuitively, when the innovator is allowed to file a second
patent on the innovation, he has an incentive to decrease the share of the
innovation which is patented the first time. Finally, we show that the main
qualitative results of the analysis remain unchanged if we endogenize the
imitation effort, or if we allow a second patent that does not necessarily
cover the remaining secret part of the innovation.

When the inventor does not hold prior user rights, the characterization
of the optimal dynamic patenting strategy becomes more challenging. In
that case, the innovator is no longer allowed to use the part of the inno-
vation patented by the imitator; this clearly reduces the innovator’s profit
(as he is forced by the imitator to downgrade his product or resort to a less
efficient production process). In this case, it is no longer possible to ascer-
tain the concavity or convexity of the innovator’s present discounted flow of
profits in the fraction that he initially chooses to patent. The reason is the
following: in the absence of prior user rights, a change in this fraction not
only affects the fraction of the innovation that the imitator can exploit, but
also the fraction of the innovation that the inventor can still exploit if the
imitator patents the secret part. As a result, we cannot fully characterize
the dynamic patenting strategy. A specific example of a process innovation
suggests, however, that the innovator may choose to patent the entire inno-
vation even when successful reverse engineering is relatively unlikely; this is
because the absence of prior user rights raises the cost of losing one’s trade
secrets.

Finally, we compare the four regimes of patent protection from the point
of view of the three stakeholders: the innovator, the imitator and consumers.
The analysis is done in the context of two illustrating examples (the innova-
tion may either reduce production costs or result in a quality upgrade). Not
surprisingly, in the two examples, the innovator’s profits increase as regimes
become more flexible; that is, the dynamic regime with prior user rights
dominates the single patent regime, which dominates the binary regime. As
for the other stakeholders, their preferences depend on the type of innova-
tion. In the case of a process innovation that reduces the cost of production,
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the welfare of the imitator and of consumers are aligned and in complete
conflict with the profit of the innovator: they all favor regimes with less
flexibility, putting the binary regime on top. In contrast, in the case of a
product innovation that enhances quality, the imitator and the consumers
may also prefer the more flexible regimes. In fact, they both rank the static
fragmentation regime above the binary regime, preferring to let the inven-
tor segment the innovation in different pieces; the competitor also always
prefers the dynamic regime to the static regime, whereas consumers prefer
the dynamic regime except for intermediate values of the ease with which
the imitator can discover what is kept secret. The analysis of this second
example thus shows that the conflict in welfare between innovator, imitator
and consumers does not necessarily arise and that there exist circumstances
where all three types of agents prefer more flexible intellectual property
rights regimes.

Regarding the effects of granting prior user rights, we observe (in the
case of the cost-reducing innovation) that the imitator clearly gains when
the innovator cannot hold prior user rights. However, consumers lose as this
implies that, after the competitor discovers the trade secret, the innovator
is not able to exploit the cost reducing innovation, yielding lower quantities
in equilibrium.

Related literature. While there exists a large empirical literature on the
choice between patenting and secrecy at the firm level,6 the theoretical liter-
ature remains rather scarce. Only a few studies consider secrecy as a viable
option to patenting, and most of them regard these two modes of protec-
tion as mutually exclusive: the choice is between patenting or keeping secret
the whole innovation, which corresponds to what we call the “binary patent
regime”. While this problem is relevant for “discrete” product industries
where a single patent is enough to protect an invention, it does not suit
“complex” product industries as the ones described above.

The only two exceptions that we are aware of are Ottoz and Cugno (2008)
and (2011), where the possibility of mixing patents and secrets for complex
innovations is explicitly considered. The starting point of Ottoz and Cugno

6Early studies carried out in the 1990s conclude that firms prefer secrecy over patenting

to protect their innovations; yet, patents have grown more popular over the last two

decades for a number of reasons (see Hussinger, 2006, Hall et al., 2012, and the references

therein).
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(2008) is the same as ours: an innovator has discovered all the fragments
of a complex innovation and uses them directly; his problem is to choose
the optimal mix between patents and secrets. The authors study solely the
static optimization problem (what we call the “single patent regime”) but
they use a different framework than ours. The main difference comes from
assuming that, to enter the market, an imitator must not only get access
to the secret but also circumvent the patent. The effect of competition is
then binary: the innovator is either kicked out of the market (if the imitator
manages to enter) or remains a monopoly (otherwise). In contrast, we allow
for a much larger set of competitive configurations as the imitator may enter
by exploiting only a part of the innovation, while the innovator stays on the
market (but faces a lower profit). Another important difference in Ottoz
and Cugno’s model is that by choosing to patent a larger fraction of the
innovation (and thus to disclose more information), the innovator decreases
the probability that trade secrets leak out (since there is less knowledge that
must leak) but increases the probability that an imitator invents around the
patented part (since more knowledge has been disclosed). These opposite
effects (which are absent in our analysis) drive Ottoz and Cugno’s main
result, namely that the innovator’s optimum may be to patent some fraction
of the innovation while keeping the remainder secret. This paper therefore
reaches a conclusion similar to ours but through a different route.

Ottoz and Cugno (2011) takes a more normative point of view by trying
to determine the socially optimal scope of trade secret protection when it
can be combined with patent protection for the same innovation. In partic-
ular, they find conditions under which a broad scope of trade secret law may
be socially beneficial. A broader protection of trade secrets has the twofold
advantage of increasing the incentives to innovate and of decreasing the in-
centives to duplicate parts of existing innovations that are kept secret; more
innovation and lower duplication costs may then, under certain conditions,
compensate for higher R&D costs and reduced competition.

The papers that regard patents and secrets as mutually exclusive have
mainly focused on the optimal patent design when secret is an option (e.g.,
Friedman et al., 1991; Gallini, 1992; Takalo, 1998) and on the strategic dis-
closure of secrets (e.g., Horstman, MacDonald, and Slivinski, 1985; Anton
and Yao, 2004). The first line of research is more relevant for our work.
In particular, the following two papers present similarities with our frame-
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work and bring useful insights. First, Denicolo and Franzoni (2004) study
the relative merits of secrecy and patents from an innovator’s and from so-
ciety’s point of view; like us, they also compare different regimes regarding
prior user rights. In contrast with our setting, their model incorporates an
innovation stage (the innovator invests in R&D while the imitator invests
in duplication efforts); they also consider patent length as a policy vari-
able that affects the relative attractiveness of patents and secrets for the
innovator (whereas in our model, it is the probability of leakage that plays
this role as we keep patent length fixed). Their main conclusion is that if
the patent life is set optimally and if the initial innovator relied on secrecy,
a succesful imitator should be allowed to patent and no prior user rights
should be granted to the innovator. Second, Kultti, Takalo and Toikka
(2007) consider a situation in which several firms innovate independently
and can choose between patenting and secrecy. They show that innovators
may prefer patenting to secrecy even when patents offer a lower protection
than secrets; this is because innovators are concerned by the threat that
their secret could be discovered and patented by another firm. The same
intuition applies in our dynamic setting, in particular in the absence of prior
user rights.

Finally, two other strands of the economic literature on patents bear
some connections with our study. First, a number of papers, starting with
Scotchmer and Green (1990), consider situations where follow-up innova-
tions are built on several complementary basic innovations. In this context,
the choice between patenting and secrecy does not affect the product mar-
ket (as in our setting) but the research industry. For instance, Schneider
(2008) studies a patent race model where firms choose between patenting
and secrecy; he shows that an innovator relies on secrecy when he has a
higher speed of discovery of a subsequent invention than his competitor.
More recently, Kwon (2012a) considers a patent portfolio race where firms
compete for complementary patents; he shows that there exists an equilib-
rium where firms patent some innovations and keep other innovations secret.
Kwon (2012b) makes a similar point in the case of a patent race for a sin-
gle innovation; here, firms may randomize between secrecy and patenting.
The second strand of literature is concerned with complementary pieces of
knowledge that are owned not by the same innovator (as in this paper) but
by different firms. Although secrecy is most often not considerd as an alter-
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native form of protection in these papers, they provide useful insights about
issues of great relevance that are not addressed here, such as patent thickets,
strategic patenting and licensing (e.g., Shapiro, 2001), or patent pooling and
standard-setting (e.g., Lerner and Tirole, 2004).

The rest of the paper is organized as follows. In Section 2, we describe
our baseline model. In Section 3, we analyze the static optimization problem
where the innovator choses which fraction of the innovation to patent under
a strict novelty requirement. In Section 4, we study the innovator’s dynamic
patenting strategy under the sequential patent regimes with and without
prior user rights. In Section 5, we perform welfare comparisons of the four
patent regimes by using two specific examples. Finally, we test the robustness
of our results by extending the model in two directions in Section 6 and we
offer some concluding remarks in Section 7.

2 The model

2.1 Imitation and protection strategies

We consider the protection strategy of an inventor who has discovered a com-
plex innovation. As illustrated in the introduction, the complex innovation
can be fragmented into sub-innovations, and each fragment can be patented
in its own rights. We normalize the entire innovation to 1, and denote by
σ ∈ [0, 1] the (continuous) fraction of the innovation that is protected.

The innovator faces a single imitator, which is the only firm that has the
capacity to compete with the inventor. We let (σ1, σ2) denote the fractions
of the innovation that the innovator and imitator have access to respectively.
Any couple (σ1, σ2) results in profits for the innovator and imitator denoted
by P (σ1, σ2) and Q(σ1, σ2) respectively. Throughout the paper, we assume
that P (·, ·) is increasing in σ1 and decreasing in σ2, and Q(·, ·) is increasing in
σ2. It will be of particular interest to check whether P is concave or convex
in σ2. Intuitively, P is concave in σ2 if the benefit that the competitor
obtains from σ2 is convex, i.e., the imitator must learn a large fragment of
the innovation in order to exploit it. Conversely, P is convex in σ2 if the
imitator benefits even from learning small fractions of the innovation, and
the marginal benefit of learning a larger part of the innovative process is
decreasing.

If a fraction of the innovation is covered by a patent, the patenting firm
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has exclusive access to this fragment during the lifetime of the patent, and
the fragment becomes accessible to both firms after the expiry of the patent.7

Fractions that are not covered by a patent are trade secrets, which may be
discovered by the imitator according to a Poisson process with exogenous
parameter λ > 0. The parameter λ measures the ease with which the
imitator can discover or circumvent the part of the process covered by trade
secret. The length of the patent is denoted T and both firms discount the
future at the same rate r > 0.

2.2 Examples

The innovation fragments (σ1, σ2) can be interpreted in different ways. We
give below two examples of interpretation.

2.2.1 Cost reducing innovations

Suppose that the innovation is a process innovation, which results in a re-
duction in the firm’s marginal costs. By exploiting only a fragment σ of the
innovation, each firm obtains a reduction in marginal cost that is increasing
in σ, so that

C ′(q) = 1− f(σ),

with f ′(σ) > 0. If f(·) is concave, the marginal effect of the innovation
on cost reduction is decreasing; if f(·) is convex, the marginal effect is in-
creasing. Suppose in addition, that the innovator and imitator are Cournot
competitors on a market with linear demand p = 2− 1

9 (q1 + q2). The profits
of the two firms are easily computed as

P (σ1, σ2) = (1 + 2f(σ1)− f(σ2))2,

Q(σ1, σ2) = (1− f(σ1) + 2f(σ2))2.

We also compute

∂2P

∂σ2
2

= −2f ′′(σ2)[1 + 2f(σ1)− f(σ2)] + 2f ′(σ2)2.

7For simplicity, we assume that patents are ironclad, meaning that it is impossible to

enter the market with an imitating product before the expiration of the patents. Assuming

that patents are “probabilistic” (i.e., have a chance of being litigated and declared invalid,

as argued by Lemley and Shapiro, 2005) would complicate the analysis without offering

additional insights.
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Hence, whenever f(σ) is concave, P is convex in σ2. In order for P to
be concave in σ2, we require the function f(σ) to be highly convex – i.e.,
firms only benefit from the innovation when a large fragment is obtained.
In particular, we note that when f(σ) = σ2 and σ1 > σ2,

∂2P

∂σ2
2

= −4− 8σ2
1 + 6σ2

2 < 0,

so that the profit of the innovator is concave in σ2.

2.2.2 Quality upgrades

We assume in this example that innovation results in quality upgrades, so
that σ1 and σ2 measure the quality of the products sold. We consider a
model of vertical differentiation, where each firm faces two markets: a captive
market of size κ on which it is a monopolist, and a competitive market
on which it competes with the other firm. On both markets, consumers
have a utility function Ui = θis − p, where s denotes the quality of the
product bought at price p, and θi is a measure of sensitivity to quality,
which is distributed uniformly over [0, 1]. With this specification, the market
is not covered and consumers with low sensitivity to quality do not buy the
product. Let (σ1, σ2) denote the qualities of the two firms with σ1 ≥ σ2.
On the captive market, each firm sets the monopoly price mi = σi/2 and
obtains a profit Πi = κσi/4. On the competitive market, the low quality
firm sells to consumers in the interval [ p2σ2

, p1−p2σ1−σ2
] whereas the high quality

firm sells to consumers in the interval [ p1−p2σ1−σ2
, 1]. At equilibrium, prices are

given by

p∗1 =
2(σ1 − σ2)σ1

4σ1 − σ2
, p∗2 =

(σ1 − σ2)σ2

4σ1 − σ2
,

and profits are

P (σ1, σ2) =
κσ1

4
+

4σ1(σ1 − σ2)
(4σ1 − σ2)2

,

Q(σ1, σ2) =
κσ2

4
+
σ1σ2(σ1 − σ2)
(4σ1 − σ2)2

.

We verify that P is increasing in σ1 and, for κ sufficiently high, Q is increas-
ing in σ2. In addition, we observe that P is always decreasing and concave
in σ2 whereas Q is increasing in σ1.
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2.3 Regimes of innovation protection

We consider and compare four different regimes of patent protection. First,
the binary regime is the regime that has been considered in the literature
heretofore, where the innovator is either granted protection for the entire
innovation or for nothing. This regimes corresponds to a strict utility re-
quirement where the patent office rejects patent applications that only con-
cern a fragment of the innovation (a step in the production process, or the
characteristics of one component, which are deemed useless if they are not
pooled with other innovations). Second, the single patent regime describes a
situation where the innovator can only introduce one patent for the process
– protecting either the full innovation or a fragment of the innovation. Any
attempt to introduce another patent on the same process is rejected by the
patent office as it does not satisfy the strict novelty requirement. Finally,
the sequential patent regime corresponds to a setting where the innovator
can sequentially patent different fragments of the innovation. This assumes
that the novelty requirement is soft, in that the patent office employs a weak
prior art test and accepts to consider patents over processes that have al-
ready been used before. For tractability reasons, we assume for now that
the innovator can only introduce two successive patents and that the second
patent must cover the remainder of the innovation. In the sequential patent
regime, we distinguish between a situation with prior user rights, where the
innovator can continue to use parts of the processes that are patented by
the imitator, and a situation without prior user rights, where the innovator
is prevented from using parts of the processes that are later patented by the
imitator.

We divide the analysis into two parts. We first focus on a static opti-
mization problem where the innovator chooses which parts of the process to
patent and to keep secret – this corresponds to the strict novelty requirement
and covers both the binary and the single patent regimes. We then analyze
the dynamic optimization process of the innovator choosing both the frac-
tion of the innovation and the time at which a second patent is introduced
– this corresponds to the soft novelty requirement and covers the sequential
patent regimes with and without prior user rights. We summarize the four
patent regimes in Figure 1.
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Figure 1: The four regimes of patent protection

3 Static optimization: The optimal mix of patent

and secret

In this section, it is assumed that the patent office applies a strict novelty
requirement, implying that only one patent can be introduced for a particu-
lar complex innovation. In this context, we contrast two static optimization
problems according to whether the patent can only cover the entire innova-
tion, or whether it can cover any part of it.

3.1 Binary choice

We assume here that the innovator faces a binary choice between patenting
the entire innovation or keeping it as a trade secret. By patenting, the
innovator obtains the deterministic profit

V P = 1
rP (1, 0)− e−rT

r (P (1, 0)− P (1, 1)) ,

whereas by keeping the innovation secret, he obtains an expected profit

V T = 1
rP (1, 1) + 1

r+λ (P (1, 0)− P (1, 1)) .

The innovator prefers patenting over secret if the probability of discovery
exceeds a threshold λ0:

V P > V T ⇐⇒ 1−e−rT
r > 1

r+λ ⇔ λ > re−rT

1−e−rT ≡ λ0,

where λ0 is the rate of discovery that equates the discounting-adjusted du-
rations of the patent and of the secret (as defined, e.g., by Denicolo and
Franzoni, 2004).
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3.2 Single patent fragmentation

We now suppose that the innovator can choose the fragment σ ∈ [0, 1] of the
innovation which is patented. Because the innovation can only be patented
once, even if the imitator discovers the secret she will not be authorized to
patent it. Hence, the inventor will always have access to the full innovation,
σ1 = 1. On the other hand, the imitator has access to σ2 = 0 during the
patent life if she does not discover the secret, to σ2 = 1−σ during the patent
life after the secret is discovered, to σ2 = σ after the expiry of the patent if
the trade secret is not discovered and σ2 = 1 after the expiry of the patent
and when the trade secret is discovered. Summarizing, the expected profit
of the innovator is given by:

V (σ) =
∫ T

0

(
P (1, 0) e−λt + P (1, 1− σ)

(
1− e−λt

))
e−rtdt

+
∫ ∞
T

(
P (1, σ) e−λt + P (1, 1)

(
1− e−λt

))
e−rtdt

= 1−e−(r+λ)T

r+λ P (1, 0) +
(

1−e−rT
r − 1−e−(r+λ)T

r+λ

)
P (1, 1− σ)

+ e−(r+λ)T

r+λ P (1, σ) +
(
e−rT

r − e−(r+λ)T

r+λ

)
P (1, 1) .

Increasing the share of the innovation that is patented (σ) has two op-
posite effects. On the one hand, it increases the per-period value for the
innovator when the patent is in force and the secret is discovered; on the
other hand, it decreases the value when the patent has expired and the secret
is not discovered:

dV

dσ
=
(

1−e−rT
r − 1−e−(r+λ)T

r+λ

)
︸ ︷︷ ︸

+

(−P2 (1, 1− σ))︸ ︷︷ ︸
+

+ e−(r+λ)T

r+λ︸ ︷︷ ︸
+

P2 (1, σ)︸ ︷︷ ︸
−

. (1)

If the function P is convex in σ2, the expected profit V is convex in σ

and the optimal solution is either to patent the full innovation (if λ > λ0) or
to keep the entire innovation as a trade secret (if λ < λ0). If the function P
is concave in σ2, the expected profit V is concave in σ and, for intermediate
values of λ, the optimal mix of patent and trade secret results in an interior
value σ∗ ∈ (0, 1). Define

K ≡
1−e−rT

r − 1−e−(r+λ)T

r+λ

e−(r+λ)T

r+λ

= 1 +
(λ− λ0)

(r + λ0) e−(r+λ)T
,
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Notice that K = 1 for λ = λ0, K < 1 if λ < λ0 and K > 1 if λ > λ0. As
P is concave in σ, P2(1,0)

P2(1,1) < 1. Define implicitly the two values λ < λ0 < λ̄

which are respectively solutions to:

P2(1, 0)
P2(1, 1)

= K and
P2(1, 0)
P2(1, 1)

=
1
K
.

We are now ready to characterize the optimal fragmentation of the innova-
tion (see the proof in Appendix 8.1).

Proposition 1 If the profit of the innovator is convex in σ2, the innovator
either patents the entire innovation (if λ > λ0) or keeps the entire innovation
as a trade secret (if λ < λ0). If the profit of the innovator is concave in σ2,
the innovator patents the entire innovation if λ > λ̄ and keeps the entire
innovation secret if λ < λ. If λ < λ < λ̄, the innovator optimally patents a
fragment σ∗ ∈ [0, 1] of the innovation where σ∗ solves:

P2(1, σ∗)
P2(1, 1− σ∗)

= K. (2)

The optimal patented share σ∗ is increasing in λ, T and r.

Proposition 1 clearly distinguishes between situations where the function
P is convex (the competitor benefits from small increments in the innova-
tion) and situations where the function P is concave (the competitor needs
to attain a critical share of the innovation to be able to exploit it). In the
first case, the innovator optimally makes a binary choice between patenting
the entire innovation or keeping it entirely secret. In the second case, the
innovator chooses to protect the innovation by a mix of patent and secret,
where the mix contains more patents when the innovation is easier to re-
verse engineer, when the patent length is longer and when the discount rate
is higher.

We illustrate Proposition 1 by computing the optimal fragmentation of
the innovation in the two examples discussed in the previous section, for a
patent life T = 20 and a discount rate r = 0.05, which result in a value
λ0 ∼ 0.0291.

Example 1 (continued) In the model of cost reducing innovation, when
the cost function is a quadratic function of σ, c(σ) = 1 − σ2, the optimal
fragmentation σ∗ is given below for different values of λ.
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λ 0.005 0.01 0.02 0.03 0.04 0.05 0.06 0.08

σ∗ 0.056 0.130 0.318 0.517 0.676 0.785 0.856 0.931

Example 2 (continued) In the model of innovation resulting in quality
increments, the optimal fragmentation σ∗ is given below for different values
of λ:

λ 0.005 0.01 0.02 0.03 0.04 0.05 0.06 0.08

σ∗ 0 0 0.251 0.502 0.741 0.928 1 1

4 Dynamic optimization: optimal timing of patents

We turn now to a world where the patent office applies a soft novelty re-
quirement. In the U.S., the American Invents Act (AIA, passed in 2011) has
implemented such a change. Besides the well-known conversion of the U.S.
patent system from a “first to invent” system to a “first inventor to file” sys-
tem, the AIA also eliminates several types of secret prior art.8 In practice,
this change (which became effective in March 2013) implies that long held
trade secrets are now patentable. In our setting, this means that if the in-
novator leaves a fraction of the innovation under secret, the secret fragment
can be patented later on, either by the innovator or by the imitator.

In this world, the innovator faces a dynamic optimization problem as
he has to determine not only which fraction of the innovation to patent in
the first place, but also the time at which to introduce a second patent on
the remaining fraction of the innovation.9 As this regime also allows the
imitator to patent whichever part of the innovation that was kept secret,
the innovator’s decisions heavily depends on whether he is allowed or not

8As Maier (2011) explains: “the forfeiture that previously penalized inventors for main-

taining their inventions as trade secrets for some period of time longer than a year is no

longer applicable, and inventors are left with the option to practice their invention as trade

secrets for now and still patent those same inventions later (assuming, of course, that no

other inventor files a patent application claiming the same subject matter first).”
9In order to simplify the analysis, we suppose that the innovation can only be divided

into two parts, and that the innovator must patent the remainder of the innovation in the

second stage. This corresponds to many realistic situations where firms divide their pro-

duction processes into two parts, patenting the process itself but keeping the components

secret.
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to continue exploiting any part of the innovation that the imitator has suc-
ceeded in patenting, i.e., whether he can invoke prior user rights or not. We
analyze the two sequential patent regimes in turn.10

4.1 Dynamic optimization with prior user rights

We suppose here that the initial innovator is granted prior user rights, so
that he may exploit the entire innovation irrespective of the fact that the
competitor discovers his secret. The innovator now selects two control vari-
ables: the fraction of the innovation which is covered by the first patent, σ,
and the time η at which the secret part of the innovation is patented if the
competitor has not discovered it.

If the imitator discovers the secret before η, he gains access to the secret
part of the innovation during the time of the first patent and to the entire
innovation after the expiry of the first patent. The expected payoff to the
inventor is thus P (1, 0) until the discovery of the secret, P (1, 1−σ) during the
life of the patent after the secret has been discovered, and P (1, 1) after the
expiry of the patent. If on the other hand, the imitator has not discovered
the secret before η, she will stop making efforts to invent around the patent
after η, and the inventor’s profit is given by P (1, 0) during the first patent,
P (1, σ) after the expiry of the first patent and before the expiry of the
second, and P (1, 1) after the expiry of the second patent.

We distinguish between the case where the innovator patents the secret
before the expiry of the first patent (η < T ) and after the expiry of the first
patent (η > T ). In the first case, the expected value of the innovator as a

10The AIA has also modified provisions regarding prior user rights. As explained by

Kappos and Stanek Rea (2012, p. 1): “The AIA also expands the “prior user rights”

defense to infringement and broadens the classes of patents that are eligible for the new

limited prior user rights defense. (...) U.S. law already provided a prior user rights

defense that was limited to patents directed to methods of conducting business. The AIA,

by contrast, extends the prior user rights defense to patents covering all technologies, not

just business methods.” According to the Tegernsee Experts Group (2012, p. 2), “[p]rior

user rights are provided for by the different national legislations (...) [which] have common

ground, but also have differences in the conditions under which they may be acquired.”
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function of σ and η is given by

V (σ, η) =
∫ η

0

λ

r
e−λτ

{
(1− e−rτ )P (1, 0) + (e−rτ − e−rT )P (1, 1− σ)

+e−rTP (1, 1)
}
dτ

+
1
r
e−λη

{
(1− e−rT )P (1, 0) + (e−rT − e−r(T+η))P (1, σ)

+e−r(T+η)P (1, 1)
}
.

In the second case, the expected value is given by

V (σ, η) =
∫ T

0

λ

r
e−λτ

{
(1− erτ )P (1, 0) +

(
e−rτ − e−rT

)
P (1, 1− σ)

+e−rTP (1, 1)
}
dτ

+
∫ η

T

λ

r
e−λτ

{(
1− e−rT

)
P (1, 0) +

(
e−rT − e−rτ

)
P (1, σ)

+e−rτP (1, 1)
}
dτ

+
1
r
e−λη

{(
1− e−rT

)
P (1, 0) +

(
e−rT − e−r(T+η)

)
P (1, σ)

+e−r(T+η)P (1, 1)
}
.

4.1.1 Optimal timing of patents

We first consider, for a fixed σ, the optimal choice of the time of the second
patent, η. By increasing η, the innovator increases the length of the patent
protection of the innovation, but also increases the time during which the
trade secret is not protected, making it more likely that the imitator discov-
ers the unpatented part of the innovation. As we will see, this trade-off may
result in the innovator choosing a finite time η∗ at which the secret part of
the innovation is patented.

The trade-off crucially depends on two measures: the loss in utility due
to the fact that the second patent expires,

∆P 1 = P (1, σ)− P (1, 1),

and the loss in utility due to the fact that the innovator discovers the secret,

∆P 2 = P (1, 0)− P (1, 1− σ).

Notice that, if P is concave in σ2, ∆P 1 > ∆P 2 whereas if P is convex in σ2,
∆P 1 < ∆P 2. In order to derive the optimal timing of the second patent η∗,
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we compute the derivative of the expected value V (σ, η) with respect to η,
both for η < T and for η > T . For η < T ,

∂V

∂η
= e−λη

[
e−r(T+η)∆P 1

−λ
r

((
e−rη − e−rT

)
∆P 2 +

(
e−rT − e−r(T+η)

)
∆P 1

)]
.

For η > T ,
∂V

∂η
= e−(λ+r)ηλ0 + r(λ0 − λ)∆P 1.

Building on the computation of these derivatives, the following proposi-
tion (whose proof can be found in Appendix 8.2) summarizes the optimal
choice of η as a function of the parameters.

Proposition 2 Given σ, the optimal timing of the second patent is given
as follows. (1) If ∆P 2 > ∆P 1,

• η∗ = 0 for λ0∆P 1 ≤ λ∆P 2 − λ0(1− e−λT )(∆P 2 −∆P 1),

• η∗ =∞ otherwise.

(2) If ∆P 1 > ∆P 2,

• η∗ = 0 for λ0
∆P 1

∆P 2 ≤ λ,

• 0 < η∗ < T for λ0 ≤ λ ≤ λ0
∆P 1

∆P 2 ,

• η∗ =∞ for λ ≤ λ0.

Proposition 2 characterizes the optimal delay between the two patents
for a fixed value of σ. As in the static case, the concavity of the profit of
the innovator in σ2 plays a crucial role in determining the optimal delay. If
P is convex, the innovator either immediately patents the entire innovation,
or chooses never to file a second patent. If P is concave, for intermediate
values of the probability of discovery, the innovator chooses to file a second
patent before the expiry of the first patent. We note that one situation never
arises: it is never optimal for the inventor to file a second patent in finite
time but after the expiry of the first patent.

The first order condition for optimal timing of the second patent, when
∆P 1 > ∆P 2 and λ0 ≤ λ ≤ λ0

∆P 1

∆P 2 is given by:

e−rη =
∆P 1 −∆P 2

r
λ∆P 1 − r

λ0
∆P 2 + ∆P 1 −∆P 2

. (3)
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4.1.2 Optimal innovation fragmentation

We now consider the optimal choice of the share of the innovation covered
by the first patent, σ. If η = 0, the innovator immediately patents the full
innovation. If η = ∞, his optimal choice is similar to that of Section 3.2.
As shown by Proposition 2, the case η > T is irrelevant. When 0 < η ≤ T ,
the derivative of V with respect to σ can be computed as

∂V

∂σ
= −

[
1− e−rT

r
− 1− e−(λ+r)η

λ+ r
− e−λη

r
(e−rη − e−rT )

]
P2(1, 1− σ)

+
e−(λη+rT )

r
(1− e−rη)P2(1, σ).

Hence, when P is convex in σ2, the optimal choice is either σ∗ = 0 or σ∗ = 1,
and when P is concave, the solution is either σ∗ = 0 or σ∗ = 1 or the interior
solution satisfying

P2(1, σ∗)
P2(1− σ∗)

=
1−e−rT

r − 1−e−(λ+r)η

λ+r − e−λη

r (e−rη − e−rT )
e−(λη+rT )

r (1− e−rη)
. (4)

4.1.3 Optimal dynamic patenting strategy

We now piece together the analysis of the optimal timing and the optimal
fragmentation to characterize the optimal dynamic patenting strategy of
the innovator. Suppose first that P is convex in σ. Then ∆P 2 > ∆P 1 and
either η∗ = 0 (and the innovator immediately patents the full innovation)
or η∗ =∞ (and the innovator optimally chooses, as in Section 3.2, either to
patent the full innovation if λ ≥ λ0 or to keep the entire innovation secret
if λ ≤ λ0).

Consider next the more interesting case where P is concave in σ2. If
λ ≤ λ0, η∗ = ∞ for all values of σ, and the optimal choice is the same σ∗

as in Section 3.2, with σ∗ = 0 for λ ≤ λ and σ∗ ∈ (0, 1
2) for λ0 > λ > λ. If

λ ≥ λ0, according to Proposition 2, the regime of repatenting depends on
the value of σ. This requires an understanding of the effect of changes in σ

on the values of ∆P 2 and ∆P 1. Let

H(σ) ≡ P (1, σ)− P (1, 1)
P (1, 0)− P (1, 1− σ)

=
∆P 1

∆P 2
.

We show in Appendix 8.3 that H(σ) is increasing from H(0) = 1 to H(1) =
P2(1,1)
P2(1,0) and that λ0H(1) > λ̄. For any λ0 < λ < λ0H(1), we can thus
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compute σ̂ such that ∆P 1

∆P 2 ≤ λ
λ0

if and only if σ ≤ σ̂. We claim that at the
optimum, the innovator must choose σ ∈ (σ̂, 1]. The argument is based on
revealed preference. If the innovator chooses σ ∈ (σ̂, 1], by Proposition 2,
the optimal timing choice is η∗ > 0, so that the utility of the innovator must
be greater than the utility obtained when η∗ = 0, and the second patent is
filed immediately. If the innovator chooses σ ∈ [0, σ̂], by Proposition 2, the
second patent is immediately filed, resulting in a profit which, as we argued,
must be strictly lower than the profit obtained by choosing σ > σ̂ followed
by η∗ > 0. We summarize this discussion in the following proposition.

Proposition 3 If the function P is convex in σ2, the optimal dynamic
patenting strategy is identical to the static strategy, and the innovator chooses
σ∗ = 0, η∗ =∞ if λ < λ0 and σ∗ = 1 if λ > λ0. If the function P is concave
in σ2,

• If λ < λ0, the optimal dynamic patenting strategy is identical to the
static strategy and the innovator chooses σ∗ ∈ (0, 1), η∗ = ∞, where
σ∗ solves Equation (2).

• If λ0 < λ < λ0H(1), the optimal dynamic patenting strategy is to select
σ∗ ∈ (0, 1), η∗ ∈ (0, T ) which are solutions to Equations (3) and (4).

• If λ > λ0H(1), the optimal dynamic patenting strategy is identical to
the static strategy and the innovator chooses σ∗ = 1.

Proposition 3 identifies situations where the innovator optimally chooses
to patent sequentially two fragments of the innovation, and the dynamic
patenting strategy differs from the static choice of the optimal mix of patent
and secrets. These situations arise when the function P is concave in σ2 and
the probability of reverse engineering the innovation is intermediate. We
also note that, because λ0H(1) > λ̄, the region of parameters for which
the innovator chooses to fragment the innovation is larger in the dynamic
patenting regime than in the static regime. The following computations
characterize the optimal interior values of η and σ in the two examples
discussed in Section 2.2 for values of λ greater than λ0.

Example 1 (continued) In the model of cost reducing innovation, when
the cost function is a quadratic function of σ, c(σ) = 1 − σ2, the optimal
fragmentation σ∗ and timing η∗ are given below for different values of λ.
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λ 0.03 0.04 0.05 0.06 0.08

σ∗ 0.513 0.626 0.700 0.752 0.816

η∗ 19.40 14.78 12.10 10.33 8.04

Example 2 (continued) In the model of innovation resulting in quality
increments, the optimal fragmentation σ∗ is given below for different values
of λ:

λ 0.03 0.04 0.05 0.06 0.08

σ∗ 0.517 0.683 0.823 0.958 1

η∗ 19.77 18.37 18.33 19.41 -

The numerical computations first show, quite naturally, that the size of
the first fragment is lower in the dynamic setting than in the static setting
(sse the two tables in Section 3.2). As the innovator will file a second patent
on the innovation, he has an incentive to decrease the share of the innovation
that is patented the first time. Computations in Example 1 suggest that
the share of the innovation and the delay between the second patent play
complementary roles in the strategy of the innovator. As the threat of
imitation increases, the innovator simultaneously increases the share of the
innovation covered by the first patent and reduces the delay before filing
the second patent. However, Example 2 shows that this phenomenon is
not general. In the example of quality upgrades, as the threat of imitation
increases, the share of the innovation covered by the patent increases but
the delay before the second patent (which remains very large and close to
the patent length T = 20) is not always decreasing.

4.2 Dynamic optimization without prior user rights

If the innovator does not possess prior user rights, he may become unable
to exploit the part of the innovation patented by the imitator. The com-
petitor can force the initial inventor to downgrade his product or resort to a
less efficient production process, resulting in a payoff of P (σ, 1 − σ) during
the lifetime of the first patent and P (σ, 1) between the expiry of the first
patent held by the innovator and the expiry of the second patent held by
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the imitator. The expected profit of the inventor when η < T is now given
by

V (η, σ) =
∫ η

0

λ

r
e−λτ

{(
1− e−rτ

)
P (1, 0) +

(
e−rτ − e−rT

)
P (σ, 1− σ)

+
(
e−rT − e−r(T+τ)

)
P (σ, 1) + e−r(T+τ)P (1, 1)

}
dτ

+
1
r
e−λη

{(
1− e−rT

)
P (1, 0) +

(
e−rT − e−r(T+η)

)
P (1, σ)

+e−r(T+η)P (1, 1)
}
.

and when η > T by

V (η, σ) =
∫ T

0

λ

r
e−λτ

{
(1− erτ )P (1, 0) +

(
e−rτ − e−rT

)
P (σ, 1− σ)

+
(
e−rT − e−r(T+τ)

)
P (σ, 1) + e−r(T+τ)P (1, 1)

}
dτ

+
∫ η

T

λ

r
e−λτ

{(
1− e−rT

)
P (1, 0) +

(
e−rT − e−rτ

)
P (1, σ)

+
(
e−rτ − e−r(T+τ)

)
P (σ, 1) + e−r(T+τ)P (1, 1)

}
dτ

+
1
r
e−λη

{(
1− e−rT

)
P (1, 0) +

(
e−rT − e−r(T+η)

)
P (1, σ)

+e−r(T+η)P (1, 1)
}
.

4.2.1 Optimal timing of patents

In order to define the optimal timing of patents, we define a new term,

∆P 3 = P (1, σ)− P (σ, 1),

which measures the loss experienced by the innovator when the imitator
discovers and patents the trade secret after the expiry of the first patent.
Notice that ∆P 3 ≥ ∆P 1. We also compute the loss to the innovator when
the imitator discovers the secret as

∆P 4 = P (1, 0)− P (σ, 1− σ).

Equipped with this notation, we compute the derivative of the firm’s
profit with respect to η. For η < T ,

∂V

∂η
= e−λη

[
e−r(T+η)∆P 1

−λ
r

((
e−rη − e−rT

)
∆P 4 +

(
e−rT − e−r(T+η)

)
∆P 3

)]
.
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For η > T ,
∂V

∂η
=
e−(λ+r)η

λ0 + r

(
λ0∆P 1 − λ∆P 3

)
.

Following the same steps as in Subsection 4.1.1, we characterize the optimal
timing of patents for a fixed σ in the next proposition (whose proof can be
found in Appendix 8.4).

Proposition 4 Given σ, the optimal timing of the second patent is given
as follows. (1) If ∆P 4 > ∆P 3,

• η∗ = 0 for λ0∆P 1 ≤ λ∆P 4 − λ0(1− e−λT )(∆P 4 −∆P 3),

• η∗ =∞ otherwise

(2) If ∆P 3 > ∆P 4,

• η∗ = 0 for λ0∆P 1 ≤ λ∆P 4,

• 0 < η∗ < T for λ∆P 4 ≤ λ0∆P 1 ≤ λ∆P 3,

• η∗ =∞ for λ0∆P 1 ≤ λ∆P 3.

4.2.2 Optimal dynamic patenting strategy

The characterization of the optimal dynamic patenting strategy when the
inventor does not hold prior user rights differs from the characterization
of the optimal dynamic patenting strategy with prior user rights in two
important respects. First, the comparison between ∆P 3 and ∆P 4 does not
result from the concavity or convexity of the profit function P . If P is
convex, and in addition, the marginal effect of an increase in σ1 is higher
for lower values of σ2 (P12 < 0), we obtain

∆P 4 −∆P 3 = P (1, 0)− P (σ, 1− σ)− P (1, σ) + P (σ, 1),

= [P (1, 0)− P (1, σ)]− [P (σ, 1− σ)− P (σ, 1)]

≥ [P (σ, 0)− P (σ, σ)]− [P (σ, 1− σ)− P (σ, 1)]

≥ 0.

It is harder to find conditions under which ∆P 4 < ∆P 3, as this would
require both that P is concave and that P12 > 0, and the latter condition is
unlikely to be satisfied in regular applications. The second difficulty stems
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from the lack of concavity/convexity of the function V with respect to the
fragmentation parameter σ. When the innovation is only patented once
(η =∞), a simple computation shows that11

∂V

∂σ
=

(
1−e−rT

r − 1−e−(λ+r)T

λ+r

)
(P1(σ, 1− σ)− P2(σ, 1− σ))

+ e−(λ+r)T

λ+r P2(1, σ) + λ
r(λ+r)(1− e−rT )P1(σ, 1).

A change in σ affects both the fraction of the innovation that the imitator
can exploit (through the derivative P2) and the fraction of the innovation
that the inventor can still exploit if the imitator patents the secret part
(through the derivative P1). Simple intuition suggests that if P is concave
in σ2, it should be convex in σ1 and vice versa. But this implies that
the function V is unlikely to be concave or convex in σ, so that we cannot
characterize the optimal fragmentation share σ∗ through a simple first order
condition.

We now consider the two examples of Section 2.2. In Example 2, the
sign of ∆P 4−∆P 3 is not constant over σ, and we omit the characterization
of the optimal patenting policy. In Example 1, we observe that the sign of
∆P 4 −∆P 3 is constant, allowing us to compute the optimal policy.

Example 1 (continued) In the model of cost reducing innovation, when
the cost function is a quadratic function of σ, c(σ) = 1 − σ2, we have
∆P 2 = 9 − σ2(σ + 2)2 > 9 − 3σ2(σ2 + 2) = ∆P 3 for all σ. Hence, the
innovator only patents once and the fragment patented is given below for
different values of λ.

λ 0.005 0.01 0.02 0.03 0.04 0.05 0.06 0.08

σ∗ 0 0 1 1 1 1 1 1

It is interesting to observe that, given that P12 < 0, even when P is
concave in σ2, the function V turns out to be convex in σ, so that the
innovator will never choose to fragment the innovation. The absence of prior
user rights, by making it more costly for the innovator to lose his trade secret,
increases the incentive to patent to the point where the innovator chooses
to patent the entire process, even when λ < λ0.

11A similar result holds for interior values of η.
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Figure 2: Process innovation: Innovator’s profit

5 Welfare Comparisons

In this section, we compare the four regimes of patent protection from the
point of view of the three stakeholders: the innovator, the imitator and con-
sumers. The analysis is done in the context of the two illustrating examples
of the paper.

5.1 Cournot model with process innovation

In addition to the profits of the innovator and imitator, P andQ, we compute
consumer surplus as

S(σ1, σ2) = 1
2(1 + f(σ1) + f(σ2))2.

Figures 2, 3 and 4 compare, for different values of λ, the welfare of the
innovator, imitator and consumers under the four regimes for f(σ) = σ2.

For the innovator, not surprisingly, as regimes become more flexible, prof-
its increase. Hence, the dynamic regime with prior user rights dominates
the static regime, which dominates the binary regime. We also observe that
the dynamic regime without prior user rights results in a profit which is
higher than the binary regime but lower than any other patent protection
regime. Interestingly, in the Cournot model, the welfare of the imitator and
of consumers are aligned and in complete conflict with the profit of the in-
novator. The competitor and consumers favor regimes with less flexibility,
preferring the binary regime to the static regime, and to the dynamic regime
with prior user rights. Comparing the dynamic regimes with and without
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Figure 3: Process innovation: Imitator’s profit

Figure 4: Process innovation: Consumer surplus

28



prior user rights, we observe that, clearly, the imitator gains when the inno-
vator cannot hold prior user rights. However, consumers lose as this implies
that, after the competitor discovers the trade secret for low values of λ, the
innovator is not able to exploit the cost reducing innovation, yielding lower
quantities in equilibrium.12

On balance, the comparison between the four regimes indicates a conflict
in the welfare of the innovator, imitator and consumers. If however, the
intellectual property regime puts more weight on the inventor in order to
give him incentives to innovate, our analysis suggests that higher flexibility
should always be favored.

5.2 Vertical differentiation model with quality increments

In the vertical differentiation model, we compute the surplus of consumers
when σ1 > σ2 as

S(σ1, σ2) =
κ

8
(σ1 + σ2) +

σ2
1(4σ1 + 5σ2)
2(4σ1 − σ2)2

.

Figures 5, 6 and 7 illustrate the welfare of the innovator, imitator and
consumers for different values of λ when κ = 3 for three regimes of patent
protection.13

As expected, the innovator always prefers regimes with more flexibility.
But in the vertical differentiation model, contrary to the Cournot model,
the imitator and the consumers also may prefer the more flexible regimes.
In fact, they both rank the static fragmentation regime above the binary
regime, preferring to let the inventor segment the innovation in different
pieces. The competitor also prefers the dynamic regime to the static regime
for all values of λ whereas consumers prefer the dynamic regime except for
λ close to λ0. The analysis of the model of vertical differentiation with
quality increments thus shows that the conflict in welfare between innova-
tor, imitator and consumers does not necessarily arise and that there exist
circumstances where all three types of agents prefer more flexible intellectual
property rights regimes.

12Our analysis suggests thus an additional advantage of prior user rights, which was not

stressed in the literature considering patents and secrets as mutually exclusive protection

mechanisms (as in Denicolo and Franzoni, 2004, or Shapiro, 2006).
13Recall that the optimal behavior of the innovator is not well defined in the dynamic

patent protection regimes without prior user rights.

29



Figure 5: Quality increments: Innovator’s profit

Figure 6: Quality increments: Imitator’s profit

Figure 7: Quality increments: Consumer surplus
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6 Robustness and extensions

In this section, we test the robustness of our results by extending our frame-
work in two directions: first, we endogenize the imitation effort and second,
we modify the sequential patent regime by allowing a second patent that
does not necessarily cover the remaining secret part of the innovation.

6.1 Endogenous imitation effort

We analyze briefly the endogenous choice of the imitator, who selects the
imitation rate λ at a cost C(λ). In the dynamic model with prior user rights
and η < T , the derivative of the present discounted value of the imitator
with respect to λ is given by:

∂W (λ, σ, η)
∂λ

= (Q(1, 1− σ)−Q(1, 0)){ηλe
−λη

λ+ r
(e−rη − e−rT )

+
r

(λ+ r)2
(1− e−η(λ+r) − η(λ+ r)e−λη−rT )}

+ (Q(1, 1)−Q(1, σ))ηe−(λ+r)η(1− e−rT )

> 0.

Notice that, as the fraction of the innovation that is patented, σ, in-
creases, Q(1, 1 − σ) − Q(1, 0) and Q(1, 1) − Q(1, σ) decrease, so that the
optimal value of λ goes down. Hence, when the competitor chooses her
imitation efforts endogenously, higher values of σ result in lower values of
λ. By comparison with the baseline model with exogenous imitation efforts,
we remark that the inventor has an incentive to increase the fragment of
the innovation that is patented in order to reduce the imitation efforts of his
competitor. However, the thrust of the analysis, including the existence of
parameter regions for which the inventor chooses interior values of σ and η,
remains unchanged.

6.2 Continuous fragmentation of the innovation

We examine now a variant of the model where the inventor may choose, in
the second patent, only to patent a fraction ρ < 1−σ of the secret.14 When

14Notice that the imitator never has an incentive to patent less than 1 − σ since the

secret is already known and exploited by the initial inventor.
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η < T , the present discounted value of the inventor is given by:

V (σ, η) =
∫ η

0

λ

r
e−λτ

{
(1− e−rτ )P (1, 0) + (e−rτ − e−rT )P (1, 1− σ)

+e−rTP (1, 1)
}
dτ

+
∫ T

η

λ

r
e−λτ

{
(1− erτ )P (1, 0) + (e−rτ − e−rT )P (1, 1− σ − ρ)

+(e−rT − e−r(T+η))P (1, 1− ρ) + e−r(T+η)P (1, 1)
}
dτ

+
∫ T+η

T

λ

r
e−λτ

{
(1− e−rT )P (1, 0) + (e−rT − e−rτ )P (1, σ)

+(e−rτ − e−r(T+η))P (1, 1− ρ) + e−r(T+η)P (1, 1)
}
dτ

+
∫ ∞
η

λ

r
e
{
−λτ (1− e−rT )P (1, 0) + (e−rT − e−r(T+η))P (1, σ)

+(e−r(T+η) − e−rτ )P (1, σ + ρ) + e−rτP (1, 1)
}
dτ.

While the computations of the optimal values of η, σ and ρ are clearly
more complicated than in the baseline model, we can use the same steps as
in Section 4.1.3 to show that, when P is convex in σ2, the optimal strategy
is a binary strategy whereas when P is concave in σ2, the optimal strategy
may involve an interior choice of η, ρ and σ for some parameter values. The
main qualitative results of the analysis remain unchanged.

7 Conclusion

We have provided a unified model to study the protection of complex innova-
tions, i.e., innovations that can be fragmented into several sub-innovations,
each of them being patentable separately. The model allows us to analyze
the innovator’s choice of patent/secret mix under various patent regimes,
which differ according to the strength of the utility and the novelty require-
ments. We are also able to perform some welfare comparisons of these patent
regimes. Our main result is to find conditions under which the innovator
optimally chooses to mix patents and secrets (in a static framework cor-
responding to a strict novelty requirement), or to patent sequentially two
fragments of the innovation (in a dynamic framework corresponding to a
softer novelty requirement). We also find examples where the other stake-
holders (namely a potential imitator and the consumers) may agree with the
innovator’s conduct, suggesting that more flexible patent regimes could be
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welfare-enhancing. It is important to stress that a pre-condition for these
results to apply is that the innovator’s profit function be concave in the
fraction of the innovation that the imitator can exploit. This occurs when
the imitator must learn a large fragment of the innovation in order to be
able to exploit it usefully. In contrast, if convexity prevails, the innovator
will optimally choose an all-or-nothing strategy that consists in patenting
the whole innovation or in keeping it altogether secret.

Our framework could be extended in a number of directions that we leave
for further research. First, we have assumed in our model that there is no
information leakage in the patenting process. In actual situations, patents
may convey information about the innovation, so that it becomes easier for
a competitor to circumvent the innovation. This effect would diminish the
benefit of a patent, and reduce the part of a complex innovation which is
protected by a patent. Alternatively, more complex models of information
leakage and reverse engineering could be employed to analyze more precisely
the optimal fragmentation of an innovation. A second direction in which the
analysis could be extended is to analyze the incentive to engage in R & D
before the innovation is discovered. In a symmetric model among two com-
peting firms, we could study how different regimes of patent protection affect
the incentives to invest in R & D and how they shape the dynamics of the
patent race. Finally, we have assumed that the initial competitor does not
license his innovation to his competitor. The introduction of licensing agree-
ments would enrich the comparison of different regimes of patent protection
in an interesting way.

8 Appendix

8.1 Proof of Proposition 1

If P is concave, and λ < λ0 < λ̄, the optimal fraction σ∗ is interior and
given by the solution to the first order condition:

G(σ) ≡ P2(1, σ)
P2(1, 1− σ)

= K.

Because P is concave in σ2, G is increasing in σ. To show that σ∗ is increasing
in λ, T and r, it suffices to show that K is increasing in λ, T and r. First,

dK

dλ
=

1
r + λ0

e(r+λ)T (1− λ0 + λ) > 0.
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where the last inequality is due to the fact that λ0 ≤ 1 as the function
f(r) = re−rT

1−e−rT is smaller than 1 for any r ∈ <+. Note also that

dK

dT
= λeT (r+λ) (r + λ)

1− e−Tr

r
> 0,

and
dK

dr
= λe(r+λ)T e

−rT + rT − 1
r2

> 0,

where the last inequality is due to the fact that the function g(r) = 1−e−rT
rT

is smaller than 1 for any r ∈ <+.

8.2 Proof of Proposition 2

In order to compute the sign of ∂V
∂η for η < T , we consider the term

A(η) = e−r(T+η)∆P 1 − λ

r

((
e−rη − e−rT

)
∆P 2 +

(
e−rT − e−r(T+η)

)
∆P 1

)
.

Deriving A with respect to η and using the definition of λ0,

A′(η) =
re−rη

λ0 + r

[
λ∆P 2 − λ0∆P 1 +

λλ0

r
(∆P 2 −∆P 1)

]
.

Notice that the sign of A′(η) is independent of η. Hence, either A(θ) is
increasing over [0, T ] or it is decreasing over [0, T ]. We also compute

A(0) =
1− e−rT

r
(λ0∆P 1 − λ∆P 2),

A(T ) = e−rT
1− e−rT

r
(λ0 − λ)∆P 1.

Now suppose that ∆P 2 > ∆P 1. If A(0) ≥ 0, then A(T ) ≥ 0 and V

is increasing over the entire interval [0, T ]. In addition, as λ0 > λ, V is
increasing over [T,∞), so the optimal solution is η∗ =∞. If A(0) ≤ 0, then
A′(η) > 0. If λ0 < λ, A(T ) < 0, so V is decreasing over [0, T ]. In addition,
V is decreasing over [T,∞) so the optimal solution is η∗ = 0. Finally, if
λ0 ≥ λ but λ0∆P 1 ≤ λ∆P 2, as A′(η) > 0, the function V is convex in [0, T ]
and attains its maximum at the boundaries, either at 0 or at T . In addition,
the function V is increasing over [T,∞), so the optimal solution is either
η∗ = 0 or η∗ = ∞. Computing the value of V at η = 0 and η = ∞, we
obtain the condition in the proposition.

Next suppose that ∆P 2 < ∆P 1. Then A(0) > A(T ). If λ0 > λ, A(T ) >
0, so the function V is increasing over [0, T ] and over [0,∞) and the optimal
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solution is η∗ = ∞. If λ0∆P 1 < λ∆P 2, A′(η) < 0 and A(0) < 0, so the
function V is decreasing over [0, T ] and as λ > λ0, it is also decreasing
over [T,∞). Hence the optimal solution is η∗ = 0. Finally, if λ > λ0 but
λ0∆P 1 > λ∆P 2, the function V is increasing at 0, and decreasing over
[T,∞). This implies that there exists an interior maximum η∗ ∈ (0, T ).

8.3 Properties of the function H(σ)

We first show that H is increasing. We compute

H ′ (σ) =
P2 (1, σ) ∆P 2 − P2 (1, 1− σ) ∆P 1

(P (1, 0)− P (1, 1− σ))2 .

Hence, H ′ (σ) > 0 if and only if

P (1, σ)− P (1, 1)
P (1, 0)− P (1, 1− σ)

>
P2 (1, σ)

P2 (1, 1− σ)
.

By concavity of P in σ2,

P (1, σ)− P (1, 1)
P (1, 0)− P (1, 1− σ)

> 1.

If σ ≥ 1
2 , by concavity of P in σ2,

1 >
P2 (1, σ)

P2 (1, 1− σ)
,

and the inequality is true. Suppose now that σ ≤ 1
2 . Then,

(V2 (1, σ)− V2 (1, 1− σ)) (V (1, 0)− V (1, 1− σ))

+V2 (1, 1− σ) (V (1, 0)− V (1, 1− σ))

−V2 (1, 1− σ) (V (1, σ)− V (1, 1))

= (V2 (1, σ)− V2 (1, 1− σ))︸ ︷︷ ︸
+

(V (1, 0)− V (1, 1− σ))︸ ︷︷ ︸
+

+V2 (1, 1− σ)︸ ︷︷ ︸
−

[(V (1, 0)− V (1, 1− σ))− (V (1, σ)− V (1, 1))]︸ ︷︷ ︸
−

which is positive, implying again that H ′ (σ) > 0.
Clearly, H(0) = 1. We compute H(1) using L’Hospital rule:

H (1) =
V2 (1, 1)
V2 (1, 0)

.
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Recall that λ̄ is defined implicitly by the equation:

V2 (1, 0)
V2 (1, 1)

= K−1
(
λ̄
)
⇔ H (1) = K

(
λ̄
)

, with K (λ) = 1 +
(λ− λ0)

(r + λ0) e−(r+λ)T
.

We show that λ0H (1) > λ̄. As K (λ) is an increasing function of λ, this is
equivalent to showing that K (λ0H (1)) > K

(
λ̄
)
, or

1 +
λ0 (H (1)− 1)

(r + λ0) e−(r+λ0H(1))T
> H (1)⇔ λ0

r + λ0
= e−rT > e−(r+λ0H(1))T ,

which is always satisfied.

8.4 Proof of Proposition 4

We consider the term

B(η) = e−r(T+η)∆P 1 − λ

r

((
e−rη − e−rT

)
∆P 4 +

(
e−rT − e−r(T+η)

)
∆P 3

)
.

Deriving B with respect to η and using the definition of λ0,

B′(η) =
re−rη

λ0 + r

[
λ∆P 4 − λ0∆P 1 +

λλ0

r
(∆P 4 −∆P 3)

]
.

Notice that the sign of B′(η) is independent of η. Hence, either B(θ) is
increasing over [0, T ] or it is decreasing over [0, T ]. We also compute

B(0) =
1− e−rT

r
(λ0∆P 1 − λ∆P 4),

B(T ) = e−rT
1− e−rT

r
(λ0∆P 1 − λ∆P 3).

Now suppose that ∆P 4 > ∆P 3. Then, if B(0) > 0, then B(T ) > 0
and V is increasing over the entire interval [0, T ]. In addition, as B(T ) > 0,
λ0∆P 1−λ∆P 3 > 0 and V is increasing over [T,∞), so the optimal solution is
η∗ =∞. If B(0) ≤ 0, then B′(η) > 0. If λ0∆P 1 < λ∆P 3, B(T ) < 0, so V is
decreasing over [0, T ]. In addition, V is decreasing over [T,∞) so the optimal
solution is η∗ = 0. Finally, if λ0∆P 1 ≥ λ∆P 3 but λ0∆P 1 ≤ λ∆P 4, as
B′(η) > 0, the function V is convex in [0, T ] and attains its maximum at the
boundaries, either at 0 or at T . in addition, the function V is increasing over
[T,∞), so the optimal solution is either η∗ = 0 or η∗ =∞. Computing the
value of V at η = 0 and η =∞, we obtain the condition in the proposition.

Next suppose that ∆P 4 < ∆P 3. Then B(0) > B(T ). If λ0∆P 1 >

λ∆P 3, B(T ) > 0, so the function V is increasing over [0, T ] and over [0,∞)
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and the optimal solution is η∗ = ∞. If λ0∆P 1 < λ∆P 4, B′(η) < 0 and
B(0) < 0, so the function V is decreasing over [0, T ] and as B(T ) < 0,
λ0∆P 1 < λ∆P 3,and V is also decreasing over [T,∞). Hence the optimal
solution is η∗ = 0. Finally, if λ > λ0 but λ∆P 4 < λ0∆P 1 < λ∆P 3, the
function V is increasing at 0, and decreasing over [T,∞). This implies that
there exists an interior maximum η∗ ∈ (0, T ).
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