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1 Introduction

One way to describe any economy or, for that matter, any economic organi-
zation is as a huge ensemble of partly interrelated tasks and processes which,
combined in certain ways, produce “well constructed” goods and services. It is
a perspective which dates back at least to Adam Smith who identified a major
driver of productivity growth in the progressive division of tasks themselves and
the associated specialization among workers. More recently, several seminal
works of Herbert Simon have explored the general structure of problem-solving
activities of which the activities of technological search and economic produc-
tion are just subsets (Simon 1969). From different angles, several investigations
from the perspective of team theory have addressed the symmetric problem
concerning coordination amongst multiple interrelated tasks (cf. Marschak
and Radner (1972), Radner (2000), Becker and Murphy (1992) among others).
And, finally, a growing literature has focussed on the “cognitive” character-
istics of organizations (cf., among others, Richardson (1972), Langlois and
Robertson (1995), Loasby (1998), Teece et al. (1994), Dosi et al. (2000)).

The contribution which follows has its roots in the foregoing perspectives
and focuses on the comparative properties of different decomposition schemes
i.e., intuitively, different patterns of division of labor within and across orga-
nizations.

Since a good deal of current interpretations at least of the vertical bound-
aries of economic organizations is grounded on transaction cost considerations,
this is also a good place to start. Indeed, as we shall argue in section 2, the
latter do tell part of the story but fail to account for those powerful drivers of
intra- and inter-organizational division of labor which have to do with the na-
ture of problem-solving knowledge, addressed by more “cognitive” approaches
to organizational analysis (section 3). Next, building on the discussion of some
fundamental features of problem-solving (section 4), a rather novel formaliza-
tion of the decompositions of problems and tasks is presented in section 5
(perfect decompositions) and section 6 (near decompositions). Section 7 dis-
cusses some analytical and simulation-based properties of the model regarding
the relative efficiency and speed of adaptation of diverse set-ups characterized
by different boundaries between organizations and markets. Finally, in section
8 we draw some conclusions.

2 Problem solving tasks vs. transactions

Think of an industry or the whole economy as a sequence of tasks leading
from, say, raw materials to final products. How does one “cut” such sequences
within single organizations and across them?

As known, transaction costs economics (TCE henceforth) albeit rather
silent on intra-organizational division of tasks, focuses upon the latter issue
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– i.e. the vertical boundaries of organizations.
In a nutshell, TCE (cf. Williamson (1975), Williamson (1985) and Ri-

ordan and Williamson (1985), and the seminal argument first developed by
Coase (1937)) starts from a hypothetical “state of nature” (a logical, if not
a historical one) in which all coordination of transactions across technological
separable units takes place within markets1, and predicts that whenever the
working of the market price mechanism incurs costs which are higher than the
corresponding costs of bureaucratic governance, then the latter can prevail on
the grounds of higher allocative efficiency.

This explanation however, although certainly capturing some determinants
of the governance structure, does not tell in our view the whole story. Let us
just mention three major difficulties of the theory which are crucial for the
argument which follows (for a broader critical appraisal of transaction costs
theory cf., for instance, Granovetter (1985) and Dow (1987)).

First, the logical process traced by Coase and Williamson often conflicts
with actual historical records: with some remarkable exceptions, most tech-
nologies and industries are born with a highly vertically integrated structure,
undergo a process of disintegration as the industry grows in the expansion
phase and then re-integrate in the maturity phase, but often along profiles of
integration which differ significantly from those of the original infant industry.
Thus the degree of vertical integration of an industry undergoes major changes
along its life cycle (Klepper 1997) and historical evidence seems to turn the
transaction costs argument the other way round. One could say that “at the
beginning” there were hierarchies and then they partly disintegrated giving
rise to markets. Actually, it is the very process of division of labor, usually
taking place within hierarchical organizations, which creates the opportunity
for markets to exist: thus Williamson’s story on markets as original state of
nature presents clear limitations even as a logical instrument. Transaction cost
views of vertical integration (and, for that matter, all standard vertical inte-
gration models based on information and agency problems, cf. Perry (1989))
appear relatively more appropriate to describe the processes of growing vertical
integration which take place in mature industries where the division of labor
is relatively stable and allocative efficiency requirements tend to prevail. On
the contrary these models seem to have limited explanatory power when the
early stages of the industry life-cycle are considered and whenever the main
activity in which firms are engaged is the design of effective solutions to new
technological and organizational problems.

Second, and relatedly, the transaction costs perspective deals with the effi-
ciency of different governance structures in managing transactions across given
technologically separable interfaces: technology and the division of labor are
taken as given and organizational structures are derived. But the story could

1“. . . in the beginning there were markets” (Williamson 1975, p. 20)
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be very different if one assumed that technology and the division of labor were
themselves at least partly determined by the organizational structure: for
example, one would easily obtain multiple organizational/technological equi-
libria (Pagano 1992, Aoki 2001) and a strong institutional path-dependency
(David 1994). This point has been repeatedly emphasized also by scholars
of the so-called “radical school” (cf., for instance, Bowles (1985) and Mar-
glin (1974)) who had in mind an opposite view of the world in which it is
primarily the governance structure which determines the technology and not
the other way round. Even without taking a position in this old debate, it
seems hardly questionable that most of the processes of division of labor take
place within organizations. Therefore the latter cannot be taken as irrelevant
with respect to where the technologically separable interfaces are placed and
what their economic characteristics are. Moreover, a technologically separa-
ble interface requires well defined sets of codified standards for compatibility,
especially if it has to be managed by transactions in a competitive market.
As it is well known from the literature on technological standards (David and
Greenstein 1990), they emerge either as unplanned conventions or as outcomes
of deliberative processes (or combinations of the two) and in turn have a rel-
evant influence on the directions of further technological change and division
of labor. Again, markets cannot be original and spontaneous “states of na-
ture”, but require all sorts of institutional and technological conditions, some
of which are put in place by explicit organizational planning. Moreover, once
established, standards shape specific technological trajectories, limiting the
directions of innovation.

Finally, a third weakness of the transaction costs approach resides in its
account (or, better, the lack of it) of the processes through which superior
governance structures do emerge. Proving that a given governance structure is
more efficient than another one is not an explanation of its emergence through
“spontaneous” processes driven by market selection: a selection mechanism
can indeed, under some condition, select for fittest structures, but only if the
latter exist in the first place2. Selection can account for convergence of a
population to some given form, not for the emergence of such a form. The
variational mechanisms through which new structures are generated and thus
tested by the selection process are essential in determining the outcome of
selection itself. If the set of possible structures is “large”, only a small subset
of it can ever be generated by any computationally feasible mechanism: thus
we have to specify what it is the likelihood that such a subset include also the
optimal structure.

2“. . . in a relative sense, the fitter survive, but there is no reason to suppose that they
are fittest in any absolute sense” (Simon 1983, emphasis in original). On this point see also
Winter (1975).
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3 “Cognitive” perspectives on organizations:

some roots in the literature

As already mentioned in the introduction, a respectable tradition, dating back
at least to Adam Smith, attempts to identify the efficiency properties of dif-
ferent organizational forms by looking at the patterns of division of labor and
at the learning opportunities which they entail, quite independently from any
issue of incentive compatibility and transaction governance. Smith’s famous
example of the pin factory vividly illustrates the relationship between division
of tasks, improvements of operational skills and opportunities for mechaniza-
tion of production (see also the discussion in Leijonhufvud (1986) and Langlois
and Robertson (1995)).

It is true, however, that what we could call a “procedural”, knowledge-
centered, approach to production and coordination patterns has been dormant
for a long time. Rather, in mainstream economics the prevailing style of anal-
ysis has rested upon a thorough “blackboxing” summarized into production
functions of various sorts.

In such a view the procedural aspects of production processes and, dynam-
ically, of learning processes are explicitly censured. With that goes away also
any investigation of the sequences of operations which are “legal”, in the sense
of being able to ultimately yield the desired output, and of their relative effi-
ciencies. Of course one may always claim that these are issues for engineers and
not for economists, but then the economists’ analysis of the patterns of pro-
duction and coordination also looses any reference to the underlying patterns
of knowledge distribution and learning.

Certainly, Smith’s seminal insights have been followed by some other ma-
jor contributions to “procedural” analysis of the links between division of la-
bor, production patterns and organizational forms. In the 19th century, Karl
Marx’s investigation of the capitalist factory system is an outstanding one,
and Babbage’s is another; in the 20th century the work of Georgescu-Roegen
comes to mind; while across the two centuries several authors of the Aus-
trian school have contributed to keep alive the interest in the importance of
the links between forms of economic organization and the patterns of knowl-
edge distribution within society (for a thorough discussion of several of these
contributions see Langlois (1986) and Morroni (1992)).

All this notwithstanding, it is fair to say that a new impetus to proce-
dural, knowledge centered, analysis of production and economic organization
has mostly occurred over the last four decades. This has come together with
the development and partial convergence of four interpretative perspectives,
namely (i) the investigations by Herbert Simon and colleagues of the properties
of problem-solving procedures in their relation to some measure of complexity
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of the problems themselves3; (ii) behavioral theories of organizations in gen-
eral and firms in particular4; (iii) evolutionary theories of economic change,
with their emphasis on the process features of organizational knowledge and
its partial embeddedness into organizational routines5; (iv) capabilities and
competencies based views of firms6.

As the intersection between these perspectives, the work which follows
will try to offer a “constructive” – that is explicitly process-based – formal
account of, first the links between problem-solving knowledge and division of
labor within and across organizations and, second, the characteristics of diverse
processes of selection amongst diverse organizational arrangements entailing
distinctly different problem-solving repertoires.

The initial angle of investigation is clearly “Simonian”. We put forward a
notion of problem complexity which builds upon and refines Simon’s ideas of
decomposability and near-decomposability of complex problems (Simon 1969).
An advantage of our notion is that it also allows straightforward mappings into
selection dynamics wherein problem-solving entities are nested7.

As we shall see, our notions of decomposability and the related one of
problem complexity, bear upon the presence or absence of interrelations among
the elementary activities which make up the overall problem-solving process.

It seems quite natural indeed to assume that business firms and other
economic organizations fully belong to this category of complex entities made
up of many non-linearly interacting elements.

One of the conjectures we shall investigate concerns in fact the evolution
of vertical integration in terms of the characteristics of problem-solving tasks.
The main argument can be stated as follows: the division of problem-solving la-
bor into decentralized decision units coordinated by markets determines which
solutions (i.e. technological and organizational designs) can be generated and
then tested by the selection process. On the one hand this division is necessary
for boundedly rational organizations in order to reduce the dimension of the
search space, but, on the other hand, it might well happen that the division of
physical and cognitive labor is such that the best designs will never be gener-

3Cf. for instance Simon (1969) and Simon (1983)
4To mention just the seminal works, cf. March and Simon (1958) and Cyert and March

(1963)
5Cf. Nelson and Winter (1982) and also Nelson (1981) and Winter (forthcoming) more

specifically on production theory, and Cohen et al. (1996) on routines.
6Cf., among others, Teece et al. (1997), Dosi et al. (2000). Important inspiring an-

tecedents of this view are in the works of Penrose (1959) and Richardson (1972).
7Our model is also strictly related to the growing literature on modularity in technologies

and organizations (Langlois and Robertson 1995, Baldwin and Clark 2000) and represents a
formalization of a problem-solving approach to modularity. Problem decompositions define
the modules on which selection applies. As we shall see, this problem-solving approach may
bring a different perspective and different conclusions from the one based upon option value
proposed by Baldwin and Clark (2000).
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ated and therefore never selected by any selection mechanism whatsoever. In
particular, we show that, everything else being equal, the higher the degree of
decentralization the smaller the portion of the search space which is explored
and the lower therefore the probability that the optimal solutions are included
in such a portion of space. Finally, one can easily prove that computing the
optimal division of problem-solving activities is more difficult than solving
the problem itself, thus we cannot assume that boundedly rational agents in
search for solutions to a given problem do possess the right decomposition of
the problem itself8.

In particular, if the entities under selection are made of many components
which are interacting in complex way, the resulting selection landscape will
present many local optima (Kauffman 1993) and selection forces will be un-
likely to drive such entities to the global optima: sub-optimality and diversity
of organizational structures can persistently survive in spite of strong selection
forces (Levinthal 1997). Sub-optimality is due to the persistence of inferior
features which cannot be selected out because of their tight connections with
other favorable features: this indeed is the rule in strongly interconnected sys-
tems. In other words, whenever the entities under selection have some complex
internal structure, the power of selective pressure is limited by the laws gov-
erning internal structures. In fact, one of the purposes of the present work is
to provide a measure of these trade-offs and establish under which conditions
either forces prevails.

4 Problem-solving: some special features

Problem-solving activities (which include, to repeat, most activities of pro-
duction and innovation) present some distinctive features which make them
difficult to analyze with standard economic tools. First of all, they involve, or
are the outcome of, search in large combinatorial spaces of components which
must be closely coordinated. Interdependencies among such components are
only partly understood and can be only locally explored through e.g. trial-and-
error processes, rules of thumb or the application of expert tacit knowledge.

Consider the following cases:

• The design of complex artifacts (e.g. an aircraft). It requires the coordi-
nation of many different design elements (engine type and power, wing

8One important caveat must be considered here: this paper assumes that there is a
set of atomic components which cannot be further decomposed. This necessary analytical
assumption does not allow to capture another important advantage of division of labor which
is the possibility of further divisions: once a task has been specified, a new process of sub-
division can be autonomously carried out on it. Contrary to what is assumed for simplicity in
the model which follows, there is no given lower bound to the process of in-depth hierarchical
decomposition.
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size and shape, materials used, etc., each of them in turn composed of
many elements) whose interactions can only partly be expressed by gen-
eral models, but have to be tested through simulation, prototype building
and trial-and-error exercises, where tacit knowledge plays a key role.

• The solution to a difficult game (e.g. solving a Rubik cube or playing
chess). An effective solution is a long sequence of moves, each of which
is chosen out of a set of possibilities which is large enough to make the
exploration of the entire tree of the game computationally impossible
for boundedly rational agents. The relations among such moves in a
sequence - e.g. what changes we get in the overall performance of the
solution if we change, say, the i-th move in the sequence we play - are
only partly understood. Actually understanding it fully would imply the
knowledge of the entire game tree 9.

• Managing organizations such as business firms. The latter are complex
multi-dimensional bundles of routines, decision rules, procedures, incen-
tive schemes, etc., whose interplay is largely unknown also to those who
manage the organization itself – witness also all the problems and un-
foreseen consequences whenever managers try to promote changes in the
organization.

Moreover, since components within a problem most often present strong
interdependencies, the search space of a problem typically presents many local
optima. Marginal contributions of components can rapidly switch from neg-
ative to positive values, depending on which value is assumed by the other
components 10. For instance, adding a more powerful engine could amount to
decrease the performance and the reliability of an aircraft (Vincenti 1990) if
other components are not simultaneously adapted. In a chess game, a notion-
ally optimal strategy could involve - say- castling at a given moment in the
development of the game, but the same castling as a part of some sub-optimal
(but effective) strategy could turn out to be a losing move. Finally, introducing
some routines, practices or incentive schemes which have proven superior in
a given organizational context, could prove harmful in a context where other
elements are not appropriately co-adapted.

As a consequence, in presence of strong interdependencies one cannot opti-
mize a system by optimizing separately each element it is made of. Consider a

9In fact, one of the fundamental problems faced by human and artificial players is to
build effective heuristics to evaluate the goodness of positions during the game, without the
knowledge of the entire tree.

10Similar aspects are present even in the simplest production technologies. Consider for
instance team production as exemplified by Alchian and Demsetz (1972): two workers lifting
a heavy load. Additional individual effort generally rises team production, but when the
levels of effort applied by the two are disproportionate, this might result in the load being
turned over and falling, thus sharply decreasing team production.
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problem which is made of N elements and whose optimal solution is x∗1x
∗
2 . . . x∗N

while the current state is x1x2 . . . xN . In the presence of strong interdepen-
dencies it might well be the case that some or even all solutions of the kind
x1x2 . . . x∗i . . . xN show a worse performance than the current one 11.

However, as pointed out by Simon (1969), problem-solving by boundedly
rational agents must necessarily proceed by decomposing any large, complex
and intractable problem into smaller sub-problems which can be solved inde-
pendently, i.e. by promoting what could be called the division of problem-
solving labor. At the same time, note that the extent of the division of
problem-solving labor is limited by the existence of interdependencies. If sub-
problem decomposition separates interdependent elements, then solving each
sub-problem independently does not allow overall optimization.

It is important to remark that the introduction of any decentralized inter-
action mechanism, like a competitive market, for each components does not
solve the problem: for instance, if we assume that in our previous example
each component xi is traded in a competitive market, superior components x∗i
will never be selected for. Thus interdependencies undermine the effectiveness
of the selection process as a device for adaptive optimization and introduce
forms of path-dependency with lock-in into sub-optimal states which does not
originates from the frictions and costs connected to the working of the selection
mechanism, but from internal structure of the entities undergoing selection.

As Simon pointed out, since an optimal decomposition - i.e. a decomposi-
tion which divides into separate sub-problems all and only the elements which
are independent from each other - can only be designed by someone who has
a perfect knowledge of the problem (including its optimal solution), bound-
edly rational agents will be normally bound to design near-decompositions, i.e.
decompositions which try to put together within the same sub-problem only
those components whose interdependencies are (or, we shall add, agents be-
lieve to be) more important for the overall performance of the system. However
near-decompositions involve a fundamental trade-off: on the one hand finer de-
compositions exploit the advantages of decentralized local adaptation, that is
the use of selection mechanism for achieving coordination “for free” together
with parallelism and speed of adaptation. However, on the other hand, finer
decompositions imply a higher probability that interdependent components
are separated into different sub-problems and therefore cannot, in general, be
optimally adjusted together. One of the purposes of this paper is to provide a
precise measure of this trade-off and show that, in the presence of widespread
interdependencies, finer than optimal decompositions have an evolutionary
advantage (in terms of speed of adaptation) although they inevitably involve
lock-in into sub-optimal solutions.

11Note that this notion of interdependency differs from the notion of complementarity as
sub-modularity as in Milgrom and Roberts (1990): here in fact we allow for the possibility
that positive variations in one component can decrease overall performance value.
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One way of expressing the limits that interdependencies pose to the division
of problem-solving labor is that global performance signals are not able to drive
effectively decentralized search in the problem space. Local moves in the “right
direction” might well decrease the overall performance if some other elements
are not properly tuned. As Simon puts it, since an entity (e.g. an organism
in biology or an organization in economics) only receives feedbacks from the
environment concerning the fitness of the whole entity, only under conditions
of near independence the usual selection processes can work successfully for
complex systems (Simon 2002, p. 593).

A further aspect concerns the property that, in general, the search space
of a problem is not given exogenously, but is constructed by individuals and
organizations as a subjective representation of the problem itself. If the divi-
sion of problem-solving labor is limited by interdependencies, the structure of
interdependencies itself depends on how the problem is framed by problem-
solvers. Sometimes problem-solvers make major leaps forward by re-framing
the same problem in a novel way. As shown by many case studies, often major
innovations appear when various elements which were already well-known for
a long time are recombined and put together under a different perspective (cf.
for instance the detailed account of the development of wireless communication
technologies given by Levinthal (1998)). Indeed, one can go as far as saying
that it is the representation of a problem which determines its purported diffi-
culty and that one of the fundamental functions of organizations is exactly to
implement collective representations of the problems they face (Loasby 2000).
In the simple model of problem-solving presented in this paper finding the
“correct” representation of interdependencies is more complex than solving
the problem itself. However, by changing the representation, lock-ins into sub-
optimal solutions can be avoided and better solutions discovered. Division of
problem-solving labor is therefore very much a question of how the problem
is represented12. Needless to say, boundedly rational individuals cannot be
innocently assumed to hold optimal representations.

Given the foregoing qualitative intuitions, let us next develop a formal
model which provides a precise measure of the above mentioned trade-offs.

5 Decomposition and coordination

5.1 Definitions

We assume that solving a given problem requires the coordination of N atomic
“elements” or “actions” or “pieces of knowledge”, which we call generically
components, each of which can assume some number of alternative states.

12A formal treatment of the properties of different representations in a particular class of
problem can be found in Marengo (2003).
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For simplicity, we assume that each component can assume only two alternative
states, labelled 0 and 1. Note that all the properties presented below for the
two-states case can be very easily extended to the case of any finite number of
states.

Introducing some notation, we characterize a problem by the following
elements:

The set of components: C = {c1, c2, . . . cN} with ci ∈ {0, 1}
A configuration, that is a possible solution to the problem, is a string

xi = ci
1c

i
2 . . . ci

N

The set of configurations: X = {x1, x2, . . . , x2N}
An ordering over the set of possible configurations: we write xi º xj (or

xi Â xj) whenever xi is weakly (or strictly) preferred to xj.
In order to avoid some technical complications, we assume for the time

being that there exists only one configuration which is strictly preferred to
all the other configurations (i.e. a unique global optimum). This simplifying
assumption will be dropped in section 6 below.

A problem is defined by the couple (X,º).
As the size of the set of configurations is exponential in the number of com-

ponents, whenever the latter is large, the state space of the problem becomes
much too vast to be extensively searched by agents with bounded compu-
tational capabilities. One way of reducing its size is to decompose13 it into
sub-spaces.

Let I = {1, 2, . . . , N} be the set of indexes and let a block14 di ⊆ I be a
non-empty subset of it, we call the size of block di , its cardinality |di|. We
define a decomposition scheme (or simply decomposition) of the problem
(X,º) a set of blocks:

D = {d1, d2, . . . , dk}

such that
k⋃

i=1

di = I

Note that a decomposition does not have necessarily to be a partition.
Given a configuration xi and a block dj, we call block-configuration xi(dj)

the substring of length |dj| containing the components of configuration xi be-
longing to block dj:

xi(dj) = xi
j1

xi
j2

. . . xi
j|dj |

13A decomposition can be considered as a particular case of search heuristic: search
heuristics are in fact ways of reducing the number of configurations to be considered in a
search process.

14Blocks in our model can be considered as a formalization of the notion of modules used by
the growing literature on modularity in technologies and organizations (Baldwin and Clark
2000) and decomposition schemes are a formalization of the notion of system architecture
which defines the set of modules in which a technological system or an organization are
decomposed
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for all jh ∈ dj.
We also use the notation xi(d−j) to indicate the substring of length N−|dj|

containing the components of configuration xi not belonging to block dj.
Two block-configurations can be united into a larger block-configuration

by means of the ∨ operator so defined:

x(dj) ∨ y(dh) = z(dj ∪ dh) where zν =

{
xν if ν ∈ dj

yν otherwise

We can therefore write xi = xi(dj) ∨ xi(d−j) for any dj.
Moreover, we define the size of a decomposition scheme as the size of

its largest defining block:

|D| = max {|d1|, |d2|, . . . |dk|}

Coordination among blocks in a decomposition scheme may either take
place through market-like mechanisms or via other organizational arrange-
ments (e.g. hierarchies). Dynamically, when a new configuration appears it
is tested against the existing one according to its relative performance. The
two configurations are compared in terms of their ranks and the superior one
is selected while the other one is discarded15.

More precisely, assume that the current configuration is xi and take block dh

with its current block-configuration xi(dh). Consider now a new configuration
xj(dh) for the same block, if:

xj(dh) ∨ xi(d−h) º xi(dh) ∨ xi(d−h)

then xj(dh) is selected and the new configuration xj(dh) ∨ xi(d−h) is kept in
the place of xi, otherwise xj(dh) is discarded and xi is kept.

It might help to think in terms of a given structure of division of labor
(the decomposition scheme) within firms, whereby individual workers and or-
ganizational sub-units specialize in various segments of the production process
(a single block). Decompositions, however, sometimes do determine also the
boundaries across independent organizations specialized in different segments
of the whole production sequence.

Note that, dynamically, different inter -organizational decompositions en-
tail different degrees of decentralization of the search process. The finer inter-
organizational decompositions, the smaller the portion of the search space
which is being explored by local variational mechanisms and tested by mar-
ket selection. Thus there is inevitably a trade-off: finer decompositions and
more decentralization make search and adaptation faster (if the decomposition
is the finest, search time is linear in N), but on the other hand they explore

15As a first approximation, we assume that this sorting and selection mechanism is error-
less and operates at no cost and without any friction.
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smaller and smaller portions of the search space, thus decreasing the likelihood
that optimal (or even good) solutions are ever generated and tested. In the
following we try to provide a precise characterization of this trade-off and its
consequences.

5.2 Selection and search paths

A decomposition scheme is a sort of template which determines how new con-
figurations are generated and can be tested afterward by the selection mecha-
nism. In large search spaces in which only a very small subset of all possible
configurations can be generated and undergo testing, the procedure employed
to generate such new configurations plays a key role in defining the set of
attainable final configurations.

We will assume that boundedly rational agents can only search locally in
directions which are given by the decomposition scheme: new configurations
are generated and tested in the neighborhood of the given one, where neighbors
are new configurations obtained by changing some (possibly all) components
within a given block.

Given a decomposition scheme D = {d1, d2, . . . , dk}, we say that a config-
uration xi is a preferred neighbor or simply a neighbor of configuration xj

with respect to a block dh ∈ D if the following three conditions hold:

1. xi º xj

2. xi
ν = xj

ν ∀ν /∈ dh

3. xi 6= xj

Conditions 2 and 3 require that the two configurations differ only by com-
ponents which belong to block dh. According to the definition, a neighbor
can be reached from a given configuration through the operation of a single
decentralized coordination mechanism.

We call Hi(x, di) the set of neighbors of a configuration x for block di.
The set of best neighbors Bi(x, di) ⊆ Hi(x, di) of a configuration x for

block di is the set of the most preferred configurations in the set of neighbors:

Bi(x, di) = {y ∈ Hi(x, di) such that y º z ∀z ∈ Hi(x, di)}
By extension from single blocks to entire decomposition schemes, we can

give the following definition of the set of neighbors for a decomposition scheme
as:

H(x, D) =
k⋃

i=1

Hi(x, di)

A configuration is a local optimum for the decomposition scheme D if there
does not exist a configuration y such that y ∈ H(x,D) and y Â x.
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A search path or, shortly, a path P (xi, D) from a configuration xi and for
a decomposition D is a sequence, starting from xi, of neighbors:

P (xi, D) = xi, xi+1, xi+2, . . . with xi+m+1 ∈ H(xi+m, D)

A configuration xj is reachable from another configuration xi and for
decomposition D if there exist a path P (xi, D) such that xj ∈ P (xi, D).

Suppose configuration xj is a local optimum for decomposition D, we call
basin of attraction of xj for decomposition D the set of all configurations from
which xj is reachable:

Ψ(xj, D) = {y, such that ∃P (y,D) with xj ∈ P (y, D)}

Now let x0 be the global optimum16 and let Z ⊆ X with x0 ∈ Z, we
say that the problem (X,º) is locally decomposable in Z by the scheme D if
Z ⊆ Ψ(x0, D). If Z = X we say that the problem is globally decomposable by
the scheme D17.

Among all the decomposition schemes of a given problem, benchmark cases
are those for which the global optimum becomes reachable from any starting
configuration. One such decomposition always exists, and is the degenerate
decomposition D = {{1, 2, 3, . . . , N}} for which of course there exists only one
local optimum and it coincides with the global one. But obviously we are in-
terested in smaller decompositions – if they exist – and in particular in those
of minimum size. The latter decompositions represent the maximum extent
to which problem-solving can be subdivided into independent sub-problems
coordinated by decentralized selection, with the property that such selection
processes can eventually lead to optimality irrespectively of the starting condi-
tion. On the contrary, finer decompositions will not in general allow decentral-
ized selection processes to optimize (unless the starting configuration is “by
chance” within the basin of attraction of the global optimum).

The following proposition shows that there are problems which are globally
decomposable only by the degenerate decomposition D = {{1, 2, 3, . . . , N}}.
Proposition 1 There exist problems which are globally decomposable only by
the degenerate decomposition D = {{1, 2, 3, . . . , N}}
Proof: we prove the statement by providing an example. Consider a problem
whose unique global optimum is configuration x0 = x0

1x
0
2 . . . x0

N and whose sec-
ond best configuration is x1 = x1

1x
1
2 . . . x1

N where x1
i = |1− x0

i | ∀i = 1, 2 . . . , N .
It is obvious that the global optimum can be reached from the second best
only by mutating all the N components together.

16We remind the assumption of uniqueness of the global optimum.
17A special case of decomposability, which is generalized here, is presented in Page (1996)

and is called dominance. In our terminology, a block configuration xj(dh) is dominant when
xj(dh) ∨ xi(d−h) º xi for every configuration xi ∈ X.
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The next proposition establishes a rather obvious but important property
of decomposition schemes. As one climbs into the basin of attraction of a
local optimum for a decomposition D which is not the finest one, then finer
decomposition schemes can usually be introduced which allow to reach more
quickly the same local optimum.

For this proposition we need an additional definition: given a decomposition
scheme D we say that two configurations xi and xj totally differ with respect
to block dh ∈ D if the corresponding block configurations xi(dh) and xj(dh)
differ in every components: xi

k(dh) 6= xj
k(dh) ∀k = 1, 2, . . . , |dh|.

Proposition 2 Let Ψ(xα, D) = {xα, xα+1, . . . , xα+m} be the ordered basin of
attraction of a local optimum xα (with xα+j º xα+j+1 ∀j = 0, . . . , m − 1).
Define Ψi(xα, D) = Ψ(xα, D) \ {xα+i+1, xα+i+2, . . . , xα+m} for 0 ≤ i ≤ m. Let
dνi

∈ D be the block(s) of maximum size in D. Then, unless xα and xα+1 totally
differ for some maximum size block dνi

, there exists a 0 < i ≤ m such that the
set Ψi(xα, D) admits a decomposition Di with |Di| < |D|.

Proof: Suppose for simplicity that D contains a unique maximum size block
dν ∈ D with |D| = |dν |. If the local optimum xα and the second best of its
basin of attraction (with respect to D) xα+1 do not totally differ with respect
to dν , then there exists a smaller decomposition Di which is identical to D
except that its largest block dν can be split into two sub-blocks containing
respectively the components for which xα(dν) and xα+1(dν) differ and those
for which they do not. By construction xα is reachable from xα+1 for Di and
|Di| < |D| and therefore i = 1 satisfies the proposition. If there are multiple
maximum size blocks dνi

∈ D it is necessary that xα and xα+1 do not totally
differ for any of them.

Among all the possible global decompositions of a problem, those of mini-
mum size are especially interesting: in fact they set a lower bound to the degree
of decentralization which preserves optimality with certainty. Conversely, note
for decompositions which are finer than those of minimum size whether the
optimal solution will ever be generated and thus selected depends on the initial
condition.

Minimum size decomposition schemes can be found recursively with the
procedure informally described in the following18:

Let us re-arrange all the configurations in X by descending rank X =
{x0, x1, . . . , x2N−1} where xi º xi+1.

The minimum size decomposition can be computed as follows:

1. start with the finest decomposition D0 = {{1}, {2}, . . . , {N}}
18The complete algorithm is quite lengthy to describe in exhaustive and precise terms. Its

Pascal and C++ implementations are available from the authors upon request.
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2. check whether x0 ∈ P (xi, D) ∀xi i = 1, 2, . . . , 2N − 1, i.e. if there is a
path leading to the global optimum from every other configuration for
decomposition D, if yes STOP

3. if no, build a new decomposition D1 by union of the smallest blocks for
which condition 2 was violated and go back to 2.

Let us illustrate it with an example.

Example: An hypothetical ranking (where 1 is the rank of the most
preferred) of configurations for N=3:

CONFIGURATIONS RANKING
100 1
010 2
110 3
011 4
001 5
000 6
111 7
101 8

If search proceeds according to the decomposition scheme D = {{1}, {2}, {3}},
there exist two local optima: 100 (which is also the global optimum) and
010. The basins of attraction of the two local optima are respectively:

Ψ(100) = {100, 110, 000, 111, 101}

Ψ(010) = {010, 110, 011, 001, 000, 111, 101}
Note that the worst local optimum has a larger basin of attraction19

as it covers all configurations except the global optimum itself. Thus,
only a search which starts at the global optimum will (trivially) stop
at the global optimum with certainty, while for the other initial con-
figurations search might end up in either local optima (depending on
the sequence of mutations) or even (in three cases) in the worst local
optimum with certainty.

Using the notion of dominance (cf. Page (1996) and footnote 17
above) it is possible to establish that the only dominant block-configuration
is actually the globally optimum string itself, corresponding to the de-
generate decomposition scheme D = {{1, 2, 3}}. Thus apparently no

19Kauffman (1993)provides some general properties of one-bit-mutation search algorithms
(equivalent to our bit-wise decomposition schemes) on string fitness functions with varying
degrees of interdependencies among components. In particular, he finds that as the span of
interdependencies increases, the number of local optima increases too, while the size of the
basin of attraction of the global optimum shrinks.
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decentralized search structure allows to always locate the global opti-
mum from every starting configuration.

Granted that, can one find some alternative decompositions allowing
for partly decentralized search processes yielding global optima? In
our example, one of such cases occurs with the decomposition scheme
D = {{1, 2}, {3}}. For instance if one starts from configuration 111, one
can first locate 011 (using block {1, 2}) then 010 (using block 3) and
finally 100 (again with block {1, 2}); or alternatively one can locate 110
(using block 3) and 100 (with block 1,2). It can be easily verified that
the same blocks do actually ”work” for all other starting configurations.
The algorithm just presented will find this decomposition.

6 Near decomposability

When building a decomposition scheme for a problem we have looked so far
for perfect decomposability, in the sense that we require that all blocks can
be optimized in a totally independent way from the others. In this way we
are guaranteed to decompose the problem into perfectly isolated components
which can be solved independently. This is however very stringent a require-
ment: even when interdependencies are rather weak, but diffused across all
components, one easily tends to observe problems for which no perfect de-
composition of size smaller than N exists. For instance figure 1 shows that
in Kauffman’s NK random landscapes20, already for very small values of K -
that is for highly correlated landscapes - the above described algorithm finds
only decomposition schemes of size N or just below N. In other words, a little
bit of interdependence spread across the set of components makes immediately
a system practically indecomposable.

One can soften the requirement of perfect decomposability into one of near-
decomposability: one no longer requires the problem to be decomposed into
completely separated sub-problems, i.e. sub-problems which fully contain all
interdependencies, but one might just be content to find sub-problems which
contain the most “relevant” interdependencies while less relevant ones can

20A NK random fitness landscape is similar to our definition of problem except that
instead of a preference relation, a real valued fitness function F : X 7→ R is defined as an
average of each component’s fitness contribution. The latter is a random realization of a
random variable uniformly distributed over the interval [0, 1] for each possible configuration
of the K-size block of the other components with which each component interacts (Kauffman
1993). Note however that Kauffman’s K is not a good measure of ex-post complexity – in
terms of its decomposability – of the optimization problem on the resulting fitness landscape:
small values of K usually generate landscapes which are not decomposable, but, on the other
side, it is always possible that even with very high values of K the resulting landscape is
highly decomposable.
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persist across sub-problems. In this way, optimizing each sub-problem inde-
pendently will not necessarily lead to the global optimum, but to a “good”
solution21. In other words we construct near-decompositions which give
a precise measure of the trade-off between decentralization and optimality:
higher degrees of decentralization, while generally displaying higher speed of
adaptation, are likely to be obtained at the expenses of the asymptotic opti-
mality of the solutions which can be reached.

Let us re-arrange all the configurations in X by descending rank X =
{x0, x1, . . . , x2N−1} where xi º xi+1, and let Xµ = {x0, x1, . . . , xµ−1} with
0 ≤ µ ≤ 2N − 1 be the ordered set of the best µ configurations.

We say that Xµ is reachable from a configuration y /∈ Xµ and for decom-
position D if there exist a configuration xi ∈ Xµ such that xi ∈ P (y, D).

We call basin of attraction Ψ(Xµ, D) of Xµ for decomposition D the set of
all configurations from which Xµ is reachable. If Ψ(Xµ, D) = X we say that
D is a µ-decomposition for the problem.

µ-decompositions of minimum size can be found algorithmically with a
straightforward generalization of the above algorithm which computes mini-
mum size decompositions schemes for optimal decompositions.

The following proposition gives the most important property of minimum
size µ-decompositions:

Proposition 3 Let Dµ is a minimum size µ-decomposition for problem (X,º)
then |Dµ| is monotonically weakly decreasing in µ.

Proof: if µ = 2N − 1 the set Xµ includes all configurations and it is trivially
reachable for all decompositions, including the finest with |Dµ| = 1. If µ =
1 then Xµ includes only the global optimum and therefore the size of the
minimum size decomposition is 1 ≤ |Dµ| ≤ N . We still have to show that
it cannot happen that |Dµ+1| > |Dµ|: if this was the case Xµ could not be
reached from Xµ+1 for decomposition Dµ, but this contradicts the assumption
that Xµ is reachable from any configuration in X for decomposition Dµ.

The latter proposition shows that higher degrees of decomposition and
decentralization can be attained by giving up optimality and provides a precise
measure for this trade-off. As an example, we generated 100 random problems
of size N = 12 all characterized by not being decomposable22 (i.e. |D| = 12

21This procedure allows to deal also with the case of multiple global optima and thus we
can now drop also the assumption of a unique global optimum.

22Random problems are generated in a straightforward way: we generate random rankings
of all the binary strings of size N = 12 and then compute – using the algorithm presented
above – their decomposition schemes of minimum size. Only those problems for which
the size of the smallest decomposition schemes was 12 were used in this simulations. An
alternative (and equivalent) method is to generate random NK landscapes à la Kauffman
(1993) with N = 12 and a high K and then check that the resulting landscape is not
decomposable, as it may happen that also landscapes with a very high K may be highly
decomposable.
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for all of them). Figure 2 displays the average sizes of the minimum size
decomposition schemes for the 100 random problems as we vary the number
µ of acceptable configurations. Figure 2 shows that second best solutions can
be reached by search processes based upon finer decompositions, that is with
more decentralized processes, which can find such solutions more quickly by
exploiting coordination “for free” provided by the solution mechanism. In fact,
when the size of the decomposition scheme decreases of one unit the expected
search time decreases by half.

7 Speed and optimality in search: some con-

sequences for organizational structures

The trade-offs outlined in the previous sections between decomposability, re-
duction of complexity and speed of search, on the one hand, and asymptotic
optimality on the other, enables us to discuss some interesting evolutionary
properties of various organizational structures competing in a given problem-
solving environment.

Let us consider the properties of near-decompositions. As illustrated in
figure 2 for randomly generated problems23, if second best solutions are ac-
cepted it is possible to have considerable reductions of the size of decompo-
sition schemes and of the expected time of search. This outlines that the
organizational structure sets a balance in the trade-off between speed and op-
timality of search and adaptation. It is easy to argue that in complex problem
environments, characterized by strong and diffused interdependencies, such a
trade-off will tend to produce organizational structures which are more decom-
posed and decentralized than what would optimal given the interdependencies
of the problem space. This property is shown in figures 3 and 4, which present
the typical search paths on a non-decomposable problem of two search pro-
cesses driven respectively by decompositions:

D1 = {1, 2, . . . , 12}
D12 = {{1}, {2}, . . . , {12}}

Figure 3 shows the first 180 iterations in which the more decentralized struc-
ture (D12) quickly climbs the problem space and outperforms search based on
a coarser decomposition. If there was a tight selection environment, more
than optimally decentralized organizational structure would quickly displace
the structure D1 which reflects the “true” decomposition of the underlying
problem space.

However the search process based on the finest decomposition quickly
reaches a local optimum from which cannot make any further improvement,

23In this and the following figures (with the exception of figure 5) on the vertical axis we
indicate the rank of configurations re-parametrized between 0 (worst) and 1 (best).
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while the process based on the coarser decomposition keeps searching and
slowly climbing. Figure 4 shows iterations between 3000 and 3800, where
the finest decomposition is still locked-into the local optimum it reached after
very few iterations, while the coarsest one slowly reaches the global optimum
(normalized to 1). Strong selective pressure tends therefore to favor organiza-
tional structures whose degree of decentralization is higher than what would
be optimal from a mere problem-solving perspective.

This result is even stronger in problems that we could define “modular”, i.e.
characterized by blocks with strong interdependencies within blocks and much
weaker - but non-zero - interdependencies between blocks: in this problems
higher levels of decompositions can be achieved at lower costs in terms of
sub-optimality.

Another important property concerns micro (“idiosyncratic”) path-depen-
dencies of organizational forms and their long-term persistence. If finer-than-
optimal decompositions tend to emerge and to spread because of their “tran-
sient” evolutionary advantages, then one will in general observe also long-term
diversity in the population of organizations in terms of (i) the decomposition
they are based upon; (ii) the problem solutions they implement; and (iii) the
local peaks they settle in24. This is easily shown by a simulation exercise in
which we model a simple selection environment in which we generate 100 orga-
nizations characterized by a randomly generated decomposition and a random
initial string and let them search a randomly generated indecomposable prob-
lem. Every 10 iterations the worst performing 10 organizations are selected out
and replaced by 10 new organization among which 5 are randomly generated
and 5 have the same decomposition scheme of the best performing ones but
are placed on a randomly chosen configuration.

Figure 5 plots the number of diverse organizational forms at every iteration.
Initially, diversity does indeed sharply decrease because of selective pressure
but then stabilizes on numbers consistently and persistently higher than 1.

A very similar trend describes the number of surviving different configura-
tions, which reflect the fact that the population of organizations settles onto
several local peaks of similar value.

We have also run other simulations in which, at given intervals, we have
changed the current problem with one having exactly the same structure in
terms of decomposability, but with different, randomly generated, orderings
of configurations. This can be taken as a metaphorical proxy for volatility
of the environment. For instance consumers might have changing preferences
over a given set of characteristics, or, on the production side, relative input
prices may change. Interestingly enough, it turns out that even with totally
decomposable problems, as the change of the orderings becomes more frequent,
the population is entirely invaded by organizations characterized by coarser

24On this latter point a similar result is obtained by Levinthal (1997).
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and coarser decompositions, and at the limit by organizations which do not
decompose at all. This robustly suggests that growing volatility has stronger
consequences then those of growing interdependence. The reason why this
happens is shown in figures 6 and 7 which present, respectively, the expected
improvements and the probability of improvement for searches based upon the
finest (D12) and coarsest (D1) decomposition schemes in a fully decomposable
problem25. It is shown that, when starting from low rank configurations, search
based upon coarser decomposition has both a higher probability of finding a
better configuration and when such a better configuration is found, its expected
rank is higher for coarser decompositions. This is due to the fact that finer
decompositions search only locally and in fully decomposable problems this
on average cannot produce large improvements. When the problem space is
highly volatile – though always fully decomposable – sooner or later every
organization will fall into an area of very “bad” configurations from which
coarser decompositions have a higher chance to promptly recover.

8 Conclusions

In this work we have presented a novel model of ’Simonian’ ascendancy con-
cerning the properties of the division of problem solving labor and also to ac-
count for the properties of different institutional arrangements and in particu-
lar for different boundaries between un-decomposed (in principle organization-
embodied) tasks, and decomposed ones (possibly coordinated via market-
like mechanisms but also via mechanisms based on the interaction of quasi-
independent units within simple organizations).

The issue is basically one of organizational (and technological) design: can
optimal organizational structures (or optimal technological designs) emerge
out of decentralized local interactions? The paper in fact shows that this is
possible only under some special and rather implausible conditions and that,
on the contrary, the advantages of decentralization bear usually a cost in terms
of sub-optimality.

The results are largely consistent with Simon’s general proposition suggest-
ing that “. . . near decomposability is an exceedingly powerful architecture for
effective organization . . . [which] appear with regularity also in human social
organization – e.g. business firms and government agencies – with their many-
layered hierarchies of divisions, departments and sections . . . ” (Simon 2002,
pp. 598-99). However our model also highlights the subtle trade-offs between
levels of decomposition, degrees of suboptimality of the achievable outcomes,
and speed of adaptation. Together, it casts strong doubts on the general

25Figures 6 and 7 refer to the fully decomposable search space given by the binary numbers
between 0 and 2N − 1. But the same qualitative results are obtained for any kind of fully
decomposable search space.
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validity of any “optimality-through-selection” argument in the space of orga-
nizational and technological designs and, more in general, of any “optimistic”
view of market selection processes (expressed for instance by Alchian (1950)
and Friedman (1953)) as forces which substitute individual optimization with
evolutionary optimization.

On more empirical grounds, the analysis of the foregoing trade-offs can
help explain the changing depth and profile of integration of organizations
along technology and industry life cycles. The results of our model are well
consistent with an empirical story according to which new technologies develop
in highly integrated organizations because of the need to control for the strong
interdependencies which characterize difficult problems. Market-like decen-
tralized mechanisms, it has been argued, do not provide appropriate signals in
this early “problem-solving” phase, because they do not - except in very simple
problems - allow for the coordination of interdependent elements. As search
proceeds and a local peak (a set of standards in the techno-organizational
design problem) is selected, the degree of decentralization can be greatly in-
creased in order to allow for fast climbing of this peak (and indeed transaction
costs factors can very well be responsible at this stage for variations of the de-
gree of integration), but the more decentralization is pushed forward, the more
unlikely it will be that new and better local optima can be discovered. There
is an unavoidable trade-off between decentralization and optimality which can
hardly be escaped.

Finally we suggested that organization could actually play the even more
fundamental role of building collective representations of the problems to
solved, and that such representations could act as frames within which the
division of labor takes place inside and across organizations. Consider such
a proposition as the beginning of a promising line of inquiry concerning the
crucial role of organization in the construction of collectively shared represen-
tations - fundamental ingredients, as such, of coordination in presence of any
form of division of cognitive and productive labor.
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Figure 1: Size of minimum decomposition schemes for random NK problems.
(N=12)
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Figure 2: Near decomposability.
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Figure 4: . . . after 3000 iterations.

30



0

20

40

60

80

100

0 50 100 150 200 250 300

N
. o

f s
ur

vi
vi

ng
 d

ec
om

po
si

tio
n 

sc
he

m
es

Iterations
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Figure 6: Expected gain from rank-improving mutations for the finest (D12)
and coarsest (D1) decompositions in a fully decomposable problem. (N=12)
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Figure 7: Probability of rank-improving mutations for the finest (D12) and
coarsest (D1) decompositions in a fully decomposable problem. (N=12)
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