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Abstract

The paper presents a new framework to assess firm level heterogeneity and to study
the rate and direction of technical change. Building on the analysis of revealed short-
run production functions by Hildenbrand (1981), we propose the (normalized) volume of
the zonotope composed by vectors-firms in a narrowly defined industry as an indicator
of inter-firm heterogeneity. Moreover, the angles that the main diagonal of the zonotope
form with the axes provides a measure of the rates and directions of technical change over
time. The proposed framework can easily account for n-inputs and m-outputs and, crucially,
the measures of heterogeneity and technical change do not require many of the standard
assumptions from production theory.
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1 Introduction

In recent years an extremely robust evidence regarding firm– and plant– level longitudinal mi-
crodata has highlighted striking and persistent heterogeneity across firms operating in the same
industry. A large body of research from different sectors in different countries (cf. Baily et al.;
1992; Baldwin and Rafiquzzaman; 1995; Bartelsman and Doms; 2000; Disney et al.; 2003; Dosi;
2007; Syverson; 2011, among many others) documents the emergence of the following “stylized
facts”: first, wide asymmetries in productivity across firms; second, significant heterogeneity
in relative input intensities even in presence of the same relative input prices; third, high in-
tertemporal persistence in the above properties. Fourth, such heterogeneity is maintained also
when increasing the level of disaggregation, thus plausibly reducing the diversity across firms’
output.

The latter property has been vividly summarized by Griliches and Mairesse (1999): “We
[...] thought that one could reduce heterogeneity by going down from general mixtures as “total
manufacturing” to something more coherent, such as “petroleum refining” or “the manufacture
of cement.” But something like Mandelbrot’s fractal phenomenon seems to be at work here also:
the observed variability-heterogeneity does not really decline as we cut our data finer and finer.
There is a sense in which different bakeries are just as much different from each others as the
steel industry is from the machinery industry.”

The bottom line is that firms operating in the same industry display a large and persistent
degree of technological heterogeneity, while there does not seem to be any clear sign that
either the diffusion of information on different technologies, or the working of the competitive
mechanism bring about any substantial reduction of such an heterogeneity, even when involving
massive differences in efficiencies, as theory would predict.

This evidence poses serious challenges not only to theory of competition and market selec-
tion, but also to any theoretical or empirical analysis which relies upon some notion of industry
or sector defined as a set of production units producing under rather similar input prices with
equally similar technologies, and the related notion of “the technology” of an industry repre-
sented by means of a sectoral production function. Indeed, the aggregation conditions needed
to yield the canonic production functions building from the technologies of micro entities are
extremely demanding, basically involving the identity of the latter up to a constant multiplier
(cf. Fisher 1965 and Hulten 2001).

Note that these problems do not only concern the neoclassical production function, whose
well known properties may either not fit empirical data or fit only spuriously,1 but also non
neoclassical representations of production at the industry level. If input-output coefficients à la
Leontief (1986) are averages over a distribution with high standard deviation and high skewness,
average input coefficients may not provide a meaningful representation of the technology of
that industry. Moreover, one cannot take for granted that changes of such coefficients can be
interpreted as indicators of technical change as they may be just caused by some changes in the
distribution of production among heterogeneous units, characterized by unchanged technologies.

How does one then account for the actual technology - or, better, technologies - in such
industry? Hildenbrand (1981) suggests a direct and agnostic approach which instead of esti-
mating some aggregate production function, offers a representation of the empirical production
possibility set of an industry in the short run based on actual microdata. Each production
unit is represented as a point in the input-output space whose coordinates are input require-
ments and output levels at full capacity. Under the assumptions of divisibility and additivity of
production processes,2 the production possibility set is represented geometrically by the space
formed by the finite sum of all the line segments linking the origin and the points representing

1Shaikh (1974), for instance, shows that Cobb-Douglas production functions with constant returns to scale,
neutral technological change and marginal products equal to factor rewards in presence of constant distributional
shares of labour and capital (wages and profits) tend to yield a good fit to the data for purely algebraic reasons.

2Already not entirely innocent assumptions: for a discussion cf. Dosi and Grazzi (2006).
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each production unit, called a zonotope (see also below). Hildenbrand then derives the actual
“production function” (one should more accurately say “feasible” functions) and shows that
“short-run efficient production functions do not enjoy the well-known properties which are fre-
quently assumed in production theory. For example, constant returns to scale never prevail, the
production functions are never homothetic, and the elasticities of substitution are never con-
stant. On the other hand, the competitive factor demand and product supply functions [. . . ] will
always have definite comparative static properties which cannot be derived from the standard
theory of production” (Hildenbrand; 1981, p. 1095).

In this paper we move a step forward and show that by further exploiting the properties
of zonotopes it is possible to obtain rigorous measures of heterogeneity and technical change
without imposing on data a model like that implied by standard production functions. In par-
ticular, we develop measures of technical change that take into consideration the entire observed
production possibility set derived from observed heterogeneous production units, instead of con-
sidering only an efficient frontier. In that, our representation of industry-level dynamics bear
some complementarities to non-parametric estimates of (moving) efficiency frontiers (cf. Farrell
1957, Färe et al. 1994).

The promise of the methodology is illustrated in this work with reference to the evidence
on micro data of Italian industries and the dynamics of their distributions.

The rest of the work is organized as follows. Section 2 builds on the contribution of
Hildenbrand (1981) and introduces the (normalized) volume of the zonotope as a measure
of industry heterogeneity. We then proposes a measure of technical change based on the zono-
tope’s main diagonal and we assess the role of firm entry and exit on industry level productivity
growth. Section 3 presents an empirical application on manufacturing firms in narrowly de-
fined industries. Section 4 discuss the implications of this work and further applications of the
proposed methodology.

2 Accounting for heterogeneous micro-techniques

Without loss of generality it is possible to represent the ex post technology of a production unit
by means of a production activity represented by a vector (Koopmans; 1977; Hildenbrand; 1981)

a = (α1, . . . , αl, αl+1) ∈ R
l+1
+ .

A production unit, which is described by the vector a, produces during the current period
αl+1 units of output by means of (α1, . . . , αl) units of input.

3 Also notice that in this framework
it is possible to refer to the size of the firm as to the length of vector a, which can be regarded
as a multi-dimensional extension of the usual measure of firm size, often proxied either by the
number of employees, sales or value added. In fact, this measure allows to employ both measures
of input and output in the definition of firm size.

In this framework, as noted by Hildenbrand (1981), the assumption of constant returns to
scale (with respect to variable inputs) for individual production units is not necessary: indeed
it is redundant if there are “many” firms in the industry. Anyhow, the short run production
possibilities of an industry with N units at a given time are described by a finite family of vectors
{an}1≤n≤N of production activities. In order to analyze such a structure Hildenbrand introduces
a novel short-run feasible industry production function defined by means of a Zonotope generated
by the family {an}1≤n≤N of production activities. More precisely let {an}1≤n≤N be a collection
of vectors in R

l+1, N ≥ l + 1. To any vector an we may associate a line segment

[0, an] = {xnan | xn ∈ R, 0 ≤ xn ≤ 1}.

3Our considerations hold also for the multi-output case.
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Hildenbrand defines the short run total production set associated to the family {an}1≤n≤N

as the Minkowski sum

Y =

N
∑

n=1

[0, an]

of line segments generated by production activities {an}1≤n≤N . More explicitly, it is the
Zonotope

Y = {y ∈ R
l+1
+ | y =

N
∑

n=1

φnan, 0 ≤ φn ≤ 1}.

Remark 2.1 Geometrically a Zonotope is the generalization to any dimension of a Zonohedron
that is a convex polyhedron where every face is a polygon with point symmetry or, equivalently,
symmetry under rotations through 180◦. Any Zonohedron may equivalently be described as the
Minkowski sum of a set of line segments in three-dimensional space, or as the three-dimensional
projection of an hypercube. Hence a Zonotope is either the Minkowski sum of line segments in
an l-dimensional space or the projection of an (l+ 1)-dimensional hypercube. The vectors from
which the Zonotope is formed are called its generators.4

Analogously to parallelotopes and hypercubes, Zonotopes admit diagonals. We define the
main diagonal of a Zonotope Y as the diagonal joining the origin O = (0, . . . , 0) ∈ Y ⊂ R

l+1

with its opposite vertex in Y . Algebraically it is simply the sum
∑N

n=1 an of all generators, that
is, in our framework, the sum of all production activities in the industry. In the following, we
will denote by dY such diagonal and we will call it production activity of the industry.

Denote by D the projection of Y on the firsts l coordinates, i.e.

D = {v ∈ Rl
+ | ∃x ∈ R+ s.t. (v, x) ∈ Y }

and the production function F : D −→ R+ associated with Y as

F (v) = max{x ∈ R+ | (v, x) ∈ Y }.

In the definition above the aggregation of the various production units implies a “frontier”
associating to the level v1, ..., vl of inputs for the industry the maximum total output which is
obtainable by allocating, without restrictions, the amounts v1, ... vl of inputs in a most efficient
way over the individual production units. However, as argued by Hildenbrand (1981) it might
well be that the distribution of technological capabilities and/or the market structure and or-
ganization of the industry is such that the efficient production function couldn’t be the focal
reference either from a positive nor from a normative point of view in so far as the “frontier”,
first, does not offer any information on the actual technological set-up of the industry, and, sec-
ond, does not offer any guidance to what the industry would look like under an (unconstrained)
optimal allocation of resources. This notwithstanding, estimates of the “frontier” offer impor-
tant clues on the moving best-practice opportunities and the distance of individual firms from
them. Here is also the notional complementarity between this approach and the contributions
in the Data Envelopment Analysis (DEA) tradition, see Farrell (1957); Charnes et al. (1978);
Simar and Zelenyuk (2011) for the original contributions and Murillo-Zamorano (2004) for a
review. In the DEA approach one is interested in providing a measure of firm’s efficiency and
that is provided by the distance between any single firm and the efficient frontier. Hence each
firm that is not on the efficiency frontier is compared to a similar firm on the frontier or with
a convex combination of similar firms on the frontier. Conversely, in our approach, the way in

4The interested reader can refer to Ziegler (1995) for a survey on Zonotopes.
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which a firm contributes to industry heterogeneity depends on how such firms combines and
compares with all other firms. A similar argument, see below, applies to how technical change
is measured.

The representation of any industry at any one time by means of the Zonotope provides a
way to assess and measure the degree of heterogeneity. As we shall show below, it allows also
to account for its variation of production techniques adopted by firms in any industry and, at
least as important, it allows to ascertain the rate and direction of technical change.

2.1 Volume of Zonotopes and heterogeneity

Let us remark that if all firms in an industry with N enterprises were to use the same technique
in a given year, all the vectors of the associated family {an}1≤n≤N of production activities
would be multiples of the same vector. Hence they would lie on the same line and the generated
Zonotope would coincide with the diagonal

∑N
n=1 an, that is a degenerate Zonotope of null

volume. This is the case of one technology only and perfect homogeneity among firms. At the
opposite extreme one has the case of maximal heterogeneity. In such a case in the industry
there are firms that can produce a large quantity of output with a quantity of inputs nearly
close to zero, and at the other extreme, much inefficient companies that produce few output
with a large quantity of inputs. This case of maximal heterogeneity is geometrically described
by vectors that generate a Zonotope which is almost a rectangular cuboid.

In the following we provide the formula to compute the volume of the Zonotope.
Let Ai1,...,il+1

be the matrix whose rows are vectors {ai1 , . . . , ail+1
} and ∆i1,...,il+1

its deter-
minant. In our framework, the first l entries of each vector provide the amount of the inputs
used in the production process by each firm, whether the last entry of the vector is output. It
is well known that the volume of the zonotope Y in R

l+1 is given by:

V ol(Y ) =
∑

1≤i1<...<il+1≤N

| ∆i1,...,il+1
|

where | ∆i1,...,il+1
| is the module of the determinant ∆i1,...,il+1

.
Our main interest lies in getting a pure measure of the heterogeneity in techniques employed

by firms within any given industry that allows for comparability across firms and time; that is,
a measure which is independent both from the unit in which inputs and output are measured
and from the number of firms making up the sector. The volume of the Zonotope itself depends
both from the units of measure involved and from the number of firms. In order to solve these
issues we introduce a way to normalize the zonotope’s volume and we get a new index which is
dimensionless and independent from the number of firms.

The normalization we introduce is a generalization of the well known Gini index, which
we call Gini volume of the Zonotope. Analogously to the original index, we will consider the
ratio of the volume of the Zonotope Y generated by the production activities {an}1≤n≤N over
a total volume of an industry with production activity dY =

∑N
n=1 an. It is an easy remark

that the Parallelotope is the Zonotope with largest volume if the main diagonal is fixed. If PY

is the parallelotope of diagonal dY , its volume V ol(PY ), i.e. the product of the entries of dY , is
obviously the maximal volume that can be obtained once we fix the industry production activity
∑N

n=1 an, that is the total volume of an industry with production activity dY =
∑N

n=1 an.
Note that alike the complete inequality case in the Gini index, i.e. the case in which the

index is 1, also in our framework the complete heterogeneity case is not feasible, since in addition
to firms with large values of inputs and zero output it would imply the existence of firms with
zero inputs and non zero output. It has to be regarded as a limit similarly to the 0 volume in
which all techniques are equal, i.e. the vectors {an}1≤n≤N are proportional and hence lie on
the same line.
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Figure 1: The solid angle of a pyramid generated by 4 vectors.

In what follows we consider the Gini volume defined above for the short run total production
set Y :

G(Y ) =
V ol(Y )

V ol(PY )
. (1)

2.2 Unitary production activities

An interesting information is provided by comparison of the Gini volume G(Y ) of the short
run total production set Y and the same index computed for the Zonotope Y generated by
the normalized vectors { an

‖an‖
}1≤n≤N , i.e. the unitary production activities. The Gini volume

G(Y ) evaluates the heterogeneity of the industry in a setting in which all firms have the same
size (norm is equal to one). Hence the only source of heterogeneity is the difference in adopted
techniques, since differences in firm size do not contribute to the volume. This allows to insulate
against possible contribution to heterogeneity that comes through size differences among firms.

Comparing the Gini volume of the Zonotope Y with that of the unitary Zonotope Y will be
informative about how much large or small firms contribute to the heterogeneity in techniques
within the given industry. Indeed, intuitively, if the Gini volume G(Y ) of Y will be bigger than
G(Y ) then it means that the big firms contribute to the heterogeneity more than the small
ones, while if, viceversa, the volume G(Y ) is smaller than G(Y ) then small firms contribute to
heterogeneity more than bigger ones.

2.3 Solid Angle and external production activities

Let us move further and introduce the external Zonotope Ye, which although different from Y

and Y , is related to them. In order to define it we need to introduce the notion of solid angle.
Let us start with the solid angle in a 3-dimensional space, the notion can be easily generalized
to an n-dimensional one.

In geometry, a solid angle (symbol: Ω) is the two-dimensional angle in three-dimensional
space that an object subtends at a point. It is a measure of how large the object appears to
an observer looking from that point. In the International System of Units, a solid angle is a
dimensionless unit of measurement called a steradian (symbol: sr). The measure of a solid angle
Ω varies between 0 and 4π steradian.

More precisely, an object’s solid angle is equal to the area of the segment of a unit sphere,
centered at the angle’s vertex, that the object covers, as shown in figure 1.

In our framework the production activities are represented by a family {an}1≤n≤N of vectors.
Their normalization { an

‖an‖
}1≤n≤N will generate an arbitrary pyramid with apex in the origin.

Note that in general, not all vectors ai, i = 1, . . . , N will be edges of this pyramid. Indeed it can
happen that one vector is inside the pyramid generated by others. We will call external vectors
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those vectors {ei}1≤i≤R of the family {an}1≤n≤N such that their normalizations { ei
‖ei‖

}1≤i≤R

are edges of the pyramid generated by the vectors { an
‖an‖

}1≤n≤N . All the others will be called
internal.

This pyramid will subtend a solid angle Ω, smaller or equal than π
2 as the entries of our

vectors are positive. We will say that the external vectors of the family {an}1≤n≤N subtend the
solid angle Ω if it is the angle subtended by the generated pyramid.

Define the external Zonotope Ye as the one generated by vectors {ei}1≤i≤R. A pairwise
comparison between G(Ye) and G(Y ) shows the relative importance of the density of internal
activities in affecting our proposed measure of heterogeneity.

Solid angle of an arbitrary pyramid. In R
3 the solid angle of an arbitrary pyramid defined

by the sequence of unit vectors representing edges {s1, s2, . . . , sn} can be efficiently computed
by

Ω = 2π − arg

n
∏

j=1

(< sj, sj−1 >< sj, sj+1 > − < sj−1, sj+1 > +i | sj−1sjsj+1 |) (2)

where parentheses < sj, sj−1 > are scalar products, brackets | sj−1sjsj+1 | are scalar triple
products, i.e. determinants of the 3× 3 matrices whose rows are vectors sj−1, sj, sj+1, and i is
the imaginary unit. Indices are cycled: s0 = sn and sn+1 = s1 and arg is simply the argument
of a complex number.

The generalization of the definition of solid angle to higher dimensions simply needs to
account for the n-sphere in an n+ 1-dimensional space.

2.4 Technical Change

Let us consider a non zero vector v = (x1, x2, . . . , xl+1) ∈ R
l+1 and for any i ∈ 1, . . . , l + 1 the

projection map

pr−i : R
l+1 −→ R

l

(x1, . . . , xl) 7→ (x1, . . . , xi−1, xi+1, . . . , xl) .

Using the trigonometric formulation of the Pythagoras’ theorem we get that if ψi is the
angle that v forms with the xi axis, θi =

π
2 − ψi its complement and ‖vi‖ is the norm of the

projection vector vi = pr−i(v), i.e. the length of the vector vi, then the tangent of θi is:

tgθi =
xi

‖vi‖
.

In our framework we are primarily interested in the angle θl+1 that the diagonal of the
zonotope, i.e. the vector dY , forms with the space generated by all inputs. This can easily
be generalized to the case of multiple outputs, so that if we have m different outputs we will
consider the angles θi for l < i ≤ l +m.

In order to assess if and to what extent productivity is growing in a given industry, it is
possible to analyze how the angle θl+1 varies over the years. For example if the angle θl+1

increases then productivity increases. This is indeed equivalent to state that the industry is
able to produce more output, given the quantity of inputs, than it was able to. On the contrary,
a decrease in θl+1 stands for a productivity reduction.

Also notice that it is possible to study how the relative inputs use changes over the years.
In this case it is enough to consider the angles that the input vector, i.e. the vector with entries
given by only the inputs of dY , forms with different input axis. More precisely, if there are l
inputs and m outputs and the vectors of production activities are ordered such that the first l
entries are inputs, then we can consider the projection function on the first l coordinates:

7



prl : R
l+m −→ R

l

(x1, . . . , xl+m) 7→ (x1, . . . , xl) .

The change over time of the angle ϕi between the projection vector pr(dY ) and the xi axis,
1 ≤ i ≤ l, captures the changes in the relative intensity of input i over time with respect to all
the other inputs.

It is also relevant to measure the changes in the normalized angles θi. Indeed, as we have
done for volumes, we can consider the normalized production activities { an

‖an‖
}1≤n≤N . Call dY

the resulting industry production activity, of course, one can study how it varies over time and
this is equivalent to study how the productivity of an industry changes independently from the
size of the firms. In particular the comparison of the changes of two different angles, θi and θi,
is informative on the relative contribution of bigger and smaller firms to productivity changes
and hence, on the possible existence of economies/diseconomies of scale.

For the sake of simplicity and for coherence with the 1 input, 1- output case we study the
variation of the tangent of angles instead of angles themselves. Remark that if an angle increases
then its tangent increases too.

2.5 Entry and exit

Under what circumstances does the entry of a new firm increase or decrease the heterogeneity of
a given industry? In order to compute how entries and exits impact on industry heterogeneity
it is enough to remark that, by definition of volume, given a zonotope Z in the space R

l+1

generated by vectors {an}1≤n≤N and a vector b = (x1, . . . , xl+1) ∈ R
l+1, the volume of the new

zonotope X generated by {an}1≤n≤N ∪ {b} can be computed as follow:

V ol(X) = V ol(Z) + V (x1, . . . , xl+1)

where V (x1, . . . , xl+1) is a real continuous function on R
l+1 defined as:

V (x1, . . . , xl+1) =
∑

1≤i1<...<il≤N

| Λi1,...,il |,

Λi1,...,il being the determinant of the matrix Bi1,...,il whose rows are vectors {b, ai1 , . . . , ail}.
If dZ = (d1, . . . , dl+1) is the diagonal of the Zonotope Z, then the diagonal of X will be

dX = dZ + b = (d1 + x1, . . . , dl+1 + xl+1). The heterogeneity for the new industry will be the
continuous real function

G(X) =
V ol(Z) + V (x1, . . . , xl+1)

V ol(PX)
=
V ol(Z) + V (x1, . . . , xl+1)

Πl+1
i=1(di + xi)

and the tangent of the angle with the input space will be the continuous real function

tgθl+1(x1, . . . , xl+1) =
dl+1 + xl+1

‖pr−(l+1)(dX)‖

Studying the variation (i.e. gradient, hessian etc...) of these real continuous functions is
equivalent to analyze the impact of a new firm on the industry. So, for example, when these
functions increase then the new firm positively contributes both to industry heterogeneity and
productivity. We consider as an example the entry of a firm in the 3-dimensional case. If Z is
the Zonotope generated by vectors {an}1≤n≤N in R

3 with entries an = (a1n, a
2
n, a

3
n), the function

V (x1, x2, x3) for a generic vector b = (x1, x2, x3) is

8



V (x1, x2, x3) =
∑

1≤i<j≤N

| x1(a
2
i a

3
j − a3i a

2
j)− x2(a

1
i a

3
j − a3i a

1
j ) + x3(a

1
i a

2
j − a2i a

1
j ) | .

The diagonal of the new Zonotope X is

dX = (
N
∑

i=1

a1i + x1,

N
∑

i=1

a2i + x2,

N
∑

i=1

a3i + x3).

We get the Gini volume for X as:

G(X) =
V ol(Z) +

∑

1≤i<j≤N | x1(a
2
i a

3
j − a3i a

2
j )− x2(a

1
i a

3
j − a3i a

1
j) + x3(a

1
i a

2
j − a2i a

1
j) |

∑N
i,j,k=1(a

1
i + x1)(a2j + x2)(a3k + x3)

, (3)

where V ol(Z) and {a1n, a
2
n, a

3
n}1≤n≤N are constants and the tangent of the angle with the

input space is:

tgθ3(x1, x2, x3) =

∑N
i=1 a

3
i + x3

√

(
∑N

i=1 a
1
i + x1)2 + (

∑N
i=1 a

2
i + x2)2

.

If we fix the output setting x3 constant or we fix the norm of b, i.e. the size of the firm,
setting x3 =

√

‖b‖ − x21 − x22 then G(X) and tgθ3(x1, x2, x3) become two variables functions,
G(X) = G(X)(x1, x2) and tgθ3(x1, x2), which can be easily studied from a differential point of
view.

It is important to notice that all the foregoing measures not only can be easily applied to any
n-dimensional case with multi-dimensional outputs (i.e., for example, l inputs and m outputs
in the space Rl+m), but also to the more general case of a vector space V over a field K. Indeed
all the tools we introduced hold for any finite dimensional vector space. In that respect recall
that the set Hom(V,W ) of all linear maps between two vector spaces V and W over the same
field K is a vector space itself. Hence we can consider the vector space Hom(Rl,Rm) in which
a vector is a linear function from R

l to R
m. More in general, our model applies to all finite

dimensional topological vector spaces such as, for example, the space of degree n polynomials
over a field K, the finite dimensional subspaces of smooth functions on R and so on.

2.6 A toy illustration

Consider the production schedules of 10 hypothetical firms composing an industry as reported
in Table 1, with two inputs, labor, on the x axis, and capital, on the y axis, and one output,
on the z axis, measured in terms of value added; “external” production activities are in bold.
Figure 2 reports the solid angles in year 1 and 2, respectively.5

In order to better evaluate the proposed measure of heterogeneity and technical change,
and, even more relevant, their evolution over time, we allow for a change in only one of the firm
(vector) making up our hypothetical industry in going from one period to the other, as reported
in Table 1. In particular, from period 1 to 2 only the production schedule of firm 10 changes with
unequivocal productivity increases as both inputs decrease while output increases. Then, from
period 2 to period 3 the ninth firm exits the industry. The property of the vector representing
the ninth firm is that it is an “external” vector, hence removing it, affects significantly the
shape of the zonotope. Finally, from period 3 to 4 firm 8 leaves the industry. However this time

5Numerical calculations for this toy illustration as well as for the empirical analysis that follows have been
performed using the software zonohedron, written by Federico Ponchio. The code and instructions are available
at: http://vcg.isti.cnr.it/~ponchio/zonohedron.php.
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Year 1 Year 2 Year 3 Year 4

# L K VA L K VA L K VA L K VA
1 7.0 4.0 9.0 7.0 4.0 9.0 7.0 4.0 9.0 7.0 4.0 9.0

2 1.0 4.0 5.0 1.0 4.0 5.0 1.0 4.0 5.0 1.0 4.0 5.0

3 6.0 2.0 9.0 6.0 2.0 9.0 6.0 2.0 9.0 6.0 2.0 9.0

4 1.5 8.0 10.0 1.5 8.0 10.0 1.5 8.0 10.0 1.5 8.0 10.0

5 5.0 2.0 8.0 5.0 2.0 8.0 5.0 2.0 8.0 5.0 2.0 8.0
6 1.0 3.0 8.0 1.0 3.0 8.0 1.0 3.0 8.0 1.0 3.0 8.0

7 2.0 2.0 7.0 2.0 2.0 7.0 2.0 2.0 7.0 2.0 2.0 7.0

8 3.0 5.0 7.0 3.0 5.0 7.0 3.0 5.0 7.0
9 2.5 2 2 2.5 2 2

10 5.0 6.0 4.0 4.0 4.0 6.0 4.0 4.0 6.0 4.0 4.0 6.0

Table 1: Production schedules in year 1 to 4, Number of employees, Capital and Output. External
production activities in bold.
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Figure 2: Solid angle in year 1 and 2.

it is a firm represented by an “internal” vector. How do these changes, i.e. a firm increasing
productivity and two different firm exiting, affect industry heterogeneity and the extent and
direction of technical change?

Let us introduce a few notations in order to study this easy example. Denote by atj ∈ R
3 the

3-dimensional vector representing the production activity of the firm j in the year t, 1 ≤ j ≤ 10
and 1 ≤ t ≤ 4 (e.g. a11 = (7.0, 4.0, 9.0) and a22 = (1.0, 4.0, 5.0)). The zonotope at year t will be
denoted by Y t and the industry production activity will be dY t =

∑10
j=1 a

t
j , 1 ≤ t ≤ 4.

Then the matrices described in section 2.1 will be 3×3 matrices At
i,j,k with vectors ati, a

t
j , a

t
k

as columns and determinants ∆t
i,j,k .

Under the foregoing notations, the volumes of zonotopes Y t are given by

V ol(Y t) =
∑

1≤i<j<k≤10

| ∆t
i,j,k | , 1 ≤ t ≤ 4

and yielding the following values:

V ol(Y 1) = 8265 V ol(Y 2) = 6070 V ol(Y 3) = 4664.5 V ol(Y 4) = 3402.
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Figure 3: 3D representation of the zonotope of the toy illustration.

The norm of the projection on the space of inputs of the 3-dimensional diagonal vector
dY t = (dt1, d

t
2, d

t
3), 1 ≤ t ≤ 4, is ‖pr−3(dY t)‖ =

√

(dt1)
2 + (dt2)

2.
and we get following numerical values:

‖pr−3(dY 1)‖ = 50.997 ‖pr−3(dY 2)‖ = 48.84 ‖pr−3(dY 3)‖ = 45.67 ‖pr−3(dY 4)‖ = 39.96

The Gini volume will be:

G(Y t) =
V ol(Y t)

dt1d
t
2d

t
3

and the numerical results for 1 ≤ t ≤ 4 are shown in Table 2.
As illustrated in Section 2.4 the variation over time of the angle θ3 that the diagonal of the

zonotope Y t forms with the plane x, y of inputs can be used to assess if and to what extent
productivity is growing in a given industry; similarly if ϕt

1 is the angle that the diagonal of Y t

forms with the x axis, then cosϕt
1 allows to study how the relative inputs use changes over the

years. Using the notation introduced above, they are given, respectively, by

tgθt3 =
dt3

‖pr−3(dY t)‖
and tgϕt

1 =
dt2
‖dt1‖

,

where the first one is the index of the technical evolution of the output and the second one is
the index for the first input (the second one can be obtained as tgϕt

2 =
1

tgϕt
1

). Table 2 displays

the values of Gini volume for the zonotopes Y t, the zonotopes Y
t
generated by the normalized

production activities {
atj

‖atj‖
}1≤j≤10 and the zonotopes Y t

e generated by the external production

activities which are in bold in Table 1. Moreover it also reports the solid angle, the ratio of the
Gini volumes of Y t over the Gini volumes of Y t

e and the angles that account for the rate and
direction of technical change.

In going from year 1 to 2 firm 10 reports an unequivocal increase in productivity. As shown in
Figure 2 the normalized vector accounting for the production activity of firm 10 rotates inward:
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Year 1 Year 2 Year 3 Year 4

G(Y t) 0.09271 0.07196 0.06518 0.06880

G(Y
t
) 0.09742 0.07905 0.06795 0.07244

G(Y t
e ) 0.12089 0.09627 0.07297 0.07297

Solid Angle 0.28195 0.22539 0.15471 0.15471

G(Y t) / G(Y t
e ) 0.70593 0.74748 0.89324 0.94285

tgθt3 1.3532 1.4538 1.51066 1.55133

tgϕt
1 1.11765 1.09091 1.11475 1.05455

Table 2: Measures of Volume, normalizations and solid angles in the four years of the toy illustration.

in period 1 a110 is a boundary (normalized) vector, whether in period 2, a210 is an “internal”
vector. Since a boundary vector (firm) shifts inward, production techniques are more similar
in period 2, hence heterogeneity within the industry reduces. This is captured by our proposed
measures which all vary in the expected direction. The Gini index, G(Y ), the Gini index
on normalized, G(Y ) and “external” vectors reduce from year 1 to year 2. As apparent from
Figure 2 also the solid angle reduces. The ratio G(Y t) / G(Y t

e ) increases suggesting that internal
vectors now contribute more to the volume as compared to external vectors. The variation of
the tangent of the angle θ3 that the diagonal of the zonotope forms with the plane of inputs is
our measure of technical change. From year 1 to 2, firm 10, the least efficient, becomes more
productive, and this within effect positively contributes to productivity growth at the industry
level as captured by the increase in the tangent of the angle θ3. The last indicator of Table 2
is informative of the direction of technical change. The decrease in tgϕt

1 suggest that technical
change was capital saving.

From year t = 2 to year t = 3 firm 9, an external vector, leaves the industry.6 The outcomes
are smaller Gini volumes for all our Zonotopes. The solid angle reduces, too, whether the
tangent of the angle θ3 increases, suggesting the exit of firm 9 resulted in a a further efficiency
gain for the industry. Technical change is now labor saving as tgϕt

1 increases.
From period t = 3 to t = 4 an “internal” vector, firm 8, drops the industry. In this case all

our measures of Gini volumes point to an increase in heterogeneity, except, obviously, G(Y t
e )

since the boundary vectors do not change. Again the exit of firm 8 positively contributes to
productivity growth in the industry, as shown by the increase in tgθt3. Technical change is now
capital saving, tgϕt

1 decreases.
More in general, the graph in figure 4 shows how the heterogeneity changes when a generic

firm of value added equals to 5.0 enters the industry in year 1. The function plotted in Fig. 4
is the function G(X) in equation (3) with Z = Y 1, N = 10 and vectors an = a1n.

An analogous graph can be plotted in order to study the variation of technical change.

3 An empirical application

In the following we put the model at work on longitudinal firm-level data of an ensemble of
Italian 4-digit industries (chosen on the grounds of the numerosity of observations) over the
period 1998-2006. Values have been deflated with the industry-specific production price index.
Output is measured as valued added (thousands of euro), capital is tangible assets (thousands
of euro) and labour is the number of employees (full time equivalent). More details on the
databank are in Appendix A at the end of the paper. The list of sectors and the number of

6Note that, intuitively, external vectors are the analogous to the support of an empirical distribution.
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Figure 4: Variation of heterogeneity (on the z axis) when a firm of labor x, capital y and fixed value
added enters the industry.

observations is reported in Table 3 together with the number of external vectors, in brackets.
Figure 5 is the real world analog of Figure 2 and it shows the coordinates of the normalized

vectors on the unit sphere for firms making up the industry in 2002 and 2006. Both plots show
that the solid angle provides a snapshot of the extreme techniques at use in a given industry. For
the same reason, this measure can change a lot following a variation in the adopted technique
by one firm only. Hence we will not refer to the solid angle as our measure of heterogeneity, but
we’d rather focus on some normalized measures of the zonotope’s volume.
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Figure 5: Production set and solid angle, sector 1513 (left) and 1930 (right) in 2002 and 2006, balanced
sample.

3.1 Within Industry Heterogeneity and its dynamics

Table 4 reports the normalized volumes for the sectors under analysis. Notice that figures
reported in Table 4 and following are measures and not estimates. The first set of columns report
for 1998, 2002 and 2006 G(Y ) which is the ratio between the zonotope’s volume and the volume
of the parallelotope build on the zonotope’s main diagonal. Notice that the volume of the cuboid
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Nace Description
Code

1513 Meat and poultrymeat products 162 (7) 162 (10) 190 (9)
1721 Cotton-type weaving 139 (9) 119 (11) 113 (7)
1772 Knitted & crocheted pullovers, cardigans 137 (8) 117 (10) 100 (7)
1930 Footwear 616 (9) 498 (6) 474 (9)
2121 Corrugated paper and paperboard 186 (7) 176 (9) 199 (11)
2222 Printing n.e.c. 297 (11) 285 (10) 368 (8)
2522 Plastic packing goods 204 (7) 217 (10) 253 (11)
2524 Other plastic products 596 (9) 558 (9) 638 (10)
2661 Concrete products for construction 208 (8) 231 (11) 272 (7)
2663 Ready-mixed concrete 103 (8) 114 (8) 147 (10)
2751 Casting of iron 94 (7) 77 (9) 88 (9)
2811 Metal structures and parts of structures 402 (9) 378 (8) 565 (10)
2852 General mechanical engineering 473 (11) 511 (8) 825 (11)
2953 Machinery for food & beverage processing 131 (6) 134 (7) 159 (6)
2954 Machinery for textile, apparel & leather 191 (10) 170 (10) 154 (12)
3611 Chairs and seats 205 (8) 201 (10) 229 (7)

Table 3: Nace sectors for the empirical analysis. Number of observations in 1998, 2002 and 2002. In
brackets the number of external vectors in each year.

(denominator) is much bigger than that of the zonotope (nominator) because, intuitively, the
parellelotope is formed by production activities that produce no output with positive amounts
of inputs, and conversely, produce a high quantity of output with no input. That is why the
ratio, G(Y ), although small in absolute value, points to relevant differences in the production
techniques employed by firms in the industry. The trend over time of the ratio within any
one industry allows to investigate how heterogeneity in the adopted techniques evolves over
time. G(Y ) display an increase over time for most sectors,suggesting that heterogeneity is not
shrinking, if anything it has rather increased.7 Since G(Y ) is a ratio, we can also compare
this measure of heterogeneity across industry and rank sectors according to the diversity of
techniques that are employed. As it might be expected, there exist relevant differences in the
degree of heterogeneity displayed by industries, G(Y ) varies in the range .03-.16. Nace sectors
1772, Knitted & crocheted pullovers, cardigans and 1930, Footwear, both display a normalized
volume much bigger than most other sectors. Even more interestingly, also sectors that are
supposed to produce rather homogeneous output, such as 2661, Concrete, and 2663, Ready-
mixed concrete, display a degree of heterogeneity comparable, if not higher, to that of many
other sectors.

The second set of columns reports the value of G(Y ) that is the Gini volume of the unitary
zonotope. As recalled in Section 2, in this case the zonotope is formed by vectors having the
same (unitary) length; hence in measuring industry heterogeneity all firms get assigned the same
weight, and size plays no role. For most of sectors, G(Y ) is bigger than G(Y ) suggesting that,
within any industry, smaller firms contribute relatively more to heterogeneity than bigger ones.
In particular, in some industries, such as 2663, industry heterogeneity almost doubles when all
firms are rescaled to have the same size. Finally, also G(Y ) display an increasing trend over
time, from 2002 to 2006, pointing to growing differences in the techniques adopted by firms.

G(Ye) (column III) reports the Gini volume for the zonotope built on the external vectors
only. As it could be expected, for all sectors G(Ye) is bigger than G(Y ). The subset of external
vectors contribute to industry heterogeneity relatively more than all vectors, as in G(Y ).

7This result is coherent with the evidence shown in Dosi et al. (2012) on Italian firms, although employing a
different methodology to explore heterogeneity.
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I II III IV

Nace G(Y ) G(Y ) G(Ye) Solid Angle
Code ’98 ’02 ’06 ’98 ’02 ’06 ’98 ’02 ’06 ’98 ’02 ’06

1513 0.059 0.051 0.062 0.082 0.062 0.096 0.391 0.201 0.301 0.071 0.056 0.094
1721 0.075 0.068 0.103 0.075 0.078 0.124 0.135 0.120 0.133 0.048 0.037 0.127
1772 0.160 0.122 0.136 0.154 0.126 0.130 0.142 0.273 0.172 0.175 0.121 0.122
1930 0.108 0.139 0.150 0.110 0.115 0.123 0.361 0.562 0.249 0.264 0.375 0.261
2121 0.108 0.043 0.062 0.081 0.064 0.081 0.257 0.105 0.178 0.078 0.041 0.045
2222 0.062 0.077 0.087 0.077 0.086 0.115 0.239 0.328 0.356 0.064 0.069 0.425
2522 0.065 0.061 0.070 0.071 0.064 0.074 0.197 0.261 0.266 0.135 0.040 0.061
2524 0.089 0.083 0.094 0.097 0.088 0.096 0.458 0.269 0.307 0.141 0.126 0.171
2661 0.079 0.088 0.099 0.100 0.094 0.110 0.376 0.234 0.352 0.127 0.046 0.165
2663 0.066 0.067 0.088 0.111 0.106 0.111 0.306 0.192 0.277 0.112 0.068 0.072
2751 0.035 0.037 0.070 0.064 0.055 0.073 0.174 0.107 0.184 0.028 0.028 0.040
2811 0.105 0.109 0.109 0.117 0.113 0.122 0.327 0.480 0.416 0.215 0.215 0.365
2852 0.088 0.102 0.110 0.100 0.103 0.111 0.227 0.395 0.391 0.154 0.092 0.124
2953 0.072 0.095 0.096 0.098 0.104 0.111 0.233 0.155 0.248 0.028 0.031 0.030
2954 0.078 0.074 0.093 0.086 0.130 0.113 0.170 0.141 0.352 0.016 0.117 0.071
3611 0.078 0.099 0.118 0.107 0.096 0.121 0.288 0.233 0.281 0.148 0.055 0.150

Table 4: Normalized volumes in 1998, 2002 and 2006 for selected 4 digit sectors.

3.2 Assessing industry level technical change

In this section we take to the data the investigation of technical change by means of the angle
that the main diagonal of the zonotope forms with the input plane.

As shown in the toy illustration, Section 2.6 an increase in the tangent of the angle with the
plane of inputs is evidence of an increase of efficiency of the industry. The first three columns
of Table 5 reports the value of tgθ3 respectively, in 1998, 2002 and 2006.8

Overall, not many sectors display a constant increase of productivity (i.e. increase in tgθt3) in
all periods. Reassuringly, the results from the method, are broadly in line with the rougher ev-
idence stemming from from sheer sector-level average productivities, highlighting a widespread
stagnation in the first decade of the new millennium (cf. Dosi et al. 2012). Notice that, similarly,
also the values of the unitary zonotope point to the same trend.

The change over time of the angle ϕi between the projection vector pr(dY ) and the xi
axis captures the changes of the quantity of input i over time with respect to all the other
inputs. Results are reported in Table 6. For some sectors the value of tgϕi decreases over time,
suggesting that industries have moved towards more labor intensive techniques. Indeed a result
which migth reveal the peculiarities of the most recent patterns of growth (or more precisely,
lack of it) of the Italian economy.

8Note that changing the unit of measurement, i.e. considering value added in millions (rather than thousands)
of euro of course changes the value of the angle, but the variation over time - our proxy of technical change - is
not affected by the unit of measure.
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Nace (a) tg θ3 (b) tg θ3
Code 1998 2002 2006 1998 2002 2006

1513 2.7044 2.3824 2.1095 2.3668 2.3633 2.2841
1721 1.9492 2.1552 2.2494 2.6271 2.5452 2.9006
1772 5.6639 5.5182 7.3379 5.0647 4.4286 5.2830
1822 7.8584 10.2348 14.5463 7.4723 7.2306 8.2596
1930 6.9056 7.1207 8.9208 6.1072 5.7395 6.3772
2121 1.5962 1.4871 1.3559 1.8562 1.8015 1.7641
2222 2.6292 2.0029 2.0609 3.1034 2.3597 2.5404
2522 1.8317 1.5014 1.2491 1.8549 1.7190 1.6270
2524 2.7376 2.3193 2.3288 3.0020 2.6637 2.6802
2661 3.2244 3.4413 2.8014 3.5266 3.7960 3.1719
2663 2.2804 2.8607 2.2987 3.3166 3.3658 3.1264
2751 2.1289 1.4121 1.5957 2.3457 1.5223 1.9269
2811 4.4402 4.7256 4.3518 4.8713 5.0042 5.2525
2852 4.0033 3.5201 3.5959 4.4442 3.8681 4.0568
2953 9.3135 11.1169 10.5841 10.3500 10.2261 10.6438
2954 9.7446 9.7152 7.6467 10.1775 10.1318 8.3274
3611 7.3357 6.0215 6.0269 6.7004 6.1303 5.7820

Nace (a) tasso crescita tg θ3 (b) tasso crescita θ3
Code 1998-2002 2002-2006 1998-2002 2002-2006

1513 -11.9073 -11.4541 -3.5540 -3.8569 2.3668
1721 10.5652 4.3723 3.6084 1.4179 2.6271
1772 -2.5717 32.9763 -0.3235 3.1497 5.0647
1822 30.2406 42.1259 2.0202 1.9519 7.4723
1930 3.1152 25.2797 0.3005 1.9487 6.1072
2121 -6.8362 -8.8206 -3.1977 -4.4401 1.8562
2222 -23.8199 2.8973 -8.2509 1.0216 3.1034
2522 -18.0316 -16.8038 -8.2018 -8.9011 1.8549
2524 -15.2821 0.4118 -4.6589 0.1282 3.0020
2661 6.7277 -18.5953 1.4119 -4.6636 3.5266
2663 25.4457 -19.6427 6.6499 -5.9972 3.3166
2751 -33.6675 12.9994 -15.6436 5.9044 2.3457
2811 6.4256 -7.9102 0.9619 -1.2723 4.8713
2852 -12.0712 2.1536 -2.4139 0.4289 4.4442
2953 19.3637 -4.7927 1.1784 -0.3032 10.3500
2954 -0.3020 -21.2919 -0.0209 -1.8708 10.1775
3611 -17.9141 0.0892 -2.0263 0.0102 6.7004

Table 5: Angles of the zonotope’s main diagonal. (a) tgθ3 with output, original zonotope; (b) unitary
zonotope.
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Nace (a) tg ϕ1 (b) tg ϕ1

Code 1998 2002 2006 1998 2002 2006

1513 23.0224 25.5508 27.0043 21.8256 22.6442 20.1068
1721 21.0047 21.3726 18.4777 15.1804 16.0332 12.8776
1772 6.8281 6.7041 5.5909 5.0274 6.2307 5.6227
1930 4.5795 5.3113 5.0533 3.8295 4.5798 4.4675
2121 39.0274 39.3436 40.0129 23.9678 26.6887 24.8705
2222 19.1097 26.1785 24.3621 13.2630 17.2095 14.6962
2522 30.2555 37.3270 43.8918 23.9336 27.9305 27.1886
2524 17.9118 21.4862 19.9956 13.4808 15.7137 14.6993
2661 14.1626 16.5427 17.9402 10.5512 12.3908 12.0912
2663 26.9417 26.3218 26.9437 15.1537 16.5539 15.0585
2751 21.8179 36.6899 31.9027 19.4979 30.2839 24.7586
2811 9.1053 9.7865 9.8170 6.9113 7.8659 6.6393
2852 10.0784 13.1988 13.2519 7.9099 10.4204 10.0850
2953 5.4316 5.3541 5.9111 4.1020 5.0619 4.7180
2954 5.0435 5.1530 5.8891 4.0276 3.7809 4.6053
3611 5.7162 6.3274 6.2222 4.5100 5.3190 5.0401

Table 6: Angles of the zonotope’s main diagonal. (a) Angles on production inputs plane, original
zonotope; (b) unitary zonotope.
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4 Conclusions

How does one synthetically accounts for the actual “state of the technology” of any industry
when firm-level techniques are widely and persistently heterogeneous? Hildenbrand (1981)
suggested a seminal methodology focusing on the geometric properties of the actual activities
- that is the actual input-output relations - displayed by the firms composing the industry.
And he analyzed the features of such constructs in terms of the standard properties normally
postulated by production functions. Here we pushed the investigation some steps further. First,
we used different measures of volume fo the geometrical objects defined by firms’ activities as
measures of inter-firm technological heterogeneity. Second, we investigated the properties of
the dynamics of such objects over time as meaningful proxies for industry-level technological
change quite independent of any behavioral assumptions on allocative strategies of individual
firms, and the relationship between input prices and intensities.

A straightforward step ahead involves the disentangling between movement of the “frontier”
however defined and movements of the weighted an unweighted distributions of techniques across
firms. And another one entails indeed the study of the relationships between the foregoing
dynamics and relative input prices, in any.

Appendix

The database employed for the analyses, Micro.3, has been built through to the collaboration
between the Italian statistical office, ISTAT, and a group of LEM researchers from the Scuola
Superiore Sant’Anna, Pisa.9

Micro.3 is largely based on the census of Italian firms yearly conducted by ISTAT and
contains information on firms above 20 employees in all sectors10 of the economy for the period
1989-2006. Starting in 1998 the census of the whole population of firms only concerns companies
with more than 100 employees, while in the range of employment 20-99, ISTAT directly monitors
only a “rotating sample” which varies every five years. In order to complete the coverage of
firms in the range of employment 20-99 Micro.3 resorts, from 1998 onward, to data from the
financial statement that limited liability firms have to disclose, in accordance to Italian law.11

In order to undertake intertemporal comparison, we deflate our data on current value vari-
ables making use of the sectoral production price index provided by ISTAT and taking 2000 as
the reference year.12 The deflators are available from 1991 onward.

References

Baily, M. N., Hulten, C. and Campbell, D. (1992). Productivity dynamics in manufacturing establish-
ments, Brookings Papers on Economic Activity: Microeconomics 4: 187–249.

Baldwin, J. R. and Rafiquzzaman, M. (1995). Selection versus evolutionary adaptation: Learning and
post-entry performance, International Journal of Industrial Organization 13(4): 501–522.

Bartelsman, E. J. and Doms, M. (2000). Understanding productivity: Lessons from longitudinal micro-
data, Journal of Economic Literature 38(2): 569–594.

Charnes, A., Cooper, W. W. and Rhodes, E. (1978). Measuring the efficiency of decision making units,
European Journal of Operations Research 2: 429–444.

9The database has been made available for work after careful censorship of individual information. More
detailed information concerning the development of the database Micro.3 are in Grazzi et al. (2009).

10In the paper we refer to the Statistical Classification of Economic Activities known as NACE, Revision 1.1
(final draft 2002).
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