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Generalized Dynamic Factor Model + GARCH

Exploiting multivariate information for univariate

prediction

Lucia Alessi∗ Matteo Barigozzi† Marco Capasso‡

Laboratory of Economics and Management (LEM)

Sant’Anna School of Advanced Studies, Pisa

Abstract

We propose a new model for volatility forecasting which combines the Generalized Dy-
namic Factor Model (GDFM) and the GARCH model. The GDFM, applied to a large
number of series, captures the multivariate information and disentangles the common and
the idiosyncratic part of each series of returns. In this financial analysis, both these com-
ponents are modeled as a GARCH. We compare GDFM+GARCH and standard GARCH
performance on two samples up to 171 series, providing one-step-ahead volatility predic-
tions of returns. The GDFM+GARCH model outperforms the standard GARCH in most
cases. These results are robust with respect to different volatility proxies.
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1 Introduction

Forecasting volatility of future returns by exploiting multivariate information is a major chal-
lenge for financial econometrics. The advantages of using multivariate models versus univariate
ones, i.e. univariate GARCH or any kind of univariate generalization, as well as univariate
Stochastic Volatility (SV) models, are enormous. Being able to exploit information on covari-
ances of return series yields predictions which are necessarily at least as good as univariate
ones; common sense suggests that they are strictly better because of the existence of relations
across assets and markets which univariate techniques ignore. These both contemporaneous
and lagged relations across stocks are important, which ultimately implies that multivariate
models are of great advantage with respect to univariate ones.
The generalization of univariate models to multivariate ones, however, is far from trivial. The
main pitfall of multivariate GARCH models in most specifications is the very large number of
parameters, which rapidly makes the estimation unfeasible as the number of series grows; those
specifications which bypass this problem, on the other hand, pay the price in terms of a severe
loss of generality1. Neither multivariate SV models, although relatively more parsimonious,
are able to handle more than a few number of series because of their complexity of estimation2.
For both streams of literature, the key for dimensionality reduction stands in the idea of the
existence of a few latent variables, the so called factors, as driving forces for the whole dataset.
Models as CAPM explain theoretically why we may speak of factors in the market. Indeed, the
use of factor models allows to disentangle within each stock the component which is directly
linked to these common forces and the component which is peculiar to the stock itself. Doing
this way, the factor analysis makes use of co-movements across stocks in order to improve
forecasts.
Here we focus on the GARCH side of the story3. Diebold and Nerlove [1989] develop a static fac-
tor model on return series where the covariance matrix of factors is conditionally heteroskedas-
tic, while the conditional covariance of the idiosyncratic part is homoskedastic. Given that the
number of factors is small, the factor model reduces dramatically the number of parameters
to be estimated with respect to the multivariate GARCH model. Engle et al. [1990] propose
a model in which the decomposition in factors is at the level of conditional variance; Sentana
[1998] proves that this model is nested in the previous by Diebold and Nerlove. More recently,
the Orthogonal GARCH model by Alexander [2000], typically used for Value-at-Risk mod-
eling, and the PC-GARCH by Burns [2005] retrieve the factors of the system by means of
standard principal component analysis, while the GO-GARCH model by van der Weide [2002]
generalizes the Orthogonal-GARCH approach within the boundaries of the static framework.

The novelty of our approach stands in the introduction of dynamics. By applying the Gen-
eralized Dynamic Factor Model (GDFM) by Forni et al. [2000] we are able to handle a very
large number of series and capture all the multivariate information not only in the cross di-
mension but also in the time dimension. The GDFM model generalizes on the one hand the
dynamic factor model proposed by Sargent and Sims [1977] and Geweke [1977] by allowing
for mildly correlated idiosyncratic components; on the other hand the approximate factor
model by Chamberlain [1983] and Chamberlain and Rothschild [1983] which is static. In the
same stream of literature, Stock and Watson [2002] deal with forecasting issues, although in a
macroeconomic context, by means of an approximate dynamic factor model which is estimated

1See Bauwens et al. [2006].
2See Harvey et al. [1994].
3For multivariate SV models within the factor approach, see Chib et al. [2006].
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in a static way.
We combine the GDFM and the GARCH in a two step procedure: in the first step we ap-
ply the GDFM to the series of returns in order to split each of the series in its common
part and its idiosyncratic part; in the second step we model both components as a GARCH,
allowing for different GARCH orders and different values of parameters across series. The
predicted one-step-ahead conditional variance is then obtained by summing up the one-step-
ahead predictions for common part and idiosyncratic part. Finally, results are compared with
predictions generated by a standard univariate GARCH applied to each series of returns as
such. The GDFM+GARCH model outperforms the standard GARCH in most cases.

The paper is structured as follows. Section 2 outlines the GDFM+GARCH model and the
estimation procedure along the lines of Forni et al. [2006]. Section 3 overviews the literature
on volatility proxies in the context of a more general discussion of the issues related to the
prediction of volatility. In section 4 we present the results of the empirical analysis, that we
run on two different samples respectively of 140 and 171 series. The comparison between
the GDFM+GARCH model and the benchmark is carried out by means of Mincer-Zarnowitz
regressions, RMSE evaluation, and the prediction accuracy test by Clark and West [2007].
Section 5 concludes and provides an outlook on future developments.

2 The model

We denote as xt = (x1t . . . xNt)
′ the N -dimensional vector process of standardized stock re-

turns. Each of the series is stationary and second order moments γik = E[xitx
′

it−k] exist finite.
As in the Generalized Dynamic Factor Model (GDFM) proposed by Forni et al. [2000] we as-
sume that each series xit can be written as the sum of two mutually orthogonal unobservable
components, the common component χit and the idiosyncratic component ξit. The common
component is driven by a small number q of dynamic common factors ujt with j = 1, . . . , q,
which are loaded with possibly different coefficients and lags. Formally, we assume:

xit = χit + ξit = bi1(L)u1t + bi2(L)u2t + . . . + biq(L)uqt + ξit i = 1, . . . , N (1)

The q-dimensional vector process ut = (u1t . . . uqt)
′ is an orthonormal white noise. The N -

dimensional vector process ξt = (ξ1t . . . ξNt)
′ has zero mean and is stationary. Moreover ξit is

orthogonal to ujt−k for all k, i and j. The polynomials in the lag operator bi1(L) . . . biq(L) are
square-summable, one-sided filters of order s, that is to say that r = q(s + 1) static factors
are loaded contemporaneously.
In order to move to the frequency domain we need to assume that the process xt admits a
Wold representation xt =

∑+∞

k=0 Ckwt−k where innovations have finite fourth order moment
and the entries of the matrices Ck satisfy

∑+∞

k=0 |Cij,k|k1/2. We denote the spectral density
matrices of the common part and the idiosyncratic part respectively as Σχ(θ) and Σξ(θ), with
θ ∈ [−π, π], and assume that the q largest eigenvalues of Σχ(θ) diverge almost everywhere
as the number of series goes to infinity, while all the eigenvalues of Σξ(θ) are bounded. This
last condition, in other words, relaxes the assumption of mutual orthogonality of idiosyncratic
components by allowing for a limited amount of cross-sectional correlation.
We assume that both the common component and the idiosyncratic component of each of the
series can be modeled as a GARCH (p,z) process with possibly different coefficients. Formally,
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a generic univariate GARCH model is written as:

yt = m(yt−1, . . . , yt−k) + at

at = ǫtσt (2)

σ2
t = ω +

z
∑

j=1

αja
2
t−j +

p
∑

j=1

βjσ
2
t−j

In our context this model is applied for every series xit to both the common component χit

and to the idiosyncratic component ξit, while the conditional mean m(yt−1, . . . , yt−k) can be
either modeled as an ARMA process or set equal to zero. The conditional variance is obtained
as the sum of the conditional variances for the common part and for the idiosyncratic part,
which is a legitimate procedure given that the two components are orthogonal by definition.
The problem of contemporaneous aggregation of GARCH processes has already been faced
by Nijman and Sentana [1996], who found out that the sum of two (strong) GARCH processes
gives rise to a weak GARCH process, a process originally introduced by Drost and Nijman
[1993] for the case of temporal aggregation of GARCH processes. Following the notation in
(2) (without taking into account the mean evolution part), Nijman and Sentana [1996] show
that the sum of two strong GARCH (1,1) processes y1 and y2 evolves as:

(y1t + y2t)
2 = d1+d2+[1 − (α1 + β1) L]−1 [1 − β1L] g1t+[1 − (α2 + β2)L]−1 [1 − β2L] g2t+2y1ty2t,

(3)
where

di = ωi (1 − αi − βi)
−1 ; (4)

git =
(

ǫ2
it − 1

)

σ2
it. (5)

In other words, the sum of two independent strong GARCH (1,1) processes is weak GARCH
(2,2). The presence of the cross-product term in the right-hand side of (3) represents the prac-
tical difference between a weak GARCH (2,2) and a strong GARCH (2,2), as it complicates the
derivation of the weak GARCH parameters for the aggregate series. However, the estimation
of these parameters is still consistent both by exploiting the autocorrelation of (a1t + a2t)

2 and
by Quasi Maximum Likelihood estimation. Simulation results obtained by Nijman and Sen-
tana [1996] confirm that QML estimations of a weak GARCH process (that is ML estimations
of a strong GARCH process) onto the aggregate series may often yield values which are very
similar to the true weak GARCH parameters of the aggregate series, especially for the case
of a large dimension of the observed time series. For this reason, in the existing literature,
GARCH models have been estimated for the (log) returns in the Deutsche mark/US dollar
exchange rate, the US dollar/Japanese yen exchange rate, and the Deutsche mark/Japanese
yen rate, where the returns on the third exchange rate are simply the sum of the returns on
the first two exchange rates.
Our hypothesis of a factor structure governing our dataset drives us to the idea that, for fore-
casting purposes, we might model separately the conditional variances of the common part and
of the idiosyncratic part of each series, in order to get better conditional variance predictions
of the aggregate series than a ML estimated strong GARCH applied directly to the aggregate
series. In the empirical part of our work, we get rid of all the problems related to the orders
of the GARCH processes, by always choosing the smallest possible order that eliminates the
serial correlation of the standardized (squared and not squared) residuals.
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The state of the art as far as volatility forecast is concerned basically exploits high-frequency
data to build various volatility proxies and finally get a forecast of future values of these
proxies themselves. Our aim however is different: although here we are interested in volatility
prediction, we want a model that has the possibility of predicting both levels and volatility
of returns at once - which is what the market needs as a first best. Therefore we choose to
stick to the world-wide used GARCH model. An alternative approach would be to run the
GDFM factor decomposition directly on volatility proxies4, however we preferred to act at
the return level because predicting both first and second moment allows for the construction
of interval predictions, which is of great interest although beyond the purpose of this exercise5.

The estimation of the model follows the two-step procedure proposed in Forni et al. [2006] for
the GDFM part. In the first step the spectral density matrix of xt, Σx(θ), is estimated by
applying the Fourier transform to the sample auto-covariance matrices Γ̂k. Then the dynamic
principal component decomposition is applied, thereby selecting the first q largest eigenvalues
of Σ̂x(θ) and the corresponding eigenvectors. Calling P (θ) the matrix with eigenvectors as
columns and Λ(θ) the matrix with eigenvalues on the diagonal, the estimated spectral density
matrix of χt is computed as: Σ̂χ(θ) = P (θ)Λ(θ)P (θ)′. It’s worth noticing at this point the
key difference between this dynamic approach and the static principal component method
used by Stock and Watson [2002]: while the first exploits the information contained in lagged
covariance matrices, the latter makes use of contemporaneous covariances only. By applying
to Σ̂χ(θ) the inverse Fourier transform we retrieve estimates of the covariance matrices of the
common component, Γ̂χ

k ; the estimate of the covariance matrices of ξt, Γ̂ξ
k, is obtained by

difference. To overcome the problem of bilateral filters, in the second step of the procedure
we move to a static representation of the model in which we estimate the first r generalized
eigenvectors of Γ̂χ

k with respect to Γ̂ξ
k. The first generalized eigenvector solves the following

maximization problem:










z(1) = argmax
a∈Rn

a′Γ̂χ
0a

s.t. a′Γ̂ξ
0a = 1

(6)

We collect the first r generalized eigenvectors in the matrix Z = (z(1) . . . z(r)) and by means
of such matrix and of the contemporaneous covariance matrix, estimated in the first step, we
are able to estimate the common component as:

χ̂t = Γ̂χ
0Z(Z ′Γ̂0Z)−1Z ′xt ∀ t = 1, . . . , T (7)

We obtain the idiosyncratic component simply as difference between the original series xt and
χ̂t. Indeed, the one-sided estimator allows to forecast the common component at T + h by
substituting the estimated lagged covariances Γ̂χ

h to the contemporaneous covariance Γ̂χ
0 in (7).

3 Mean modeling prediction

The decision of predicting both mean and variance of returns exerts an important influence
not only on the theoretical model used, but also on the volatility measures employed for the

4Such an approach requires the existence of the fourth moment of the returns, which is still an issue under
discussion in the literature.

5See Corradi and Swanson [2004].
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prediction accuracy measurement. The relation between the aims of the model, the structure
of the model, and the out-of-sample performance measurement is deep and complex, and has
characterized the evolution of research during the last twenty years.

Roughly speaking, the problem faced by the finance researcher may be described as follows.
If we think that the mean of a stock return cannot be predicted, then the most important
moment we are interested in is the variance; therefore we might use volatility proxies both in-
sample for estimating the parameters of the model, and out-of-sample to evaluate the accuracy
of the prediction. Starting from this intuition, Andersen et al. [2001] studied the distribution
and evolution of volatility, and Andersen et al. [2003] investigated the prediction of volatility.
From a technical point of view, this choice simplifies the researcher’s task, because she can
operate at just one “level”, and so she can apply traditional ARMA processes, or long memory
and multivariate modifications of them, on the chosen volatility proxy.
This line of reasoning sounds perfect as long as we give up mean predicting. Such a with-
drawal, although justifiable on a scientific basis, is difficult to digest for a financial world in
which risk management needs the coupling of at least the first two moments of a return dis-
tribution. This is one of the reasons why GARCH models, and in general all the models that
may take into account two “levels”, cannot be ignored, even if researchers tend to sacrifice this
feature and use GARCH models with a zero-mean assumption, when good mean predictors
are missing. We might hope that the conditional mean is always constant and equal to zero.
However, this could only be an approximation, coming out from our difficulties in modeling
the conditional mean evolution. Therefore we prefer to apply an ARMA + GARCH model
to the return series, both directly (as a benchmark) and indirectly (when using our model’s
splitting of the original series into a common and an idiosyncratic part), in order to have the
possibility of a better prediction of the conditional mean whenever the data set allows it.

We now outline the algorithm used for estimating GARCH models, with or without ARMA
component. For each of the return series, we run the algorithm on the return series xt as
such, on the series χt representing the common part, and on the series ξt representing the
idiosyncratic part, i.e. we estimate 3N models for each sample.

• We begin by estimating the ARMA part of the process, in the cases in which we assume
non-zero conditional mean. We start by fitting an ARMA(0,0), then perform a Ljung-
Box test on the residuals at the 0.05 significance level, including 4 lags, thus setting 4
degrees of freedom for the chi-square distribution. If the ARMA(0,0) fails the test, i.e.
residuals are serially autocorrelated, we increase the AR order by one unit and run the
Ljung-Box test again. If the ARMA(1,0) fails the test, we estimate an ARMA(2,0). If
necessary, we increase then the order of the MA part by one unit at a time up to 2.

• Next, we verify the presence of ARCH effects in the series by performing an Engle’s
test on the ARMA residuals with 0.05 significance level and 4 lags included. If this is
the case, we estimate the GARCH model starting from an ARCH(1) and perform again
the test. If the ARCH(1) fails the test, we move to an ARCH(2) and if necessary to a
GARCH(2,1). The highest order we allow for is GARCH(2,2).

5



4 Empirics

4.1 Preliminary analysis

The dataset we use for the empirical investigation includes 475 return series of stocks traded
on the NYSE (we arbitrarily choose all the stocks for which options are also traded). Each
series goes from 8th March 1995 to 30th April 1999 (1045 daily observations). Series have been
cleaned from outliers6. For each trading day we also have the highest and the lowest price
at which each stock has been traded. From these we obtain the range, as defined in (10).
We run the analysis on two different subsamples: the first contains stocks belonging to the
financial sector and the second represents the electronics sector7. We reduce the dimension
of the dataset by considering sectoral samples in order to study how the GDFM+GARCH
performance changes once only the most correlated series are left in, which might improve the
prediction results, as already highlighted in Boivin and Ng [2003]. However, the estimator is
consistent for the cross and time dimensions going to infinity. Indeed, as shown in the tables in
this section, running the analysis sector by sector does improve the factor decomposition and
thus the results. The prelimiary analysis is conducted with 515 and with 1030 observations,
aiming to study the properties of both cases.
Firstly, we verify that our dataset does fulfill GDFM assumptions on the eigenvalues λi(θ)
of the spectral density matrix of xt. According to Brillinger [1981], we define the variance
explained by the ith factor as:

EVi =

∫ π

−π
λi(θ)dθ

∑N
j=1

∫ π

−π
λj(θ)dθ

(8)

We require that, as N −→ ∞:







EVi −→ ∞ for i = 1, . . . , q

∃ M ∈ R
+ s.t. EVi ≤ M for i = q + 1, . . . , N

(9)

Indeed, as shown for example in figure 1 for the short finance sample, this is the case. The
subsequent figure shows the cumulated explained variance relative to the first q eigenvalues
for the same sample.
For all samples we keep a number q of dynamic factors corresponding to the number of dynamic
eigenvalues of the spectral density matrix which explain more than 5% of total variance each.
In all the three samples, the chosen number of dynamic factors is much higher when considering
a shorter time horizon. A value of q less or equal to 4, i.e. the maximum number of dynamic
factors usually found in this kind of analysis on macroeconomic data, is reached here only
when dealing with about four years of daily data. A tentative economic interpretation of this
fact relies in the nature of the forces leading the market in the short term, which may be
reasonably thought to be a larger number than those few driving the economy in the long run.
We set the number of lags to s = 4, i.e. we consider one trading week. Table 1 summarizes
the results of the dynamic factor decomposition, while table 2 presents descriptive statistics
on the distribution of the variance of the common part over the total variance of each series.

6Outliers have been dropped and replaced with an average of previous and following returns.
7Following the SIC classification we identify the finance sector with the 1-digit SIC code 6 and include in

the electronics sector all 2-digit SIC codes between 35 and 38 (included).

6



10 70 140
0

0.05

0.1

0.15

0.2

0.25

0.3

n ≤N

factor1

factor2

factor3

factor4

factor5

factor6

factor7

factor8

factor9

explained variance

Figure 1: Finance, 515 observations. Explained variance.
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Figure 2: Finance, 515 observations. Cumulated explained variance.
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Sample Number of Length of Number of Number of Variance explained
series insample dynamic static by the first q

factors q factors r eigenvalues

Random 475 515 8 40 72%
1030 3 15 34%

Finance 140 515 7 35 72%
1030 3 15 46%

Electronics 171 515 8 40 74%
1030 4 20 40%

Table 1: Dynamic factor decomposition.

Sample No. Length Variance of the
of of common part
series insample over total

average max min std

Random 475 515 18% 45% 6% 7%
1030 18% 50% 2% 9%

Finance 140 515 36% 60% 17% 11%
1030 32% 62% 7% 15%

Electronics 171 515 31% 59% 15% 9%
1030 21% 48% 4% 9%

Table 2: Variance of the common part.

In the factor decomposition for the large dataset with 475 series the average variance explained
by the common part is just 18% (versus 36% - 32% for finance and 31% - 21% for electronics).
Indeed it seems not to be a good factor decomposition, probably due to the inclusion in the
sample of too many heterogeneous series. Therefore we test our model only for the finance and
electronics subsamples. Analogously, at each step of our forecasting scheme only 515 working
days will be used as in-sample observations.
For both samples, we adopt a rolling scheme with 100 iterations. At each iteration we make
one-step-ahead volatility predictions by using the information contained in the previous 515
observations of returns. The benchmark model is the univariate GARCH, which uses a single
return series to forecast volatility. Our model exploits all the in-sample return series to predict
volatility. In both cases, when we model the conditional mean part of processes, we follow the
procedure explained in section 3, and we use the suffix “w mean” in the tables. On the other
hand when we do not model the conditional mean we use the suffix “w/o mean”.

Table 3 reports, for the first iteration, the percentages of series of returns, common and
idiosyncratic components presenting an ARMA structure, i.e. a significative autocorrelation
in the levels.

8



Finance sample
515 obs.

xt χt ξt

33% 64% 38%

Electronics sample
515 obs.

xt χt ξt

30% 59% 29%

Table 3: Percentage of series containing an ARMA component.

4.2 Volatility proxies

The comparison of volatility prediction accuracy between our model and the benchmark is
done with respect to the adjusted range, given the unavailability of high-frequency data in our
dataset. In order to improve the robustness of our results we also compare volatility forecasts
using squared returns as proxies only for the “w/o mean” predictions.
The idea of a range-based estimation of volatility dates back in time (see e.g. Feller [1951]);
we compute the range (actually meaning the intradaily log-range) as:

RANGEt = log (Pt max) − log (Pt min) , (10)

where (Pt max) and (Pt min) are respectively the highest price and the lowest price on day
t. However, whereas the existence of a relation between range and volatility seems not to
be deniable, there is not a wide consensus about the way of adjusting the range to best
approximate volatility. According to Parkinson [1980], we adjust the range as in the following:

adj.RANGEt =
RANGEt√

log 16
≈ 0.6006 × RANGEt, (11)

where (adj.RANGEt)
2 is an unbiased proxy for the stock volatility at time t, when the stock

price follows a random walk without drift. Different adjustments have been suggested, among
others, by Rogers and Satchell [1991], Kunitomo [1992] and Yang and Zhang [2000] as conse-
quences of different theoretical assumptions on the data generating process (e.g. random walk
with drift). For our empirical purposes, we prefer to use the adjusted range as described in
(11), because this proxy has been shown by Brandt and Kinlay [2005] to better approximate
realized volatility, and therefore it seems to better mimic conditional variance when dealing
with real data.

4.3 Performance evaluation: Mincer-Zarnowitz regressions

Following Andersen et al. [2003], we evaluate the volatility forecasts of our model by running
a Mincer-Zarnowitz regression (Mincer and Zarnowitz [1969]). We project ex-post volatility
proxies on a constant and the one-step-ahead model forecasts. For each series we run a
regression based upon real and predicted conditional standard deviations:

(Vt+1)
1/2 = b0 + b1

(

σ̂2
t+1

)1/2
+ et+1 t = 515, . . . , 615 (12)

9



Sample Series Model b̂0 b̂1 R2

number

Finance 1 GARCH -0.0578 2.0131 0.1558

GDFM+GARCH -0.0837 2.7571 0.0428
Electronics 1 GARCH 0.0168 0.1648 0.0027

GDFM+GARCH 0.0162 0.1922 0.0034

Finance 2 GARCH 0.0074 0.2995 0.0322
GDFM+GARCH 0.0058 0.4319 0.0389

Electronics 2 GARCH 0.0390 -0.4170 0.0052
GDFM+GARCH -0.0350 1.8722 0.0406

Finance 3 GARCH 0.0000 0.6674 0.0361

GDFM+GARCH 0.0049 0.3577 0.0056
Electronics 3 GARCH 0.0039 0.5149 0.0326

GDFM+GARCH -0.0207 1.7097 0.0549

... ... ... ... ... ...

Finance arit. GARCH 0.0050 0.4299 0.0296

mean GDFM+GARCH 0.0038 0.5162 0.0236
Electronics arit. GARCH 0.0113 0.2491 0.0266

mean GDFM+GARCH 0.0039 0.5918 0.0297

Table 4: MZ regression - against adjusted range with mean - using conditional standard
deviations.

where the volatility proxy Vt+1 is the squared adjusted observed range, and σ̂2
t+1 represents the

volatility forecast, as predicted at time t. For each subsample, we perform the projection both
on GDFM+GARCH forecasts and traditional GARCH forecasts, so that we can compare the
results. Should a model be correctly specified, we would obtain values of b̂0 and b̂1 that are
close to 0 and 1, respectively. Table 4 summarizes the results of the regression, run by using
conditional standard deviations both in the real data, here approximated by the adjusted
range, and in the model forecasts, obtained with mean predicting. The GDFM+GARCH
outperforms the traditional GARCH both in the parameters and in the R2 for the electronics
sample, and only in the parameters for the finance sample.

4.4 Performance evaluation: root mean square errors

Series by series, we take the prediction of the two models and compute one-step-ahead root
mean square errors (RMSE) against the real value of the volatility proxy. We compute the
RMSE as follows:

RMSEi =

√

√

√

√

1

100

615
∑

t=515

(σ̂2
it+1 − Vit+1)

2
i = 1, . . . , N (13)

where σ̂2
it+1 is the one-step-ahead volatility forecast of the considered model for series i. The

proxy used are squared returns and squared adjusted range. In table 5 we report the RMSE
for the first series and an average, according to which the GDFM+GARCH performs better
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Sample Series Model RMSE RMSE RMSE

number adj. range
w mean

adj. range
w/o mean

squared
returns

Finance 1 GARCH 0.0235 0.0240 0.0255
GDFM+GARCH 0.0231 0.0083 0.0243

Electronics 1 GARCH 0.0137 0.0137 0.0197
GDFM+GARCH 0.0135 0.0135 0.0196

Finance 2 GARCH 0.0104 0.0099 0.0152
GDFM+GARCH 0.0094 0.0070 0.0148

Electronics 2 GARCH 0.0154 0.0155 0.0232
GDFM+GARCH 0.0139 0.0139 0.0220

Finance 3 GARCH 0.0065 0.0065 0.0098

GDFM+GARCH 0.0063 0.0091 0.0099
Electronics 3 GARCH 0.0104 0.0105 0.0148

GDFM+GARCH 0.0099 0.0099 0.0144

... ... ... ... ... ...

Finance arit. GARCH 0.0081 0.0077 0.0121
mean GDFM+GARCH 0.0073 0.0073 0.0118

Electronics arit. GARCH 0.0121 0.0113 0.0173
mean GDFM+GARCH 0.0107 0.0108 0.0169

Table 5: RMSE - against adjusted range with mean, adjusted range without mean and squared
returns.

than the univariate GARCH for both samples and all proxies. Results are also summarized
in table 6 by means of two statistics:

• P corresponds to the percentage of series for which the GDFM+GARCH outperforms
the univariate GARCH, i.e. the percentage of the cases for which

RMSEi(GDFM + GARCH)

RMSEi(GARCH)
< 1 i = 1, . . . , N (14)

In both samples and for all proxies the GDFM+GARCH outperforms the GARCH model
for more than 80% of the series.

• Q is the geometric mean of the RMSE ratios:

Q =

(

N
∏

i=1

RMSEi(GDFM + GARCH)

RMSEi(GARCH)

)

1

N

(15)

In other words, the quantity (1−Q) is a measure of the average gain obtained by using
our model. For both samples and all proxies Q is slightly smaller than 1.

In order to test the significance of the difference between the RMSEs of two models when one
of the models nests the other, Clark and West [2007] show that a correction is needed on the
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Sample Adj. range Adj. range Squared
w mean w/o mean
P Q P Q P Q

Finance 85.00% 0.91 86.43% 0.95 82.86% 0.98
Electronics 88.89% 0.90 89.47% 0.95 92.40% 0.97

Table 6: One-step-ahead results.

Finance Electronics

t-ratio for series 1 0.9608 2.5476∗∗

t-ratio for series 2 3.6514∗∗ 6.1044∗∗

t-ratio for series 3 1.9237∗∗ 1.5143∗

t-ratio for series 4 2.7354∗∗ 11.280∗∗

... ... ...

number of series for which 121 (86.43% of total) 151 (88.30% of total)

GDFM+GARCH outperforms GARCH at 10%

number of series for which 106 (75.71% of total) 140 (81.87% of total)

GDFM+GARCH outperforms GARCH at 5%

Table 7: Clark-West test results against adjusted range with mean.

RMSE of the nested model (in our case the GDFM+GARCH). In particular, the following
difference must be computed for each time t and each series i:

f̂it+1 =
(

V
1/2
it+1 − σ̂it+1G

)2

−
[

(

V
1/2
it+1 − σ̂iF t+1

)2

− (σ̂it+1G − σ̂it+1F )2

]

, (16)

where Vit+1 represents the volatility proxy at time t + 1 and σ̂2
it+1 represents the standard

deviation forecast at time t + 1, as predicted at time t by the simple GARCH (subscript
G) or the GDFM+GARCH (subscript F ). We then test for equal mean square prediction
error by regressing each series f̂it on a constant and using the resulting t-statistic for a zero
coefficient. For each series i, GDFM+GARCH proves to work better than the traditional
GARCH whenever the t-ratio is greater than +1.282 (for a one sided 0.10 test) or +1.645 (for
a one sided 0.05 test). In table 7 we show our results of the test by Clark and West [2007]
for both samples and all proxies. At both levels of significance, GDFM+GARCH performs
better than univariate GARCH in the great majority of cases. Since the correction consists
in subtracting a positive quantity from the nested model’s RMSE, in case the test does not
reject the hypothesis of the two RMSEs being different from each other it is possible that
the percentage of series for which the GDFM+GARCH outperforms the GARCH actually
increases with respect to the P statistic as in the case of the finance sample.

5 Conclusions

In this paper we have proposed a new model for multivariate analysis of large financial datasets
which combines one of the latest developments in factor analysis, the Generalized Dynamic
Factor Model, with the the world-wide used GARCH model. The GDFM+GARCH exploits

12



a dynamic factor decomposition in order to retrieve the common part and the idiosyncratic
part of each return series. These components are assumed to present ARCH effects: being
ruled out the use of a multivariate GARCH model because of the large number of parameters,
we solve this problem by estimating 2N univariate GARCH models. Despite the impossi-
bility of estimating conditional covariances, we have the big advantage that, by exploiting
the multivariate information embodied in sample covariances, we take into account all the
dynamic relations between and within series. In the empirical part of the work we have com-
pared the GDFM+GARCH predictive performance against the performance of the standard
univariate GARCH, proxying out-of-sample conditional variance with squared returns and
squared adjusted range. Results on two sectoral samples are encouraging and robust: the
GDFM+GARCH outperforms the standard GARCH most of the time.
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