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Abstract

We provide simple examples to illustrate how wealth-driven selection works in asset
markets. Our examples deliver both good and bad news. The good news is that if
individual assets demands are expressed as a fractions of wealth to be invested in each
asset, e.g. because traders maximize an expected Constant Relative Risk Aversion utility
with unitary coefficient, then market rewards the best informed agent. As a result asset
prices eventually reflect this information and the market can be said informationally
efficient. However, and this is the bad news, when asset demands are expressed as price
dependent fractions, e.g. they are derived from the maximization of expected Constant
Relative Risk Aversion utility with non unitary coefficients, anything can happen and
the informational content of long-run prices strongly depend on the ecology of traders’
preferences and beliefs. Our examples show that the key difference between the two cases
lies in the local, i.e. price dependent, versus global nature of wealth-driven selection.
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1 Introduction

The aim of this paper is to illustrate, using simple examples, the good, the bad, and the
unknown about wealth-driven selection in asset markets. For this purpose we draw on the
analysis of the simplest economic framework where the problem is well understood and some
clear answers are available: a repeated market for two Arrow securities. Each asset represents
a different way to transfer current wealth to future consumption or investment. Whereas
aggregate wealth is fixed ex-ante and depends only on the specific state of Nature which is
realized, prevailing asset prices and the distribution of wealth among agents, being endoge-
nously determined, depend also on the ecology of behaviors. In fact realized returns and the
implied distribution of wealth are determined both by chance (Nature) and, through prices,
by agents investment decisions. Each agent behavior is modeled through an explicit asset
demand function. This function can represent a behavioral rule or an investment rule derived
from the maximization of an expected utility, given individual preference and beliefs about
the unfolding of future states of Nature. Since we are primarily interested in analyzing the se-
lective capability of markets we drop the assumption of perfect foresight by the part of agents
or rational-expectation. These assumptions would indeed sterilize the effect of the trading-
induced wealth reallocation, as all the problem would be reduced to an ex-ante identification
of possible equilibria. In a dynamic framework, the key issue is to understand which kind of
asymptotic states are possible for the economy. Do prices and wealth distributions converge
toward an unique equilibrium and, if so, which properties it displays? Which type of beliefs,
preferences, behaviors, are rewarded by the trading? Is the market capable of rewarding the
best informed agents? Relatedly, are long-run prevailing prices revealing the best available
information? Above all, what is the role of market selection in shaping aggregate economic
outcomes?

Despite general results are still missing, also for the simple framework with Arrow securities
discussed in our examples, most economic and finance models rely on the market ability to
select for agents using rational expectations or, more generally, for agents whose equilibrium
prices reflect the correct, or the best available, information about the probability distribution
of the states of Nature. The underlying idea is that agents who have inferior information would
loose wealth over time in favor of the better informed. If this were true the market would
indeed converge to a long-run equilibrium where the best informed agent has all wealth and
prices reflect this information. In this case the market could be said informationally efficient,
as it efficiently conveys, through prices, all the information available about fundamentals.

The examples of this paper are meant to illustrate when the above idea is correct and
when, and why, it is not. The general message is as follows. On the one hand, when the
fraction of wealth invested in each asset, also named portfolio rule, do not depend on prices
(if agents are intertemporal maximizers this corresponds to having a Constant Relative Risk
Aversion utility with unitary risk aversion coefficient) the dominating agent is the one whose
equilibrium prices are indeed closest to the probability distribution of the states of Nature.
Thus the agent possessing the best information about the fundamental process is rewarded by
the market, and prices are set so as to reveal this information. This is the good side of the
story.

On the other hand, when portfolio rules are price dependent, for example when the utility
to be maximized is still of the Constant Relative Risk Aversion (CRRA) type but with a
risk aversion coefficient different from one, long-run prices do not need to represent the best
available information. Wealth-driven selection may lead market dynamics to get stuck in
suboptimal, informationally inefficient, equilibria or even display endogenous fluctuations. It
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is easy to construct examples where, depending on initial conditions and the realization of
states of Nature, prices do or do not reveal the best available information, or where prices
and wealth keep fluctuating indefinitely. More in general, not knowing the types of demand
expressed by agents, it is not possible to judge ex-ante who will be rewarded by the market and
to what extent the latter will be able to reveal the correct information about the fundamentals.
This is the bad side of the story.

In our analysis we shall present cases where market selection works and cases where it
doesn’t. Technically the dynamics of agents wealth and asset prices can be formalized as a
random dynamical system. Given agents’ wealth fractions, agents portfolio rules, and asset
prices at time t, the market dynamics is a random map whose actual form is fixed once
the uncertainty about the next realized state of nature is resolved. Different realizations
of the market map give rise to different reallocation of resources at time t + 1. The newly
determined wealth distribution, together with the updated portfolio rules, possibly changed by
the information revealed by agents’ trading about the realized state of nature and condition of
market, will in turn determine the next prices, until the next state of nature is revealed. This
process is repeated in time and can be described as a discrete-time stochastic process. The
analysis of the long run wealth and price distributions, our ultimate object of interest, becomes
thus rather technical. In our previous work Bottazzi and Dindo (2010) we have focused on the
analytical investigation of the random dynamical system representing the market dynamics
and have been able to derive local stability conditions. A contribution of this paper is that,
relying on those results, we are able to discuss this seemingly complicated issue using simple
example and with the help of a graphical tool. First, by plotting asset’s agents portfolio
rules against a normalization of the supply, we are able to characterize the possible long-run
selection equilibria as the short-run Walrasian equilibria where only one agent has positive
wealth to invest in the assets. Second, comparing the distance of each individual rule to
a reference, relative entropy minimizing, rule we are be able to characterize long-run single
agents equilibria local stability.

The outline of this paper is as follows. In the next section we provide a brief introduction to
the series of recent works whose results provided the basis of the present paper. In Section 3 we
introduce the asset market model and derive agents’ demand from the (myopic) maximization
of a CRRA utility function. In Section 4 we consider the case of constant rules, or maximization
of a CRRA utility with unitary risk aversion coefficient, and characterize the outcome of the
long-run market dynamics. This analysis illustrate the good side of the story, as we show that
the market rewards the best informed agent. However, the analysis begs the question of what
happens when risk aversion is higher or lower than one. In Section 5 we study the market
dynamics when agents demand are derived from the maximization of a CRRA utility for any
given risk aversion γ. This will have the effect that investment rules will not be fixed, but
dependent on prices. As a result the market selective capability in favor of the best informed
agent turns from global into local, and the convergence of the market toward informationally
efficient prices is not granted anymore. Examples in Sections 5.1 and 5.2 will point to the
possible sources of problems. In Section 6 we show that the local nature of market selection
leads to the impossibility to order rules according to their mutual survivability. Section 7
concludes and set the agenda for future research. An extension of our model to consider
non-myopic agents is presented in Appendix A.
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2 Selection in asset markets: the known

The investigation of the ability of markets to redistribute resources in favor of the rational or
better informed agents has started with Blume and Easley (1992), see also Blume and Easley
(2010) They study wealth-driven selection on a class of portfolio rules that do not depend upon
prices and are thus expressed as fixed fraction of wealth to be invested in each asset. They
find that average wealth growth differences are equal to differences of relative entropies of
subjective state of Nature probabilities with respect to the correct probabilities. The ’closer’,
in relative entropy terms, an agent is to the correct probabilities the higher her average wealth
growth, the higher the impact she will have on prices in the long run. As a consequence
the agent with lowest relative entropy will dominate all others and set long-run prices and
the market does seem to reward some type of rational behaviors, or preferences, over others.
Informational efficiency holds and price converge to the best available information. We draw
upon this contribution in Section 4 where we present the good side of assets market selection.

The literature that has followed has been devoted to generalize the hypothesis under which
informationally efficiency holds. Evolutionary Finance (see Evstigneev et al., 2009, for a recent
survey) has taken the direction of generalizing the market structure, while considering agents
behavior in the same class of constant rules. Generalizations involve the asset payoff matrix,
also incomplete markets being analyzed; the process ruling states of Nature, extended to be
Markovian; and the nature of assets, long-lived assets have been studied alongside short-lived
assets. Two representative papers are Amir et al. (2005), where the extended analysis is
performed for short-lived assets, and Evstigneev et al. (2008), which instead concentrates on
long-lived assets. No significance differences with results from the seminal Blume and Easley
(1992) analysis are found: relative entropy still rules and the “best” informed agent dominates.
It is important to mention that both Evolutionary Finance and the original Blume and Easley
contribution also consider a generalization of agents’ rules in terms of learning, that is, allowing
agents to learn about assets payoffs, or state of Nature, processes. Both find that, as long as
the learning algorithm is at least as fast as the Bayesian, and has the truth in its support,
informational efficiency still holds.

A different group of works has instead focused on generalizing the class of rules considered
to encompass any investment decision explicitly coming from utility maximization, so that
assets demand is not necessarily expressed as a fixed, beliefs dependent, fraction of wealth.
Assuming perfect foresight on realized prices and market completeness Sandroni (2000) and
Blume and Easley (2006) find that no matter the functional form of the utility function they
maximize, the agent whose beliefs are “nearest” the correct ones is selected for in the long run.
Sandroni (2005) generalizes this result to specific types of incomplete markets. Although these
results have strong implications, they are based on the very strong assumption that agents
are able to coordinate on having perfect foresight on realized prices. This not only implies
that agents should coordinate their prices expectations, but also that they should guess the
correct price. Technically perfect foresight is essential because it leads to allocative efficiency
which in turns it is shown to imply informational efficiency. Moreover, whereas the previous
contributions follow an explicit approach, in that market equilibrium prices and the resulting
wealth fractions are explicitly derived and their distribution is studied as time passes, both
Sandroni (2000, 2005) and Blume and Easley (2006) follow and implicit approach, in that they
derive the long run distribution of wealth as a consequence of first order conditions, market
equilibrium, and perfect foresight, but explicit prices and wealth fraction are never computed.

The effort to investigate wealth-driven selection for a general class of rules, but dropping
perfect foresight, has started with our recent contribution Bottazzi and Dindo (2010), where
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we take a standard Evolutionary Finance market model with short-lived assets and add price
dependent portfolio rules to the analysis. We find that market selection operates locally in
the prices space. Comparison of rules is thus possible only at given prices, making possible
to build examples where no rule gains all wealth in the long run or where two rules gain all
wealth for different initial conditions or different states of Nature process realizations. The
reason is that the relative entropy of investment rules with respect to the underlying dividend
payment process depend on realized prices. Hence, the same is true for their average relative
wealth growth rate. Wealth-driven selection is a local, that is, price dependent, mechanism.
Whereas with constant rules the local and global analysis coincide so that market selection
operates on an effective global scale and is able to achieve a global optimum, when rules
become price dependent, local and global results do not necessarily coincide, so that market
selection may not be able to push the market to the global optimum. Given two rules, it may
well happen that the first rule has a higher wealth growth rates at the prices determined by
the second, while the second has a higher wealth growth rate at the prices determined by the
first, so that none can prevail. Alternatively it may well happen that both rules have higher
wealth growth at their prices so that both might, in principle, prevail. Market prices do not
need to converge to the level reflecting the “best” available information, as they may instead
keep fluctuating around it or, even, converge to a suboptimal, worse-information-revealing,
level. We draw upon this contribution in Sections 5-6 where we present the good side of assets
market selection.

3 The model

Assume that there are 2 possible states of Nature, state 1 and state 2. Their unfolding
in discrete time can be represented by a Bernoulli process ω = (ω1, . . . , ωt, . . .), with ωt ∈
Ω = {1, 2} and ωt = 1 with probability π for every t ∈ N. In order to transfer wealth
intertemporally, and thus being able to consume in the future, I agents can trade in two
short-lived Arrow securities. Asset k = 1, 2, exchanged at period t at price pk,t, pays one unit
of the consumption good at period t + 1 if ωt = k, zero otherwise. The consumption good is
used as the numeràire of the economy. Each agent demand is denoted as fractions of wealth,
that is, the demand of agent i for asset k at time t is given by αi

k,tw
i
t/pk,t, where αi

k,t is her
chosen fraction and wi

t her wealth. We refer to the vector αi
t of fractions α

i
k,t as the portfolio

rule of agent i in period t.
Asset markets open at time 0 and close at an arbitrary large final period T . We assume

that consumption occurs only at this final period. All intermediate wealth is thus saved and
re-invested in assets. Adding the assumption that short positions are not considered, this
implies that portfolio rules belong to the set {α ∈ R

2 |α1 + α2 = 1 and αk > 0, k = 1, 2}.
The price of asset k = 1, 2 at period t, pk,t, is fixed by Walrasian market clearing. Assuming

unitary asset supply, period t market clearing can be written both in terms of units

1 =
I
∑

i=1

αi
k,t w

i
t

pk,t

or, more conveniently for our purposes, in terms of market values

pk,t =
I
∑

i=1

αi
k,t w

i
t . (3.1)
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At time t+1, if the event ωt+1 ∈ {1, 2} is realized, the wealth of agent i, wi
t+1, is equal to the

amount of shares of asset k = ωt+1 she has bought at time t, or

wi
t+1 =

αi
ωt+1,t

wi
t

pωt+1,t

. (3.2)

By summing up the previous equation over all the I agents and remembering the definition of
price in (3.1), it is clear that, no matter the initial wealth, in all subsequent periods the total
wealth in the economy is equal to one. Since portfolio rules are constrained to be positive and
not greater than one, this implies that

p1,t + p2,t = 1 for every t > 0 . (3.3)

This relation can be used to normalize prices so that will use the price of the first asset only,
sometimes simply denoted as pt, to quantify the exchange.

For definiteness and illustrative purposes in this contribution we choose to restrict our
analysis to the class of rules derived from the maximization of the expected utility of next
period wealth, with the utility function of CRRA type. However, as it will become clear in
the following discussion, the results presented have a general character and do not depend in
any respect on this assumption. An agent who assigns the subjective probability πe to the
realization of state 1 and who possesses a relative risk aversion parameter γ would derive the
vector rule (α1, α2) by solving the problem

Max

{

πeU

(

α1

p

)

+ (1− πe)U

(

α2

1− p

)}

, s.t. α1 + α2 = 1 and α1, α2 ≥ 0 ,

where

U(w) =







w1−γ

1−γ
γ ∈ (0, 1)

⋃

(1,+∞)

log(w) γ = 1

. (3.4)

Notice that choices have been constrained to meet the intertemporal budget constraint (3.2)
and the price normalization in (3.3).1 Standard first order conditions leads to the optimal
rule. The fraction of wealth to be invested in the two assets reads

α1(p; π
e, γ) =

(πe(1−p)1−γ)
1
γ

(πe(1−p)1−γ)
1
γ +((1−πe)(p)1−γ)

1
γ
,

α2(p; π
e, γ) = 1− α1(p; π

e, γ) .

(3.5)

When γ = 1, the previous solution collapses to the price independent rule

α1(p; π
e, 1) = πe , α2(p; π

e, 1) = 1− πe . (3.6)

As we will see in the following sections, the analysis of market dynamics, and especially its
asymptotic characterization, critically depends on the nature of portfolio rules.

1Since the market lasts an arbitrary large number of periods T , it would be more consistent to derive
demands from the maximization of period T expected wealth. The task cannot be achieved without modeling
periods beliefs about the probability distribution of the states of Nature as well as price expectations. Since
both, but especially the latter, are hard tasks, we restrict here to a myopic optimizer. Despite this limitation,
we derive in Appendix an answer to the T periods maximization problem that, under some simplifying as-
sumptions, can be used in our framework. In the Appendix, we also show that in case of log utility, or unitary
risk aversion γ = 1 in (3.4), the found answer is general and does not depend on our simplifying assumptions.
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4 The good: wealth-driven selection and market dy-

namics with constant portfolio rules.

In this section we consider the benchmark case of agents who use constant rules, that is, agents
who invest fixed fractions of their wealth in each asset, irrespectively of their wealth or assets
prices. As shown in the previous section, this investment rule corresponds to the maximization
of the expected logarithmic utility of next period wealth with CRRA coefficient γ = 1.2

Consider first the case of a market with a single investor. Denoting her wealth simply by
wt and her rule as α, her belief about state 1 occurrence, the market dynamics in (3.1-3.2)
can be written as

wt+1 =







αwt

pt
if ωt+1 = 1

(1−α)wt

1−pt
if ωt+1 = 2

, (4.1)

where the price of the first asset is

pt = αwt ,

and we have used the fact that both prices and portfolio fractions add up to one. No matter
the realization of the state of Nature, the agent, by investing a positive amount in both assets,
will secure all future wealth (we are assuming that the agent puts a positive probability on
both states, or α ∈ (0, 1)). Wealth evolution does not pay any role and market equilibrium
fixes the price of the first asset at her belief α, i.e.

pt = α for every t. (4.2)

We can use a standard supply and demand plot to visualize the market equilibrium price. In
the left panel of Fig. 1 we plot both the left hand side (supply market value) and the right hand
side (demand market value) of (4.2). Their crossing, E1, fixes the equilibrium price, which in
this case is trivially equal to α. Consistently with our previous work (see e.g. Anufriev et al.,
2006; Anufriev and Bottazzi, 2010; Anufriev and Dindo, 2010) we shall rename the supply
curve, the diagonal line of this plot, the Equilibrium Market Curve (EMC), in that it is the
locus of all possible long-run equilibria of our economy. The EMC plot will provide a useful
graphical tool to illustrate our results.

In order to study the role of the market in redistributing wealth among agents, and the
ensuing asset prices behavior, we need to add a second agent. Rules, or beliefs, are now given
by α1 and α2 respectively. As before, each agent wealth evolves according to

wi
t+1 =











αiwi
t

pt
ωt+1 = 1

(1−αi)wi
t

1−pt
ωt+1 = 2

i = 1, 2, (4.3)

but now the price of the first asset is given by the combination of both agents rules

pt = α1 w1
t + α2 w2

t . (4.4)

2Were the reader, for any reason, adverse to the expected utility framework, he or she is free to consider
the constant rules as behavioral rules, that is, as mere descriptions of agents behavior. Our results and the
overall analysis will of course remain the same.
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Figure 1: Left Panel: EMC supply and demand plot representing a single agent market
investing α1 = 0.4. The only possible outcome of the dynamics is E1. Right Panel: EMC
supply and demand plot representing a two agents market. Demands are represented by
α1 = 0.4 and α2 = 0.7. E1 and E2 are the two single survivor long-run equilibria.

Since the total wealth is one, the price lies between the beliefs of the first agent and the
beliefs of the second agent, with weights given by their wealth shares. If one agent has all the
wealth at a given period then prices will be fixed by her investment rule and she will have all
the wealth at all subsequent periods. So if w1

t = 1 or w2
t = 1 the market behaves as in the

single agent case, where uncertainty and wealth evolution do not play any role, as in (4.1). If
otherwise both agents have positive wealth, prices are between α1 and α2 and returns depend
on the realization of the state of nature. At each period the market rewards the agent with
an higher stake in the ’lucky’ asset, the asset that turns out to pay the dividend. It is this
process of wealth dynamics that interests us.

We can use the EMC plot to illustrate a two-agent market, as in the right panel of Fig. 1.
Points E1 and E2 are the crossing of each agent rule with the EMC. They are also the long-run
market equilibrium, that is the outcome of the market dynamics, if only agent 1 or agent 2
have positive wealth when T → ∞. For this reason they are named single survivor long-run
equilibria. Technically, points E1 and E2 are deterministic fixed points of the random dynami-
cal system specified by (4.3): no matter the realization of state of nature, the market dynamics
starting in E1 (or E2) will stay there for all subsequent periods. A first characterization of the
long-run behavior of the market depends upon the stability of these two fixed points. More
in general, the issue we want to address is whether the market will converge toward a single
agent equilibrium, and if so which one among the two, or keep fluctuating between E1 and E2.

In order to investigate the market dynamics when the initial condition is different from E1

or E2, we can use the evolution of the wealth ratio. From (4.3), knowing that ωt+1 = 1 with
probability π, one can derive

w1
t+1

w2
t+1

=











α1

α2

w1
t

w2
t

with probability π ,

1−α1

1−α2

w1
t

w2
t

with probability 1− π .

(4.5)

The wealth of the agent with the higher stake in asset 1, that is the one with the larger α,
agent 2 in the example in the right panel of Fig. 1, increases with probability π and decreases
with probability 1−π. In T periods, denoting with T1 the number of times state 1 is realized,
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one has

w1
T

w2
T

=

(

α1

α2

)T1
(

1− α1

1− α2

)T−T1 w1
0

w2
0

,

so that, taking the log,

log
w1

T

w2
T

= T1 log
α1

α2
+ (T − T1) log

1− α1

1− α2
+ log

w1
0

w2
0

.

Since, for the Law of Large Numbers, T1/T → π as T → ∞, one obtains

lim
T→∞

1

T
log

w1
T

w2
T

=

(

π log
α1

α2
+ (1− π) log

1− α1

1− α2

)

(4.6)

Define now the relative entropy of the investment strategy (α, 1 − α) with respect the true
probability measure as

Iπ(α) = π log
π

α
+ (1− π) log

1− π

1− α
. (4.7)

Iπ(α) is always non-negative and is zero if and only if α = π. The relative entropy is a measure
of information loss: the lower it is, the grater the agreement of beliefs (α, 1−α) with the true
Bernoulli distribution (π, 1− π). Substituting the expression for the relative entropy in (4.6)
one obtains

lim
T→∞

1

T
log

w1
T

w2
T

= Iπ(α
2)− Iπ(α

1) .

If Iπ(α
2) > Iπ(α

1) then when T increases w2
T → 0 at an exponential rate. Agent 1 dominates,

that is, gains all the wealth in the long-run. If instead Iπ(α
2) < Iπ(α

1) then when T increases
w1

T → 0 at an exponential rate. In this case agent 2 dominates. We have established that
the agent with the lowest relative entropy dominates. Since here rules can be interpreted as
beliefs, this implies that the agent whose beliefs have the lowest relative entropy with respect
to the true probabilities will eventually dominates the economy and, due to Walrasian market
clearing, long-run prices will reflect these beliefs, that is, in terms of relative entropy, will
move as close as possible to the probability distribution (π, 1− π).

Going back to our example of Fig. 1, we can use the relative entropy to analyze the global
stability of single survivor fixed points E1 and E2. First, we add the line π to the two-agent
EMC plot presented in the right panel to obtain Fig. 2. Second, we notice that the relative
entropy of a strategy α is monotonically related to its distance from the line π. Indeed the
expression in (4.7) is monotonically decreasing in α if α < π and monotonically increasing if
α > π. If two rules α1 and α2 are such that α1 > α2 > π or α1 < α2 < π, then rule α2,
having smaller distance from π, has also smaller relative entropy so that agent 2 dominates
in the long run. If two rules are such that α1 > π > α2 then the monotonicity argument does
not directly apply. However, when π = 1/2, as in all the examples of this paper, the function
Iπ(α) is symmetric around π, so that the distance in terms of relative entropy can be directly
derived from the Euclidean distance.3 So, since in Fig. 2 the π line is closer to α1 than to α2,

3In general one can use the function Iπ(α) to rescale the vertical axis of the EMC so that entropic distance
can be simply inferred by visual inspection
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Figure 2: EMC supply and demand plot representing a two agents market with π = 1/2,
α1 = 0.4, and α2 = 0.7. The two possible long-run outcomes of the dynamics are S1, where
agent 1 dominates, and U2, where agent 2 dominates. Since the line α1 is closer to π than α2,
S1 is globally stable and U2 unstable.

we can conclude that as long as both agents start with positive initial wealth, no matter how
bigger in favor of agent 2, agent 1 will gain all wealth in the long run and, at the same time,
the price of the first asset converge to the investment rule, or belief, α1. Technically we have
just established that, in the case depicted in Fig. 2 the only (globally) stable equilibrium is
E1. In general, the market results informationally efficient as the wealth dynamics led prices
to converge as close as possible, in terms of relative entropy, to the probability distribution
(π, 1− π).

From the previous discussion it is clear that the best possible constant rule, the rule which
can never be beaten, is the rule with minimal entropic distance from the process governing
the succession of the states of the word. Namely, the rules that prescribe to invest a fraction
of wealth π in the first asset and a fraction 1− π in the second asset. This simple rule, invest
proportionally to the probabilities, is named the Kelly rule after Kelly (1956). In terms of the
maximization of logarithmic utility, the Kelly rule corresponds, not surprisingly, to an investor
possessing correct beliefs about the process governing the state of Nature. When it is present
in the market, the Kelly rule beats any other different rule and bring prices to assets expected
values, π and 1− π respectively.

Note that in our EMC plot, the Kelly rule coincides with the probability line π, so that
comparing distances w.r.t. the probability line amounts to compare distances w.r.t. the Kelly
rule. Thus, we can restate the global stability results by saying that the rule closest to the
Kelly rule is the one which takes all wealth in the long-run.

Analogous conclusions can be reached in the general case of many assets and many agents,
as originally shown in Blume and Easley (1992) (see also Evstigneev et al. (2009) for a survey
of other possible extensions). In all cases the agent gaining all wealth in the long-run is the
one using the rule with the lowest relative entropy with respect to the invariant distribution
of the dividend generating process. By gaining all wealth this agent also set long-run prices
at her investment rule, or at that deterministic fixed point “closest” to the probability line
π, making the market informationally efficient. The market will price assets exactly at their
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Figure 3: Portfolio rules derived by the maximization of a CRRA utility of final wealth, as
given in (3.5). Left panel: CRRA coefficients are 1 and values close to it. Right panel. CRRA
coefficients are 1 and extreme values.

probability revealing prices. This is not, however, the end of the story.

5 The bad: wealth-driven selection and market dynam-

ics with price dependent portfolio rules

The reassuring results presented in the previous section are very much dependent on the fact
that portfolio rules are constant and do not depend on prices, that is, in the context of CRRA
maximizing agents, on the fact that risk aversion coefficient γ is exactly one for all traders.

In this section we investigate market behavior under wealth-driven selection when agents
have values of γ that differ from one. As it is clear from (3.5) this causes rules to depend on
prices. In Fig. 3 different rules are displayed, both for values of γ close to one (left panel) and
far from it (right panel). The plots are consistent with the intuitive notion of risk aversion.
When γ is close to zero, agents are close to be risk-neutral, and choose to invest all their
wealth in the asset with the highest (subjective) expected return, so that extremal values of
α become more likely. On the contrary, more risk adverse agents tend to split their wealth
proportionally to asset prices in order to achieve a sure, but unitary, return. In these cases
the value of α remains closer to the EMC for a wider price range.

When rules depend on prices agents’ wealth evolve according to

wi
t+1 =











αi(pt)wi
t

pt
ωt+1 = 1

(1−αi(pt))wi
t

1−pt
ωt+1 = 2

, i = 1, 2 (5.1)

where pt is a solution of the (now implicit) equation

pt = α1(pt)w
1
t + α2(pt)w

2
t . (5.2)

In the rest of the paper we assume that there exists a unique price that solves the market
equilibrium equation, and that the implicit function theorem can be applied in its neighbor-
hood so that an explicit local map from the wealth distribution to prices can be derived.4 The

4Conditions ensuring that this property holds are those usually ensuring existence and regularity of a
Walrasian equilibrium.
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evolution of wealth ratios still reads

w1
t+1

w2
t+1

=











α1(pt)
α2(pt)

w1
t

w2
t

with probability π

1−α1(pt)
1−α2(pt)

w1
t

w2
t

with probability 1− π

,

but now, due the price dependence of the αs, the value of the ratio
w1

T

w2
T

after T time steps

depends on the price history. At each time step, the expected log-growth rate of the wealth
ratio can still be written as the difference of the relative entropy of the two strategies

E

[

log
w1

t+1

w2
t+1

− log
w1

t

w2
t

]

= π log
α1(pt)

α2(pt)
+ (1− π) log

1− α1(pt)

1− α2(pt)
= Iπ(α

2(pt))− Iπ(α
1(pt)) ,

but the relative entropy of the latter depend on the prices prevailing in the market as their
distance from the Kelly rule in the EMC plot varies with the value of p at which it is computed.
This implies that market selection trough entropy minimization operates only locally, that is,
for given prices, rather then globally. As a result there may exist prices where a given rule
is the nearer to the Kelly rule flat line, thus having the lowest relative entropy and gaining
wealth shares, and prices where the opposite happens.

The fact that rules relative performance becomes a price dependent, local property implies
that a global stability analysis similar to the one done in the previous section is not feasible.
We can however still analyze the occurrence of the asymptotic states in which a single agent
dominates the market. Indeed in this case prices converge to constant levels, determined by
the survivor’s rule, possibly fluctuating around it in the process. If it turns out that these
fluctuations do not ruin the actual tendency of the system toward the constant price level,
then we can conclude that the dominance of the said agent has positive probability, at least for
a set of initial conditions. Thus our strategy will be, first, to identify single survivor equilibria,
where all the wealth is in the hands of one agent and prices are set by her rule α, and then
check whether market dynamics is stable for prices close to α.5 For example, in the two agents
market dynamics illustrated in the left panel of Fig. 4, local stability analysis amounts to
study the dynamics in the neighborhoods of S1, where w1 = 1 and the price of the first asset
is p = α1, and of S2, where w

2 = 1 and prices are set at the solution of p = α2(p). If two rules
have a common intersection p̄ with the EMC, that is α1(p̄) = α2(p̄) = p̄, then it is possible to
have fixed points where more agents survive, i.e. both w1 and w2 are different from zero. At
these fixed points, named multiple survivor equilibria, both agents behave as a representative
single survivor investing α1(p̄).

In the following sections we use simple examples to illustrate the implication of the price
dependency of rules for the market informational efficiency. For this purpose we will consider
rules derived by the maximization of CRRA utility function of the next period wealth. Every
agent i will be characterized by an individual belief bout π and a coefficient of relative risk
aversion, denoted respectively πe,i and γi. Notice hat, no matter the value of γ, all rules with
the same πe cross the EMC at the same point, that is, p = πe (c.f. rules in Fig 3). As a

5In other words we shall first identify all the deterministic fixed points of the random dynamical system,
and then perform their local asymptotic stability analysis. The local analysis is made possible by the fact
that, around the fixed points, the system can be linearized and agents can be described as if they were using
suitably defined constant rules, so that the analysis can proceed along the lines of Sec. 4. For sufficiently
smooth investment rules, results from the linearized markets carry over to the original market, albeit only
locally (see Bottazzi and Dindo, 2010, for details) for details.
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Figure 4: EMC supply and demand plots representing two agents market with price dependent
rules. Left panel: π = 1/2, α1 is a CRRA demand with πe,1 = 0.25 and γ1 = 1, and α2(p) is
a CRRA demand with πe,2 = 0.65 and γ2 = 0.5. The two possible long-run outcomes of the
dynamics are S1, where agent 1 dominates, and S2, where agent 2 dominates. Both are stable.
Right panel: π = 1/2, α1(p) is a CRRA demand with πe,1 = 0.25 and γ1 = 2, α2(p) is a CRRA
demand with πe,2 = 0.65 and γ2 = 1. Both long-run equilibria U1 and U2 are unstable.

result, irrespectively of their preferences, if agents share the same beliefs about the occurrence
of states of Nature then assets are priced at that level and all agents have the same unitary
return, and constant wealth. This is an example of stable multiple survivor equilibrium. The
market is efficient in the sense that prices represent the homogeneous beliefs and preferences
do not count.

The dynamics is more interesting when agents disagree on the value of π. Take two agents
with πe,1 6= πe,2. If they have the same risk-aversion γ = 1, then we are back to the case of
constant rules, so that the best informed agent dominates in the long run (a global result)
and the market is informationally efficient. But what if an agent, say the first, has a different
risk-aversion ? Now the distance of the two rules from the probability line, and thus their
relative entropy, changes with the price. In particular it is not anymore granted that the
equilibrium where the best informed agent dominates and prices converge to reflect the best
available information is globally stable. The type of behavior that can be observed depends
very much on the exact choices of probability estimates and risk preferences. We present two
typical occurrences in what follows.

5.1 Coexistence of stable long-run market equilibria

For the first example we take π = 1/2 and agent one has πe,1 = 0.25 and γ1 = 1, whereas
agent two has πe,2 = 0.65 and γ2 = 0.5, the same as depicted in the left panel of Fig. 4. There
exists two single survivor equilibria: S1, where only agent one survives and the price of the
first asset is set at p = πe,1, and S2, where only agent 2 survives and the price of the first asset
is set to p = πe,2.

Computing the distances of the rules α1 and α2 from π at the price corresponding to S1

one finds that α2(πe,1) − 1/2 > 1/2 − πe,1 = 1/4. Then for initial prices near to πe,1 the
rule used by agent 1 has a lower relative entropy compared to the rule used by agent 2 , i.e.
Iπ(α

2(pt)) > Iπ(α
1(pt)). The wealth share of agent 1 will, on average, increase at each time

step and will eventually dominate. If the market share of the first agent is almost 1, and we
imagine to forcefully move a small fraction of wealth from agent 1 to agent 2, the dynamics of
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Figure 5: Simulations of the wealth dynamics for the market represented in Fig. 4 with initial
condition is w1

0 = 1/2 and different realizations of ω. Left panel: agent 2 dominates. Right
panel: agent 1 dominates.

the market will bring the system back to the situation in which w1 = 1. We have established
that S1 is locally stable.

Conversely, computing the distance of the two rules from π at the prices corresponding to
S2, one has that πe,2 − 1/2 = 3/20 < 1/2 − πe,1, that is agent 2 is closer to the probability
line π than agent 1. Then for initial prices near to πe,2 it is the wealth share of agent 2 that
increases, on average, at each time step and rule α2 will eventually dominates. It follows that
also S2 is locally stable. We have found that the market dynamics has two locally stable fixed
points, or two possible long-run equilibria: there exist market trajectories along which the first
agent dominates and asset prices converge to her beliefs, and trajectories where the second
agent dominates and asset prices converge to her beliefs.

In Fig. 5 we plot the wealth dynamics for two different simulations, that is, two different
sequences ω, and the same initial conditions w1

0 = w2
0 = 1/2. In the left panel, despite some

initial fluctuations, the second agent dominates in the long-run and the price of the first asset
approaches πe,2. Since this individual expectation is the nearest to the true probabilities among
the strategies active in the market, in this case the latter seems informationally efficient. In
the right panel, however, it is the first agent who gains all the wealth in the long run. When
the value of p is relatively small, due to the lower coefficient of risk aversion, agent 2 is more
distant then agent 1 from the probability line, so that market selects against the former and
the price of the first asset approaches πe,1.

We have shown that despite the long-run price πe,2 is “closer” to the fundamental price
π = 1/2 than the long-run price πe,1, there are cases where prices converge to πe,1. The
market is not informationally efficient anymore: even if a “better” long-run equilibrium is
possible wealth-driven selection, acting locally and not globally, is not always able to drive the
market dynamics there. In any case, since informational efficiency is achieved only for certain
initial conditions we can rule out the hypothesis that the market is generically informationally
efficient. In particular, it is not enough to have the “best” beliefs to dominate as preferences
also seem to matter. Notice that if in this market the agent with the best beliefs would be at
least as risk adverse as a logarithmic preferences imply, or γ1 ≥ 1, then informational efficiency
would be established again. The fact that a particular type of preferences is enough to impose
informational efficiency is not a robust property though, as the next example shows.
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Figure 6: Price and wealth dynamics in a market with π = 0.5, α1(p) is a CRRA demand with
πe,1 = 0.25 and γ1 = 2, α2(p) is a CRRA demand with πe,2 = 0.65 and γ2 = 1. Both long-run
equilibria U1 and U2 are unstable. Left panel: typical wealth dynamics. Right panel: typical
price dynamics.

5.2 Coexistence of unstable long-run market equilibria

Consider the same market and two agents with the same beliefs as in the previous example,
i.e. πe,1 = 0.25 and πe,2 = 0.65, but different risk preferences, γ1 = 2 and γ2 = 1. Notice
that agent 1 is still more risk averse than agent 2. The corresponding EMC plot is depicted in
the right panel of Fig. 4. Two single agent equilibria exist: U1, where agent 1 dominates and
prices are fixed at her beliefs, p = πe,1; and U2, where agent 2 dominates and prices are fixed
at her (“better”) beliefs, or p = πe,2. Consider the relative distance of α1(p) and α2(p) from
the probability line π at these two prices. It can be easily seen, just by graphical inspection,
that rule α2 is closer to π at πe,1, the price set by rule α1, and rule α1 is closer to π at πe,2,
the price set by rule α2. Since the market rewards the rule with the lowest relative entropy,
that is, closest to the π line, in this case agent 1 is rewarded when the prices are near to those
set by rule α2, that is when the latter is the rule with the largest wealth share. Conversely,
agent 2 is rewarded when agent 1 has the largest wealth share.

Simulations of a generic wealth and price dynamics for this market are presented in the
plots of Fig. 6. At the beginning prices are close to πe,1, agent 2 is (on average) better-off
and takes most wealth, thus driving prices close to her beliefs πe,2, where agent 1 is better-off
thus driving prices close to πe,1 and so on and so forth. Both agents wealth keeps fluctuating
indefinitely in the range (0, 1), with agent one dominating in some periods and agent two
dominating in other periods. Prices behave accordingly and keep fluctuating in the interval
(πe,1, πe,2). Also in this example the market, by rewarding the agents closest to the best rule
locally, rather then globally, fails to achieve informational efficiency. The fluctuations in price
level have an endogenous cause and do not represent any change in market fundamentals,
which are kept constant, nor any change in agents preferences.

In fact, upon believing that assets markets as able to select the equilibrium entirely reflect-
ing the available information, from the observation of Fig. 6 one would wrongly conclude that
the asset dividend process is non-stationary. It is true, however, that the long-run average
price seem close to the payoff payment probability π = 1/2. A precise characterization of how
close would require the analysis of the global dynamics, which is not performed here. Upon
admitting that prices may have short-run persistent fluctuations, due to agents heterogeneity
in preferences and expectations, the market does seem to deliver a not too incorrect average
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information in this case.

5.3 Some special rules

There exists a very specific price dependent rule: holding the market portfolio. The market
portfolio rule corresponds to αM(p) = p, which coincides with the EMC line in a EMC plot.
This rule does not define an unique market equilibrium, in the sense that it is consistent will
all prices in (0, 1). For this reason, no matter the realized state of nature, it has constant
and unitary return, and thus constant wealth, as can be easily derived from (3.2). Thus the
market portfolio rule is special because, no matter the rule used by competing agents, it never
disappears.

Since α(p; πe, γ) → p as γ → ∞, CRRA myopic maximizing agents approach the market
portfolio rule when the coefficient of relative risk aversion increases to infinity, as can be see,
for example, in the right panel of Fig. 3. Thus agents with a high coefficient of relative risk
aversion have high chances to survive in the long run. On the contrary, agents with a low
coefficient of relative risk aversion tend to invest all the wealth in the under-priced asset, see
for example the right panel of Fig. 3. This behavior puts survivability at great risk in the
sense that, resulting in a large relative entropy for a large price range, exposes the agent at
the risk of disappearing from the market even when the beliefs of the competing agents are
relatively far from the truth.6

Also among the price dependent rules, given the simple market structure considered in this
Section, the rule with the highest chance to dominate the market continues to be the Kelly
rule presented in Section 4. Indeed it is still the case that the Kelly rule destabilizes all other
fixed points and the fixed point it determines is never unstable. As a result, even if the Kelly
rule may not be the unique surviving rule, when it is present in the market prices may not
converge to level different then the informationally efficient (π, 1 − π). Then one part of the
good message that holds with constant rules is still true: once the Kelly rule is present in the
market, it makes it informational efficient.

Notice however that the Kelly rule is not only characterized by the correctness of its beliefs
but also from the precise structure of its preferences, corresponding to a coefficient of relative
risk aversion of one. As the previous examples show, the same beliefs with different preferences
may not grant informational efficiency.

6 Rule ordering

In the previous section we have learned that the market may select different agents for different
price ranges. In this section we show the consequences of a price-dependent selection on
the possibility to order rules according to their relative market performance. Ordering rules
would be a desirable property in that would allow to have absolute judgments about their
performance. If the order relation “doing better than”, meaning gaining all wealth when
trading with, could be established, transitivity would imply that if rule α+ does better than
rule α−, the same rule α+ would also do better than any other rule inferior to α−. Having
an order relation would not only imply the possibility to look for the best, and the least,
performing rules. It also allows for an ex-ante judgment about the asymptotic state of the
market: given an ecology composed of a collection of different trading rules, irrespectively of

6Even more in danger are risk neutral, or risk lover, agents who, by investing all their wealth in the first
(second) asset if its prices is lower (higher) than π, would disappear from the market in finite time.
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Figure 7: EMC plot representing a market with π = 1/2 and the three rules considered in
Section 6.

their number, it is only the best rules in the collection that will survive and set the prices in
the long run.

In markets with constant rules, as those analyzed in Sec. 4 this ordering is possible. Using
the relative entropy Iπ(α) one can define a simple relation by postulating that rule α+ is better
than rule α− when its relative entropy is lower or

α+ ≻ α− if and only if Iπ(α
+) < Iπ(α

−) (6.1)

It is immediate to see that this relation is anti-reflexive and anti-symmetric. It is also im-
mediate to see that the relative entropy is a concave function of its argument.7 Then if
Iπ(α

+) < Iπ(α
0) and Iπ(α

0) < Iπ(α
−) one has, for any λ ∈ [0, 1],

Iπ(λα
+ + (1− λ)α0) ≤ λIπ(α

+) + (1− λ)Iπ(α
0) < Iπ(α

0) < Iπ(α
−)

and in particular Iπ(α
+) < Iπ(α

−), so that the relation defined in (6.1) is transitive and,
hence, an order relation. Among constant rules, it thus makes sense to ask which rule is the
best, irrespectively of the specific rules trading in a given market. This implies that when
one observes a market dynamics, assuming that what he is observing is the long run, one can
be sure that worst rules have been wiped out by the selection process. The long-run price is
determined only by the best rules, as all the resources have been allocated to them.

Unfortunately, the possibility to build and order relation is lost when price dependent
rules are taken into account. We show it by building a counterexample. Fix π = 1/2 and
consider the following three CRRA portfolio rules (also plotted in Fig. 6): rule one, α1(p), has
πe,1 = 0.25 and γ1 = 2; rule two, α2(p), has πe,1 = 0.3 and γ1 = 1; and rule three, α3(p), has
πe,1 = 0.65 and γ1 = 1.

When only α1(p) and α2(p) are trading, the price p is the (unique) solution of

pt = w1
tα

1(pt) + (1− w1
t )α

2(pt)

7It directly follows for the convexity of the log function.
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Figure 8: Market with π = 1/2 and the three rules given in the text. Left panel: wealth ratio
dynamics. Right panel: prices dynamics.

which is always between p = πe,1 = 0.25, when agent 1 has all the wealth, and p = πe,2 = 0.3,
when agent 2 has all the wealth. Since for all realized prices, i.e. prices between πe,1 and πe,2,
rule α2 has a lower relative entropy than rule α1, or Iπ(α

2(p)) < Iπ(α
3(p)) for all p ∈ [πe,1, πe,2],

agent 2 is going to dominate for every initial condition: the wealth of the first agent converges
to zero and prices converge to πe,2 = 0.3. We can state that α2 ≻ α1 and the market is
informationally efficient, in that it rewards the agent with the “best” information.

Compare now rule α2 and rule α3. When they are trading the price p is in between
πe,2, when agent 2 has all the wealth, and πe,3, when agent 3 has all the wealth. Since for
all these prices agent 3 has a lower relative entropy, rule α3 dominates in the long run and
prices converge to πe,3 = 0.65. We can than state that α3 ≻ α1 and, again, the market is
informationally efficient in that it rewards the agent with the “best” information.

The transitive property, a necessary property for ≻ to be a strict order relation, would now
imply α3 ≻ α1. Is it true? When only α1 and α3 are trading the price is fixed between πe,1 and
πe,3, depending on the relative wealth size. Now, importantly, relative entropies Iπ(α

3) and
Iπ(α

1) have not the same ranking for all realized prices, as can be appreciated by comparing
the relative distance from the probability line π in the plot of Fig. 6. It holds Iπ(α

3) < Iπ(α
1)

when rule 1 is close to have all wealth and the price of the first asset is close to πe,1. Otherwise
the opposite ranking occurs. As a result local stability analysis says that both fixed points
where a rule dominates are unstable, so that neither rule 1 nor rule 3 can ever be said to
dominate. The proposition α3 ≻ α1 is thus false, and upon introducing the relation ∼ by
saying that two rule are equivalent when none dominates, it rather holds α3 ∼ α1. Despite
rule 3 conveys the best information it fails to dominate and prices keep fluctuating between
πe,1 and πe,3.

It is also interesting to analyze market dynamics when all the three rules are trading in
the same market. Market clearing prices are now functions of two wealth shares, w1 for agent
1 and w2 for agent 2. Since all fixed points are locally unstable, as can immediately be judged
by comparing all the relative distance to the Kelly rule π in the EMC plot of Fig. 6, wealth
fractions, and thus prices, keep fluctuating (see also the right panel of Fig. 6). Again the
market cannot be said informational efficient: despite rule α3 has the best information the
market fails to set the prices according to its information.
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7 Conclusion and Outlook

We have discussed wealth-driven selection in a simple market for Arrow securities using a
series of simple examples. When rules do not depend on prices, which occurs, for instance,
when agents maximize a CRRA expected utility with unitary risk aversion coefficient, the
rule relying on the most accurate knowledge about the unfolding of states of Nature, as
measured by the relative entropy, attracts all wealth in the long run, thus driving prices as
close as possible to fundamentals. However, the picture changes when price dependent rules,
employed e.g. by agents whose coefficient of relative risk aversion is different from one, are
considered. In fact, in this broader case wealth-driven selection works only locally, that is,
for given prices, and the market may not be able to select the global best rule but might get
stuck in a local optimum or, even, keep fluctuating in search of an optimum that doesn’t exist.
We have provided examples of both occurrences. Concerning the former, we have shown that
when two locally stable fixed points with a single dominating agent exist, wealth selection
may drive the market towards one or another depending on the initial condition and/or the
specific realization of states of Nature. For the latter, we have shown that in a market where
two rules are trading, if one rule is closest to the best rule at the prices determined by the
second and vice-versa, then wealth shares and prices keep fluctuating indefinitely. In the final
part we have shown that the local nature of wealth-driven selection implies the impossibility
to order strategies according to their market performance. The general message is that one
cannot be sure of the informational content of prices as it is not granted that prices reflect
the best available information. Instead, prices may display endogenous fluctuations or, even,
converge to the worst information revealing level.

How should the reader take these results? Despite in our examples the market may not
reward the best informed agent, there is a rule that is rewarded by the market for every price,
the so called Kelly rule, which amounts to investing according to a CRRA utility with unitary
risk aversion and using the correct probabilities. The presence of the Kelly rule in a market
makes it informational efficiency. At the same time, however, it implies the existence of at
least one agent with specific preferences and perfect knowledge about the process governing
the state of the world. Assume this information is not readily available, so that the Kelly rule
is not present. The relevant question then becomes if, in this case, the Kelly rule is learnable.
In this market context the answer very much depends on the type of learning considered,
that is, whether agents learn probabilities, future prices, or both. So far learning have being
considered as updating the subjective probabilities πe, but only in a context of constant rules
(see e.g. Evstigneev et al., 2009; Blume and Easley, 2010), or using past prices to forecast future
prices (see e.g. Bottazzi and Dindo, 2010). In both cases conditions are given to the learning
process in order to converge to the Kelly rule (fast enough on dividends not to be wrong for
too much time, slow enough for prices not to create a form of deterministic overshooting).
An investigation of the learning process in both dimensions and for general rules is however
still missing. The issue of learning is crucial if one wants to drop the assumption of rational
expectations but keep the inter-temporal optimization in place. In fact, in the Appendix we
show that, even restricting the analysis to CRRA expected utility, rules depends on conditional
probabilities and price expectations. Which class of probability updating and expectations
formation grants survival, market efficiency, or convergence to the Kelly rule are all question
still waiting for an answer.

There are other open issues. Firstly, one would like to consider also rule that depends
on wealth. This has both a behavioral relevance, as it is natural to assume that an agent
observing a constant reduction in the personal wealth level looks for and implement different
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trading strategies, and a positive appeal, as it allows to study market selection for any given
risk preference. Further work is also needed to characterize the global market dynamics. Here
we have relied exclusively on local results, without characterizing the overall dynamics. This
characterization is important in that it would provide the complete picture of possible market
dynamics.

Another direction of investigation is the extension of the present analysis to markets for
long-lived assets. Whereas with constant rules the story doesn’t change (see e.g. Evstigneev
et al., 2009) it is not known what happens when rules are price dependent. Would the shape
of the Kelly rule, who sets the reference rule, be affected? As a consequence, what can be said
about wealth-driven market selection in this case? Last, one would like to introduce production
into the picture. After all, even to stick with finance application, the role of capital markets is
to finance productive activities so that asset performances should influence firms performance
in much the same way as the other way round. Intuitively adding this layer would amount to
possible shifts in the Kelly rule, due e.g. to possible shifts in the likelihood to get a certain
payoff or in their size. How the overall picture would change not having such an anchor point
as the Kelly rule, is yet another question to be answered.
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A CRRA portfolio rules

Here we derive the asset demand which maximizes the expected utility of final wealth, at
period T , when risk preferences are described by the generic CRRA utility in (3.4). As the
general answer depends on agents future prices expectations, and we do not assume perfect
foresight, we will have to make a simplifying assumption in order to be able to get an answer.
It will turn out that such assumption is not that strict given the local nature of the stability
analysis exploited in the paper.

Given a sequence ω ruling the occurrence of states of Nature, denote as ωt the partial
history till time t, that is, ωt = (ω1, . . . , ωt) ∈ Ωt. The probability that such an event occurs
is denoted by π(ωt), which, having a Bernoulli process, is obviously equal to the product
∏t

s=0 πωs
. Denote as πe,i(ωt) the belief agent i holds on the occurrence of the partial history

ωt.
In each period t, an agent chooses, given partial history ωt, her asset demand as to maximize

the utility of her final wealth, given all the intertemporal budget constraints. Following our
previous notation it is convenient to consider as the choice variable the fraction of current
wealth invested in the two assets at time t given history ωt, αk,t(ω

t) k = 1, 2. As a result one
can express budget constraints as

α1,t(ω
t) + α2,t(ω

t) ≤ 1 for all ωt and for all t ≤ T − 1 . (A.1)

Each agent chooses the fractions αk,t(ω
t) in order to maximize the utility of her final wealth

wT , or

Max
∑

ωT∈ΩT

πe(ωT )U(wT (ω
T )) .

Given our assets structure, the final wealth is just the number of assets bought at time T − 1
of type ωT , or

wT (ω
T ) =

αωT ,T−1(ω
T−1)

pωT ,T−1(ωT−1)
wT−1 ,

which, by recursion, gives

wT (ω
T ) =

(

T
∏

t=1

αωt,t−1(ω
t−1)

pωt,t−1(ωt−1)

)

w0 .

For each history ωT the final wealth is a function of a stream of vector choices αt(ω
t) satisfying

(A.1). We assume an utility of CRRA type as in (3.4) and consider the case γ = 1 first. Using
the property of the logarithmic function our problem becomes

Max
∑

ωT∈ΩT

πe(ωT )
T
∑

t=1

log
(

αωt,t−1(ω
t−1)

)

which, rearranging the terms and denoting as πe(ωt;ω
t−1) the probability that event ωt occurs

given that ωt−1 has been observed, is equivalent to

Max
T
∑

t=1

∑

ωt−1∈Ωt−1

πe(ωt;ω
t−1) log

(

αωt,t−1(ω
t−1)

)

.
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Imposing the first order conditions with respect to the generic variable αk,s(ω
s), while taking

into account the constraint (A.1), gives

πe(k;ωs)

αk,s(ωs)
= λ(ωs) ,

where λ(ωs) is the multiplier associated with the binding constraint for the event ωs. Since
the equation holds for both k = 1, 2 with the same multiplier, we can find

αk,s(ω
s) = πe(k;ωs) k = 1, 2 .

The fraction to be invested in asset k at time s given history ωs is equal to the belief that the
event k will occur at time s+ 1 given that ωs has been observed.

We turn now to a general CRRA function, that is, (3.4) with γ 6= 1. The maximization
problem becomes

Max
∑

ωT∈ΩT

πe(ωT )

1− γ

(

T
∏

t=1

αωt,t−1(ω
t−1)

pωt,t−1(ωt−1)
w0

)1−γ

where choices are constrained as in (A.1). If we consider the variable αk,s(ω
s), it appears only

in sequences ωT whose partial history till time s is ωs, name such a sequence ωT
|ωs . The first

order condition with respect αk,s(ω
s) then gives







∑

ωT
|(ωs,k)

πe(ωT )

(

T
∏

t=s+2

αωt,t−1(ω
t−1)

pωt,t−1(ωt−1)

)1−γ







(αk,s(ω
s))−γ

(pk,s(ωs))1−γ

(

s
∏

t=1

αωt,t−1(ω
t−1)

pωt,t−1(ωt−1)

)1−γ

w1−γ
0 = λ(ωs)

which, when s = T − 1, reduces to

πe((ωT−1, k))
1

αk,T−1(ωT−1)

(

αk,T−1(ω
T−1)

pk,T−1(ωT−1)

)1−γ
(

T−1
∏

t=1

αωt,t−1(ω
t−1)

pωt,t−1(ωt−1)

)1−γ

w1−γ
0 = λ(ωT−1) .

Equating the expressions for k = 1 and k = 2 we find

πe((ωT−1, 1))

α1,T−1(ωT−1)

(

α1,T−1(ω
T−1)

p1,T−1(ωT−1)

)1−γ

=
πe((ωT−1, 2))

α2,T−1(ωT−1)

(

α2,T−1(ω
T−1)

p2,T−1(ωT−1)

)1−γ

,

which, using the constraint (A.1) and the fact that πe((ωT−1, k)) = πe(k;ωT−1)πe(ωT−1), can
be solved to give

α1,T−1(ω
T−1) =

(

πe(1;ωT−1)(p2,T−1(ω
T−1))1−γ

)
1
γ

(πe(1;ωT−1)(p2,T−1(ωT−1))1−γ)
1
γ + (πe(2;ωT−1)(p1,T−1(ωT−1))1−γ)

1
γ

. (A.2)

Having found the maximizing value of portfolio choices at time T − 1 we can concentrate on
the problem at time T − 2. Taking the derivative with respect to αk,T−2(ω

T−2) and using the
first order conditions for αk,T−1(ω

T−1) leads to the following equation

λ((ωT−2, k))α1,T−1((ω
T−2, k)) + λ((ωT−2, k))α2,T−1((ω

T−2, k)) = λ(ωT−2)αk,T−2(ω
T−2)
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The fact that choices are normalized allows to rewrite the previous equation first as

αk,T−2(ω
T−2) =

λ((ωT−2, k))

λ(ωT−2)

and finally as

αk,T−2(ω
T−2) =

λ((ωT−2, k))

λ((ωT−2, 1)) + λ((ωT−2, 2))
. (A.3)

Since both multipliers λ((ωT−2, k)) k = 1, 2 depend upon αk,T−2(ω
T−2), (A.3) is still an implicit

equation in αk,T−2(ω
T−2). The solution is a function of current prices and probabilities, as

dependent on the observed history ωT−2, and prices and probabilities of period T − 1, as
dependent on histories ωT−1 = (ωT−2, k) k = 1, 2.

Although it is not particularly difficult to obtain the explicit solution for period T − 2
demands, iterating back to period 0 is instead rather complicated. A part from that, it gives
asset demand that depend on future price expectations, which are outside the scope of this
contribution. The overall procedure is heavily simplified if period T − 1 portfolio choices do
not depend on history ωT−1. A necessary condition is that both time T − 1 estimates of the
probabilities and prices do not depend on the history. This holds in our market if agents do
not update their beliefs and the market is close to one of its long-run equilibria, where prices
are indeed no history dependent.8

If prices and choices at time T − 1 do not depend on history, (A.3) can be written as

α1,T−2(ω
T−2) =

πe(1;ωT−2)
(

α1,T−2(ω
T−2)

p1,T−2(ωT−2)

)1−γ

πe(1;ωT−2)
(

α1,T−2(ωT−2)

p1,T−2(ωT−2)

)1−γ

+ πe(1;ωT−2)
(

α2,T−2(ωT−2)

p2,T−2(ωT−2)

)1−γ
,

which can be solved to give

α1,T−2(ω
T−2) =

(

πe(1;ωT−2)(p2,T−2(ω
T−2))1−γ

)
1
γ

(πe(1;ωT−2)(p2,T−2(ωT−2))1−γ)
1
γ + (πe(2;ωT−2)(p1,T−2(ωT−2))1−γ)

1
γ

.

Not surprisingly we have found the same expression as in (A.2). Since the same reasoning
can be applied at all periods, denoting πe(1) = πe, and using that prices are normalized, we
find the optimal fraction to be invested in the first asset as the generic period t, α1,t(p), as a
function of the parameters πe and γ:

α1,t(p; π
e; γ) =

(πe(1− p)1−γ)
1
γ

(πe(1− p)1−γ)
1
γ + ((1− πe)(p)1−γ)

1
γ

. (A.4)

The expression above is exactly the same demand used throughout the paper. Thus the
results discussed can be generalized, under the assumption discussed above, to long-horizon
maximizing CRRA agents.

8Notice however that, even if an agent beliefs that the underlying process is independent, imposing that
probability estimates do not depend on the history implies that the agent is not able to learn about the
exogenous process.
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