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Abstract 

 

Hausman (1978) developed a widely-used model specification test that has passed the test 

of time. The test is based on two estimators, one being consistent under the null hypothesis 

but inconsistent under the alternative, and the other being consistent under both the null 

and alternative hypotheses. In this paper, we show that the asymptotic variance of the 

difference of the two estimators can be a singular matrix. Moreover, in calculating the 

Hausman test there is a maximum number of parameters which is the number of different 

equations that are used to obtain the two estimators. Three illustrative examples are used, 

namely an exogeneity test for the linear regression model, a test for the Box-Cox 

transformation, and a test for sample selection bias. 

 

Keywords: Hausman test, specification test, number of parameters, instrumental variable 

(IV) model, Box-Cox model, Sample selection bias. 
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1. Introduction 

 

Hausman (1978) developed a widely-used model specification test that has passed the test 

of time. The test is based on two estimators, one being consistent under the null hypothesis 

but inconsistent under the alternative, and the other being consistent under both the null 

and alternative hypotheses. 

 

The difference of two estimators and the corresponding variance are used to calculate the 

test statistic, which asymptotically follows the chi-squared distribution with degrees of 

freedom given by the number of parameters. Holly (1982, p. 749) wrote “Hausman's 

procedure seems to be more general than the classical procedures for it does not seem to 

require that the null hypothesis be given in a parametric form.” 

 

This paper considers the Hausman test for a case in which two estimators are obtained as 

roots of two different sets of equations. Some equations of the two sets may be the same, 

but at least one equation is different. The null hypothesis is that two estimators obtained 

from different sets of equations converge to the same values. It is shown that it may not be 

possible to use all the parameters in the model for the Hausman test. The asymptotic 

variance of the difference of the two estimators may converge to a singular matrix, and 

there exists a maximum number of parameters that can be used in the Hausman test. The 

maximum number of parameters that can be used in the test is determined by the number 

of different equations in the two sets. This result coincides with the case of a standard 

parametric test, where the degrees of freedom are given by the number of restrictions in the 

null hypothesis.  

 

The remainder of the paper is given as follows. A Hausman test for a general model is 

discussed in Section 2, and three illustrative examples are given in Section 3. 

 

2. A Hausman Test for a General Model 
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Let   be a k-dimensional vector of unknown parameters. Consider two estimators, ̂  and 

~ , where ̂  is consistent under the null hypothesis and inconsistent under the alternative, 

whereas ~  is consistent under both the null and alternative hypotheses. Suppose that  ̂  is 

the root of k equations given by: 

 

0)( Tf , and   0)( Tg        (1) 

 

where 0)( Tf  and 0)( Tg  express vectors of 1k  and 2k  different equations, 

respectively. On the other hand,  ~  is given by: 

 

0)( Tf , and   0)( Th .       (2) 

 

Standard conditions such as convergence and differentiability of functions are assumed to 

hold. All models, whether linear or nonlinear, that are estimated using moment restrictions 

(by the method of moments) belong to this category.  

 

 Let 0  be the true parameter value of  . Under the null hypothesis, it follows that: 

 

),/1()ˆ)((')()ˆ( 000 Tofff PTTT        (3) 

)/1()
~

)((')()
~

( 000 Tofff PTTT   . 

 

Since 0)ˆ( Tf  and 0)
~

( Tf , it follows that: 

 

)
~ˆ()(' 0  TfT ).1(Po        (4) 

 

This means that there are 1k  linear relations between ̂T  and ~T asymptotically, and 

only 2K  elements are linearly independent asymptotically. Let *̂  and *~  be subsets of   

̂  and ~  (in order to choose the corresponding elements), and let q  be their dimension. If  

,2kq   )
~ˆ( **  VT  converges to a singular matrix under the null hypothesis, so that we 

cannot use the Hausman test in this case.  
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Note that another alternative is to use the generalized inverse matrix instead of 

1** )
~ˆ( V . However, as the asymptotic distribution may not be the chi-squared 

distribution, this alternative is not recommended unless the asymptotic distribution is 

known. 

 

3. Illustrative Examples 

 

 In this section we give three illustrative examples of the Hausman test, namely an 

exogeneity test for the linear regression model, a test for the Box-Cox transformation, and 

a test for sample selection bias. 

 

3.1   An exogeneity test for the linear regression model 

 

As the first example, we consider a classical exogeneity test of the linear regression model, 

as given by: 

 

tttttt uxuxxy   ''' 2211 ,  ,,...,2,1 Tt     (5) 

 

where )','(' 21 ttt xxx  , )','(' 21   , tx1  is the 1k ’th dimensional vectors of the 

explanatory variables which is known to satisfy 0),cov( 1 tt ux , and tx2  is the 2k ’th 

dimensional vectors of the explanatory variables which might be 0),cov( 2 tt ux . We 

assume that all the other standard assumptions of the explanatory variables and error terms 

are satisfied.  

 

For this model, we consider the test where the null and alternative hypotheses are given by: 

 

,0),cov(: 20 tt uxH   .0),cov(: 21 tt uxH      (6) 

 

This test is a classical example of the Hausman test, and has been examined extensively 

(see, for example, Durbin (1954), Wu (1973), Smith (1983, 1984, 1985), Holly (1982), and 

Hausman and Taylor (1980, 1981). However, the problem has not been examined in the 
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context of this paper, where we can reach the conclusion much more simply than using 

existing methods. (As it is possible to treat the procedure as a standard parametric test, it 

may not be a good example of Holly’s (1982) statement that “it does not seem to require 

that the null hypothesis be given in a parametric form”).  

 

It is well known that, under the null hypothesis, the ordinary least squares (OLS) estimator 

is consistent and efficient if the error terms are independently and identically distributed 

(i.i.d.) normal random variables. However, OLS is inconsistent under the alternative hypothesis. 

On the other hand, the IV estimator, such as the two-stage least squares (2SLS) estimator, 

is consistent under both the null and alternative hypotheses.  

 

Let  1̂  , 2̂  and ̂  be the OLS estimators of  1  , 2  and  ,  1

~  , 2

~  and  ~  be the IV 

estimators and 21 kkk  .  The OLS estimator is given by: 

 

,0)''( 22111   tt
t

tt xxyx  and  ,0)''( 22111   tt
t

tt xxyx  (7) 

 

and the IV estimator is given by: 

 

,0)''( 22111   tt
t

tt xxyx  and ,0)''( 22111   tt
t

tt xxyz   (8) 

 

where tz  is a vector of variables which satisfies 0/  P
t

t

Tuz . The first 1k  equations 

are the same, and the differences arise in the latter 2k  equations. As the first 1k  equations 

yield the OLS estimators, we have: 

 

1̂ = )}ˆ'({)'( 221
1

1 tt
t

tit
t

t xyxxx   ,  and  1

~ = )}
~

'({)'( 221
1

1 tt
t

tit
t

t xyxxx    (9) 

 

and 

 

)ˆ~
)}('()'({

~ˆ
2221

1
111    

t
t

tit
t

t xxxx ,     (10) 
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which is a linear function of 22

~ˆ   . Therefore, if we choose 2kq  , )
~ˆ( **  V   

becomes a singular matrix. If tu and tx  are independent, the variance matrix become 

singular even in finite samples. As the structure of the model is simple, we can use the 

Moore-Penrose general inverse for the test (Hausman and Taylor, 1980) if 2kq   in this 

particular case.   

 

3.2 A test for the Box-Cox transformation  

 

The second example is the Box-Cox (1964) transformation model (BC model), which is 

given by: 

 

ttt uxz  ' , ,0ty   ,,...,2,1 Tt       (11) 

 

tz   


 1ty ,    if ,0    

 

tz )log( ty ,   if ,0  

 

Generally, the likelihood function under the normality assumption (BC likelihood 

function) is misspecified, and the maximum likelihood estimator (BC MLE) is not 

consistent. However, the BC MLE can be a consistent estimator under certain assumptions. 

Nawata (2013) proposed an estimator which is consistent even if the assumption is not 

satisfied. Therefore, we can use the Hausman test for this model using these estimators.  

 

We will explain the asymptotic distribution of Nawata’s estimator and then the asymptotic 

distribution of the BC MLE. It is also shows that the Hausman test holds just for the 

transformation, and cannot be used for more than two parameters. 

 

i) BC MLE   
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The likelihood function under the normality assumption (BC likelihood function) is given 

by: 

  

  
t

tt xzL  log}/)'{(log)(log  ,log)1( 
t

ty
 

 (12) 

 

where   is the probability density function of the standard normal assumption, and 2
 
is 

the variance of tu . The BC MLE is obtained as follows:   

 


 Llog

,0)'(
1

2
  

 tt
t

t xzx
 

2

log


 L

,0
2

)'(
4

22




 
tt

t

xz
 and  (13)  

.0
log







L
 

 

Generally, the likelihood function is misspecified, and the maximum likelihood estimator 

(BC MLE) is not consistent. However, if 0)'1/( 0000   tx  and 0]0[ tyP  (in 

practice, ]0[ tyP  is small enough), the BC MLE performs well. Following Bickel and 

Doksum (1981), we call this the “small  ” assumption, such that: 

 

  
0

|
log


 L

ttt
t

uzyy })log({
1 *

0
2
0

0   


 )log( t

t

y ,     (14) 

 

where .0* 
tt yz   Under the “small  ” assumption, (that is, |)1'/(| 000  tt xu  is small) 

and 00  , we have: 

  

)}
1'

1log()1'{log(
1

)1'log(
1

)log(
00

0
00

0
000

0 








 t

t
tttt x

u
xuxy  

.
1'

)1'log(
1

00
00

0 





 t

t
t x

u
x       (15) 

 

Therefore,  
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0
|

log


 L
]

1'
)1'log(}'

)1'log()1'(
{[

1

00

3
02

000
0

0000

0
2
0 




 








 t

t
tttt

tt

t x

u
uxux

xx
(16)

 
 

}.
1'

)1'log(
1

{
00

00
0 

 


 t

t
t

t x

u
x     

 

Hence the BC MLE becomes a consistent estimator and the “small   asymptotics” of the 

BC MLE ),,(ˆ 2''
BCBCBCBC 


  are obtained by: 

 

),0()ˆ( 11
0

'  BAANT BC  ,       (17)  

 

where ]|
'

log
[

0

2





L

EA ,   ])'()([ 0 ottEB   ,  )],(),(,)'([)'(  tttt g   

),'(
1

)(
2




 tttt xzx   and  .
2

)'(
)(

2

2


 

 tt
t

xz
  

 

ii) Nawata’s estimator 

 

Nawata (2013) proposed an estimator which is consistent even if the “small  ” 

assumption is not satisfied. This estimator is obtained by: 

 

,0
log







L
    0

log
2






L
, and      (18) 

 )'}](}
1'

')1'log(
[{

1
)(

2









 

tttt
t

ttt

t
T xzzy

x

xzx
G 







   

 
1'

'
)1'log(

1








 t

t
t x

xz
x

 
,0)(  

t
tg

   
   

 

)(TG
 
is obtained by the approximation of  /log L . If the first and third moments of 

tu  are zero, we have 0)]([ 0 TGE  and the estimator obtained by equation (18) is 

consistent.  The asymptotic distribution of the estimator, )ˆ,ˆ,'ˆ('ˆ 2
NNNN  

 
, is given by: 
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],)'(,0[)ˆ( 11
0

 CBCNT N 
      (19) 

 

where  ]|
'

)(
[

0





 tEC


. 

 

iii) The Hausman test for the “small  ” assumption 

 

In this case, the null hypothesis is that the “small  ” assumption holds, and the alternative 

hypothesis is that it does not. As the variance of  )ˆˆ( CBCV     is given by 

})'({)()ˆˆ( 1111   CABCAV CBC   under the null hypothesis, we can calculate it 

more precisely than using the difference of two covariance matrices. The asymptotic 

distribution of BCN 


  is given by: 

 

),,0()( dNT BCN 


        (20) 

 

where 

 

 



Tpd

n
lim  [last diagonal element of })'({)( 11111   CABCA ]. 

 

Using dTt BCN


/)(    as the test statistic, where d


 is the estimator of d , we can 

test the  “small ” assumption, that is, we can test whether we can successfully use the BC 

MLE. (Note that, when 00  , we replace A00
lim  , B00

lim  , and
  

C00
lim   for A , 

B  and C , and the test can be calculated using the same formula.)  

 

However, in this case: 

 

}}{)'({ˆ ˆ1 MLE
t

t
tt

t
tMLE yxxx    , and }}{)'({ˆ ˆ1 N

t
t

tt
t

tN yxxx       (21) 

 

as }(}{)'({ˆˆ ˆˆ1 NMLE
tt

t
tt

t
tNMLE yyxxx     ,     
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)/1()ˆˆ}()(log}{)'({ 01 noyyxxx pNMLEtt
t

tt
t

t    ,    (25) 

)1()ˆˆ()ˆˆ( 1
pNMLENMLE oTBAT    , 

 

where 

 

 '
1

lim t
t

t
T

xx
T

pA 


  and  0
1

lim 
t

t
t

T
yx

T
pB 


 . 

 

Therefore, the rank of the asymptotic variance matrix of  ])'ˆˆ(),ˆˆ([ NMLENMLE TT    

becomes one, and we cannot add any element of   to the test. 

 

3.3 A test for sample selection bias  

  

In a sample selection bias model (Heckman, 1976, 1979), the equation to be estimated is 

given as: 

 

tttt uxGxy  )'(' 2211  ,  ,,...,2,1 Tt      (26) 

 

The null hypothesis is that the error tem follows the normal distribution, and 

)'(/)'()'()'( 222222122  tttt xxxGxG  , where   is the distribution function of the 

standard normal distribution. We can estimate the model by Heckman’s two-step method 

and obtain an estimator that satisfies: 

 

0)}ˆ'(ˆˆ'{ 221111   tt
t

tt xGxyx .      (27) 

 

If the distribution is not known, we can estimate )'( 2txG  by using a semiparametric 

method (such as, for example, the multiple index estimator of Ichimura and Lee (1991)). In 

this case, the estimator of  1  is obtained from: 

 

.0)}
~

'(~~
'{ 222111   tTt

t
tt xGxyx      (28) 
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Moreover, under the null hypothesis, )(2 TG  must satisfy )()()( 12  GGg TT   

)/1( Top  in a proper subspace of ),( R  to obtain an estimator such that the 

distribution of )
~

( 11  T  converges to a normal distribution with mean zero. Therefore, 

under the null hypothesis, it follows that:  

 

ttTt
t

t
t

t xxGxGxx 12222211111 )}
~

'(~)ˆ'(ˆ{)ˆ~
)('(       (29) 

ttttt
t

xxGxGxGxG 1221221221221 )}
~

'(~)
~

'(~)
~

'(~)ˆ'(ˆ{     

)
~

'(~)ˆ'(~)ˆ'(~)ˆ'(ˆ{ 221221221221  tttt
t

xGxGxGxG   ttT xxg 122 )}
~

'(~   

)}
~

'()ˆ'({~)~ˆ)(ˆ'({[ 221221221  ttt
t

xGxGxG   ttT xxg 122 )]
~

'(~   

)/1()}'()
~ˆ(')'()~ˆ)('({ 122222221221 TOxxgxxgxG pttTttt

t

   , 

 

where  ),()()( 1  TT GGg   and 



d

dG
g 1

1 )(  , so that: 

 

)1()
~ˆ()~ˆ()ˆ~

( 22
11

11 poTCATBAT    ,   (30) 

 

,)'(
1

lim,'
1

lim 12211 



t

tt
T

t
t

t
T

xxG
T

pBxx
T

pA  and 



t

tt
T

xxg
T

pC 1221 )'(
1

lim  . 

 

Again, we have 1k  asymptotic restrictions for ),','( 21  , which leads to the identical 

problem that was mentioned above. Note that Heckman’s estimator under the normality 

assumption is consistent but not efficient. Therefore, we cannot use Hausman’s simple 

formula, whereby the variance in the test statistic is the difference of two covariance 

matrices, to calculate the variance of the test statistic.  

 

4. Conclusion 
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In this paper, the Hausman (1978) test was re-examined. The widely-used model 

specification test uses two estimators, one being consistent under the null hypothesis but 

inconsistent under the alternative, and the other being consistent under both the null and 

alternative hypotheses. It was shown that the asymptotic variance of the difference of the 

two estimators could be a singular matrix. Moreover, in calculating the Hausman test there 

is a maximum number of parameters which is the number of different equations that are 

used to obtain the two estimators. Three illustrative examples are used, namely an 

exogeneity test for the linear regression model, a test for the Box-Cox transformation, and 

a test for sample selection bias. 

 

The limitation of the Hausman test that was established in the paper does not seem to have 

been considered previously, except in the case of the classical exogeneity test for the linear 

regression model. This result suggests that greater care and attention should be paid in 

computing the Hausman test for such problems. 
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