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1 Introduction

We provide new solutions to the river claims problem, using Composition axioms. These

axioms are adapted from the literature on claims problems to the case of river sharing,

where they have particularly relevant interpretations in the context of variable and

uncertain river flow. Our analysis adds to the emerging literature on axiomatic ap-

proaches to river sharing (cf. Béal et al., 2013), which has two interesting features. The

first is its close ties to other allocation problems with constraints on the relation be-

tween agents. Examples include hierarchies or networks (Demange, 2004; İlkılıç, 2011)

and multi-period or intergenerational sharing (Arrow et al., 2004). The second feature

is that the axiomatic approach can be easily put to use in negotiations on river shar-

ing because the axioms can generally be interpreted as describing characteristics of a

negotiation procedure. Such procedures can be implemented by the negotiating parties

themselves, by the members of a joint river basin committee, or perhaps even by an

intervening third party when conflict over water occurs (Ansink and Weikard, 2009).

Recent axiomatic studies (cf. Ambec and Sprumont, 2002; Ambec and Ehlers, 2008;

Khmelnitskaya, 2010; Van den Brink et al., 2012; Béal et al., 2012) model river sharing

as a cooperative game, where the axioms are imposed on the distribution of welfare

to the agents. Van den Brink et al. (2013) argue that, instead, the axioms should be

imposed directly on the allocation of welfare derived from water use, which allows a

closer link between the axioms and actual water allocation. In this paper, we take this

argument one step further and we impose axioms directly on the allocation of water. In

doing so, we ignore the agents’ benefit functions, which avoids some difficulties in im-

plementing cooperative solutions for water allocation, identified by Dinar et al. (1992).

The disadvantage of our direct approach is that we cannot assess solutions in terms of

economic (Kaldor-Hicks) efficiency. The important advantage, however, is that it is far

more realistic (cf. Dinar and Nigatu, 2013). In the vast majority of reported negotia-

tions on river sharing, the subject of negotiation is the allocation of physical units of

water, rather than the benefits derived from water use (Beach et al., 2000). Wolf (1999,

page 12) argues that “In practice, economic criteria have influenced water allocations
only in the exception”. Furthermore, once conflicts over water are settled and property

rights are mutually acknowledged, agents can decide to engage in water trade if there

are unexploited welfare gains (although Ansink et al. (2012) find that the opportunities

for such trade may be restricted if there are four or more agents).

Extending Ansink and Weikard (2012) to allow for settings without water scarcity,

we model river sharing as a river claims problem. In such problems, agents are ordered
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linearly and each agent has both an initial water endowment and a claim to the re-

source. River claims problems add a linear structure to the well-known claims problem

introduced by O’Neill (1982). Two differences are that in the claims problem, the agents

are not ordered and that there is just one resource to be allocated to the agents (for an

extensive overview of this literature, see Thomson, 2003). The three ‘ingredients’ of

a river claims problem ω = 〈
N, e, c

〉
are easily derived. The ordered set of agents N

is given by the countries located along the river from source to mouth. The vector of

water endowments e is given by inflow to the river from rainfall or tributaries. The

vector of agents’ claims c is put forward by the agents themselves in negotiations over

river water (cf. McCaffrey, 2007; Daoudy, 2008). Claims can be based on a wide range

of river sharing principles, ranging from legal principles—such as the 1966 Helsinki

Rules or the 1997 UN Watercourses Convention—to principles based on historical use,

population, or irrigation needs (Wolf, 1999).

We propose solutions to the river claims problem based on Composition axioms, in-

troduced by Moulin (1987) and Young (1988). These axioms pertain to the possibility

that after its initial allocation, the available amount of the resource turns out to be

different from what was expected. We derive four Composition axioms tailored to the

setting of river sharing, using two different interpretations. One interpretation is based

on variable and uncertain river flow. The other interpretation is based on a possible ne-

gotiation procedure in which upstream water is allocated before downstream water, or

vice versa. We find that only one rule satisfies all four Composition axioms. This is the

river sharing rule induced by the Harmon Doctrine, which says that countries are free

to use any water available on their territory, without concern for downstream impacts.

We provide two characterizations of this rule based on the Composition axioms. We

also show the relation of the Harmon rule to both the class of sequential sharing rules

(Ansink and Weikard, 2012) and the class of Priority rules (Moulin, 2000; Thomson,

2013).

In a next step we shortly assess the ‘No-harm’ rule, which says that countries should

care about downstream impacts, and therefore, water is allocated as far downstream as

required to meet downstream claims. The No-harm rule satisfies only two out of our

four Composition axioms. We obtain two characterization results for the No-harm rule

that are (inverse) analogues of the results obtained for the Harmon rule.

In the next section we introduce the river claims problem. In Section 3 we introduce

and motivate our Composition axioms and we describe their relevance for river sharing.

In Section 4 we present our characterization results and in Section 5 we conclude.
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2 Background

In this section we first briefly introduce the river claims problem based on Ansink and

Weikard (2012). We generalize their analysis by dropping an assumption on water

scarcity, as explained below. Subsequently we describe the class of sequential sharing

rules that solve the river claims problem.

2.1 The river claims problem extended

Consider an ordered set N = (1,2, . . . ,n) of agents located along a river, with agent i
upstream of j whenever i < j. Ui = { j ∈ N : j < i} is the set of agents upstream of i, and

D i = { j ∈ N : j > i} is the set of agents downstream of i. On i’s territory, total river flow

increases by e i ≥ 0 because of e.g. rainfall. We write e = (e1, . . . , en) and refer to this

inflow as ‘endowments’. Downstream water availability depends on upstream water

allocation. Let the amount of available water on the territory of agent i be denoted by

E i ≡ e i +∑
j∈Ui (e j − x j), where x = (x1, . . . , xn) is the water allocation vector as described

below. E i equals endowments plus run-off of unused upstream water. Each agent has

an exogenous claim ci ≥ 0 to total river flow. We write c = (c1, . . . , cn).

We can now define the river claims problem, which concerns the allocation of water

among the agents based on their claims.

Definition 1 (River claims problem). A river claims problem is a triple ω = 〈
N, e, c

〉
,

with N an ordered and finite set of agents, an endowments vector e ∈ Rn+ and a claims

vector c ∈Rn+.

Remark 1. Unlike Ansink and Weikard (2012) but consistent with e.g. Chun (1988)

and Herrero et al. (1999), for the domain of general allocation problems, we do not im-

pose water scarcity throughout the river but, instead, allow for abundance.1 The main

argument for this generalization of the domain of river claims problems is their spatial

and temporal setting. We illustrate both arguments using a simple example. Consider

the river sharing problem ω = 〈
N, e = (1,1,4), c = (1,3,3)

〉
. The ‘spatial’ argument is

that, since water flows downstream, there is scarcity upstream because agent 2 cannot

satisfy his full claim with the available water of agents 1 and 2 (e1 + e2 = 2 < 3 = c2).

Despite this upstream scarcity, there is no scarcity downstream, due to the large en-

dowment of agent 3, which exceeds his claim (e3 = 4 > 3 = c3). The uni-directionality of

1Specifically, Ansink and Weikard (2012) assume that downstream claims exceed downstream endow-
ments at each location along the river: ci +∑

j∈D i c j ≥ e i +∑
j∈D i e j ∀i ∈ N.

4



river flow creates local scarcity, that cannot be mitigated by downstream abundance.2

The ‘temporal’ argument is that some of the axioms that we employ in this paper would

not apply when imposing water scarcity. One of these axioms is River Composition, an

invariance property that refers to situations where additional water arrives after the

initially available river flow has been allocated. In the example, suppose that the ini-

tial endowment vector equals e1 = (1,1,1) which is allocated according to some rule, for

example by assigning it all to the downstream agent 3. Now, when the remaining water

e2 = (0,0,3) arrives, we have a problem where agent 3 is satisfied, but the remaining

three units of water cannot be allocated to agent 1 or 2, due to the uni-directionality of

river flow. If we would impose water scarcity, River Composition would not be applica-

ble to this example, although the situation is very relevant in practice. Following our

choice not to assume scarcity, we do impose that water can be freely disposed of.

Denote by Ω the set of river claims problems. We now define a river sharing rule for

such problems.

Definition 2 (River sharing rule). A river sharing rule is a mapping F :Ω→ Rn that

assigns to every river claims problem ω ∈ Ω a water allocation vector x = (x1, . . . , xn),

x ∈Rn+, such that

(a) 0≤ xi ≤ ci ∀i ∈ N, (claims-boundedness)

(b) xi ≤ E i ∀i ∈ N, (feasibility)

(c)
∑

i∈N xi =
∑

i∈N e i −max
{
0,

∑n
k= j(ek − ck) : j ∈ N

}
. (minimum waste)

The allocation of water to agent i is Fi(ω) = xi. Requirements (a)–(c) impose non-

negativity, claims-boundedness, feasibility, and minimum waste. This last requirement

(c) requires additional explanation. Because we allow for the possibility of water abun-

dance we cannot simply impose
∑

i∈N xi = ∑
i∈N e i. Instead, we correct the sum of allo-

cated water by subtracting excess water which, if present, occurs in the downstream

part of the river and is calculated by the largest
∑n

k= j(ek − ck). For the example in Re-

mark 1, requirement (c) imposes that
∑

i∈N xi = 1+1+4−max{0,6−7,5−6,4−3} = 5

units of water are allocated, while 1 excess unit of water is freely disposed.

2One argument to assume water scarcity throughout the river is that ‘non-scarce’ problems can easily
be transformed into ‘scarce’ problems, simply by removing the most downstream agents that do not face
water scarcity. In the example, this would imply that agent 3 is removed to obtain ω′ = 〈

N, e = (1,1), c =
(1,3)

〉
.
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2.2 Sequential sharing rules

Having defined the river claims problem, one approach to solve it is by applying a

sequential sharing rule. We adapt the construction and definition of such rules by

Ansink and Weikard (2012) to allow for the possibility of water abundance. Denote by

cD i ≡ max
{
0,

∑ j
k=i+1(ck − ek) : j ∈ D i

}
the downstream excess claim: the sum of claims

that cannot be satisfied with downstream water, by all agents downstream of i. The

max operator prevents negative values of the downstream excess claim. Such val-

ues could occur in absence of scarcity, as in the example in Remark 1 where we have

cD2 =max {0,3−4}= 0.

Using this definition of the downstream excess claim, a river claims problem ω

can be interpreted as a sequence (ω1, . . . ,ωn) of reduced river claims problems ωi =〈
{i,D i},min

{
E i, ci + cD i

}
, (ci, cD i )

〉
, with two agents i and D i, a claims vector (ci, cD i ),

and available water min
{
E i, ci + cD i

}
. Applying free disposal of excess water, the min

operator prevents the volume of water for allocation to exceed the sum of claims. A re-

duced river claims problem is mathematically equivalent to the two-agent version of

a standard claims problem ψ = 〈
N,E, c

〉
so that standard rules (e.g. proportional rule,

constrained equal awards rule) can be applied to any such problem.

Definition 3 (Sequential sharing rule). A sequential sharing rule based on rule B for

river claims problem ω is a river sharing rule F that allocates to each agent the alloca-

tion provided by repeatedly applying a rule B to its corresponding sequence of reduced

river claims problems (ω1, . . . ,ωn), so that Fi(ω)= Bi(ωi) ∀i ∈ N.3

The class of sequential sharing rules is characterized by three axioms: Only n’s Ex-
cess Claim Matters, No Advantageous Downstream Merging, and Upstream Consistency
(Ansink and Weikard, 2012, Proposition 1), which will be used in Section 4. Note that

the construction of c′n in Only n’s Excess Claim Matters as well as the construction of

e′n−1 in No Advantageous Downstream Merging is adapted to allow for the possibility of

water abundance.

Axiom 1 (Only n’s Excess Claim Matters). For each river claims problem ω= 〈
N, e, c

〉
,

and each related problemω′ = 〈
N, e′, c′

〉
such that e′ = (e1, . . . , en−1, e′n) and c′ = (c1, . . . , cn−1, c′n)

with e′n = 0 and c′n =max(0, cn − en), we have Fi(ω)= Fi(ω′) for all i ∈ N \ n.

Axiom 2 (No Advantageous Downstream Merging). For each river claims problem

ω = 〈
N, e, c

〉
, and each related problem ω′ = 〈

N ′, e′, c′
〉

such that N ′ = N \ {n} and e′ =
3The definition of this class of rules shows similarities with the procedure used by Moreno-Ternero

(2011) to characterize a class of rules inspired by the Talmud.
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(e1, . . . , en−2, e′n−1) and c′ = (c1, . . . , cn−2, c′n−1), with e′n−1 = en−1 +min(cn, en) and c′n−1 =
cn−1 + cn, we have Fi(ω)= Fi(ω′) for all i < n−1.

Axiom 3 (Upstream Consistency). For each river claims problem ω = 〈
N, e, c

〉
, each

i ∈ N\{1}, and each related problem ω′ = 〈
N ′, e′, c′

〉
such that N ′ = N\{1}, c′ = (c2, . . . , cn),

and e′ = (e1 − x1 + e2, e3, . . . , en), we have Fi(ω′)= Fi(ω) for all i ∈ N \1.

3 Composition axioms

As discussed in the Introduction, we apply two Composition axioms, introduced by

Moulin (1987) and Young (1988), to the river sharing problem. Composition, also known

as Lower Composition or Composition Up, is an invariance property that relates to the

unexpected arrival of additional resources after the initially available resource has been

allocated. Its dual property is Path Independence, also known as Upper Composition or

Composition Down, which relates to an unexpected drop in the available resource after

it has been allocated. Both axioms are particularly appealing for the case of river water

sharing, as we demonstrate below.

In the following definitions of axioms, note that for two water endowment vectors e
and e′, we write e′ > e if and only if e′i ≥ e i ∀i ∈ N with strict inequality for at least one

agent.

Axiom 4 (River Composition). For each river claims problem ω = 〈
N, e, c

〉
and each

e′ > e which gives the two related problems ω′ = 〈
N, e′, c

〉
and ω′′ = 〈

N, e′− e, c−F(ω)
〉
,

we have F(ω′)= F(ω)+F(ω′′).4

Suppose that additional water arrives in the river after the initially available river

flow has been allocated. River Composition requires that in such cases there is no

difference between (i) canceling the initial allocation and reapplying the same rule to

the situation with more river water; and (ii) letting agents keep their initial allocation,

reducing their claims accordingly, and applying the same rule to the additional water

(Moulin, 2000; Thomson, 2003).

Related to River Composition is River Path Independence.

4In the definitions by Moulin (2000) and Thomson (2003), two additional requirements are that the
sum of claims exceeds the resource and that resource endowments are non-negative. In our model we
allow for problems where the sum of claims does not exceed the resource, as motivated in Section 2.1.
Non-negativity of endowments follows from our definition of the river claims problem in Definition 1,
which also replaces the endowment parameter by an endowment vector, consistent with the difference
between claims- and river claims problems.
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Axiom 5 (River Path Independence). For each river claims problem ω = 〈
N, e, c

〉
and

each e′ < e which gives the two related problems ω′ = 〈
N, e′, c

〉
and ω′′ = 〈

N, e′,F(ω)
〉
,

we have F(ω′)= F(ω′′).

Suppose that there is less river flow than expected so that the initial allocation of

river water is infeasible. River Path Independence requires that in such cases there is

no difference between (i) canceling the initial allocation and applying the same rule to

the situation with less river water; and (ii) considering the initial allocation as claims

on the revised water volume and applying the same rule to this new problem (Moulin,

2000; Thomson, 2003).

The River Composition and River Path Independence axioms are particularly ap-

pealing for the case of river water sharing, because of three hydrological characteristics

of river flow. First, river flow is not constant; it typically displays inter-annual and

seasonal variability as well as daily variation (Dettinger and Diaz, 2000; Ward et al.,

2010). The variability of river flow depends on inter alia the climatological and mor-

phological conditions of the river basin. For example, snow-dominated river basins in a

temperate climate will display different run-off regimes than rain-fed rivers in an arid

climate. As a result, the decision to apply a river sharing rule to the volume of annual

river flow is ad hoc and may bias the outcome (e.g. when such annual sharing gives a

different outcome than the sum of allocations of monthly sharing). Second, river flow

is uncertain despite advanced forecasting methods (Krzysztofowicz, 2001; Montanari

and Grossi, 2008). An agreed-upon river sharing rule at the start of the year may have

unforeseen consequences if the realized volume of river flow deviates from the expected

volume. Given hydrological uncertainties and imperfect forecasting methods, such de-

viations are hard to avoid. Third, this line of reasoning can be extended to encompass

the potential effects of climate change on river flow and the hydrological cycle in gen-

eral. In addition to increases in run-off variability and the frequency of extreme events,

climate change induces changes in the mean run-off for many river basins (Milly et al.,

2005; Bates et al., 2008). Such permanent changes in water availability may require

rationing of water allocations (Olmstead, 2010), which is straightforward if allocation is

based on a rule that satisfies River Composition, River Path Independence or, preferably,

both.

As we will see in Section 4, River Composition turns out to be a very strong property.

Perhaps too strong for practical use. This is one reason to study weaker versions of

this axiom. A second reason is that such weaker versions are applicable when we give

these axioms a slightly different interpretation, as follows. Suppose that the set of

agents N meets to negotiate a solution to the river claims problem. One attractive way
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of approaching the problem is to first agree on the allocation of e1, then e2, e3, and so

on, following the direction of the river downstream. The dual approach follows the same

procedure in opposite direction. This interpretation of River Composition as reflecting

a negotiation procedure is captured in the following two axioms.

Axiom 6 (Composition Downstream). For each river claims problem ω= 〈
N, e, c

〉
with

e = (e1, . . . , e i,0, . . . ,0) for some i ∈ N, and each e′ = (e1, . . . , e i, e′i+1, . . . , e′n)> e which gives

the two related problems ω′ = 〈
N, e′, c

〉
and ω′′ = 〈

N, e′− e, c−F(ω)
〉
, we have F(ω′) =

F(ω)+F(ω′′).

Axiom 7 (Composition Upstream). For each river claims problem ω = 〈
N, e, c

〉
with

e = (0, . . . ,0, e i+1, . . . , en) for some i ∈ N, and each e′ = (e′1, . . . , e′i, e i+1, . . . , en) > e which

gives the two related problems ω′ = 〈
N, e′, c

〉
and ω′′ = 〈

N, e′ − e, c − F(ω)
〉
, we have

F(ω′)= F(ω)+F(ω′′).

Finally, for the characterization results in the next section, we need an additional

axiom, which has a very straightforward interpretation in the river setting.

Axiom 8 (No Contribution Property). For each river claims problem ω = 〈
N, e, c

〉
and

for each i ∈ N \1, if e i = 0 then Fi(ω)≤min
{
ci,max{E i−1 − ci−1,0}

}
.

The No Contribution Property states that if some agent has no water endowment,

his upstream neighbour need not share any water that he can use to satisfy his own

claim. In other words, if an agent does not contribute any inflow, then his allocation

is secondary to his upstream neighbour’s allocation. This axiom is related to the No
Contribution Property on the domain of river sharing problems with transferable utility

(Van den Brink et al., 2011).

4 Characterization results

We now proceed to the characterization results, which are summarized in Table 1. We

start with the Harmon rule and then proceed with the No-harm rule.

4.1 The Harmon rule

The Harmon rule implements the Harmon Doctrine in river claims problems, and is

largely favorable to upstream riparians. The Harmon Doctrine refers to the principle

issued in 1895 by US Attorney General Judson Harmon that countries are free to use
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any water available on their territory, without concern for downstream impacts (Mc-

Caffrey, 2007). This doctrine has been widely disputed and is currently not recognized

in international water law. In fact, international water law such as the 1966 Helsinki

Rules and the 1997 UN Watercourses Convention, is based primarily on the principles

of “reasonable and equitable utilization” and “no significant harm to other riparians”,

which stand in sharp contrast to the Harmon Doctrine (Salman, 2007). Nevertheless,

the Harmon Doctrine (or equivalently, the principle of Absolute Territorial Sovereignty)

is often raised by upstream riparians during water disputes (Wolf, 1999).

Definition 4 (Harmon rule). The Harmon rule for a river claims problem ω= 〈
N, e, c

〉
allocates water such that Fi(ω)=min{E i, ci} for all i ∈ N.

An implication of the Harmon rule is that agents need not consider downstream

claims in their water use decisions. Note that Van den Brink et al. (2013) study the

same rule under a different name and using slightly different notation that highlights

the recursive structure of allocating river water where availability depends on up-

stream use. We further discuss this paper at the end of this sub-section.

In Lemma 1 we show that the Harmon rule satisfies all four Composition axioms.

Proofs are deferred to the Appendix.

Lemma 1. The Harmon rule satisfies River Composition, Composition Downstream,
Composition Upstream, and River Path Independence.

We now turn to our characterization results. Despite its simple appeal and rea-

sonable interpretation Composition Downstream characterizes the Harmon rule, which

has been considered an extreme solution.

Proposition 1. A solution on the class of river claims problems is equal to the Harmon
rule if and only if it satisfies Composition Downstream.

At first glance a characterization result based on a single axiom seems to be weak,

but see Thomson (2001, Section 4.4) who dismisses such criticism as a ‘counting prob-

lem’ only. On a related note, several properties of the Harmon rule, such as feasibility

and the minimum waste condition, are not explicitly modeled as axioms. Instead, they

enter the analysis as requirements in the definition of a river sharing rule, see Defini-

tion 2.

An alternative characterization of the Harmon rule is obtained using River Path
Independence:
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Proposition 2. A solution on the class of river claims problems is equal to the Harmon
rule if and only if it satisfies River Path Independence and the No Contribution Property.

For the case where e = (e1,0, . . . ,0), the Harmon rule coincides with an extreme ex-

ample from the class of Priority rules for claims problems due to Moulin (2000). This

extreme example occurs when the set of agents is partitioned in priority classes such

that each agent is in a different priority class. Then, the claims problem resembles

a river claims problem, where upstream agents may be interpreted to have priority

over downstream agents. The Priority rule says that the non-prioritized agent receives

resources only if the claim of the prioritized agent has been fully met.

Definition 5 (Priority rule). The Priority rule for a claims problem with ordered agents

ψ= 〈
N,E, c

〉
allocates water such that ∀i, j ∈ N with i < j, if B j(ψ)> 0, then Bi(ψ)= ci.

Generalizing to river claims problems—which are not constrained to the endowment

vector e = (e1,0, . . . ,0) but may feature any endowment vector e—the Priority rule can

be used to characterize the Harmon rule as a sequential sharing rule. To see how, note

that the Harmon rule can be interpreted as a sequential sharing rule, in which for each

reduced river claims problem ωi, the rule assigns min{E i, ci} to i and any remaining

water to D i. Using Definition 3, the sequential sharing rule based on the Priority rule

for river claims problem ω, is the river sharing rule F that allocates to each agent

the allocation provided by repeatedly applying the Priority rule B to its corresponding

sequence of reduced river claims problems (ω1, . . . ,ωn), so that Fi(ω)= Bi(ωi) ∀i ∈ N.

Proposition 3. On the class of river claims problems, the Harmon rule coincides with
the sequential sharing rule based on the Priority rule.

Combining Propositions 1 and 3, and given that the Harmon rule falls within the

class of sequential sharing rules, we know that Composition Downstream implies all

three characterizing axioms of these rules: Only n’s Excess Claim Matters, No Advan-
tageous Downstream Merging, and Upstream Consistency. Nevertheless, none of the

sequential sharing rules assessed by Ansink and Weikard (2012) (i.e. those based on

the proportional rule, constrained equal awards, constrained equal losses, and the Tal-

mud rule) satisfies Composition Downstream. Apparently, despite its simple appeal and

reasonable interpretation, Composition Downstream is a very powerful property.

For completeness, we provide a second characterization of the Harmon rule, using

the insight provided by Proposition 3.
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Proposition 4. A solution on the class of river claims problems is equal to the Harmon
rule if and only if it satisfies Only n’s Excess Claim Matters, No Advantageous Down-
stream Merging, Upstream Consistency, and the No Contribution Property.

Finally, and closing our analysis of the Harmon rule, it is insightful to relate our

results to recent work by Van den Brink et al. (2013, Section 6), where they assess

how some river sharing rules for river sharing problems with transferable utility can

be applied on the domain of river claims problems. Their approach is to assume that

every agent has constant marginal benefits of water use up to a satiation point, and

zero marginal benefits thereafter. These satiation points are then interpreted as the

agents’ claims. It turns out that on the domain of river claims problems and using

this approach, the downstream incremental solution, originally proposed by Ambec and

Sprumont (2002), coincides with the Harmon rule.

This coincidence is quite surprising, given the emphasis that this rule puts on as-

signment of benefits to downstream agents on its original domain of river sharing prob-

lems (Van den Brink et al., 2007; Houba, 2008). The explanation for this coincidence is

that the downstream incremental solution takes the Harmon doctrine as the basis for

defining lower bounds on welfare for each (coalition of) agent(s) and then formulates an

aspiration welfare level for each (coalition of) agent(s). Because there are no monetary

transfers in a claims problem (or, using the above interpretation, because marginal

benefits of water use are constant), the aspiration welfare does not exceed the lower

bounds. Therefore, the downstream incremental solution implements the Harmon doc-

trine, which leads to the Harmon rule for river claims problems.

Note that Van den Brink et al. (2013) characterize the Harmon rule using three

basic axioms and Independence of Downstream Claims, a property that, as suggested

by its name, implies that upstream allocation is independent of the size of downstream

claims. In contrast to Composition Downstream, we argue that this is not a desirable

property of solutions to a river claims problem, which clearly demonstrates the two

faces of the Harmon rule.

4.2 The No-harm rule

The No-harm rule is similar in spirit to the Harmon rule, by allocating water based

on principles from international water law. The No-harm rule implements an extreme

interpretation of the principle of doing “no significant harm to other riparians”, and

is largely favourable to downstream riparians. Joint with the principle of “reasonable

and equitable utilization”, it forms the basis of international water law, introduced by
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the 1966 Helsinki Rules, and incorporated by the 1997 UN Watercourses Convention.

We interpret the principle in its extreme form, where it coincides with the notion of

Unlimited Territorial Integrity (Salman, 2007). In this interpretation, the principle

requires that no harm is done at all. This implies that water is allocated as far down-

stream as possible, given the claims-boundedness requirement of river sharing rules in

Definition 2.

Definition 6 (No-harm rule). The No-harm rule for a river claims problem ω= 〈
N, e, c

〉
allocates water such that Fi(ω)=max

{
0,E i − cD i

}
for all i ∈ N.

An implication of the No-harm rule is that agents only consider downstream claims

in their water use decisions. Similar to the Harmon rule, Van den Brink et al. (2013,

Section 6) study the No-harm rule under a different name and using slightly different

notation that highlights the recursive structure of allocating river water.

The following results are related to those in Section 4.1. In Lemma 2 we show that

the No-harm rule satisfies only two out of four Composition axioms.

Lemma 2 (see Lemma 1). The No-harm rule satisfies Composition Upstream and River
Path Independence, but not River Composition nor Composition Downstream.

By taking the inverse of both the Priority rule and the No Contribution Property
we derive characterizations for the No-harm rule that are analogue to Propositions 3

and 4.

Definition 7 (Reverse Priority rule). The Reverse Priority rule for a claims problem

with ordered agents ψ = 〈
N,E, c

〉
allocates water such that ∀i, j ∈ N with i < j, if

Bi(ψ)> 0, then B j(ψ)= c j.

Axiom 9 (Full Contribution Property). For each river claims problem ω= 〈
N, e, c

〉
and

for each i ∈ N \1, if e i = 0 then Fi(ω)≥min
{
ci,E i−1

}
.

Compared to the Priority rule in Definition 5, the Reverse Priority rule just reverses

the order of the agents. The rule states that, when downstream agents have priority

over upstream agents, the upstream agent receives resources only if the claims of the

downstream agents have been fully met. The Full Contribution Property states that

if some agent has no water endowment, his upstream neighbour should provide any

available water needed to satisfy the unendowed agent’s claim.

Proposition 5 (see Proposition 3). On the class of river claims problems, the No-harm
rule coincides with the sequential sharing rule based on the Reverse Priority rule.
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Proposition 6 (see Proposition 4). A solution on the class of river claims problems is
equal to the No-harm rule if and only if it satisfies Only n’s Excess Claim Matters, No
Advantageous Downstream Merging, Upstream Consistency, and the Full Contribution
Property.

Table 1: Axioms satisfied by the Harmon and No-harm rules. Arrows denote implica-
tion. Equal symbols in one column indicate a characterization.

axioms \ rules Harmon No-harm
River Path Independence yes ¶ yes
River Composition yes no
⇒ Composition Downstream yes † no
⇒ Composition Upstream yes yes

Only n’s Excess Claim Matters yes § yes ?
No Advantageous Downstream Merging yes § yes ?
Upstream Consistency yes § yes ?

No Contribution Property yes §¶ no
Full Contribution Property no yes ?

The proofs of both propositions follow immediately from the proofs of Propositions 3

and 4 when replacing, respectively, the Priority rule and the No Contribution Property
by their inverse. To some extent, the Reverse Priority rule and the Full Contribution
Property lack the appeal of their regular counterparts in Definition 5 and Axiom 8. The

main purpose of Propositions 5 and 6 is therefore to show the relation between the

Harmon and No-harm rules.

Similar to the Harmon rule, Van den Brink et al. (2013) have also assessed the No-

harm rule. On the domain of river claims problems, the No-harm rule coincides with

the UTI incremental solution, where UTI refers to the principle of Unlimited Territo-

rial Integrity, discussed above. They characterize the No-harm rule using three basic

axioms and Independence of Upstream Claims, with an interpretation analogue to the

characterization discussed in the previous sub-section on the Harmon rule.

5 Conclusion

Variability is a key characteristic of river flow, and constitutes the basis of uncertainty

over expected water availability. The impacts of climate change on the hydrological

cycle are, in many river basins, amplifying natural levels of variability. When drafting
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river sharing rules, efficiency and stability can be enhanced by taking into account such

variability (Ansink and Ruijs, 2008; Ambec et al., 2013; Ansink and Houba, 2013) The

applicability and desirability of the Composition axioms is evident for such rules. In

our paper, the linear order provides a rigid structure to the river claims problem so

that these axioms (e.g. River Composition), which are not particularly strong for claims

problems (Thomson, 2003), turn out to be very strong properties in the river setting.

Our main results are that the Harmon rule is (i) the only rule that satisfies Compo-
sition Downstream, (ii) the only rule that satisfies River Path Independence and the No
Contribution Property, and (iii) the only rule that satisfy all four Composition axioms.

These strong results complement the recent literature that proposes to make sharing

rules contingent on river flow (cf. Kilgour and Dinar, 2001; De Stefano et al., 2012).

Our paper shows that even contingent rules such as proportional sharing lack some

of the appeal of the Harmon rule in the context of variable river flow as formalized in

the Composition axioms. This is surprising since the main argument for contingent or

flexible river sharing rules is that they perform well under variability.

The reason why such rules lack the appeal of the Harmon rule in the context of vari-

ability is that many river sharing rules are based on the annual sharing of available

water. Composition properties, however, deal with unexpected changes in the avail-

ability of water at any time of the year. An attractive alternative to annual sharing is

therefore to share the available water based on shorter time-spans. Some river sharing

treaties are already based on monthly or even weekly sharing of available water (Beach

et al., 2000), thereby mitigating (or eliminating) any unexpected variability, which actu-

ally disables the Composition properties assessed in this paper. An interesting example

is the Ganges treaty between India and Bangladesh. This treaty specifies a river shar-

ing rule applied to 10-day intervals in the January 1 to May 31 dry period, contingent

on river flow and based on the amount of water passing the Farakka barrage, close to

the two countries’ border (Tanzeema and Faisal, 2001).

Finally, the Harmon rule is a controversial rule and our paper should not be in-

terpreted as an ignorant pledge to implement this rule. Instead, this paper should be

seen in a broader line of research that aims to show the trade-offs made in choosing

particular river sharing rules, using the tools of axiomatic analysis. In the current pa-

per, we achieve this aim by focusing on variability and uncertainty of river flow and we

argue that, in this context, the Harmon rule has several attractive features that were

unknown, and hence unappreciated, up till now.
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Appendix: Proofs

Proof of Lemma 1

Proof. Let F be the Harmon rule such that Fi(ω)=min {E i, ci} for all i ∈ N, and consider

a river claims problem ω= 〈
N, e, c

〉
. We prove the lemma for each axiom separately.

River Composition Consider e′ > e such that we have the two related problems ω′ =〈
N, e′, c

〉
and ω′′ = 〈

N, e′− e, c−F(ω)
〉
. Start upstream with agent i = 1. Note that we

have E′
1 = e′1 and E1 = e1 ≤ e′1 so that E′

1 ≥ E1.

Fi(ω′)=min
{
E′

i, ci
}

=min
{
E′

i −E i +E i, ci
}

=min
{
E′

i −E i +min {E i, ci} , ci
}

=min
{
E′

i −E i +min {E i, ci} , ci −min {E i, ci}+min {E i, ci}
}

=min {E i, ci}+min
{
E′

i −E i, ci −min {E i, ci}
}

= Fi(ω)+Fi(ω′′).

Repeat this step sequentially for the next downstream agents i = 2 . . .n, keeping in mind

that whenever Fi(ω′) = Fi(ω)+Fi(ω′′) we have E′
i ≥ E i because e′ > e. This repeated

argument results in Fi(ω′)= Fi(ω)+Fi(ω′′) for all i ∈ N; the Harmon rule satisfies River
Composition.

Composition Downstream Because the Harmon rule satisfies River Composition, it

also satisfies the weaker Composition Downstream.

Composition Upstream Because the Harmon rule satisfies River Composition, it

also satisfies the weaker Composition Upstream.

River Path Independence We proceed in two steps.

1. Consider the related problem ω′ = 〈
N, e′, c

〉
with e′ < e. Start upstream with

agent i = 1. Note that because E′
1 = e′1 and E1 = e1 ≥ e′1, we have E′

1 ≤ E1. Up

to the bound where Fi = ci, the Harmon rule dictates that Fi increases linearly in

E i. As a result, E′
1 ≤ E1 implies F1(ω′) ≤ F1(ω), with 0 ≤ E′

i −Fi(ω′) ≤ E i −Fi(ω).

Combining this last inequality with e′ < e, we have E′
2 ≤ E2, which, for similar

reasons as above, implies F2(ω′) ≤ F2(ω), etc. Repeat this argument sequentially

16



for the next downstream agents i = 2 . . .n, which results in Fi(ω′) ≤ Fi(ω) for all

i ∈ N.

2. Now, consider the related problem ω′′ = 〈
N, e′,F(ω)

〉
. Start upstream with agent

i = 1. There are two possibilities.

(a) If Fi(ω′) = min
{
E′

i, ci
} = ci, then by claims boundedness and Fi(ω′) ≤ Fi(ω)

for all i ∈ N (the result of Step 1), we have Fi(ω) = ci and therefore Fi(ω′′) =
min

{
E′

i,Fi(ω)
}= ci = Fi(ω′).

(b) If Fi(ω′) = min
{
E′

i, ci
} = E′

i, then by Fi(ω′) ≤ Fi(ω) for all i ∈ N (the result

of Step 1), we have Fi(ω) > E′
i and therefore Fi(ω′′) = min

{
E′

i,Fi(ω)
} = E′

i =
Fi(ω′).

Repeat this step sequentially for the next downstream agents i = 2 . . .n. This

repeated argument results in F(ω′)= F(ω′′); the Harmon rule satisfies River Path
Independence.

Proof of Proposition 1

Proof. By Lemma 1, the Harmon rule satisfies Composition Downstream. Therefore it

is sufficient to prove that this axiom implies a unique solution, equal to the Harmon

rule. Let F be a river sharing rule that satisfies Composition Downstream. Consider a

river claims problem ω= 〈
N, e, c

〉
with e = (e1, . . . , e i,0, . . . ,0) for some i ∈ N. We proceed

in two steps.

1. Consider the two related problems

ω′ = 〈
N, (e1, . . . , e i, e′i+1, . . . , e′n), c

〉
and

ω′′ = 〈
N, (0, . . . ,0, e′i+1, . . . , e′n), c−F (ω)

〉
.

By the feasibility requirement of river sharing rules in Definition 2, F j
(
ω′′)= 0 for

all j ≤ i and for any i ∈ N. Apply Composition Downstream to obtain F j(ω′)= F j(ω)

for all j ≤ i and for any i ∈ N.

2. Consider agent j in problem ω′ and suppose cD j = 0, implying that downstream

agents have excess water and any water not used by agent j is disposed of. By

the minimum waste requirement of river sharing rules in Definition 2, we have

F j(ω′) = min{E′
j, c j}. By Step 1, we have the same allocation to agent j in the re-

lated problem ω for the case where cD j > 0 for all j ≤ i. Formally, F j(ω)= F j(ω′)=
min{E j, c j} for any j ≤ i and for any i ∈ N.
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Because Step 2 holds for all agents, we obtain the Harmon rule: Fi(ω) = min{E i, ci} for

all i ∈ N.

Proof of Proposition 2

Proof. We know from Lemma 1 that the Harmon rule satisfies River Path Indepen-
dence. In addition, it is straightforward to verify that the Harmon rule satisfies the No
Contribution Property. It remains to be proven that if a river sharing rule F satisfies

River Path Independence and the No Contribution Property, then it is the Harmon rule.

We prove the proposition by (recursive) construction in two steps.

1. Consider problemω= 〈
N, e, c

〉
and the two related problemsω′ = 〈

N, (e1,0, . . . ,0), c
〉

and ω′′ = 〈
N, (e1,0, . . . ,0),F(ω)

〉
. Because of claims boundedness and the No Con-

tribution Property we have F1(ω′)=min(c1, e1) and F1(ω′′)=min(F1(ω), e1). River
Path Independence requires F1(ω′′) = F1(ω′). Hence if c1 ≤ e1, then F1(ω) = c1

and if e1 ≤ c1, then F1(ω) = e1; in problem ω agent 1 gets what the Harmon rule

requires.

2. Next, consider problemω= 〈
N, e, c

〉
and the two related problemsω′ = 〈

N, (e1, e2,0, . . . ,0), c
〉

and ω′′ = 〈
N, (e1, e2,0, . . . ,0),F(ω)

〉
. Because of claims boundedness and the No

Contribution Property we have F2(ω′) = min(c2,E2) and F2(ω′′) = min(F2(ω),E2)
with E2 given by step 1 as e1 + e2 − F1(ω). River Path Independence requires

F2(ω′′) = F2(ω′). Hence if c2 ≤ E2, then F2(ω) = c2 and if E2 ≤ c2, then F2(ω) = E2;

in problem ω agent 2 gets what the Harmon rule requires.

Repeat this step sequentially for the next downstream agents i = 2 . . .n and we obtain

the Harmon rule: Fi(ω)=min{E i, ci} for all i ∈ N.

Proof of Proposition 3

Proof. Consider river claims problem ω = 〈
N, e, c

〉
and its sequence (ω1, . . . ,ωn) of re-

duced river claims problems ωi =
〈
{i,D i},E i, (ci, cD i )

〉
. We apply F, the sequential

sharing rule based on the Priority rule. Consider the first of these reduced problems,

ω1 =
〈
{1,D1},E1, (c1, cD1)

〉
, where E1 = e1. Applying the Priority rule B to ω1, we obtain

if c1 ≤ E1 : B1(ω1)= c1 BD1(ω1)= E1 − c1

if c1 > E1 : B1(ω1)= E1 BD1(ω1)= 0.
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Therefore, F1(ω)= B1(ω1)=min{E1, c1}. Proceed sequentially to the next reduced prob-

lems (ω2, . . . ,ωn), and repeatedly apply the Priority rule B to ωi. We obtain for each

problem

if ci ≤ E i : Bi(ω1)= ci BD i (ω1)= E i − ci

if ci > E i : Bi(ω1)= E i BD i (ω1)= 0.

Therefore, we obtain the Harmon rule: Fi(ω)=min{E i, ci} for all i ∈ N.

Proof of Proposition 4

Proof. By Proposition 3, because the Harmon rule falls within the class of sequential

sharing rules, we know that the Harmon rule satisfies Only n’s Excess Claim Matters,

No Advantageous Downstream Merging, and Upstream Consistency. In addition, it is

straightforward to verify that the Harmon rule satisfies the No Contribution Property.

Next, we prove that any river sharing rule F that satisfies the four axioms determines

a unique solution, equal to the Harmon rule. We follow the same steps as used in the

second part of the proof of Proposition 1 by Ansink and Weikard (2012). Consider river

claims problem ω= 〈
N, e, c

〉
. We first show in three steps that F1(ω)=min{E1, c1}.

1. Apply No Advantageous Downstream Merging to agent 1 so that we have F1(ω)=
F1

(〈
{1,D1}, (e1,

∑
j∈D1 e j), (c1,

∑
j∈D1 c j)

〉)
.

2. From here, apply Only n’s Excess Claim Matters repeatedly to obtain F1(ω) =
F1

(〈
{1,D1}, (e1,0), (c1,

∑
j∈D1(c j − e j)

〉)
.

3. From here, apply the No Contribution Property to obtain F1(ω)=min{E1, c1}.

We now show in four steps that F2(ω)=min{E2, c2}.

1. Apply No Advantageous Downstream Merging to agent 2 so that we have F2(ω)=
F2

(〈
{1,2,D2}, (e1, e2,

∑
j∈D2 e j), (c1,

∑
j∈D2 c j)

〉)
.

2. From here, apply Only n’s Excess Claim Matters repeatedly to obtain F2(ω) =
F2

(〈
{1,2,D2}, (e1, e2,0), (c1, c2,

∑
j∈D2(c j − e j)

〉)
.

3. From here, given that F1(ω) = min{E1, c1}, apply Upstream Consistency to ob-

tain F2(ω) = F2
(〈

{2,D2}, (E2,0), (c2,
∑

j∈D2(c j − e j)
〉)

, with E2 = e1 + e2 − F1(ω) =
e2 +max{0, e1 − c1}.

4. From here, apply the No Contribution Property to obtain F2(ω)=min{E2, c2}.
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By repeating this last sequence of four steps for agents 3, . . . ,n−1, using recursive appli-

cation of Upstream Consistency in step 2, we obtain the Harmon rule: Fi(ω)=min{E i, ci}

for all i ∈ N.

Proof of Lemma 2

Proof. Let F be the No-harm rule such that Fi(ω) = max
{
0,E i − cD i

}
for all i ∈ N, and

consider a river claims problem ω= 〈
N, e, c

〉
. We prove the lemma for each axiom sepa-

rately.

River Composition Because the No-harm rule does not satisfy Composition Down-
stream (see below), it also does not satisfy the stronger River Composition.

Composition Downstream An example suffices to show that the No-harm rule does

not satisfy Composition Downstream. Consider ω = 〈
N, e, c

〉
with 3 agents, e = (1,1,0),

and c = (2,2,2), and take e′ = (1,1,1). The No-harm rule gives the solutions F(ω) =
(0,0,2), F(ω′)= (0,1,2), and F(ω′′)= (0,0,0), the problem ω′′ being a river claims problem

with downstream abundance but upstream scarcity. Clearly, F(ω′) = (0,1,2) 6= (0,0,2) =
F(ω)+F(ω′′).

Composition Upstream The No-harm rule allocates water as far downstream as pos-

sible. This implies for any problem ω that Fi(ω) > 0 only if Fi+1(ω) = ci+1. Therefore,

the solution by the No-harm rule is of the form:

F(ω)= (
0, . . . ,0,F j(ω), c j+1, . . . , cn

)
, (1)

with 0 < F j(ω) ≤ c j for some j ∈ N, subject to the minimum waste requirement in

Definition 2. We proceed in three steps.

1. Consider some agent i ∈ N such that e = (0, . . . ,0, e i+1, . . . , en) and consider the

related problem ω′ = 〈
N, e′, c

〉
with e′ = (e′1, . . . , e′i, e i+1, . . . , en). By (1) we have

F(ω′) = (
0, . . . ,0,F j′(ω′), c j′+1, . . . , cn

)
. Because e′ > e, we have j′ ≤ j, with F j′(ω′) >

F j(ω) in case of equality, so that Fi(ω′)≥ Fi(ω) for all i ∈ N.

2. Now, consider the related problem ω′′ = 〈
N, e′−e, c−F(ω)

〉
. By (1) and the result of

Step 1, we have e′−e = (
e′1, . . . , e′i,0, . . . ,0

)
and c−F(ω)= (

c1, . . . , c j−1, c j −F j(ω),0, . . . ,0
)

with j > i. By (1) we have F(ω′′)= (
0, . . . ,0,F j′′(ω′′), c j′′+1, . . . , c j−1, c j −F j(ω′),0, . . . ,0

)
,

such that j′′ ≤ j.
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3. We have F(ω)+ F(ω′′) = (
0, . . . ,0,F j′′(ω′′), c j′′+1, . . . , cn

)
. Taking j′′ = j′ we have

F(ω′)= F(ω)+F(ω′′); the No-harm rule satisfies Composition Upstream.

River Path Independence Similar to the proof of Composition Upstream, we use the

solution by the No-harm rule as given in (1). We proceed in two steps.

1. Consider the related problem ω′ = 〈
N, e′, c

〉
with e′ < e. By (1) we have F(ω′) =(

0,0, . . . ,0,F j′(ω′), c j′+1, . . . , cn−1, cn
)
. Because e′ < e, we have j′ ≥ j, with F j′(ω′) <

F j(ω) in case of equality, so that Fi(ω′)≤ Fi(ω) for all i ∈ N.

2. Now, consider the related problem ω′′ = 〈
N, e′,F(ω)

〉
. By (1), for a given endow-

ment vector e′, any problem with a claims vector that weakly dominates F(ω′)
leads to the solution F(ω′). Since F(ω′) ≤ F(ω) (the result of Step 1) and because

F(ω) is the claims vector in problem ω′′—which has the same endowment vector e′

as problem ω′—we have F(ω′) = F(ω′′); the No-harm rule satisfies River Path In-
dependence.
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