
Squartini, Tiziano; Garlaschelli, Diego

Working Paper

Exact maximum-likelihood method to detect patterns in
real networks

LEM Working Paper Series, No. 2011/07

Provided in Cooperation with:
Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies

Suggested Citation: Squartini, Tiziano; Garlaschelli, Diego (2011) : Exact maximum-likelihood method
to detect patterns in real networks, LEM Working Paper Series, No. 2011/07, Scuola Superiore
Sant'Anna, Laboratory of Economics and Management (LEM), Pisa

This Version is available at:
https://hdl.handle.net/10419/89455

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/89455
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


�����������

������������	�
������������������������
����������������������

���������	
��������

��������������������

���������������������������������������������������
��� !∀#��
�����
������������∃%�����������������

����������������� �����	
��
�����

������

���������	
��
��������
��
��������

������
������
��
�������
�������
������
�������
�����
��������
��
 
!∀#∃%
�&��
∋&���	(
)��∗
+�, −!− ..� �/�

0�1
+�, −!− ..� �//
�����2
���3����4∗��

5��
����2
���4266777∗���∗����4∗��6

��
���������
���
���
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In order to detect patterns in real networks, randomized graph ensembles that preserve only
part of the topology of an observed network are systematically used as fundamental null models.
However, their generation is still problematic. The existing approaches are either computationally
demanding and beyond analytic control, or analytically accessible but highly approximate. Here we
propose a solution to this long-standing problem by introducing an exact and fast method that allows
to obtain expectation values and standard deviations of any topological property analytically, for
any binary, weighted, directed or undirected network. Remarkably, the time required to obtain the
expectation value of any property is as short as that required to compute the same property on the
single original network. Our method reveals that the null behavior of various correlation properties
is different from what previously believed, and highly sensitive to the particular network considered.
Moreover, our approach shows that important structural properties (such as the modularity used
in community detection problems) are currently based on incorrect expressions, and provides the
exact quantities that should replace them.

PACS numbers: Valid PACS appear here

I. INTRODUCTION

Detecting relevant patterns in real networks, a funda-
mental problem for many research fields [1–3], relies upon
the possibility to distinguish the properties explained by
the presence of simple constraints from more complex
and nontrivial structural features. For this reason, statis-
tical ensembles of graphs with specified constraints, and
otherwise completely random, have been introduced and
systematically used as a reference to identify non-random
patterns in a real network [4–23]. Such ensembles serve
also as powerful models to study dynamical processes on
networks displaying only a set of desired properties, and
allow to highlight the dynamical effect of each property
separately. The simplest and most important ensembles
specify only local constraints. For unweighted networks,
this amounts to specify the degree ki (number of incident
edges) of each vertex (i = 1 . . . N where N is the total
number of vertices), and results in the so-called config-
uration model [4, 5, 7]. In the weighted case, the cor-
responding constraint is obtained by fixing the strength
si (sum of incident edge weights) of each vertex [15–17].
More in general, one could enforce different or additional
properties [6, 11, 13, 14, 16, 19–23].

Unfortunately, as we discuss in detail in what follows,
it turns out that even in the simplest case with local
constraints, the correct generation of random ensembles
corresponding to a particular real world network is prob-
lematic. Both analytical and computational approaches
proposed so far have severe limitations. Motivated by
this, here we propose a new maximum-entropy method
that is entirely analytical and does not require the gen-

eration of randomized variants of a real network. Our
method provides the exact probabilities of occurrence of
random graphs with the same constraints as the real net-
work, from which the expectation values and standard
deviations (as well as all other moments) of any topologi-
cal quantity of interest can be calculated mathematically.
Due to its analytical character, our method is extremely
faster than all available alternatives. Moreover, it can
be applied to undirected, directed, binary and weighted
networks in a unified way. We will illustrate the power
of our approach on several real-world networks of differ-
ent nature and type, by studying a range of topological
properties of interest.

II. AVAILABLE METHODS AND THEIR

LIMITATIONS

We first briefly review the existing problems in the case
of binary unweighted networks, which is the most fre-
quently explored situation. A binary unweighted graph
with N vertices is completely specified by a N × N ad-
jacency matrix A with entries aij = 1 if the vertices i
and j are connected, and aij = 0 otherwise. Generally,
one is interested in comparing the observed topological
properties of a particular real-world network A

∗ against
the average properties of a randomized family of net-

works with the same degree sequence ~k(A∗) = {ki(A∗)},
where ki(A

∗) =
∑

j a
∗
ij is the degree (number of connec-

tions) of vertex i in the network A
∗. The ensemble of bi-

nary undirected networks with specified degree sequence
is known as the configuration model (CM) [4, 5, 7] and
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FIG. 1. An illustration of the local rewiring algorithm whose
iteration allows to computationally explore the microcanoni-
cal configuration model.

is currently treated in two very different ways: computa-
tionally, by explicitly generating many random networks
with the desired degree sequence and averaging the quan-
tities of interest across the randomized networks [4, 5],
or analytically, by using approximations that allow to di-
rectly estimate the average of topological properties as
a function of the enforced degree sequence, without ac-
tually measuring them on any network [7, 8]. Currently,
both approaches suffer from severe limitations.
A ‘bottom-up’ computational approach consists in as-

signing each vertex i a number of ‘edge stubs’ equal to
its observed degree ki(A

∗), and randomly matching pairs
of stubs (avoiding self-loops and multiple links) until all
degrees reach their desired values (edge stub reconnec-
tion). However, this procedure is known to get stuck
in configurations where vertices requiring additional con-
nections have no more eligible partners [4, 5]. As a conse-
quence, one must implement a ‘top-down’ computational
approach where the entire real networkA

∗ is taken as the
initial configuration, and a family of randomized variants
is generated by iteratively applying a local rewiring algo-
rithm (LRA) where two edges (A,B) and (C,D) are ran-
domly selected and replaced by the two edges (A,D) and
(C,B), if the latter are both not already present [4, 5] (see
fig.1 for an illustration). This generates a microcanoni-
cal ensemble (see the Appendix for a detailed discussion)
where all randomized networks have exactly the same de-
gree sequence as the original network, and are sampled
with equal probability. This method has been applied
to the Internet [5], cellular networks [6] and food webs
[12] to detect higher-order patterns (such as clustering
and motifs) not merely due to local constraints. How-
ever, this approach is time-consuming since many (an
assumed number R ≥ 4L where L is the observed num-
ber of links) iterations of the LRA are required to obtain
a single randomized variant, and the entire process must
be repeated several times to produce a large number M
of randomized variants, on each of which any topological
property X of interest must be measured explicitly and
averaged at the end to obtain an estimate for 〈X〉. The
computational time required to obtain 〈X〉 is therefore
M(TRR+TX), where TR is the average time required to

perform a single successful rewiring step and TX is that
required to compute X on a single network in the ran-
domized set. Moreover, even if the sufficient statistics

of the problem is the degree sequence ~k(A∗) alone, the
above approach requires the entire original network A

∗

as the starting configuration, thus making use of much
more information than required in principle.

By contrast, analytical approaches seek to provide the-
oretical expressions to directly obtain the ensemble av-
erages of topological properties, without generating the
ensemble computationally. Two main approaches ex-
ist. One makes use of generating functions for the rel-
evant probability distributions. In the case we are dis-
cussing here, the key quantity is the generating function
g(z) =

∑

k z
kP (k) of the degree distribution [7]. Unfor-

tunately, this method assumes that the network is infinite
and locally tree-like (even if in some cases this approxi-
mation turns out to perform unexpectedly well even be-
yond its formal range of applicability [24]), and is thus
inappropriate if the size of the network is small and if the
input degree distribution can only be realized by dense
and/or clustered networks. In this approach, clustered
or dense networks can only be generated by imposing
additional constraints besides the degree sequence, such
as the number of triangles attached to vertices [25], thus
leading to a different ensemble which is not the one we
are seeking to characterize. Moreover, theoretical predic-
tions are obtained assuming an explicit functional form
for the degree distribution P (k). Therefore, they cannot
be used for networks displaying a noisy, complicated or
not easily parametrizable degree distribution.

A different approach looks for an analytical expres-
sion for the probability pij that the vertices i and j
are connected in the randomized ensemble [8]. Due
to its probabilistic nature, this approach generates a
(grand)canonical ensemble where even graphs violating
the constraint are present and assigned different proba-
bilities. In such a case, the constraints are realized on
average, i.e. the expectation value 〈X〉 of any specified
property X is fixed exactly (see Appendix). While this
approach is indeed very fast in providing averages of the
desired properties, it has been shown [9] that it makes
use of a highly approximate expression for pij , valid only
when the original network is sparse and/or the degree
distribution is not too broad. This expression is

pij =
ki(A

∗)kj(A
∗)

2L∗
(1)

where L∗ ≡ L(A∗) =
∑

i ki(A
∗)/2 =

∑

i<j a
∗
ij is

the total number of links. While the expected degree
〈ki〉 =

∑

j pij generated by the above formula coincides

with the desired degree ki(A
∗), the probability pij may

exceed 1 for pairs of highly connected nodes such that
ki(A

∗)kj(A
∗) > 2L(A∗). In general, only if the degree

sequence is such that

ki(A
∗) <

√

2L(A∗) =

√

∑

j

kj(A∗) ∀i (2)
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then using eq.(1) on the real network A
∗ will not lead

to the above problem. While the above condition is typi-
cally obeyed by networks with narrow degree distribution
such as the Erdős-Rényi random graph, it is generally vi-
olated by scale-free networks displaying a power-law de-
gree distribution P (k) ∼ k−γ , and this violation becomes
stronger and stronger as the density of the network in-
creases. In particular, it is possible to show that in order
to ensure eq.(2) the maximum degree kmax in the net-
work should not exceed the so-called structural cut-off
kc ∼ N1/2 [26]. This is particularly evident for dense
networks where the average degree k̄ =

∑

i ki/N = 2L/N
remains constant as N increases, so that eq.(2) remains

valid only if kmax <
√
2L ∼ N1/2. By contrast, ex-

treme value theory shows that in networks with degree
distribution P (k) ∼ k−γ the maximum degree scales
as kmax ∼ N1/(γ−1), so that if γ < 3 (as observed in
most real-world scale-free networks) then kmax > N1/2

which exceeds kc. The meaning of pij being larger than
1 for some pairs of vertices in eq.(1) is that, in order
to actually realize the degree sequence of the real net-
work A

∗, one must let i and j be connected by more
than one undirected edge. Also, since the desired equal-
ity 〈ki〉 = ki(A

∗) is only ensured if one lets the sum
in

∑

j pij = 〈ki〉 run over all vertices including i itself,
one must allow the presence of self-loops in the random-
ized networks. Thus, even if this is not evident at a
first glance, the ensemble generated by eq.(1) does not
only contain binary and loop-less undirected graphs and
is thus not a proper null model for an empirical binary

loop-less network A
∗ with degree sequence ~k(A∗) vio-

lating eq.(2), as is typically the case for real-world net-
works with broad degree distributions. An elegant proof
that the correct ensemble probability pij for loop-less
graphs with no multiple connections differs from eq.(1)
has been proposed [9] and re-derived within the frame-
work of maximum-entropy graph ensembles [14]. We
shall exploit this result to obtain an exact method later
on. We will also show that in real networks the deviation
is stronger than expected, and affects sparse networks as
well. An independent proof of the inadequacy of eq.(1)
is that it does not generate the graph A

∗ with maxi-
mum likelihood [27]. This can be confirmed by treating
L as a free parameter and look for its value LML that
maximizes the probability to obtain A

∗. One finds that
LML 6= L(A∗), which implies that under the maximum
likelihood choice 〈ki〉 6= ki(A

∗) and 〈L〉 6= L(A∗), vio-
lating the desired constraint on the degree sequence and
the implied one on the number of links [27]. This shows
that the functional form of pij in eq.(1) is intrinsically
problematic and does not give highest likelihood to A

∗

and to all other graphs with the same degree sequence as
A
∗.

Therefore, while the available analytical methods are
useful to characterise artificially generated networks with
special properties, they cannot be used to correctly ran-
domise any real-world network which is either small, clus-
tered, or dense. Unfortunately, the above limitations are

generally ignored, and eq.(1) is frequently used beyond
its limits of applicability to estimate connection proba-
bilities. Moreover, as we note later on, it is also used as
a key ingredient in order to define important structural
properties which implicitly rely on a comparison against
the CM. Analogous problems exist in the analysis of di-
rected and/or weighted networks. We will consider each
of these cases separately in what follows.

III. AN EXACT ANALYTICAL METHOD

The above discussion highlights that no method de-
veloped so far succeeds in obtaining randomized prop-
erties of a particular real-world network such that two
requests are met simultaneously: i) the method is gen-
eral and works for any network, even if displaying small
size, high link density, and large clustering; ii) expected
values across the ensemble can be computed analytically,
without sampling the configuration space explicitly. The
need to resort to the LRA as the only statistically cor-
rect method available, which however requires the artifi-
cial generation of many randomized networks, makes the
general problem very complicated and all its applications
time consuming.

In this paper we propose a solution to this long-
standing problem. We develop an approach that com-
bines exact expressions for the occurrence probabilities of
graphs in maximum-entropy ensembles with given con-
straints [9, 11, 14, 21–23] with more recent results ob-
tained applying the Maximum Likelihood principle to
graph ensembles [27]. In the Appendix we describe our
method in great detail. We start with a general discus-
sion which is formally valid for any constraint, and then
consider explicitly the application to real networks where
a set of local constraints is enforced. We consider the
cases of binary, weighted, directed and undirected net-
works separately. We show that in all these cases the
enforcement of local constraints always leads to exact re-
sults that can be easily obtained analytically. Then we
also consider an extension to non-local constraints which
can still be dealt with analytically. Finally, we compare
our (grand)canonical method with the corresponding mi-
crocanonical ensemble generated computationally as in
the LRA. As we show, for any case of interest a choice
of constraints leads to a specific set of coupled nonlinear
equations to be solved. In such equations, the observed
values of the enforced topological properties (e.g. the
degree sequence) determine the values of an equal num-
ber of ‘hidden’ parameters in such a way that the real
network, or any other network with the same constraints
as the real one, is generated with maximum likelihood.
Since only the enforced constraints enter the equations,
our method only requires the knowledge of the sufficient
statistics of the problem and not of the whole topology,
restoring a desirable feature of randomization algorithms.
Solving the maximum-likelihood equations only takes a
computational time TE ranging from seconds to tens of
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seconds, even on an ordinary laptop, and entirely replaces
the artificial generation of many randomized variants of
the original network. Once the parameters solving the
equations are found, they can be directly used to ob-
tain the expectation value 〈X〉 and standard deviation
σ[X] of any topological property X of interest analyti-
cally. When useful, this also allows to obtain a z-score
representing the number of standard deviations by which
the randomized value 〈X〉 differs form the observed value
X(A∗). The possibility to obtain the standard deviations
and/or z-scores is very important, because it allows to as-
sess which topological properties X are consistent with
their randomized value 〈X〉 within a statistical error,
and which deviate significantly from the null expectation.
In the former case, one can conclude that the enforced
constraints completely explain the higher-order property
X. In the latter case, the observed property cannot be
traced back to the constraints, and therefore requires ad-
ditional explanations or generating mechanisms besides
those required in order to explain the constraints them-
selves. Importantly, the time required to compute the
expectation value 〈X〉 of a given property X exactly (for-
mally corresponding to an average over a huge number
of randomized configurations) is the same as the time
TX required to compute the same property on the sin-
gle original network. Therefore our method takes only a
total time TE+TX to obtain 〈X〉 exactly, which is incred-
ibly shorter than the aforementioned time M(TRR+TX)
required by the LRA to obtain 〈X〉 approximately. Im-
portantly, TE is independent of the complexity of the
topological property X to measure, which means that
for complicated properties TE + TX ≈ TX . Therefore for
any topological property X which can be measured in a
large but still reasonable time TX on the real network,
the computation of its expectation value 〈X〉 will require
the same time TX . If the time required in order to ob-
tain 〈X〉 is too large, it is because the time required to
measure X is too large as well. In other words, the prop-
erty X is too complicated to be computed on the real
network itself. In such a case, the problem is not due
to the method, but to a demanding choice of X for that
particular network.

IV. RESULTS

We now show the application of our method to real
networks of various type, by considering several topolog-
ical properties and their randomized counterparts.

A. Binary undirected networks

We start with the simplest case of binary undirected
networks. One of the most important topological proper-
ties of a binary network is the correlation between the de-
grees of adjacent nodes, which has been shown to dramat-
ically affect various structural and dynamical features [2].

These correlations can be measured by the average near-
est neighbour degree (ANND), which on the real network
A
∗ is defined as

knni (A∗) ≡
∑

j 6=i

∑

k 6=j a
∗
ija
∗
jk

∑

j 6=i a
∗
ij

(3)

While the degree is a first-order property which only de-
pends on the number of links (topological paths of length
one) entering a vertex, the ANND is a second-order prop-
erty contributed by paths of length 2 (i.e. the terms
a∗ija

∗
jk). Similarly, a third-order (i.e. involving paths of

length 3) property is the clustering coefficient ci, which
represents the fraction of pairs of neighbours of vertex i
which are mutually connected:

ci(A
∗) ≡

∑

j 6=i

∑

k 6=i,j a
∗
ija
∗
jka
∗
ki

∑

j 6=i

∑

k 6=i,j a
∗
ija
∗
ki

(4)

As we mentioned, it is always important to assess
whether in a particular real network higher-order proper-
ties arise merely as a consequence of low-level constraints
or whether they signal additional structural patterns.
In particular, comparing the real network A

∗ with the
CM (which provides an ensemble of random networks

having, on average, the same degree sequence ~k(A∗) as
A
∗) allows to assess whether longer topological paths

and the structural properties involving them are sim-
ply a random concatenation of the individual links en-
forced by the degree sequence, or whether they are irre-
ducible to first-order constraints. As we discuss in detail
in the Appendix, our method can solve this problem ex-
actly by making use of an auxiliary N -dimensional vector
~x = {x1 . . . xN} of parameters. In particular, one must
look for the particular values ~x∗ that solve the following
set of N coupled nonlinear equations:

∑

j 6=i

x∗i x
∗
j

1 + x∗i x
∗
j

= ki(A
∗) ∀i (5)

where ki(A
∗) is the observed degree of vertex i in the

real network A
∗. Once the parameter values are found,

they allow to obtain analytically the expectation value
〈X〉∗ of any topological property X across the desired
ensemble. This simply amounts to replace the adjacency
matrix entry a∗ij appearing in the definition of X(A∗)
with its expectation value

p∗ij = 〈aij〉∗ =
x∗i x

∗
j

1 + x∗i x
∗
j

(6)

which represents the correct expression that should be
used in place of eq.(1). Similarly, it is possible to obtain
the standard deviation σ∗[X] analytically in terms of ~x∗

(see Appendix).
In fig.2 we show an application of our method on the

network of the 500 largest US airports [28], a synap-
tic network [29], two protein interaction networks [30],
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FIG. 2. Application of our method to binary undirected net-
works. The red points are the empirical data, the black solid
curves are averages over the configuration model obtained us-
ing the local rewiring algorithm [4, 5], and the blue dashed
curves are the analytical expectations (± one standard devi-
ation) obtained using our method. The green curves are the
flat expectations under the random graph model, and high-
light the average level of correlation in the case when there
is no dependence on the degree. The panels report knn

i ver-
sus ki (left) and ci versus ki (right) for: a) and b) the net-
work of the largest US airports (N = 500) [28], c) and d)
the synaptic network of Caenorhabditis elegans (N = 264)
[29], e) and f) the protein-protein interaction network of He-
licobacter pylori (N = 732) [30], g) and h) the network of
liquidity reserves exchanges between Italian banks in 1999
[31] (N = 215), i) the Internet at the AS level (N = 11.174)
[32] and j) the protein-protein interaction network of Saccha-
romices cerevisiae (N = 4.142) [30]. The last two networks
are randomized using only our method, as the local rewiring
algorithm would require much more time given the large num-
ber of edges.

an interbank network [31] and the Internet at the Au-
tonomous Systems level [32]. These are among the most
studied networks of this type. We compare the correla-
tion structure of the original networks, as measured by
the dependence of knni (A∗) and ci(A

∗) on ki(A
∗), with

the expected values 〈knni 〉∗ and 〈ci〉∗ obtained analyti-
cally using our method. We also highlight the region
within one standard deviation around the average by
plotting the curves 〈knni 〉∗±σ∗[knni ] and 〈ci〉∗±σ∗[ci]. For
the sake of comparison, we also report the average val-
ues obtained sampling the microcanonical ensemble with
the standard local rewiring algorithm [4, 5], and the ex-
pected values over the ensemble of random graphs with
the same number of links (random graph model, RG) As
we mentioned, the microcanonical method requires the
generation of many randomized variants, many rewirings
per variant, and the measurement of knni and ci on each
variant separately, plus a final averaging. By contrast,
our method only requires the preliminary estimation of
the {x∗i }. Then the calculation of 〈knni 〉 and 〈ci〉 takes
exactly the same time as that of the empirical values. As
can be seen, the two approaches yield very similar re-
sults (in the Appendix we provide a detailed comparison
of the two methods). For the two largest networks (the
protein interactions in S. cerevisiae and the Internet), we
only report the expectations obtained using our method,
as the microcanonical approach would require too much
computing time.

The above results allow to interpret the effect of the
degree sequence on higher-order properties. Firstly, the
trends displayed by the CM are not flat as those expected
in the random graph case. This confirms that residual
structural correlations, simply due to the enforced con-
straint, are still present after the rewiring has taken place.
The presence of these correlations does not require any
additional explanation besides the existence of the con-
straints themselves. This is very different from the pic-
ture one would get by using the (wrong) expectation of
eq.(1) which would yield flat trends as well, naively sug-
gesting that correlations can never be traced back to the
degree sequence alone. Secondly, while the trends ob-
served in all the networks considered are always decreas-
ing, they unveil different correlation patterns when com-
pared to the randomized trends. The real interbank data
are almost indistinguishable from the randomized curves,
meaning that structural constraints can fully explain the
observed behaviour of higher-order network properties.
Instead, in the airport network the randomized curves
lie below the real data (except for an opposite trend of
〈knni 〉 for low degrees). This means that the real net-
work is more correlated than the baseline randomized
expectation, and indicates that additional mechanisms
producing positive correlations must be present on top
of structural effects. By contrast, in the H. pylori ’s pro-
tein network the expected curves lie above the real data,
suggesting the presence of mechanisms producing nega-
tive correlations. The same is true for the correlation
structure of the Internet, confirming previous results [5],
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while S. cerevisiae’s protein network is completely differ-
ent from its randomized variants. Therefore seemingly
similar trends can actually reveal very different types of
structural organization. This means that measuring the
topological properties alone is uninformative, and makes
the comparison between real data and randomized en-
sembles essential. Thus the possibility to analytically
and quickly characterize the latter, which was previously
unavailable, is a remarkable advantage of our approach.

B. Directed networks

We now consider binary directed networks, which
are specified by an asymmetric adjacency matrix A.
The local constraints are now represented by the joint
sequence of out-degrees and in-degrees {kouti , kini } =
{∑j 6=i aij ,

∑

j 6=i aij}. Given a particular real networkA
∗

and a measured topological property X(A∗), our method
allows to analytically obtain the expectation value 〈X〉∗
and standard deviation σ∗[X] across the ensemble of bi-
nary directed graphs with, on average, the same directed

degree sequences ~kout(A∗) and ~kin(A∗) as A
∗ (directed

configuration model, DCM). As shown in the Appendix,
in this case our method makes use of two N -dimensional
vectors ~x, ~y of auxiliary variables, and requires that these
parameters are set to the particular values ~x∗, ~y∗ that
solve the following set of 2N coupled nonlinear equations:

∑

j 6=i

x∗i y
∗
j

1 + x∗i y
∗
j

= kouti (A∗) ∀i (7)

∑

j 6=i

x∗jy
∗
i

1 + x∗jy
∗
i

= kini (A∗) ∀i (8)

The quantities ~x∗, ~y∗ allow to obtain 〈X〉∗ and σ∗[X] an-
alytically and quickly, outperforming the directed version
of the LRA [46]. Note that, as in the undirected case, the
method only makes use of the sufficient statistics of the
problem.
We apply our method to various directed networks,

by studying the second-order topological properties mea-
sured by the outward ANND and the inward ANND,
which are defined as two natural generalizations of eq.(3):

knn,outi (A∗) ≡
∑

j 6=i

∑

k 6=j a
∗
ija
∗
jk

∑

j 6=i a
∗
ij

(9)

knn,ini (A∗) ≡
∑

j 6=i

∑

k 6=j a
∗
jia
∗
kj

∑

j 6=i a
∗
ji

(10)

In fig.3 we plot the observed values knn,ini (A∗) versus

kini (A∗) and knn,outi (A∗) versus kouti (A∗), as well as

the expectations 〈knn,ini 〉∗ ± σ∗[knn,ini ] and 〈knn,outi 〉∗ ±
σ∗[knn,outi ] obtained using our model (see Appendix), for
three real directed networks: the neural network of C.
elegans [29] (now in its directed version), the metabolic
network of E. coli [33], and the Little Rock Lake food
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FIG. 3. Application of our method to directed networks. Red
points are the empirical data, the black solid curves are ex-
pectations under the directed configuration model using the
local rewiring algorithm, and the blue dashed curves are the
exact expectations obtained using our method (± one stan-
dard deviation). The green curves are the flat expectations
under the directed random graph model. The panels report
k
nn,in
i versus kin

i (left) and k
nn,out
i versus kout

i (right) for:
a) and b) the directed neural network of Caenorhabditis el-
egans (N = 264) [29], c) and d) the metabolic network of
Escherichia coli (N = 1078) [33], e) and f) the Little Rock
Lake food web (N = 183) [34].

web [34]. As before, we also show the microcanonical av-
erage obtained using the LRA and the expectation under
the directed random graph model (DRG) with the same
number of links. Again, we find a very good agreement
between the two approaches, confirming that our method
yields the correct prediction in incredibly shorter time
(see Appendix for a discussion about the convergence
time of the LRA to our exact results). We also con-
firm that while some networks (C. elegans and E. coli)
are almost consistent with the null model, others (Little
Rock) deviate significantly.

However, the most interesting point for the present
analysis is that, while for the undirected networks con-
sidered above all randomized trends were decreasing, in
this case we find that the three randomized trends be-
have in totally different ways. In the neural network,
both 〈knn,ini 〉∗ and 〈knn,outi 〉∗ are approximately con-
stant. This means that the baseline behavior for both
quantities is flat and uncorrelated (as in the directed
random graph, but at a different level). By contrast,
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in the metabolic network the expected curves are de-
creasing, and thus the ensemble of randomized networks
is disassortative as for the undirected graphs considered
above. Finally, in the food web the constraints enforce
unusual positive correlations, and the randomized ensem-
ble is even assortative. Interestingly, while it is expected
that random networks with specified degrees display a
disassortative behavior [5, 9], the assortative trend is to-
tally surprising. This is because our method extracts
the hidden variables directly from the specific real world
network, rather than drawing them from ad hoc distribu-
tions. The resulting values can be distributed in a very
complicated fashion, invalidating the results obtained un-
der other hypotheses. To further highlight this important
point, we selected three more food webs characterized by
a particularly small size (see fig.4). Small networks can-
not be described by approximating the mass probability
function of their topological properties (such as the de-
gree) with a continuous probability density. Therefore
in this case the difference between the expectations ob-
tained by drawing the ~x and ~y values from analytically
tractable continuous distributions and those obtained by
solving eqs.(8) using the empirical degrees is particularly
evident. As we show in fig.4 (where for simplicity we
omit the comparison with the LRA), we confirm that
the (directed) CM can display not only flat or decreasing
trends, but also increasing ones. Importantly, in this case
all three webs do not deviate dramatically from the null
model. This means that while one would be tempted to
interpret the three observed trends as signatures of dif-
ferent patterns (zero, negative and positive correlation),
actually in all three cases the observed behavior can be
roughly replicated by the same mechanism and almost
entirely traced back to the degree sequence only. This un-
expected result highlights once again that the measured
values of any topological property are per se entirely un-
informative, and can only be interpreted in relation to a
null model.

C. Reciprocity and motifs

So far, in our analysis of directed networks we have
considered second-order topological properties. In prin-
ciple, third-order properties can be studied by introduc-
ing directed generalizations of the clustering coefficient
[36, 37]. However, there is a proliferation of possible
third-order patterns due to the directionality of links. For
this reason, a more complete analysis consists in count-
ing (across the entire network) all the possible directed
motifs [6] involving three vertices, and comparing the em-
pirical abundances with the expected ones under the null
model. As we show in a moment, our method lends itself
admirably in such a case. Before presenting our results,
we note however that directionality makes the possible
specifications of the null model proliferate as well. In
particular, besides the DCM considered above, a more
refined way to randomize directed networks includes the
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FIG. 4. Application of our method to small-size directed food
webs. Red points are the empirical data and the blue dashed
curves are the exact expectations (± one standard deviation)
under the directed configuration model obtained using our
method. The green curves are the flat expectations under
the directed random graph model. The panels report k

nn,in
i

versus kin
i (left) and k

nn,out
i versus kout

i (right) for: a) and
b) the Narragansett Bay web (N = 35) [35], c) and d) the
Mondego Estuary web (N = 46) [35], e) and f) the St. Marks
River web (N = 54) [35]. For the latter, in g) and h) we
also compare the empirical data with the expectations under
the reciprocal configuration model, where also the number of
reciprocated links of each vertex is specified.

possibility to enforce additional constraints on the reci-
procity structure [6, 11]. In other words, it is possible
(and important in many applications [6, 12]) to preserve
not only the total numbers kini and kouti of incoming
and outgoing links of each vertex, but also the number
k↔i ≡ ∑

j aijaji of reciprocated links (pairs of links in

both directions) [38, 39]. This specification is equivalent
to enforce, for each vertex i, the three quantities [11, 38]
k→i ≡ ∑

j 6=i a
→
ij (number of non-reciprocated outgoing
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links), k←i ≡ ∑

j 6=i a
←
ij (number of non-reciprocated in-

coming links) and k↔i ≡ ∑

j 6=i a
↔
ij (number of recipro-

cated links), where a→ij ≡ aij(1− aji), a
←
ij ≡ aji(1− aij)

and a↔ij ≡ aijaji.
Given a real directed network A

∗, we denote the null
model with specified joint reciprocal degree sequences
{k→i (A∗), k←i (A∗), k↔i (A∗)} as the reciprocal configura-
tion model (RCM). This is an example of model with
nonlocal (second-order) constraints which can still be
treated analytically using our method. As we show in
the Appendix, in this case one must solve the following
3N coupled equations:

∑

j 6=i

x∗i y
∗
j

1 + x∗i y
∗
j + x∗jy

∗
i + z∗i z

∗
j

= k→i (A∗) ∀i (11)

∑

j 6=i

x∗jy
∗
i

1 + x∗i y
∗
j + x∗jy

∗
i + z∗i z

∗
j

= k←i (A∗) ∀i (12)

∑

j 6=i

z∗i z
∗
j

1 + x∗i y
∗
j + x∗jy

∗
i + z∗i z

∗
j

= k↔i (A∗) ∀i (13)

The expectation value of any topological property, as well
as its standard deviation, can now be calculated analyti-
cally in terms of the three N -dimensional vectors ~x∗, ~y∗,
~z∗. For instance, in fig.4g-h we repeat the analysis of the
directed ANND of the St. Marks River food web, now
comparing the observed trend against the RCM. In this
case, we find no significant difference with respect to the
DCM considered above (fig.4e-f). However, as we now
show, the analysis of motifs reveals a dramatic difference
between the predictions of the two null models.
If Nm denotes the number of occurrences of a particu-

lar motif m, our method allows to calculate the expected
number 〈Nm〉∗ and standard deviation σ∗[Nm] exactly
(see Appendix), and thus to obtain the z-score

z[Nm] ≡ Nm(A∗)− 〈Nm〉∗
σ∗[Nm]

(14)

analytically. This can be done for both the DCM and
the RCM. The value of z[Nm] indicates by how many
standard deviations the observed and expected numbers
of occurrences of motif m differ. Large values of z[Nm]
indicate motifs that are either over- or under-represented
under the particular null model considered, and that are
therefore not explained by the lower-order constraints en-
forced. In fig.5 we show the z-scores for all the possible
13 non-isomorphic connected motifs with three vertices
in 8 real food webs, for both null models. We also show
the two lines z = ±2 to highlight the region within 2
standard deviations from the model’s expectations. This
analysis is similar to that of ref.[12], but is made much
simpler by our method which does not require to ran-
domize the webs through a computational algorithm pre-
serving the (reciprocal) degree sequences. The food webs
considered here are from different ecosystems (lagoons,
marshes, lakes, bays, estuaries, grasses), with a preva-
lence of aquatic habitats. The presence of (intrinsically
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FIG. 5. Application of our method to the analysis of directed
motifs involving three vertices in 8 real food webs. Top panel:
z-scores obtained enforcing only the in-degree and out-degree
sequences (directed configuration model). Bottom panel: z-
scores obtained enforcing also the reciprocal degree sequence
(reciprocal configuration model).

directed) predator-prey relationships implies that reci-
procity is a very important quantity in food webs [12].
Thus the RCM should fluctuate less than the DCM. In-
deed, this is confirmed by our analysis. The z-scores for
the motifs m = 2, 3, 13 are significantly reduced from the
DCM to the RCM. Also, while the motifs m = 1, 6, 10, 11
display large values of z with opposite signs across dif-
ferent webs under the DCM, the signs of all statistically
surprising motifs (i.e. when |z| & 2) become consistent
with each other under the RCM (except for m = 13).
As a consequence, under the RCM all networks display
a very similar pattern, and the most striking features
of real webs become the over-representation of motifs
m = 2, 10 (plus m = 6, 11, 13 for the Little Rock Lake
web) and the under-representation of motifs m = 5, 9, 13
(plus m = 3, 7, 8 for Little Rock Lake). In particular,
the under-representation of motif m = 9 (the 3-loop) is
the most common pattern across all webs, and becomes
stronger as the reciprocity of the web increases. Also note
that in a network with no reciprocated links, the num-
ber of motifs with at least a pair of reciprocated links
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is zero. Under the RCM, the expected number of these
motifs remains zero. By contrast, their expected number
under the DCM is always positive. Thus we confirm that
the upgrade to the RCM is necessary, as its stricter con-
straints allow to analyze 3-vertices motifs once 2-vertices
motifs (i.e. all possible dyadic patterns) are correctly
accounted for. The possibility to treat the RCM analyt-
ically using our method is therefore an important step
forward.

D. Weighted networks

Remarkably, our method works equally well for
weighted graphs (where the binary adjacency matrix
A is replaced by a non-negative weight matrix W),
thanks to recent analytical results that allow to charac-
terize maximally random weighted networks with spec-
ified properties in a way that is completely analogous
to their binary counterparts [22, 23]. In a partic-
ular weighted network W

∗, the local constraints are
the strength sequence {si(W∗)} = {∑j w

∗
ij} (undi-

rected case) or the joint out-strength and in-strength
sequence {souti (W∗), sini (W∗)} = {∑j w

∗
ij ,

∑

j w
∗
ji} (di-

rected case). We will only consider undirected weighted
networks. The extension to the directed case is straight-
forward. The family of randomized weighted graphs
with the same strength sequence as a real weighted net-
work is sometimes denoted as the weighted configuration
model (WCM) [15]. The available microcanonical algo-
rithms regard each link weight as an integer multiple w
of a fundamental unit of weight, transform each edge of
weight w into w edges of unit weight, and rewire the
latter as in the unweighted case, now ensuring that the
strength (total number of incoming edges of unit weight)
of each vertex is preserved. This means replacing a list of
L∗ ≤ N(N − 1)/2 weighted links, summing up to a total
weight W ∗ =

∑

i<j w
∗
ij , with W ∗ ≫ N(N − 1)/2 un-

weighed links. As real networks have broadly distributed
weights summing up to a large W ∗, this procedure be-
comes very time consuming as incredibly many rewiring
steps per randomized variant must be performed. As for
the binary case, an alternative procedure makes use of
a naive theoretical expectation [15, 40] for the expected
weight of a link in the WCM, in analogy with eq.(1):

〈wij〉 =
si(W

∗)sj(W
∗)

2W ∗
(15)

However, the above expression has been shown to have
as many limitations as its binary counterpart, and to be
incorrect [22].

By contrast, as we show in the Appendix, our method
allows to treat the WCM analytically as in the un-
weighted case. Given a real weighted undirected network
W
∗, our method proceeds by finding the particular val-

ues {x∗i } solving the N coupled equations

∑

j 6=i

x∗i x
∗
j

1− x∗i x
∗
j

= si(W
∗) ∀i (16)

Note the difference of sign with respect to eq.(5). As in
the binary case, the knowledge of ~x∗ allows to obtain the
expectation value 〈X〉∗ and standard deviation σ∗[X] of
any weighted topological property X analytically across
the ensemble of weighted graphs with, on average, the
same strength sequence ~s(W∗) as the real network W

∗.
Again, the time required to obtain 〈X〉∗ is as short as that
required to measure the empirical value X(W∗), as 〈X〉∗
can be obtained by replacing w∗ij with the expectation
value

〈wij〉∗ =
x∗i x

∗
j

1− x∗i x
∗
j

(17)

into the definition of X(W∗). Equation (17) corrects the
naive expectation (15).

In order to apply our method, we need to choose the
weighted topological properties to investigate. General-
izing binary properties to weighted graphs is arbitrary,
as no unique choice exist [18, 40–42]. To better highlight
the generality of our approach, here we follow ref.[41]
since it introduces a way to always systematically define
a weighted counterpart X̃ for every binary property X.
The idea is to define X̃ as an average of X over the en-
semble of binary graphs generated by a convenient con-
nection probability pij = f(wij) ∈ [0, 1] which is a func-
tion of the observed weights {wij}. The functional form
of pij can in principle be chosen depending on the em-
pirical properties one wants to detect; however, our pur-
pose here is using our method to compare the empirical
properties with the expected ones, rather than comparing
alternative definitions of the empirical properties them-
selves. Therefore we make the simplest choice and, given
a real weighted network W

∗, we set pij ≡ w∗ij/W
∗ where

W ∗ ≡ ∑

i<j w
∗
ij =

∑

i si(W
∗)/2 is the total weight. This

choice yields the following definition for the weighted de-
gree [41]:

k̃i(W
∗) =

∑

j 6=i w
∗
ij

W ∗
=

si(W
∗)

W ∗
(18)

which is simply proportional to the strength. Similarly,
the weighted ANND and clustering are defined as the
counterparts of eqs.(3) and (4) [41]:

k̃nni (W∗) ≡
∑

j 6=i

∑

k 6=j w
∗
ijw
∗
jk

W ∗
∑

j 6=i w
∗
ij

(19)

c̃i(W
∗) ≡

∑

j 6=i

∑

k 6=i,j w
∗
ijw
∗
jkw

∗
ki

W ∗
∑

j 6=i

∑

k 6=i,j w
∗
ijw
∗
ki

(20)

In analogy with the binary case, k̃nni and c̃i can be plotted

against k̃i (or equivalently si) in order to investigate the
correlation structure of the weighted network.
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FIG. 6. Application of our method to weighted undirected
networks. Red points are the empirical data and the blue
dashed curves are the exact expectations obtained using our
method (± one standard deviation). Green dashed curves are
the flat expectations under the weighted random graph model,
WRG [23]. The panels report k̃nn

i versus si (left) and c̃i versus
si (right) for: a) and b) the Florida Bay food web (N=128)
[35], c) and d) the Italian interbank network (N=215) [31], e)
and f) the C. elegans neural network (N=265) [29], g) and h)
a snapshot of the US airport network (N=332) [28].

In fig.6 we analyze the weighted and undirected (sym-
metrized) versions of four networks we have already con-
sidered in the previous binary study: the the Florida
Bay food web, the Italian interbank network, the C. El-
egans neural network and the US airport network. We
compare the empirical results with the expected trends
(± one standard deviation) under the WCM obtained
using our method. For simplicity, we only show the
results obtained using our method, and omit the time-
consuming microcanonical comparison. Note that, since
the strengths are preserved in the WCM, i.e. 〈si〉∗ =
si(W

∗) ∀i, the total weight is preserved as well: 〈W 〉∗ =

W ∗. We find that the empirical trends are quite scat-
tered and variable: some are weakly increasing (Florida
Bay), some are approximately constant (interbank web),
others first increase and then decrease (airport network).
These diverse trends must be compared with a null model
which, unlike naively expected from eq.(15), is not flat
and displays a not easily characterizable increasing be-
havior. A common feature is that, with respect to the
null behavior, real weighted networks are more assorta-
tive and clustered for low values of the strength, while
they are less assortative and clustered for high values for
the strength. These considerations confirm that, even in
the weighted case, the empirical trends are uninformative
by themselves, and always require a comparison with a
null model. Our method allows to treat the otherwise
problematic WCM in a simple way, in straightforward
analogy with the binary case.

Although we do not consider this possibility here ex-
plicitly, for weighted networks one could also enforce
additional constraints on the degree sequence. This
amounts to specifying not only the strength of each ver-
tex, but also its purely topological degree [16, 19, 20]. In
this case, sampling the randomized ensemble by means
of computational algorithms becomes even more difficult.
By contrast, our method can still be used efficiently, as
the analytical expressions characterizing the correspond-
ing maximum-entropy ensemble have been derived re-
cently [22]. Those results easily allow to obtain the equa-
tions implied by the ML principle, as well as the expec-
tation values of network properties over the ensemble, in
a straightforward fashion.

V. DISCUSSION

Our method make use of the correct expressions (6)
and (17) for the connection probability and expected
weight respectively, in place of the incorrect naive ex-
pressions (1) and (15). While the latter depend only on
the properties (ki or si) of the end-point vertices i and
j, the former depend on the entire degree or strength se-
quence through eqs.(5) and (16). We have shown that
this has a dramatic effect on the properties of the ran-
domized ensemble. In particular, we have found that en-
forcing the same set of constraints in different networks
can yield very different trends for the randomized prop-
erties, whose behavior is therefore highly unpredictable a
priori. The general expectation that randomized higher-
order properties (such as 〈knni 〉 and 〈ci〉 in unweighted

networks or 〈k̃i〉 and 〈c̃i〉 in weighted networks) are inde-
pendent of the local ones (ki or si) turns out to be only
a very infrequent possibility among the possible scenar-
ios. Indeed, we have also found increasing and decreasing
trends for the randomized quantities, and shown that the
particular behavior displayed by the null model highly
depends on the particular values of the constraints in the
original real-world network. This makes the comparison
with the particular null model even more important than
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previously expected, and underlines the importance of a
tractable description enabled by our analytical method.
The incorrectness of eqs.(1) and (15), as well as of their

directed counterparts, has another series of undesired ef-
fects, as those expressions have been explicitly used to
define important structural quantities involved in net-
work analysis. Indeed, even when not explicitly used
to randomize a network, null models unavoidably enter
into the analytical expressions defining many properties
of interest. For instance, many popular community de-
tection algorithms make use of the concept of modular-
ity to evaluate the quality of a partition of the network
against a null case [43]. A partition into communities
can be represented by the matrix {δij}, where δij = 1
if vertices i and j are assigned the same community and
δij = 0 otherwise. For a binary undirected network A

∗,
the modularity Q of the partition {δij} has been defined
as

Q ≡ 1

2L∗

∑

i 6=j

δij
(

a∗ij − pij
)

(21)

where pij is the probability that i and j are connected
in a suitable null model, and the most frequent choice
is the CM. Similarly, for a weighted undirected network
W
∗ the modularity of the partition {δij} is [40]

Q ≡ 1

2W ∗

∑

i6=j

δij
(

w∗ij − 〈wij〉
)

(22)

where 〈wij〉 is the expected weight of the link joining i
and j in the WCM. Unfortunately, the expressions for
pij and 〈wij〉 are always taken to be eqs.(1) and (15)
respectively. To the best of our knowledge, no rigorous
assessment of the consequences of using these approxi-
mations has been provided. Therefore the problems de-
scribed in the present paper affect any modularity-based
community detection problem in an uncontrolled way.
Our methods provides the previously unavailable exact
expressions (6) and (17), whose values can be inserted
into eqs.(21) and (22) to have the correct modularity.
A straightforward analysis of how the correct expres-
sions change the detected community structure of real
networks is an important open point to address in the
future.

VI. CONCLUSIONS

We have presented a fast and exact method to ob-
tain analytical results about the ensemble of random-
ized variants of a particular real-world network that pre-
serve its local properties. The method works for both
weighted and unweighted networks, and for both directed
and undirected graphs. In any case, it requires as the in-
put only the strength or degree sequence(s), which rep-
resent the sufficient statistics of the problem. Our ap-
proach can be extended to enforce different or additional

constraints, such as the reciprocity structure in directed
networks or the simultaneous specification of strengths
and degrees in weighted networks. Notably, our results
show that maximally random networks exhibit a diverse
range of behaviors which is sensitive to the particular
values of the constraints displayed by the real network,
making a case-by-case comparison of the observed prop-
erties with the randomized ones necessary. This diver-
sity of outcomes is in any case not captured by widely
used but incorrect expressions for the expected proper-
ties. Unfortunately, important network properties such
as the modularity completely rely on such expressions, a
problem that may have therefore biased previous analy-
ses of community structure in networks. We believe that
our contribution represents a promising step towards the
identification of relevant information in real networks.

Appendix A: GENERAL

MAXIMUM-LIKELIHOOD METHOD

Here we describe our maximum-likelihood method in
its general formulation. Our approach combines previ-
ous analytical results (obtained by one of us [11, 22, 23]
and other authors [9, 14, 21]) about the properties of
maximum-entropy graph ensembles with previous results
(by one of us [27]) about the maximum-likelihood esti-
mation of free parameters in such ensembles, and adds
to them a new technique to obtain analytical expressions
for the expectation value and standard deviation of any
topological property of interest across the ensemble. Af-
ter describing the method in general terms, we derive the
explicit expressions that apply in the particular cases of
local constraints (for undirected, directed and weighted
networks). We then consider an extension to nonlocal
constraints, and finally compare our analytical method
with alternative computational techniques.

1. Maximum-entropy probability distribution

Our method aims at characterizing analytically the
properties of families of randomized variants of a par-
ticular real network. In more rigorous terms, a fam-
ily of randomized network variants is a statistical en-
semble of graphs where a set of structural constraints
has been specified, and the rest of the topology is com-
pletely random. Let us denote by G a generic network in
the ensemble, and by G

∗ the particular real-world net-
work that we need to randomize. The ensemble will
consist of all possible networks {G} of the same type
of G∗ (binary/weighted, directed/undirected), and will
include G

∗ itself. For binary (either directed or undi-
rected) networks, each graph G is completely specified
by its adjacency matrix A, i.e. G ≡ A. Similarly, for
weighed (either directed or undirected) networks, each
graph G is completely specified by its weight matrix W,
i.e. G ≡ W. We will keep our discussion completely
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general and use G to indicate a graph of any type (di-
rected/undirected, binary/weighted). Thus G can al-
ways be thought of as a matrix with entries {gij}, where
gij represents the (either binary or non-negative) weight
of the edge (i, j). Any topological property X evaluates
to X(G) when measured on the particular network G,
i.e. it is an (arbitrarily complicated) function of the en-
tries {gij}.
Each graph G in the ensemble has an occurrence prob-

ability P (G) whose form is determined by the particu-
lar constrains enforced. This probability must always be
such that

∑

G

P (G) = 1 (A1)

where the sum runs over all graphs in the ensemble. The
expectation value of a topological property X across the
ensemble is the mean value (ensemble average)

〈X〉 ≡
∑

G

X(G)P (G) (A2)

Let us denote the set of constraints {Ca} by the vector ~C,
where each Ca is a topological property that, unlike any
other generic property X, we need to tune to the particu-
lar value displayed by the real networkG

∗. Enforcing the
constraints exactly, i.e. allowing only the graphs G such

that ~C(G) = ~C(G∗), results in a so-called microcanoni-
cal ensemble characterized by the uniform probability

P (G) =

{

1/N [ ~C(G∗)] if ~C(G) = ~C(G∗)
0 otherwise

(A3)

where N [ ~C(G∗)] denotes the number of graphs in the en-
semble for which the value of each constraint Ca equals
the value Ca(G

∗). Microcanonical graph ensembles are
hard to deal with analytically, and they are most often
sampled computationally by generating many random-
ized networks explicitly, using probabilistic rules that
ensure that the constraints are matched exactly. Cur-
rently, such computational techniques are the only avail-
able method to randomize a real network. Unfortunately,
the need to sample the ensemble explicitly and generat-
ing a large number of randomized graphs makes this ap-
proach computationally demanding, time consuming and
beyond analytic control.
In order to develop a randomization method which

is fast and analytically tractable, we exploit the results
in ref.[14] and consider the alternative possibility to en-
force the constraints on average, i.e. by only specifying

their expectation values 〈 ~C〉. The resulting ensemble is
a (grand)canonical one where each graph G is assigned
a probability P (G) that maximizes the Shannon-Gibbs
entropy

S ≡ −
∑

G

P (G) lnP (G) (A4)

subject to the constraints considered. The desired
maximum-entropy graph probability can be found by in-

troducing a set of Lagrange multipliers ~θ = {θa} enforc-

ing the constraints ~C = {Ca}. The resulting conditional

(on the value of ~θ) probability reads [14]

P (G|~θ) = e−H(G,~θ)

Z(~θ)
(A5)

where H(G, ~θ) is the graph Hamiltonian defined as the
linear combination

H(G, ~θ) ≡
∑

a

θaCa(G) = ~θ · ~C(G) (A6)

and the normalizing quantity Z(~θ) is the partition func-
tion, defined as

Z(~θ) ≡
∑

G

e−H(G,~θ) (A7)

The above results show that the graph probability

P (G|~θ) always depends on the value ~θ, which in turn de-
pends on the constraints considered. As a consequence,

we can rewrite eq.(A2) more explicitly as a function of ~θ:

〈X〉~θ ≡
∑

G

X(G)P (G|~θ) (A8)

where 〈·〉~θ denotes that the ensemble average is evaluated

at the particular parameter choice ~θ. The above expres-
sion clarifies that the expectation value of any topological
property X depends on the specific enforced constraints

through ~θ. Different choices of the constraints imply dif-

ferent values of ~θ, P (G|~θ), and 〈X〉~θ.

2. Maximum-likelihood parameter estimation

As we mentioned, maximum-entropy graph ensembles
generated by eq.(A5) have been used extensively to char-
acterize mathematically networks with specified proper-
ties [9, 11, 14, 21, 22]. However, previous studies did
not focus on the randomization of a particular real net-
work (which is our main interest here), but rather on the
effects that the specification of certain structural prop-
erties has on other aspects of network topology. As a
consequence, the Lagrange multipliers {θa} have been
considered as free parameters, generally drawn from care-
fully chosen probability densities [14, 21, 22] that allow
analytical results, in terms of which the properties of the
network model have been investigated. In most cases,
the aim has been to explore the topological properties
in the thermodynamic limit N → ∞, where N is the
number of vertices of the network. This means that only
generic statistical properties of real networks, such as a
power-law degree distribution, were used to generate the
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ensemble. However, this implies that the specific prop-
erties of a particular real network (such as deviations
of individual vertices from the fitted degree distribution,
the intrinsic finiteness of the system, etc.) are ignored
and, more importantly, that there is no correspondence
between the vertices of the real network and those of the
model. Thus this approach allows to inspect the prop-
erties of maximum-entropy graph ensembles, but does
not allow the latter to be considered as null models of a
particular real network. As a consequence, it cannot be
used to detect empirical topological patterns consisting
of statistically significant deviations from a null network
model.
Here we make one step forward and construct, for a

given choice of the constraints, the particular maximum-
entropy graph ensemble representing the family of cor-
rectly randomized counterparts of a given real network
G
∗. Explicitly, we consider a grandcanonical ensemble

of graphs with the same number N of vertices as the
real network, and for a given choice of the constraints
we fit the model defined by eq.(A5) to the empirical net-
work G

∗. To this end, we exploit previous results [27]
showing that maximum-entropy graph ensembles defined
by eq.(A5) are a particular class of models for which
the maximum-likelihood principle provides an excellent
method of parameter estimation, since they are free from
problems of bias afflicting other network models. In par-
ticular, it can be easily shown [27] that the log-likelihood

L(~θ) ≡ lnP (G∗|~θ) = −H(G∗, ~θ)− lnZ(~θ) (A9)

to obtain the real networkG
∗ is maximized by the partic-

ular parameter choice ~θ∗ such that the ensemble average
〈Ca〉~θ∗ of each constraint Ca equals the empirical value
Ca(G

∗) measured on the real network:

〈 ~C〉∗ ≡ 〈 ~C〉~θ∗ =
∑

G

~C(G)P (G|~θ∗) = ~C(G∗) (A10)

where we have used 〈·〉∗ as a shorthand notation to in-
dicate the ensemble average 〈·〉~θ∗ evaluated at the par-

ticular value ~θ∗. The above results means that the
maximum likelihood principle indicates, for maximum-
entropy graph ensembles, precisely the parameter choice
that ensures that the desired constraints are met. This is
not true in general: in other network models, tuning the
average values of the topological properties of interest to
their empirical values requires a parameter choice which
in general does not maximize the likelihood to obtain the
real network [27], thus introducing a bias in the analysis.

The idea to take the observed constraints ~C(A∗) as

the input and find the ‘hidden’ values ~θ∗ that gener-
ate those constraints as the most probable ones was al-
ready proposed in ref.[27] with the purpose of check-

ing whether ~θ∗ correlates with some external set of em-
pirical non-topological quantities, thus unveiling possi-
ble mechanisms shaping the network topology. Here we

make progress, noting that finding the values ~θ∗ repre-

sents a preliminary step in order to generate the ran-
domized ensemble we are looking for, and have complete
analytic control over it. This is completely independent
of whether there are external empirical quantities corre-

lating with ~θ∗.

Note that in eqs.(A8) and (A10) the expectation val-
ues and the model parameters play inverted roles: while
in eq.(A8) the expectation values are obtained as a func-

tion of the parameters ~θ which can be varied arbitrar-
ily, in eq.(A10) the observed constraints, which are mea-
sured on the particular real network and are therefore
given as an input, are used to fix the model parame-

ters to the values ~θ∗. Interestingly, this opposite line
of research has been used quite extensively in traditional
social network analysis (where maximum-entropy ensem-
bles of networks are widely used under the names of p∗,
logit or exponential random graph models [44, 45]) but
has not yet been transferred to the randomization prob-
lem frequently occurring in complex networks theory.
As we show below, the maximum-likelihood parameter
choice is exactly what we need in order to obtain statis-
tically correct expectations over ensembles of randomized
variants of any particular real-world network. This allows
to understand which properties of a real-world network
can be simply traced back to the enforced constraints,
and which require more complicated explanations. An-
other important difference with respect to the main ap-
proach followed in social network analysis is that our
method allows to analyze weighted networks in exactly
the same way as binary graphs, which are instead usually
not studied within the p∗ framework. As a consequence,
some of the analytical results we derive and use represent
previously unavailable tools to study weighted networks
(and maximum-entropy ensembles of them) through a
straightforward analogy with binary networks. Finally,
in all the applications we consider it is always possible to

find the maximum-likelihood parameter values ~θ∗ exactly
even for large networks, without resorting to the approxi-
mate techniques traditionally used in social network anal-
ysis. Therefore our approach extends in many directions
the connection between exponential random graphs and
maximum-entropy network ensembles, and strengthens
considerably the existing relation between social science
and network theory.

3. Expectation values of topological properties

Equation (A10) provides an implicit expression for

the value ~θ∗, and solving it is equivalent to maximizing

eq.(A9). The numerical value of the solution ~θ∗ is the key
ingredient we are looking for in order to detect topologi-
cal patterns in the real network G

∗ analytically, without
performing any time-consuming computational random-

ization. Indeed, if we insert the value ~θ∗ into eq.(A8) we
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obtain

〈X〉∗ ≡ 〈X〉~θ∗ =
∑

G

X(G)P (G|~θ∗) (A11)

which provides the exact expected value of any topolog-
ical property X across the maximum-entropy graph en-

semble where the expected values 〈 ~C〉 of the topological

properties ~C chosen as constraints are set equal to the

empirical values ~C(G∗) measured on the real network
G
∗, as ensured by eq.(A10). For simplicity, given a real

network G
∗ and a set of constraints ~C, we shall some-

times call 〈X〉∗ the randomized value of the topological
property X. The comparison of 〈X〉∗ with the empirical
value X(G∗) allows to assess whether, in the real net-
work G

∗, the topological property X requires additional

information besides that provided by the properties ~C.
If X(G∗) is sufficiently close to 〈X〉∗ (within a statis-
tical error that we determine in A4), one can conclude

that the enforced constraints ~C fully explain the property
X. By contrast, if X(G∗) is significantly different from

〈X〉∗, then the properties ~C do not explain the property
X, which means that the structure of G∗ is determined

by other factors besides those determining ~C. This allows
to assess which topological properties can be traced back
to (i.e. explained by) the chosen constraints in any real
network, and which can not. Trivially, if X is one of the
properties among the enforced constraints (i.e. ifX = Ca

for some a), then eq.(A10) implies X(G∗) = 〈X〉∗ by
construction.
Note that any other parameter choice ~θ 6= ~θ∗ would

not enforce the chosen constraints and would yield an
expectation value 〈X〉~θ different from the desired one,
i.e. not corresponding to the correct randomized value
〈X〉∗ for that particular network and for that particu-
lar choice of the constraints. This clarifies why previ-
ous results [9, 11, 14, 21, 22] about the properties of
maximum-entropy ensembles, that were obtained using
~θ as a free parameter unrelated to the empirical val-

ues ~C(G∗) and to the real network G
∗ itself, cannot

be used in order to solve the pattern detection problem

considered here. Also note that ~C(G∗) is the sufficient
statistics of our problem, which completely determines
θ∗ through eq.(A10) and consequently any randomized
property 〈X〉∗. The knowledge of the other topological
properties of the real network G

∗ is useless. This means
that two real networks G∗1 and G

∗
2 with exactly the same

values ~C(G∗1) = ~C(G∗2) of the constraints generate the
same maximum-entropy ensemble, and give rise to the
same value of θ∗ and 〈X〉∗, as should be.
Clearly, the possibility to solve eq.(A10) and to ob-

tain the randomized properties through eq.(A11) both
depend on whether one manages to rewrite the formal
expression for 〈X〉~θ in eq.(A8) in a simplified form that
avoids the unfeasible actual enumeration of all graphs
{G} in the ensemble. In practical terms, this means that

not all specifications of the constraints ~C allow to solve

eq.(A10) and obtain ~θ∗, and not all topological proper-
ties X allow to be averaged exactly through eq.(A11).
However, as we describe in B, the first step can always
be carried out successfully whenever one considers local
constraints as the ones of interest for us. Similarly, as we
now show in general and then restate more explicitly in
each particular case, the expectation value 〈X〉∗ of any
higher-order topological property X of interest can be
rewritten, either exactly or approximately, in a way that
is only as complicated as measuring X(G∗) on a single
network, rather than on all graphs {G} in the ensem-
ble. This represents a major advantage of our method:
the computation of an expectation value across the en-
tire ensemble of graphs is only as time-consuming as the
computation of the corresponding observed value on the
empirical network G

∗. Thus, if the observed value can
be computed in reasonable time, the same is true for the
expectation value. To see this, we write down an approx-
imated expression for 〈X〉∗ as a Taylor expansion. Note
that any property X(G) depends in general on all the
entries {gij} of the matrix G, which are the fundamental
degrees of freedom of the problem. The ensemble average
of gij reads

〈gij〉 =
∑

G

gijP (G|~θ) (A12)

If we define the gradient matrix of any topological prop-
erty X(G) as

∇X(G) ≡









∂X(G)
∂g11

. . . ∂X(G)
∂g1N

...
...

∂X(G)
∂gN1

. . . ∂X(G)
∂gNN









(A13)

and if we denote by 〈G〉 the matrix whose entries 〈G〉ij
are the expectation values 〈gij〉, it is possible to expand
〈X〉 around 〈G〉 and write the multidimensional first-
order Taylor expansion

X(G) = X(〈G〉) +
∑

i,j

(gij − 〈gij〉)
(

∂X

∂gij

)

G=〈G〉

+ . . .

= X(〈G〉) + (G− 〈G〉) ∗ ∇X(〈G〉) + . . . (A14)

In the above expression, (·)G=〈G〉 means that we are eval-
uating the quantity in brackets by replacing each gij with
〈gij〉, and

A ∗B ≡
∑

i,j

aijbij (A15)

denotes the scalar product of two matrices A and B,
and the double sum runs over all N(N −1) ordered pairs
of vertices (with i 6= j). Note that for an undirected
network, where gij = gji by construction, half of the
terms in the sum in eq.(A14) will be equal to zero, since
one has either ∂X/∂gji = 0 or ∂X/∂gij = 0, depending
on whether gij or gji appears in the formal definition of
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X. With the above approximation, the expectation value
of X reads

〈X〉 = X(〈G〉) + . . . (A16)

since the first-order terms vanish. The above formula
shows that, if one evaluates 〈X〉 by simply replacing G

with 〈G〉 into X(G) (linear approximation), the differ-
ence with respect to the exact expectation value is only
in the second- and higher-order terms. This is true for

any value of ~θ, on which all expectation values depend.
As already explained, our method consists in choosing

the particular value ~θ∗ solving eq.(A10), which yields an
expectation value

〈X〉∗ = X(〈G〉∗) + . . . (A17)

Among all possible parameter values ~θ, the choice of
~θ∗ ensures that the deviation of the approximate value
X(〈G〉) from the exact one X(G) in eq.(A14) is mini-
mal, since 〈G〉∗ is as close as possible to G, if the chosen

constraints ~C are chosen as a reference to measure the
difference between 〈G〉 and G. In particular, when X co-
incides with one of the enforced constraints Ca, eq.(A17)
becomes an exact expression, as we mentioned. More-
over, as we show later in B, most topological properties of
interest in our analysis are either multilinear functions of
statistically independent matrix elements {gij} (in which
case the expectation value 〈X〉∗ is exactly X(〈G〉∗)) or
ratios of multilinear functions (in which case the numer-
ator and denominator will be separately evaluated ex-
actly, and the approximation will only affect the ratio).
This means that in most cases eq.(A17) will be an exact
expression, rather than an approximate one. In general,
even for uncommon or very complicated topological prop-
erties X for which eq.(A17) remains an approximation,
recall that we are interested in determining an interval of
statistically significant values around 〈X〉∗, rather than
〈X〉∗ alone. Thus, since the difference between the ex-
act and the approximate value of 〈X〉∗ is typically much
smaller than the standard deviation of X (that we obtain
below), using eq.(A17) is in any case an excellent way to
proceed.
The above discussion clarifies that a safe approxima-

tion to the randomized value 〈X〉∗ of any topological
property of interest is given by simply replacing each gij
with 〈gij〉∗ in the definition of the property X(G), in
the same way as the empirical value X(G∗) is obtained
by replacing each gij with the observed entry g∗ij of G∗

in the definition of X(G). This means that the empiri-
cal value X(G∗) and the approximate randomized value
X(〈G〉∗) require exactly the same computational time,
which makes our method faster than any other avail-
able alternative approach (and in general as fast as possi-
ble). Clearly, in order to evaluate eq.(A17) the complete
knowledge of the values

〈gij〉∗ =
∑

G

gijP (G|~θ∗) (A18)

is required. While for generic choices of ~C it may be im-
possible to obtain the formal expression for 〈gij〉~θ and/or

the particular parameter value ~θ∗, in B we show that lo-
cal constraints always allow to obtain 〈gij〉∗ exactly. This
makes the problem analytically solvable, and implies that
our method becomes very simple in all the applications
of interest.

4. Variances of topological properties

As we mentioned, another important advantage of our
method is the possibility to obtain, besides the expec-
tation value, the analytical expression for the standard
deviation of any topological property of interest. This
provides a statistical error allowing to detect significant
deviations of any empirically observed topological quan-
tity X(G∗) from its randomized value 〈X〉∗. To this
end, we employ the fundamental expression relating the
variance of a function of many random variables to the
variances of the latter, whose most popular consequence
is the general formula for the propagation of errors in
experimental measurements. In our notation, the vari-
ance of a topological property X across the ensemble is
defined as

σ2[X] ≡ 〈X2〉 − 〈X〉2 = 〈(X − 〈X〉)2〉 (A19)

(which depends on ~θ). Using the linear approximation in
eq.(A14) we can write

σ2[X] = 〈[X(G)−X(〈G〉)]2〉 (A20)

=
∑

i,j

∑

t,s

σ[gij , gts]

(

∂X

∂gij

∂X

∂gts

)

G=〈G〉

+ . . .

where

σ[gij , gts] ≡ 〈(gij − 〈gij〉)(gts − 〈gts〉)〉
= 〈gijgts〉 − 〈gij〉〈gts〉 (A21)

is the covariance of gij and gts, and

〈gijgts〉 =
∑

G

gijgtsP (G|~θ) (A22)

For the ‘diagonal’ terms given by i = t and j = s, the
covariance σ[gij , gts] equals the variance

σ2[gij ] ≡ 〈g2ij〉 − 〈gij〉2 = σ[gij , gij ] (A23)

(again, both σ[gij , gts] and σ2[gij ] depend on ~θ). In a
different context where X is a function of many exper-
imental quantities {gij}, eq.(A21) provides the general
formula for the propagation of errors (from {gij} to X),
if the measured value of gij is used as the best estimate
for 〈gij〉, and if its experimental error is used in place of
σ[gij ]. Here, we do not need approximate estimates for
〈gij〉 and σ[gij ], since both quantities can be completely
specified: even if there is always a single observation, i.e.
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the real network G
∗, the latter generates the entire en-

semble of graphs which is described by the probability

P (G|~θ∗), as we discussed in detail in A 2.
As for the expectation value 〈X〉∗, our approach pro-

ceeds by evaluating the standard deviation σ[X]∗ at the

particular parameter value ~θ∗ solving eq.(A10):

σ∗[X] =

√

√

√

√

∑

i,j

∑

t,s

σ∗[gij , gts]

(

∂X

∂gij

∂X

∂gts

)

G=〈G〉∗
+ . . .

(A24)
where

σ∗[gij , gts] = 〈gijgts〉∗ − 〈gij〉∗〈gts〉∗. (A25)

Equations (A24) and (A25) show that the values

〈gijgts〉∗ =
∑

G

gijgtsP (G|~θ∗) (A26)

are the fundamental quantities, besides the averages
〈gij〉∗ given by eq.(A18), required in order to obtain the
standard deviation σ∗[X] of any topological property X.

For generic choices of the constraints ~C, obtaining the
value of 〈gijgts〉∗ can be very complicated or even im-
possible, as we already discussed for 〈gij〉∗. However, as
we will show, local constraints always allow to evaluate
analytically all the covariances, and hence the standard
deviation σ∗[X] of any property X.
Equation (A24) is the key expression providing the sta-

tistical error associated with 〈X〉∗. For any topological
quantity X, our method allows to assess whether the em-
pirical value X(G∗) is consistent with the randomized
value 〈X〉∗ within z standard deviations (where z is a
conveniently chosen threshold value), i.e. whether

|X(G∗)− 〈X〉∗| ≤ zσ∗[X] (A27)

As long as the above inequality holds, it is legitimate to
say that the particular property X evidences no signifi-
cant deviation of the real network G

∗ from a null model
where the constraints ~C are specified. This means that
the observed value X(G∗) requires no explanation be-

sides those accounting for the observed values ~C(G∗) of
the constraints. By contrast, if the above inequality is
violated, then one has a signature that the observed net-
work G

∗ is not completely a result of the specification

of the constraints ~C. Additional mechanisms, besides
those determining the values of the constraints, are at
work. In other words, higher-order patterns which can-
not be traced to low-level constraints are present, and
our method is able to detect them. In practice, in order
to discriminate between the two possibilities, it is useful
to compute the two values

〈X〉∗ ± zσ∗[X] (A28)

which delimit the region within which an observed value
X(G∗) would imply the acceptance of the null model

from the one where an observed value X(G∗) would im-
ply the rejection of the null model. As an alternative,
rather than fixing a threshold value for z, one can directly
compute the number of standard deviations by which the
expected and the empirical value of X differ, i.e. the z-
score

z[X] ≡ X(G∗)− 〈X〉∗
σ∗[X]

(A29)

Large positive (negative) values of z[X] indicate that
X(G∗) is substantially larger (smaller) than expected,
while small values signal no significant deviation from
the null model. This concludes the description of our
method in its general form. In what follows, we consider
the particular case of interest for the present analysis, i.e.

when the constraints ~C are (either binary or weighted)
local topological properties, or when they are nonlocal
but simple enough to preserve the analytical character of
the method.

Appendix B: LOCAL CONSTRAINTS

The most important case is when the constraints ~C
are local (or first-order) topological properties, i.e. prop-
erties determined by moving only one step away from
a vertex, thus reaching only its first neighbours. In bi-
nary undirected networks the fundamental local prop-
erty is the degree ki =

∑

j 6=i aij , while in weighted
undirected networks the corresponding quantity is the
strength si =

∑

j 6=i wij . In directed networks, a pair
of inward and outward variants of the same quantities
(i.e. the in-degree kini and out-degree kouti , or the in-
strength sini and out-strength souti ) characterizes the local
properties of each vertex. Choosing local constraints is
the natural option when one is interested in understand-
ing the effects that the specification of low-order prop-
erties, involving only direct interactions, has on higher-
order properties involving longer chains of interactions.
In what follows, we therefore discuss our method in de-
tail in the particular case of local constraints. We will
consider both binary and weighted networks, and both
undirected and directed links. Importantly, we will show

that in all these cases the graph probability P (G|~θ) fac-
torizes as

P (G|~θ) =
∏

i<j

Dij(gij , gji|~θ) (B1)

where the product runs over all unordered pairs of ver-

tices (i, j) (with i < j) and Dij(g, g
′|~θ) is the dyadic

probability that the pair (gij , gji) takes the particular
value (g, g′), i.e. the joint probability that gij = g and
simultaneously gji = g′. Clearly,

Dij(g, g
′|~θ) = Dji(g

′, g|~θ) (B2)
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Note that Dij(g, g
′|~θ) is normalized such that

∑

g,g′

Dij(g, g
′|~θ) = 1 (B3)

where g and g′ run over all the allowed values for gij and
gji (g = 0, 1 for binary networks, while g = 0, 1 · · · +∞
for weighted networks; the same for g′). The marginal
probability that gij takes the particular value g, indepen-
dently of the value of gji, is

Pij(g|~θ) =
∑

g′

Dij(g, g
′|~θ) (B4)

and, consistently with eq.(B3), is normalized such that

∑

g

Pij(g|~θ) = 1. (B5)

Note that for undirected networks, where gij = gji by
construction, we have

Dij(g, g
′|~θ) = δg,g′Pij(g|~θ) (B6)

where δg,g′ = 1 if g = g′ and δg,g′ = 0 if g 6= g′.

The factorization of P (G|~θ) according to eq.(B1) im-
plies that eq.(A12) can be rewritten as

〈gij〉 =
∑

g

gPij(g|~θ) (B7)

which can always be obtained analytically. Using the
latter, eq.(A10) can be simply rewritten exactly as

~C(〈G〉∗) = ~C(G∗) (B8)

which allows the maximum-likelihood parameter values
~θ∗ appearing in 〈G〉∗ to be easily calculated numerically.
Alternatively (e.g. depending on the software used) one

can calculate ~θ∗ by directly maximizing the log-likelihood
defined in eq.(A9), which in this case takes the simpler
form

L(~θ) ≡ lnP (G∗|~θ) =
∑

i<j

lnDij(g
∗
ij , g

∗
ji|~θ). (B9)

In both cases, even for very large networks this prelim-
inary parameter estimation ranges from seconds to tens
of seconds using standard software packages on an ordi-
nary laptop [47]. This implies that eq.(B7) can always
be evaluated exactly at the particular parameter choice
~θ∗, providing the correct value 〈gij〉∗ in terms of which
the ensemble average 〈X〉∗ of any topological property X
can be obtained analytically through eq.(A17). Thus, as
we discussed, the time required to obtain 〈X〉∗ (which
formally is an average over all possible graphs in the
ensemble) is just the same as that required in order to
measure X(G∗) on the real network G

∗. This makes our
method incredibly faster than other randomization pro-
cedures that require the actual computational generation

of many randomized variants (necessarily sampling only
a part of the ensemble) of the real network, on each of
which X must be computed explicitly before performing
a final average approximating 〈X〉∗.

The standard deviation σ∗[X] of any property X can
be evaluated very easily as well. Equation eq.(B1) implies
that if (i, j) and (t, s) are two distinct pairs of vertices
then

〈gijgts〉 = 〈gij〉〈gts〉 (B10)

σ[gij , gts] = 0 (B11)

By contrast, if i = t and j = s then

〈gijgij〉 = 〈g2ij〉 =
∑

g g
2Pij(g|~θ) (B12)

σ[gij , gij ] = 〈g2ij〉 − 〈gij〉2 = σ2[gij ] (B13)

Finally, if i = s and j = t we have

〈gijgji〉 =
∑

g,g′ gg
′Dij(g, g

′|~θ) (B14)

σ[gij , gji] = 〈gijgji〉 − 〈gij〉〈gji〉 (B15)

Again, all the above quantities can be obtained analyt-

ically and evaluated exactly at the particular value ~θ∗

solving eq.(B8). As a consequence, if eqs.(B11), (B13)
and (B15) are inserted into eq.(A21), we find that the
expression for the variance σ2[X] of any topological prop-
erty X reduces from eq.(A24) to the simpler formula

(σ∗[X])2 =
∑

i,j

[

(

σ∗[gij ]
∂X

∂gij

)2

G=〈G〉∗
(B16)

+ σ∗[gij , gji]

(

∂X

∂gij

∂X

∂gji

)

G=〈G〉∗

]

+ . . .

involving only a single sum over pairs of vertices. In
the above expression, we have kept our convention to let
the sum run always over all possible ordered pairs of ver-
tices, thus considering the pairs (i, j) and (j, i) as distinct
terms in the summation. For ensembles of directed net-
works, gij and gji are different random variables which
may or may not be dependent on each other (depend-
ing on the enforced constraints, as we show in detail be-
low). Equation (B16) takes care of both possibilities by
including the covariance σ∗[gij , gji]. For ensembles of
undirected networks, gij and gji are actually the same
random variable and are thus perfectly correlated, which
means

√

σ∗[gij , gji] =
√

σ∗[gij , gij ] = σ∗[gij ]. Again, eq.
(B16) takes care of this by compensating the summation
over a doubled number of terms with the presence of the
covariances which exactly restore the correct expression.
In such a way, one does not have to care whether the
network is undirected when using eq.(B16), which there-
fore applies without modifications to all the cases we will
consider below. Different cases only differ by the specific
expression of σ∗[gij , gji]. This is very convenient when
implementing the formula computationally. Another de-
sirable consequence of formally treating gij and gji as
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different variables even in undirected networks is that in
eq.(B16) the derivative ∂X/∂gts of any function X(G) of
(a subset of) the entries {gij} can always be computed
by repeatedly applying the elementary rule

∂gij
∂gts

= δitδjs (B17)

(where δij = 1 if i = j and δij = 0 if i 6= j) for both
directed and undirected graphs.

Summarizing the results discussed so far, we showed
that for local constraints our method allows 〈gij〉∗, 〈g2ij〉∗
and 〈gijgji〉∗ to be computed exactly, and to use them
in order to obtain the expected randomized value 〈X〉∗
and standard deviation σ∗[X] of any topological prop-
erty X through eqs.(A17) and (B16) respectively. Un-
like alternative computational methods, our approach is
completely analytical and allows to evaluate the random-
ized value 〈X〉∗ in just the same time as that required to
measure X on the original real network G

∗, plus a neg-
ligible preliminary time required to find the parameter

values ~θ∗ numerically through eq.(B8). The simple steps
through which our method proceeds in the case of local
constraints can be summarized as follows:

1. choose the desired representation for the real net-
work G

∗ (directed/undirected, binary/weighted)
and the corresponding grandcanonical ensemble of
graphs {G};

2. specify the local constraints ~C(G) and use them to

write the Hamiltonian H(G, ~θ) = ~θ · ~C(G) and the

probability P (G|~θ) = e−H(G,~θ)/Z(~θ) according to
eqs.(A5)-(A7);

3. rewrite the graph probability analytically in the

factorized form P (G|~θ) =
∏

i<j Dij(gij , gji|~θ) ac-

cording to eq.(B1);

4. use Dij(g, g
′|~θ) to determine the basic quantities

〈gij〉, 〈g2ij〉 and 〈gijgji〉 according to eqs.(B7), (B13)
and (B15) respectively;

5. numerically determine the maximum-likelihood pa-

rameters ~θ∗ by solving eq.(B8) or alternatively
maximizing eq.(B9);

6. use ~θ∗ to compute the ensemble average 〈X〉∗ and
standard deviation σ∗[X] of any desired topological
property X, according to eqs.(A17) and (B16);

7. assess whether the empirical value X(G∗) is con-
sistent with the randomized one 〈X〉∗ using either
the interval in eq.(A28) or the z-score in eq.(A29).

For completeness, in the above list we have included all
the logical steps involving also the initial derivation of
the required analytical expressions. However, since those

expressions have already been derived in the literature
for all the constraints we will consider in what follows,
in practice our method reduces to a straightforward ap-
plication of the last three steps. For clarity, in what
follows we illustrate the method explicitly for a range of
useful specific cases, i.e. for various choices of the con-

straints ~C and of the topological properties X. We will
also highlight in more detail the advantages with respect
to alternative methods.

1. Undirected configuration model

For unweighted undirected networks, each graph G in
the ensemble is uniquely specified by its binary symmet-
ric adjacency matrix A with entries aij = aji = 1 if ver-
tices i and j are connected, and aij = aji = 0 otherwise.
Generally, one considers loop-less graphs with aii = 0
unless otherwise specified. This fixes the first step of our
method according to the list shown above. Thus we can
replace G → A and gij → aij in our general notation
used so far.

Given a real binary undirected networkA
∗ with entries

{a∗ij} and degree sequence ~k(A∗), our method allows to
compare the properties of A∗ with those displayed by a
randomized ensemble of binary undirected graphs hav-
ing, on average, the same degree sequence as A∗. As we
mentioned in sec. II, the available methods have severe
limitations. In particular, as noted in refs.[9] and [27], the
incorrectness of eq.(1) is a consequence of the fact that
it is not a proper maximum-entropy probability over the
ensemble of binary graphs, i.e. it cannot be traced back
to a Hamiltonian model as the ones described in A1. By
contrast, our method provides the correct solution. The

appropriate choice is to include the constraint ~C = ~k into
eq.(A6) and obtain the corresponding correct probability
[14]. This is precisely what the steps 2-4 of our method
prescribe. For the sake of completeness, we briefly sketch

the main results. If ~C(A) = ~k(A), the Hamiltonian reads

H(A, ~θ) =
∑

i

θiki(A) =
∑

i<j

(θi + θj)aij (B18)

The partition function can be calculated exactly [14] as

Z(~θ) =
∑

A

e−H(A,~θ) =
∏

i<j

(1 + e−θi−θj ) (B19)

Therefore the graph probability can be written in the
factorized form (B1) as follows

P (A|~θ) =
∏

i<j

Dij(aij , aji|~θ) =
∏

i<j

Pij(aij |~θ) (B20)

where

Pij(aij |~θ) = p
aij

ij (1− pij)
(1−aij) (B21)
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is the mass probability function of a Bernoulli-distributed
binary random variable aij , with success probability

pij =
e−θi−θj

1 + e−θi−θj
(B22)

representing the probability that a link between i and
j is present. Introducing the new variable xi ≡ e−θi ,
not to be confused with the symbol X used so far, and

changing notation from ~θ to ~x, the expectation value of
aij is simply given by

〈aij〉~x = pij =
xixj

1 + xixj
(B23)

Also, since a2ij = aij , the second moment is

〈a2ij〉~x = 〈aij〉~x (B24)

Finally, if (i, j) and (t, s) are two distinct pairs of vertices,
then aij and ats are independent random variables and

〈aijats〉~x = 〈aij〉~x〈ats〉~x (B25)

This completes the fourth step in our method.
The fifth step consists in finding the particular param-

eter values ~x∗ that maximize eq.(B9), that in this case
reads

L(~x) ≡ lnP (A∗|~x) =
∑

i

ki(A
∗) lnxi −

∑

i<j

ln(1 + xixj)

(B26)
Equivalently [27], the parameters ~x∗ can be found solving
the following N coupled equations enforcing the desired
constraints as in eq.(B8):

∑

j 6=i

x∗i x
∗
j

1 + x∗i x
∗
j

= ki(A
∗) ∀i (B27)

Importantly, since xi ≡ e−θi and θi is a real number,
the solution we are looking for is the one where x∗i > 0
∀i. This solution is unique. Even for large networks, the
above parameter estimation ranges from seconds to tens
of seconds even on an ordinary laptop.
Once the parameters ~x∗ are found, we can proceed to

the sixth step and exploit eq.(A17) to obtain the expec-
tation values of the properties X of interest:

〈X〉∗ =
∑

A

X(A)P (A|~x∗) = X(〈A〉∗) + . . . (B28)

In particular, the expectation value of the ANND defined
in eq.(3) is

〈knni 〉∗ =
∑

j 6=i

∑

k 6=j〈aij〉∗〈ajk〉∗
∑

j 6=i〈aij〉∗
(B29)

and the expectation value of the clustering coefficient de-
fined in eq.(4) is

〈ci〉∗ =
∑

j 6=i

∑

k 6=i,j〈aij〉∗〈ajk〉∗〈aki〉∗
∑

j 6=i

∑

k 6=i,j〈aij〉∗〈aki〉∗
(B30)

where 〈aij〉∗ = x∗i x
∗
j/(1 + x∗i x

∗
j ). Similarly, the standard

deviation σ∗[X] can be evaluated using eq.(B16), which
here reads

σ∗[X] =

√

√

√

√

∑

i,j

(

σ∗[aij ]
∂X

∂aij

)2

A=〈A〉∗
+ . . . (B31)

where σ∗[aij ] =
√

〈aij〉∗(1− 〈aij〉∗) =
√

x∗i x
∗
j/(1 +

x∗i x
∗
j ). It is straightforward to obtain σ∗[X] in terms

of ~x∗ alone, by using the derivation rule (B17):

∂aij
∂ats

= δitδjs (B32)

This can also be implemented symbolically in adequate
softwares.

2. Directed configuration model

Binary directed networks have an asymmetric adja-
cency matrix A with entries aij = 1 if a directed link
from i to j is there, and aij = 0 otherwise. Given
a real binary directed network A

∗ with out-degree se-

quence ~kout(A∗) and in-degree sequence ~kin(A∗), our
method provides analytical expressions for the expecta-
tion values and standard deviations of topological prop-
erties across the maximum-entropy ensemble of binary

directed graphs with out-degree sequence ~kout(A∗) and

in-degree sequence ~kin(A∗). The Hamiltonian is now

H(A, ~α, ~β) =
∑

i

[αik
out
i (A) + βik

in
i (A)]

=
∑

i 6=j

(αi + βj)aij (B33)

The partition function can be calculated exactly [14] as

Z(~α, ~β) =
∑

A

e−H(A,~α,~β) =
∏

i 6=j

(1 + e−αi−βj ) (B34)

The graph probability is now

P (A|~α, ~β) =
∏

i<j

Dij(aij , aji|~α, ~β) =
∏

i 6=j

Pij(aij |~α, ~β)

(B35)
where

Pij(aij |~α, ~β) = p
aij

ij (1− pij)
(1−aij) (B36)

and

pij =
e−αi−βj

1 + e−αi−βj
(B37)

Setting xi ≡ e−αi and yi ≡ e−βi , the expectation value
of aij is

〈aij〉~x,~y = pij =
xiyj

1 + xiyj
(B38)
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The second moment is

〈a2ij〉~x,~y = 〈aij〉~x,~y (B39)

Finally, if (i, j) and (t, s) are two distinct pairs of vertices,
now including the case (t, s) = (j, i), then

〈aijats〉~x,~y = 〈aij〉~x,~y〈ats〉~x,~y (B40)

The log-likelihood (B9) to maximize is

L(~x, ~y) =
∑

i

[

kouti (A∗) lnxi + kini (A∗) ln yi
]

−
∑

i 6=j

ln(1 + xiyj) (B41)

and the values ~x∗, ~y∗ that realize the maximum can al-
ternatively be found by solving the 2N coupled equations

∑

j 6=i

x∗i y
∗
j

1 + x∗i y
∗
j

= kouti (A∗) ∀i (B42)

∑

j 6=i

x∗jy
∗
i

1 + x∗jy
∗
i

= kini (A∗) ∀i (B43)

corresponding to eq.(B8). Again, we are looking for the
solution where x∗i > 0 and y∗i > 0 ∀i. Expectation values
can still be obtained using eq.(B28). In particular, the
directed ANNDs defined in eqs.(9) and (10) have expec-
tation values

〈knn,outi 〉∗ =
∑

j 6=i

∑

k 6=j〈aij〉∗〈ajk〉∗
∑

j 6=i〈aij〉∗
(B44)

〈knn,ini 〉∗ =
∑

j 6=i

∑

k 6=j〈aji〉∗〈akj〉∗
∑

j 6=i〈aji〉∗
(B45)

where 〈aij〉∗ = x∗i y
∗
j /(1 + x∗i y

∗
j ). Similarly, the standard

deviation σ∗[X] can still be evaluated through eqs.(B31)
and (B32), now using σ∗[aij ] =

√

x∗i y
∗
j /(1 + x∗i y

∗
j ).

3. Weighted configuration model

When weighted undirected networks are considered,
each graph G in the ensemble is specified by its non-
negative symmetric matrix W whose (without loss of
generality) integer entry wij represents the weight of the
link between vertices i and j (including wij = 0 if no link
is there). Thus we can replace G → W and gij → wij

in the general notation. As we mentioned in the main
text, in the weighted configuration model a real weighted
undirected network W

∗ with entries {w∗ij} is compared
with a maximum-entropy ensemble of weighted undi-
rected graphs having the same strength sequence ~s(W∗).

In our method, by setting ~C = ~s into eq.(A6) we obtain
the Hamiltonian

H(W, ~θ) =
∑

i

θisi(W) =
∑

i<j

(θi + θj)wij (B46)

The partition function is [22]

Z(~θ) =
∑

W

e−H(W,~θ) =
∏

i<j

1

1− e−θi−θj
(B47)

and is only defined if θi > 0 ∀i. The graph probability is
[22]

P (W|~θ) =
∏

i<j

Dij(wij , wji|~θ) =
∏

i<j

Pij(wij |~θ) (B48)

where

Pij(wij |~θ) = p
wij

ij (1− pij) (B49)

is the mass probability function of a geometrically-
distributed [23] integer random variable wij , with success
probability

pij = e−θi−θj (B50)

representing the probability that a link between i and j is
present. Introducing xi ≡ e−θi ∈ [0, 1), the expectation
value of wij is

〈wij〉~x =
pij

1− pij
=

xixj

1− xixj
(B51)

Now in general w2
ij 6= wij , and the second moment is

〈w2
ij〉~x =

pij(1 + pij)

(1− pij)2
=

(xixj)(1 + xixj)

(1− xixj)2
(B52)

Finally, if (i, j) and (t, s) are two distinct pairs of vertices,
then

〈wijwts〉~x = 〈wij〉~x〈wts〉~x (B53)

The log-likelihood (B9) reads

L(~x) ≡ lnP (W∗|~x) =
∑

i

si(A
∗) lnxi +

∑

i<j

ln(1− xixj)

(B54)
and the parameters ~x∗ maximizing it solve the following
N coupled equations

∑

j 6=i

x∗i x
∗
j

1− x∗i x
∗
j

= si(A
∗) ∀i (B55)

enforcing the desired constraints as in eq.(B8). Now the
solution must be looked for in the region 0 ≤ xi < 1 ∀i.

Through the parameters ~x∗ we obtain the expectation
values of the properties X of interest:

〈X〉∗ =
∑

W

X(W)P (W|~x∗) = X(〈W〉∗) + . . . (B56)

For instance, the expectation value of the weighted
ANND defined in eq.(19) is

〈k̃nni 〉∗ =
∑

j 6=i

∑

k 6=j〈wij〉∗〈wjk〉∗
W ∗

∑

j 6=i〈wij〉∗
(B57)
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where we have used 〈W 〉∗ = W∗ (see main text). Simi-
larly, the weighted clustering coefficient defined in eq.(20)
has expectation value

〈c̃i〉∗ =
∑

j 6=i

∑

k 6=i,j〈wij〉∗〈wjk〉∗〈wki〉∗
W ∗

∑

j 6=i

∑

k 6=i,j〈wij〉∗〈wki〉∗
(B58)

where 〈wij〉∗ = x∗i x
∗
j/(1− x∗i x

∗
j ). Similarly, according to

eq.(B16) the standard deviation σ∗[X] is

σ∗[X] =

√

√

√

√

∑

i,j

(

σ∗[wij ]
∂X

∂wij

)2

W=〈W〉∗
+ . . . (B59)

where σ∗[wij ] =
√

x∗i x
∗
j/(1−x∗i x

∗
j ). The rule (B17) here

reads

∂wij

∂wts
= δitδjs (B60)

and allows to obtain σ∗[X] in terms of ~x∗ alone.

Appendix C: NONLOCAL CONSTRAINTS

Our model can also be applied to more complicated
cases where the constraints are no longer local. However,
a necessary condition for our method to work with non-
local constraints is that eq.(A8) can still be expressed
exactly in a form which does not require the enumera-
tion of all possible graphs (in other words, the partition
function can be calculated analytically). In such a case,

eq.(A10) can still be used to calculate the parameters ~θ∗

exactly as in the local case, and at the same time those
parameters can be used to obtain the analytical expres-
sions for the expected value and standard deviation of
the topological properties of interest. Therefore, only a
limited number of nonlocal constraints lend themselves
to an analytical treatment. However, since the philos-
ophy of randomization algorithms is always to enforce
the simplest constraints in order to detect higher-order
patterns, it turns out that the mathematically tractable
constraints are also the ones of major interest. We now
provide an explicit example of a choice of nonlocal con-
straints that is often used in empirical studies, and at
the same time preserves the analytical character of our
method and yields exact results.

1. Reciprocal configuration model

As discussed in the main text, a more constrained null
model for a binary directed network A

∗ is one where the

three reciprocal degree sequences ~k→(A∗), ~k←(A∗) and

~k↔(A∗) are specified, where

k→i (A∗) ≡
∑

j 6=i

a∗ij(1− a∗ji) (C1)

k←i (A∗) ≡
∑

j 6=i

a∗ji(1− a∗ij) (C2)

k↔i (A∗) ≡
∑

j 6=i

a∗ija
∗
ji (C3)

The Hamiltonian for this model is

H(A, ~α, ~β,~γ) =
∑

i

[αik
→
i (A) + βik

←
i (A) + γik

↔
i (A)]

The nonlocality is manifest in the fact that, unlike the
previous examples, now the (second-order) constraints
involve products of two adjacency matrix entries. De-
spite this complication, the partition function can still
be calculated exactly [11] as

Z(~α, ~β,~γ) =
∏

i<j

(1+ e−αi−βj + e−αj−βi + e−γi−γj ) (C4)

The graph probability can still be expressed in the form
(B1), i.e.

P (A|~α, ~β,~γ) =
∏

i<j

Dij(aij , aji|~α, ~β,~γ) (C5)

In the above expression,

Dij(aij , aji|~α, ~β,~γ) = (p→ij )
a→ij (p←ij )

a←ij (p↔ij )
a↔ij (p=ij )

a=

ij

is the dyadic probability defined in terms of

a→ij ≡ aij(1− aji) (C6)

a←ij ≡ aji(1− aij) (C7)

a↔ij ≡ aijaji (C8)

a=ij ≡ (1− aij)(1− aji) (C9)

and

p→ij ≡ 〈a→ij 〉~x,~y,~z =
xiyj

1 + xiyj + xjyi + zizj
(C10)

p←ij ≡ 〈a←ij 〉~x,~y,~z =
xjyi

1 + xiyj + xjyi + zizj
(C11)

p↔ij ≡ 〈a↔ij 〉~x,~y,~z =
zizj

1 + xiyj + xjyi + zizj
(C12)

p=ij ≡ 〈a=ij 〉~x,~y,~z =
1

1 + xiyj + xjyi + zizj
(C13)

where we have set xi ≡ e−αi , yi ≡ e−βi and zi ≡ e−γi

[22]. The above expressions represent the dyadic expec-
tation values.

A little algebra leads to the log-likelihood

L(~x, ~y, ~z) = −∑

i<j ln(1 + xiyj + xjyi + zizj) +
∑

i [k
→
i (A∗) lnxi + k←i (A∗) ln yi + k↔i (A∗) ln zi]
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and the values ~x∗, ~y∗, ~z∗ that realize the maximum can
alternatively [27] found by solving the 3N coupled equa-
tions

∑

j 6=i

x∗i y
∗
j

1 + x∗i y
∗
j + x∗jy

∗
i + z∗i z

∗
j

= k→i (A∗) ∀i

∑

j 6=i

x∗jy
∗
i

1 + x∗i y
∗
j + x∗jy

∗
i + z∗i z

∗
j

= k←i (A∗) ∀i

∑

j 6=i

z∗i z
∗
j

1 + x∗i y
∗
j + x∗jy

∗
i + z∗i z

∗
j

= k↔i (A∗) ∀i

corresponding to an example when eq.(A10) can be writ-
ten explicitly even if the constraints are nonlocal. We are
looking for the solution where x∗i > 0, y∗i > 0 and z∗i > 0
∀i.
The expectation values of topological properties in-

volving products of dyadic terms can be obtained ex-
actly without resorting to the linear approximation in
eq.(A17). For instance, the number of occurrences of a
particular motif m, where m labels one of the possible 13
non-isomorphic connected motifs with three vertices, is

Nm ≡
∑

i 6=j 6=k

am,1
ij am,2

jk am,3
ki (C14)

where am,l
ij is one of the four possible dyadic relations a→ij ,

a←ij , a
↔
ij , a

=

ij , and {am,1
ij , am,2

jk , am,3
ki } indicates the specific

triplet of dyadic relations defining motif m. The exact
expectation value of Nm is

〈Nm〉∗ ≡
∑

i 6=j 6=k

〈am,1
ij 〉∗〈am,2

jk 〉∗〈am,3
ki 〉∗ (C15)

where 〈am,1
ij 〉∗ is given by evaluating eqs.(C10)-(C13) at

the particular values ~x∗, ~y∗, ~z∗. The standard deviation
of Nm, and in general of a topological property X, can
still be obtained using eq.(B16), i.e.

(σ∗[X])2 =
∑

i,j

[

(

σ∗[aij ]
∂X

∂aij

)2

A=〈A〉∗
(C16)

+ σ∗[aij , aji]

(

∂X

∂aij

∂X

∂aji

)

A=〈A〉∗

]

+ . . .

where now

(σ∗[aij ])
2 = 〈aij〉∗(1− 〈aij〉∗)
= 〈a↔ij + a→ij 〉∗(1− 〈a↔ij + a→ij 〉∗)

and

σ∗[aij , aji] = 〈aijaji〉∗ − 〈aij〉∗〈aji〉∗
= 〈a↔ij 〉∗ − 〈a↔ij + a→ij 〉∗〈a↔ji + a→ji 〉∗

which are both known exactly in terms of eqs.(C10)-
(C13).

FIG. 7. Difference between the LRA-based microcanonical
approach and our likelihood-based grandcanonical approach.
Top: the microcanonical approach assigns non-zero probabil-
ity only to the subset D( ~C) of graphs that realize the enforced

constraints ~C (in the example shown, a given value of the
number of links L) exactly. Bottom: by contrast, our grand-
canonical approach assigns non-zero probability to all graphs,
but this probability reaches its maximum value for the graphs
belonging to D( ~C). In so doing, it is more robust to potential
errors in the original network data (such as missing links).

Appendix D: COMPARISON WITH

COMPUTATIONAL MICROCANONICAL

ALGORITHMS

The LRA-based microcanonical approach [4, 5] and
our likelihood-based grandcanonical approach are in gen-

eral not equivalent for finite networks. Let D( ~C) be the
set of all graphs G that realize the enforced constraints
~C = {Cα} exactly. Both approaches assign equal prob-
abilities to all graphs that realize the constraints, i.e.

P (G1) = P (G2) if G1 ∈ D( ~C) and G2 ∈ D( ~C). Also,
in both approaches these graphs are the most likely to

occur, i.e. P (G1) > P (G2) for any G1 ∈ D( ~C) and

G2 /∈ D( ~C). However the two approaches are differ-
ent, the microcanonical one being very severe in assigning
zero probability to any graph where the degrees are not

matched exactly, i.e. P (G) = 0 if G /∈ D( ~C). By con-
trast, in the grandcanonical approach all possible graphs
can occur, even if with very different probabilities, in
such a way that the ensemble average of the desired con-
straints over all graphs coincides with the observed values
(see fig.7 for an illustration of this difference).

The above key and elegant property places grand-
canonical ensembles at the basis of information theory.
Notably, they are more robust to errors in the original
data such as missing or overrepresented links. In presence
of even a small percentage of such errors, the ‘true’ graph
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(the unobserved one affected by errors) will never appear
in the microcanonical ensemble, while it will appear with
nonzero probability in the grandcanonical ensemble. As
desirable, for small deviations from the observed graph
the true graph will have a slightly decreased probability
with respect to the one assigned by our method to the ob-
served graph, while for larger errors the probabilities will
differ by a larger amount. Therefore, while for infinite
systems the microcanonical and grandcanonical ensem-
bles become equivalent since fluctuations about the aver-
age values become negligible, in finite systems the use of
grandcanonical ensembles is preferable. What is of inter-
est for us here is the impact of the two methods on the
topological properties induced on the randomized net-
works. To this end, we now show explicitly the relation
between the two approaches when applied to particular
networks. We shall only consider unweighted networks
for simplicity.

In the unweighted (either directed or undirected) case,
our method directly provides ‘from the beginning’ the
explicit values of the probabilities pGij that a link from i
to j is there. The superscript G stands for ‘grandcanon-
ical’, and the probability is evaluated at the parameter
values that maximize the likelihood, as described above.
By contrast, the microcanonical approach samples the
configuration space iteratively, and the microcanonical
probability pMij that a link from i to j is there can only
be evaluated as the frequency of occurrence of the link
over many randomizations. As the number of random-
ized networks increases, this frequency will converge to
pMij . However this asymptotic value will also depend on
the number R of elementary rewiring steps used to ob-
tain a single randomized network. To see this, consider
the trivial case R = 0. As no rewiring takes place, all
the ‘randomized’ networks will in fact coincide with the
original network. If the adjacency matrix of the latter
has elements {aij}, this means that pMij = aij . If R is

nonzero but still very small, pMij will not change sub-

stantially. Only if R is large enough then pMij will ap-

proach pGij . This is shown explicitly in fig.8, where we

plot pGij as a function of pMij for all directed pairs of ver-
tices (i, j) by taking the Little Rock Lake food web as
the starting network. As R increases from R = 0 to
R = 10000, the double-peaked shape (corresponding to
pMij = aij independently of pGij) evolves towards the iden-

tity pMij = pGij . Similar evolution patterns are observed
for all the networks we analyzed. This clearly shows that
in our method we obtain ‘from the beginning’ the values
pGij to which the microcanonical pMij will converge only af-
ter several iterations. Notably, the number R of rewiring
steps required for pMij to converge to pGij acceptably is not
known a priori (an indicative number being R ≥ 4L) and
without the knowledge of pGij itself. This problematic as-
pect of the microcanonical approach highlights another
advantage of the grandcanonical one.

As we already mentioned, the two approaches are in
general not equivalent for finite networks. We can now
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FIG. 8. Convergence of the microcanonical connection proba-
bility pMij (measured using the local rewiring algorithm) to the

grandcanonical probability pGij (obtained using our maximum-
entropy method) as the number R of local rewiring moves per
network increases.

state this more rigorously, and indicate at least two
ways in which they may differ. First of all, pMij repre-
sent marginal probabilities, where the information about
the correlations between the presence of a link between
different pairs of vertices has been lost. While in the
grandcanonical approach these correlations are absent,
and different pairs of vertices are always statistically in-
dependent, in the microcanonical approach some weak
correlations will be preserved even after many rewiring
steps. These correlations arise from the microcanonical
constraint of matching the degree sequence (or other con-
traints) exactly. Thus, while our grandcanonical method
enables to compute the expected topological properties
exactly, in the microcanonical approach this is not pos-
sible. Secondly, the final ‘convergence’ of pMij to pGij for
R → ∞ will in general not hold exactly. This means
that the asymptotic plot of pGij versus pMij will not be a
strict identity, but a narrow scatter of points close to the
identity. In other words, increasing R beyond a certain
value will not make the quantities converge further. For
some networks (such as the Little Rock Lake food web
shown above) one may attain a better convergence than
for others.

It is interesting to understand whether the degree of
convergence between the two approaches depends on
some property of the network. To this end, we first define
two measures of discrepancy between {pGij} and {pMij },
and then study how they behave on well-controlled, arti-
ficially generated networks. As measures of discrepancy,
we consider the l2 distance

∆l2 ≡
√

∑

i 6=j |pGij − pMij |2
N(N − 1)

(D1)
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FIG. 9. Kullback-Leibler (∆KL, green squares) and l2

(∆l2 , blue circles) distance between microcanonical (pMij ) and

grandcanonical (pGij) marginal connection probabilities, plot-
ted versus link density d.

and the Kullback-Leibler information distance

∆KL ≡
∑

i 6=j p
M
ij (log2 p

M
ij − log2 p

G
ij)

N(N − 1)
+ (D2)

∑

i 6=j(1− pMij )[log2(1− pMij )− log2(1− pGij)]

N(N − 1)

Note that we have normalized the above distances in such
a way that both lie in the range [0, 1]. It is instructive

to use these distances to compare the two methods on
a family of artificially generated networks. As a start-
ing point, we considered N = 100 vertices, assigned each
vertex a real value xi drawn randomly in the interval
[0, 1], and established an edge between each pair of ver-
tices i and j with probability pij = zxixj/(1 + zxixj).
This choice generates maximally random networks with
degree distribution controlled by {xi} as in eq.(B23), but
has an additional parameter z that tunes the overall link
density d ≡ 2L/N(N − 1), representing the fraction of
realized links. With {xi} kept constant, we considered
various choices of z and, for each of them, adopted both
the microcanonical randomization and our grandcanon-
ical method. In fig.9 we show the resulting difference
between the marginal probabilities {pGij} and {pMij }, as a
function of link density. One can see that the two meth-
ods yield very similar results for both small and large link
density, whereas for intermediate density values they dis-
play a greater difference. Even in this case, however, the
distances between them are ∆l2 ≈ 0.05 and ∆KL ≈ 0.12,
both small considering their possible range of variation.
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[26] M. Boguná, R. Pastor-Satorras, A. Vespignani, Eur.

Phys. J. B 38, 205-209 (2004).
[27] D. Garlaschelli & M.I. Loffredo, Phys. Rev. E 78,

015101(R) (2008).
[28] V. Colizza, R. Pastor-Satorras & A. Vespignani, Nat.

Phys. 3, 276 - 282 (2007).



25

[29] K. Oshio, Y. Iwasaki, S. Morita, Y. Osana, S. Gomi, E.
Akiyama, K. Omata, K. Oka and K. Kawamura, Tech.
Rep. of CCeP, Keio Future 3, (Keio University, 2003).

[30] http://dip.doe-mbi.ucla.edu/dip/Main.cgi
[31] G. De Masi, G. Iori & G. Caldarelli, Phys. Rev. E 74,

066112 (2006).
[32] V. Colizza, A. Flammini, M.A. Serrano & A. Vespignani,

Nat. Phys. 2, 110-115 (2006).
[33] H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai and A.-L.

Barabási, Nature 407, 651 (2000).
[34] N.D. Martinez, Ecological Monographs 61, 367-392

(1991).
[35] http://vlado.fmf.uni-lj.si/pub/networks/data/bio/

foodweb/foodweb.htm

[36] G. Fagiolo, Phys. Rev. E 76, 026107 (2007).
[37] S. E. Ahnert, T. M. A. Fink, Phys. Rev. E 78, 036112

(2008).
[38] D. Garlaschelli and M. I. Loffredo, Phys. Rev. Lett. 93,

268701 (2004).
[39] V. Zlatic & H. Stefancic, Phys. Rev. E 80, 016117 (2009).
[40] M.E.J. Newman, Phys. Rev. E 70, 056131 (2004).
[41] S. E. Ahnert, D. Garlaschelli, T. M. Fink & G. Caldarelli,

Phys. Rev. E 73, 015101(R) (2006).
[42] J. Saramaki, M. Kivela, J.-P. Onnela, K. Kaski and J.

Kertész, networks. Phys. Rev. E 75, 027105 (2007).
[43] S. Fortunato, Physics Reports 486(3-5), 75-174 (2010).
[44] P. Holland, S. Leinhardt, in Sociological Methodology, D.

Heise, Ed. (Jossey-Bass, San Francisco, 1975), pp. 1-45.
[45] S. Wasserman, K. Faust, Social Network Analysis (Cam-

bridge Univ. Press, New York, 1994).
[46] In the directed version of the local rewiring algorithm,

two directed edges (i, j) and (k, l) are randomly selected
and replaced with the directed edges (i, l) and (k, j), if
the latter are not already present.

[47] We adopted the log-likelihood maximization using Wol-
fram Mathematica.


