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Diffusion of Behavior in Network Games Orchestrated

by Social Learning

Jia-Ping Huang∗ Maurice Koster† Ines Lindner‡

Abstract

The novelty of our model is to combine models of collective action on networks

with models of social learning. Agents are connected according to an undirected

graph, the social network, and have the choice between two actions: either to adopt

a new behavior or technology or stay with the default behavior. The individual be-

lieved return depends on how many neighbors an agent has, how many of those

neighbors already adopted the new behavior and some agent-specific cost-benefit

parameter. There are four main insights of our model: (1) A variety of collective

adoption behaviors is determined by the network. (2) Average inclination governs

collective adoption behavior. (3) Initial inclinations determine the critical mass of

adoption which ensures the new behavior to prevail. (4) Equilibria and dynamic be-

havior changes as we change the underlying network and other parameters. Given

the complexity of the system we use a standard technique for estimating the solu-

tion.

Keywords: Diffusion, Social Networks, Social Learning, Tipping, Technology Adoption.

JEL: C72; C73; D83; D85; O33.

1 Introduction

The interest in understanding the driving forces of collective behavior has triggered an

extensive literature that spans economics, sociology, marketing and epidemiology. In
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their seminal work, Schelling [1971] and Granovetter [1978] develop models of collective

behavior for situations where individuals have two alternatives and the costs and/or

benefits of each depend on how many individuals choose which alternative. Examples are

numerous, including riot behavior, innovation and rumor diffusion, strikes, consumption

network externalities, spread of fashions, etc. The key element of Schelling [1971] and

Granovetter [1978] is the concept of a threshold, i.e., the number or proportion of others

who must take action before a given individual does so, or equivalently, the point at

which net benefit begins to exceed net cost for that particular individual. Characteristic

of these models is that a particular action alternative will only be adopted on a large

scale if it achieves some critical mass of support. A major drawback of these models,

however, is that they don’t provide an explanation where this critical mass comes from

as it is usually treated as an exogenous factor. In the context of diffusion of innovation

Jackson and Yariv [2005, 2007] offer the metaphor of a free trial period of new technology.

In his models of rioting behavior Kuran [1989, 1991] suggests that the early mobilization

problem will only be resolved through a catalytic event, a spark, that reveals the hidden

unpopularity of the present regime. On the outbreak of the revolutions in Eastern Europe

and the French Revolution he notes, however, that this spark is often difficult to discern,

explaining why these occurrences seem to “appear out of nowhere”.

Another drawback of Schelling [1971] and Granovetter [1978] is that the structure of

communication among individuals is not explicitly modeled; implicitly the seminal models

assume that every individual is informed about the decision of everybody else. Jackson

and Yariv [2005, 2007] showed how to extend Granovetter’s model by introducing social

networks to the framework. Agents are connected according to an undirected graph (the

social network) and decide whether to switch to a new behavior, e.g. a new technology,

or stay with the default alternative. The return to each action depends on the number of

neighbors in the network, the proportion of neighbors adopting the new alternative and

some agent-specific cost-benefit parameters. Individuals are supposed to be myopic and

play best responses to the neighbors’ action in the previous period. Similar to the classical

works their model features the existence of a tipping point which is largely determined

by the network. Although Jackson and Yariv successfully give an answer to the effect

of social network structures the question remains about the endogenous triggers and

driving forces of collective action. As noted in Valente [2005] in the context of diffusion

of innovation, “Verbal accounts on how people make decisions and adopt behavior usually

reveal . . . whims that are not independent of networks, but not easily captured in social

influence models.” The state-of-the-art literature is not capable of explaining the hidden

driving force of collective action as an endogenous property of dynamics.

In his overview article about innovation diffusion, Young [2009] compares three broad

classes of models: contagion, social influence, and social learning. He summarizes the
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approach of social learning as “People adopt once they see enough empirical evidence to

convince them that the innovation is worth adopting, where the evidence is generated

by the outcomes among prior adopters. Individuals may adopt at different times due

to differences in their prior beliefs, amount of information gathered, and idiosyncratic

costs.” Hence people want to see how it works for others over a period of time before

trying themselves. As he points out it is difficult to summarize the sizable literature on

social learning due to the great diversity of informational assumptions. He nevertheless

identifies the dynamic characteristics of a fairly general class of learning models which has

a surprisingly simple structure. It boils down to Bayesian updating of beliefs about the

quality of innovation relative to the status quo. Individuals have initial beliefs about the

payoff of the innovation, based on partial information, and update their beliefs through

a random meeting process with adopters. The updated belief is the weighted average of

initial belief and the average payoff of the observations. Individuals adopt the innovation

when their updated beliefs exceed their costs. Effects of the social network architecture

are not discussed as he implicitly assumes a complete communication network.

The novelty of our model is to combine models of collective action on networks with

models of social learning. The model is therefore described by two dimensions: one

corresponding to learning about the benefits of adoption (the invisible part) and one

corresponding to best replying to the benefit of adopting the alternative action (the visible

action part). The goal of this paper is to analyze the dynamic behavior of such a coupled

system and to understand the influence of the network. In particular, we will explain the

various collective behaviors as endogenous effects governed by the network.

We follow Jackson and Yariv [2005, 2007] in working with a stylized model of a

social network. Each agent has a number of neighbors whose inclination and behavior

influence the agent’s inclination and decision. The inclination is the tendency of an

agent to adopt new behavior or innovation, and influences the binary decision of the

agent: a choice between A and B. Here, action A is the status quo and the agent

switches to action B if it appears worthwhile of doing so. This of course depends on

the costs and benefits of switching, where the payoff depends on how many of an agent’s

neighbors have already switched. Each individual is characterized by the number of

her neighbors, namely her degree, and her costs where the latter are randomly and

independently assigned before the game starts. Exact local network structure cannot

be efficiently used for large networks because of the complexity of the problem, thus we

use averaged information instead of exact information. This “mean field approach” is

done by assuming that agents have only partial information about the degrees and costs

of the population in terms of a probability distribution over degrees and costs, but don’t

know with whom they are connected. In other words, there are no fixed neighbor sets.

At the beginning of each period, individuals randomly choose their neighbors from the
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rest of the population according to their degrees. Furthermore, individuals start with

an initial inclination towards adopting B and update their inclinations by learning from

those having already switched in their neighborhoods.

There are four main insights of our model: First, we can explain a variety of behavior

of the adoption rates by means of the underlying inclination dynamics. Second, average

inclination behaves as an orchestrating tool to control adoption behavior. Third, the

notion of a tipping point has to be generalized as the critical mass of adoption depends

on initial inclinations. Fourth, we show how equilibria and dynamic behavior change as

we change the underlying network and other parameters.

Our abstract model and findings can be taken as a metaphor for many applications.

For example, in sociology, it provides a step towards understanding the volatility of

rioting behavior and the impact of the social network architecture. In marketing, our

results contribute to understanding why a new product becomes a success or failure. In

financial markets, the results could advance the understanding of market sentiments.1

The structure of this paper is as follows. Section 2 describes the strategic choice

of adoption as a best response dynamics when the inclinations are given and vary ex-

ogenously. Section 3 introduces social learning as an endogenous process of inclination

formation and shows how to couple learning to the best response dynamics of Section 2.

It also discusses equilibrium existence and structure for a selection of networks. Other dy-

namic properties are illustrated by numerical simulation. Section 4 concludes the paper.

For reasons of clarity and readability all analytical proofs are shifted to the appendix.

2 Diffusion Dynamics on Networks

2.1 The Model

We consider a society of individuals, each of them chooses an action between two alterna-

tives A and B. Assume A is the default behavior (the status quo). The possibility arises

to switch to a new action B, for example, to adopt a new technology, or to learn another

language. The set of actions is denoted as A = {A,B}. The individuals form a network

characterized by the degree distribution P (d) for d = 1, . . . , D where
∑D

d=0 P (d) = 1,

with the possibility that D = ∞. Agent i’s degree is denoted by di. We assume that

each individual only knows how many neighbors she has, but does not know who those

neighbors are. Such a situation may arise when the decision to adopt is based on previ-

ous observations. In that case, each individual has a certain estimation of the number of

1Here, we think of “sentiment” of an investor as the attitude of investors as to anticipated price

developments in a market, and of ‘market sentiment’ as the general prevailing attitude.
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people she will interact with in the future.2 Put

P̃ (d) =
P (d)d

d
, d =

D∑
k=0

P (k)k. (1)

Here, P̃ (d) represents the probability that a random chosen neighbor of a random indi-

vidual in the network has degree d whereas d denotes the average degree of the network.3

It is easy to see that
∑D

d=1 P̃ (d) = 1, which means that P̃ (d) is a proper probability

distribution.

Agent i’s utility from adopting action a is given by u(a, di, xi), where di is her degree

and xi is her estimation of the fraction of individuals switching to B. Let v(di, xi) be

defined as

v(di, xi) = u(B, di, xi)− u(A, di, xi), (2)

representing the benefit from switching from A to B. Each agent i has an idiosyncratic

cost ci > 0 of switching which we will specify shortly. Agent i switches to behavior B if

her benefit is no less than her cost, i.e.,

v(di, xi) ≥ ci. (3)

Let v(d, x) = g(d)x where g(d) is a function capturing how the number of neighbors affects

the individual benefit of adopting B. For example, if g′(d) > 0 then agents with higher

degrees are more likely to adopt than those with less neighbors. With this functional

form the adoption rule (3) reads

g(di)xi ≥ ci. (4)

We assume the costs ci are randomly and independently assigned across the population

according to a probability distribution. We follow Jackson and Yariv [2005] and discuss

effects of benefit cost ratio g(d)/c. This implies that for each agent we consider the

random variable 1/ci instead of ci. Let F : R+ → [0, 1] be the cumulative distribution

function of 1/ci. Rearranging (4) provides

1

ci
≥ 1

g(di)xi
. (5)

Individual i’s probability of choosing action B is therefore 1− F (1/[g(di)xi]). For math-

ematical simplicity, we assume that F is continuous and twice differentiable.

2Methodologically, the approach is mean-field approximation.
3For a derivation of (1) see [Newman, 2010, Chapter 13.3].
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Remark 1. (i) Each individual agent i knows only her own degree di and her cost ci

which are independently assigned before the game starts. Agents have only partial infor-

mation about the degrees and costs of the population, given by P and F . Thus, the model

corresponds to a Bayesian game in the Harsanyi sense where the types of the game are

given by vector (di, ci).

(ii) Inequality (4) can be rewritten as

xi ≥
ci

g(di)
, (6)

where the fraction ci/g(di) on the right hand side can be thought as the threshold of indi-

vidual i for adopting action B. In the classic model of Granovetter [1978], the “threshold”

is “the number or proportion of others who must make one decision before a given actor

does so” (see also Schelling [1971]).

2.2 Dynamics and Equilibria

At t = 0, a fraction of x0 of the population is exogenously switched to adopt action B. At

each time t > 0 (t is discrete), each individual, including those individuals whose initial

adoption is B, updates her estimated (or believed) adoption rate based on the actual

adoption rate in period t− 1, and makes her decision of adoption. Denote the adoption

rate in period t by xt.

Here we assume that the individuals are myopic, best respond to the state of the last

period. Let xtd denote the fraction of individuals who have degree d and adopt action B

in period t. Then, for each t > 0,

xtd = 1− F
( 1

g(d)xt−1

)
, (7)

where xt represents the link-weighted average of xtd, i.e.,

xt =
∑
d

P̃ (d)xtd. (8)

Equations (7) and (8) can be interpreted as follows. All individuals with the same degree

are indistinguishable, therefore they have the same probability of adopting action B, as

described in Equation (7). Since individuals cannot specify their neighbors, the estimation

of xt is based on expectation. A random neighbor with degree d has probability P̃ (d) to

be chosen, and the chosen neighbor has in turn a probability of xtd to adopt action B at

time t, hence the expected adoption rate xt is the weighted average of xtd as shown in

Equation (8).

Combining (7) and (8) provides

xt = h(xt−1) := 1−
∑
d

P̃ (d)F
( 1

g(d)xt−1

)
, (9)
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and the following simple equation characterizes equilibria

x = h(x) = 1−
∑
d

P̃ (d)F
( 1

g(d)x

)
. (10)

2.3 Diffusion Process

Jackson and Yariv [2005] analyze the model for g(d) = α·dβ where α and β are constants.4

The parameter α can be seen as a key factor of individual thresholds. It amplifies or

decreases the effect of individual degrees on the overall adoption rate. As described in

Equation (6), a larger α implies a lower individual threshold, which implies a higher

individual inclination to adopt action B.

In our generalized model we will drop the assumption that α is a static parameter and

allow it to change over time. The idea is to introduce a process of social learning. People

observe empirical evidence from prior adopters in their neighborhood which influences

their inclinations towards adopting the innovation. This translates into the model as

a dynamic variable αt which is determined endogenously by a learning process. Our

purpose is to study its evolution and in particular how its behavior affects the dynamics

of adoption.

To get some feeling for the influence of inclination αt on the adoption rate xt let us

discuss some simple cases first. The explicit learning dynamics will be introduced in

Section 3.

Example 1. Assume g to be constant, i.e., g(d) = α for all d, such that the benefit from

choosing action B does not depend on individual degrees. Here, Equation (7) simplifies

to

xtd = 1− F
(

1

αxt−1

)
= xt.

Assume the inverse cost distribution F to be uniform on [0, b], b > 0. By definition, the

uniform distribution on [0, b] has cumulative distribution function

F (y) =


0 for y < 0,

y/b for y ∈ [0, b],

1 for y > b.

(11)

Function h(x) describing the dynamics of process {xt} given in (9) then takes the following

simple form

h(x) = 1− F
( 1

αx

)
=

0 for x < 1
bα
,

1− 1
bαx

for x ≥ 1
bα
.

(12)

4As an extension, Jackson and Yariv [2007] treated v(d, x) as a general function without explicitly

considering its shape.
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The dynamics of {xt} depend on the number of intersections between h(x) and the

45◦ line as illustrated in Figure 1 for different levels of α. If h(x) intersects the identity

line twice, the lower interception point is an unstable equilibrium, usually referred to as

a “tipping point”.5 If the dynamics start above that point, the adoption rate xt increases

monotonically to the upper intersection point, which is a stable equilibrium. Below the

tipping point, the dynamics of xt decrease monotonically to zero. Closed forms of the

equilibria easily follow from the fixed point equation h(x) = 1− 1
bαx

= x.
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h
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alpha = 0.5

alpha = 1.0

alpha = 2.0

alpha = 4.0

Figure 1: Dynamics of xt with α = 0.5, 1, 2, 4 and b = 5.

Now consider the effect of α changing over time, say, αt is monotonically increasing.

Interestingly, the effect on the adoption rate xt can be non-monotonic as illustrated by

Figure 2. The dynamics start at low levels such that xt would to tend monotonically

to zero for constant α. However, since αt “heats up” in the background, the graph of

h(x | αt) shifts to the top left quickly enough to “catch” the current level of xt. In other

words, individual thresholds decrease quickly enough such that the tipping point falls below

xt in finite time.

Example 2 (continued from Example 1). Now instead of F being uniform we assume

that F is a normal distribution with mean µ and variance σ2 given by F (y) = Φ(y | µ, σ).

If g is again constant, the dynamical process xt = h(xt−1) of (9) is described by

h(x) = 1− Φ
( 1

αx

∣∣∣ µ, σ), 0 ≤ x ≤ 1. (13)

5See e.g. Jackson and Yariv [2007].
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Figure 2: Dynamics of {xt : t = 0, . . . , 10} with x0 = 0.54, where αt = α0 +
∑t

s=1(1/2)s

for t = 1, . . . , 10, α0 = 1/2, and b = 5. The dynamics follow xt+1 = 1− F
(

1
αtxt

)
.

This is the setting of the classical threshold model of Granovetter [1978]. Figure 3 illus-

trates the dynamics for different values of α. Again, changing αt can result in a variety
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Figure 3: Dynamics of xt under F ∼ N(µ = 3, σ = 1) with α = 0.5, 1, 2, 4

of behavior of the adoption rate xt.

The simplicity of Example 1 and 2 originates from the assumption of g being constant

in d such that (9) simplifies considerably and the degree distribution P (d) has no influence
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on the dynamical behavior. If g is a function of degrees, however, the dynamics become

more complicated in the sense that h(x) is typically only piecewise differentiable. The

reason is that the adoption rule in (5) generates different results for different degrees, such

that individuals with different degrees start adopting earlier or later. The communication

structure P (d) averages over the different adoption rates, therefore leaving it’s footprint

on the dynamics of xt.

Proposition 1. Suppose that F is uniform on [0, b] and g given by g(d) = αdβ with

constant α > 0 and β > 0. Then h(x) non-decreasing, continuous, and piecewise concave.

Proof Let Sd ∈ [0, 1] denote the level of overall adoption that starts triggering adoption

of degree d agents. From (7) it follows that Sd is given by sup{x | F
[
1/(αdβx)

]
= 0}.

Since β > 0 higher degrees have a higher inclination to adopt such that Sd′ < Sd for all

d′ > d. Hence for increasing x the function h(x) passes the points Sd where a new class

of agents with degree d start joining, indicated by a jump in the curvature of h(x).

In particular, the response dynamic of degree d agents is given by

hd(x) := 1− F
( 1

αdβx

)
=

0 for x < Sd,

1− 1/(bαdβx) for x ≥ Sd,
(14)

which is strictly increasing, continuous and concave for x ≥ Sd. From (10) it follows that

h(x) = 1−
∑
d

P̃ (d)F
( 1

αdβx

)
=
∑
d

P̃ (d)
{

1− F
( 1

αdβx

)}
=
∑
d

P̃ (d)× hd(x),

with

h(x) =
∑
k≥d

P̃ (k)hk(x) for Sd ≤ x < Sd−1.

We conclude that h(x) consists a sum of non-decreasing, continuous and concave func-

tions and thus inherits these properties. �

Remark 2. From Figure 1 in Jackson and Yariv [2005] it is tempting to jump to the

conclusion that the effect of replacing g = α by g(d) = αdβ with β > 0 is merely an

upwards shift in adoption levels. However, the effect on the dynamics can be very com-

plicated. For instance, multiple stable equilibria as well as tipping points may exist as

shown in following example.

Example 3. Assume g(d) = αdβ with β > 0 and suppose F is uniform over [0, b]. Figure

4 gives an illustration for β = 2. The dashed lines h1(x) and h2(x) show the adoption
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behavior for degree 1 and 2 individuals. The graph of h2(x) starts increasing at around

0.08, meaning that 8% overall adoption rate starts triggering the adoption of individuals

with degree 2. Individuals with the lowest degree 1 are the last to join adoption with

positive values of h1(x) starting at around 0.34. The total number of adopters is the sum

of the numbers of adopters with different degrees. As shown in Figure 4, function h(x)

can have multiple stable and unstable equilibria.
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Figure 4: Dynamics of xt with β = 2, α = 1, P (d) ∝ d−3.1 and b = 2.9.

We now discuss the speed of convergence, especially for the situation that the initial

adoption rate x0 is between a tipping point and the next higher stable steady state. For

constant α and β = 0 Jackson and Yariv [2007] showed that the adoption rate over time

exhibits an S-shape (see their Proposition 7). In other words, the speed of convergence

accelerates first and then decelerates after the adoption rate passing a critical value. This

property is not necessarily preserved under the model with time varying αt. The next

example illustrates some effects on the speed of convergence.

Example 4. Suppose β = 0 and let αt take values 1, 1, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3,

2.0, 6.0, 12.0 for t = 0, . . . , 10 respectively. Figure 5 illustrates the evolution of xt. Up

to t = 8 the increasing speed of αt is constant and xt indeed changes from accelerating

to decelerating. For t > 8, however, the rapid change of αt results in a vigorous shift of

h(x) to the upper-left which leads again to an acceleration of xt. In conclusion, the speed

of convergence of xt depends on the dynamics of αt.
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Figure 5: Dynamics of {xt : t = 0, . . . , 10} with x0 = 0.28, where αt = 1, 1, 1.05, 1.1,

1.15, 1.2, 1.25, 1.3, 2.0, 6.0, 12.0 for t = 0, . . . , 10, and b = 5.

3 Social Learning

3.1 The Model

In this section we consider a class of social learning models in which agents rationally

evaluate the observed evidence of prior adopters. The idea is that when an innovation

becomes available - like e.g. a new technology or a new management strategy - people

want to see how it works for others before trying themselves. As Young [2009] points out

the literature on social learning is extensive. By means of some simplifying assumptions,

however, he introduces a fairly general class of social learning models that still allows for

heterogeneous characteristics. We will reintroduce his general framework by adding the

feature that learning is governed by the social network.6 The next step will be to couple

the learning mechanism to the diffusion model discussed in Section 2.

Consider again the function g(d) = αdβ which captures how the number of neighbors

affects the individual benefits from adoptingB.7 For each agent of degree d let α0
d ∈ (0,∞)

denote the initial inclination towards switching behavior. As time proceeds information

from adopters keeps coming in and agents update their inclinations. Let the average

6Young [2009] models flow of information by a Poisson arrival process including a parameter βi

measuring the extent to which agent i “gets around” which could be interpreted as a degree in a social

network. He notes, however, that this parameter will not be sufficient to describe impact of the network

topology on the dynamics. (See his footnote 16.)
7Young [2009] assumes that g(d) = Adβ , where A is a normally distributed random variable with

mean µ > 0 and variance σ2, independent and identically distributed among agents and time periods.

Here, µdβ is the mean individual payoff gain per period of switching to B. Ex ante, however, agents

are not informed about the true value of µ and start with different inclinations at t = 0. In order to

demonstrate dynamic effects of initial expectations we leave the initial levels as a degree of freedom.
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inclination at time t ≥ 0 be given by

αt =
∑
d

P̃ (d)αtd . (15)

For t > 0, each individual will have met a random draw of neighbors at t − 1. If an

individual has d neighbors and the fraction of adopters is xt−1, the number of independent

observations of adopters is dxt−1, and her updated inclination αtd is defined as the weighted

average of her own initial inclination α0
d and the old average inclination αt−1, i.e.,

αtd =
τdα

0
d + dxt−1αt−1

τd + dxt−1
, (16)

where τd ∈ (0,∞) reflects flexibility in learning (see Groot [1970], Young [2009]). Low

values of τd indicate that relatively little evidence is necessary to change agent i’s incli-

nation.8 The term dxt−1 is equivalent to the number of adopting neighbors. Note that

there is no updating if this term is zero, i.e. there is no learning in absence of evidence.

It is now an easy task to combine the learning dynamics (16) with the dynamics of

adoption as discussed in the previous section. Using Equations (9), (15) and (16), the

dynamical process of average inclination αt and adoption rate xt is given by

αt =
∑
d

P̃ (d)
τdα

0
d + dxt−1αt−1

τd + dxt−1
, (17)

xt = 1−
∑
d

P̃ (d)F
( 1

dβαt−1xt−1

)
. (18)

What remains to be checked are the initial conditions. For notational convenience we

put {α0
d} := {α0

d}Dd=1. Note that by explicit inclusion of initial inclinations in (17) implies

that two societies starting at equal average levels (α0, x0) can display different dynamical

behavior if the average α0 stems from a different profile of individual inclinations {α0
d}.

Let H : R+× [0, 1]→ R+× [0, 1] denote the the right hand side of (17) and (18), i.e.,[
αt

xt

]
= H

(
αt−1

xt−1

∣∣∣∣∣ {α0
d}

)
, H

(
α

x

∣∣∣∣∣ {α0
d}

)
=

[ ∑
d P̃ (d)

τ0dα
0
d+dxα

τ0d+dx

1−
∑

d P̃ (d)F
(

1
dβαx

)] . (19)

The initial inclinations enter (17) explicitly has subtle effects on notions of equilibria.

We should carefully distinguish between equilibrium behavior on the aggregate dynamics

(17) and the dynamics of individual inclinations (16). Consider a state ({αd}, x) with

the property that individual inclinations and adoption rate don’t change when chosen

as starting point. It easily follows from (16) that for x > 0 this is the case if and only

8This definition corresponds to an infinite memory property, which means that every individual re-

members her initial inclination and updates it forever. There are other possible definitions, e.g., replacing

τdα
0
d by τdα

t−1
d .
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if α0 = α0
d. The intuition is straightforward. If inclinations are identical there is no

learning. We shall refer to this scenario simply as symmetric equilibrium.

Now assume we observe that average inclination and adoption rate haven’t changed

from the beginning. What conclusions can we draw about the individual inclinations?

One possibility is that the individual inclinations are also constant. We concluded that

this can only be the case when the individual inclinations are equal. Another possibility

is that the individual inclinations change while keeping the average α constant. For

example, a possible scenario from t = 0 to t = 1 is that initial inclinations {α0
d} changed

to {α1
d} while α1 = α0. Can this happen more than once? The answer is no because from

(16) it follows that if average inclination αt and adoption rate xt stay constant so does

αtd. We summarize our observations.

Proposition 2. Assume the aggregate dynamics (17) stays in an equilibrium (α∗, x∗) with

x∗ 6= 0 when starting in a state ({α0
d}, x∗). Then the individual inclinations following (16)

are either (i) constant and equal, or (ii) update once to a level {α1
d} 6= {α0

d} and stay

there.

This one time adjustment shall be represented by ({α0
d}, {α1

d}, x) and we will refer to

it simply as average equilibrium.

Finally, there is the more general case that the trajectory of ({αtd}, xt) converges to a

limit ({α∗d}, x∗). We shall refer to the corresponding average levels (α∗, x∗) as an attractor.

We summarize the definitions.

Definition 1. An equilibrium of (19) is represented by the triple ({α0
d}, {α1

d}, x) such

that [
α1

x

]
= H

(
α1

x

∣∣∣∣∣ {α0}

)
.

where α1 =
∑

d P̃ (d)α1
d = α0. A pair (α∗, x∗) ∈ R+× [0, 1] is an attractor of (19) if there

exists a sequence ({αtd} , xt) such that

lim
t→∞

(αt, xt) = (α∗, x∗).

Remark 3. If we let τd = 0 in (16), individual inclinations become memoryless which

are simply the average inclination of the previous period, i.e.,

αtd = αt =
∑
d

P̃ (d)αt−1d .

This leads to an immediate agreement of individual inclinations to α0 in the very first

period after the process started. On the contrary, if we let τd →∞, every individual will

14



keep her initial inclination forever and not update at all. Interestingly, the average incli-

nation will be αt = α0 for t > 0, which coincides with the case of τd = 0. Consequently,

in both cases, the dynamical process is reduced to the one-dimensional system discussed

in Section 2.1.

The complexity of the dynamical system makes it almost impossible to find closed

form solutions for general settings. In the upcoming sections we will discuss properties

of (19) for some special cases of networks and costs. The following section discusses

networks with a small number of possible degrees.

3.2 Equilibrium existence and structure

The question on existence of equilibria is straightforward to answer. In absence of adop-

tion, x = 0, there is no learning from adopters and hence no inclinations are ever updated

as indicated by (16) and (17). With respect to adoption note that the right hand side

of (18) is zero for x = 0. Hence the best response to a zero adoption level is again zero.

We shall refer to equilibria with zero adoption rate as trivial equilibria. The question

is now whether there are any non-trivial equilibria of system (19). Here, we provide an

analytical discussion for networks with low dimensions, i.e., a small number of possible

degrees.

Proposition 3. Assume the support of the network P is given by {d1, d2}. Then the

existence of non-trivial equilibria is guaranteed by either (1) the flexibility ratio τd1/τd2 is

equal to the degree ratio d1/d2, or (2) the system starts with identical initial inclinations.

Proposition 3 implies that under the condition of τd1/τd2 6= d1/d2, any non-trivial

equilibrium is symmetric.

Proposition 4. Assume the support of the network P is given by {d1, d2, d3} and F ∼
U[0, b]. Put τd = τ > 0 and β = 0. Without loss of generality, we also assume d1 < d2 <

d3. It is possible to have non-trivial equilibria if either α0
d1

= α0
d3
6= α0

d2
, or α0

di
’s are all

different and not monotonic in d.

Example 5. Assume a network with degrees 1, 2 and 3 given by P̃ (1) = 1
4
, P̃ (2) = 1

2
,

P̃ (3) = 1
4
. Put b = 6, and τ = 0.5. Inserting

(α0
1, α

0
2, α

0
3) =

(
1

2
, 1,

1 + x

2 + 6x

)
into (16) provides

(α1
1, α

1
2, α

1
3) =

(
4x+ 1

6x+ 2
,
2x+ 1

3x+ 1
,
4x+ 1

6x+ 2

)
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while α0 = α1 = (8x + 3)/(12x + 4) = α∗. Inserting α∗ into (18) and solving the fixed

point equation provides x∗ ≈ 0.3828 or x∗ ≈ 0.6032.

Analogously, inserting

(α0
1, α

0
2, α

0
3) =

(
1,

1

2
,
1 + 4x

1 + 3x

)
into (16) provides

(α1
1, α

1
2, α

1
3) =

(
5x+ 2

6x+ 2
,
5x+ 1

6x+ 2
,
5x+ 2

6x+ 2

)
while α0 = α1 = (10x + 3)/(12x + 4) = α∗. Inserting α∗ into (18) and solving the fixed

point equation provides x∗ ≈ 0.3027 or x∗ ≈ 0.7083.

For more general cases, limit behavior and existence of attractors can be shown by

simulation. Here we choose several initial conditions and track the paths over a long

period. In Table 1 the convergence can be observed for all the three initial values, where

one of them converges to a trivial attractor (α0, 0), and two others converge to non-trivial

attractors. The initial inclinations {α0
d} are taken as a decreasing sequence in d.

Table 1: Convergence of the system

(αt, xt) (αt, xt) (αt, xt)

t = 0 (0.4800, 0.4900) (0.3400, 0.8900) (0.3800, 0.8900)

t = 10 (0.5332, 0.7470) (0.3400, 0.0000) (0.4339, 0.6223)

t = 20 (0.5456, 0.7576) (0.3400, 0.0000) (0.4460, 0.6582)

t = 50 (0.5502, 0.7612) (0.3400, 0.0000) (0.4496, 0.6661)

t = 100 (0.5503, 0.7613) (0.3400, 0.0000) (0.4497, 0.6662)

t = 200 (0.5503, 0.7613) (0.3400, 0.0000) (0.4497, 0.6662)

τd = τ = 0.2, β = 0, F ∼ U(0, 10), d ∈ {1, . . . , 1000}, and P (d) ∝ d−2.5.

3.3 Long run behavior and convergence: simulation

The present section is intended to illustrate the dynamics of (19). In particular, we will

discuss the case β = 0 where an agent’s utility depends on the fraction of neighbors who

have adopted the action B. For the costs we assume the benchmark case F ∼ U [0, b]. In
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this special setting (18) simplifies to

xt+1 = 1−
∑
d

min{1, 1

bαtxt
}P̃ (d) =

∑
d

P̃ (d)
[
1−min{1, 1

bαtxt
}
]

=

0 for xt < 1/(bαt)

1− 1/(bαtxt) for xt ≥ 1/(bαt).

Hence the interaction network P orchestrates entirely via updating inclinations (17). We

will first prove a classification of local behavior in the phase plane. The first insight is

that the domain R+ × [0, 1] of average values (αt, xt) can be divided into two areas by a

function of x, where (αt, xt) exhibits different behaviors in different areas.

Proposition 5. Consider a process (αt, xt). There exists a function

f(x) =
1

b(1− x)x
(20)

such that xt+1 > xt if αt > f(xt), xt+1 = xt if αt = f(xt), and xt+1 < xt otherwise.

Proposition 5 can be explained as follows. For the points above (below) the curve

α = f(x), xt increases (decreases) in time. On the curve α = f(x) the adoption rate xt

freezes for one period after which it follows the increasing/decreasing behavior of αt. We

conclude that Proposition 5 rules out cyclic behavior.

Remark 4. Function (20) generalizes the notion of a ‘tipping point’ (see e.g. Jackson

and Yariv [2007]). For constant α the solutions to f(x) = α are the lower unstable

equilibrium (tipping point) and the higher stable equilibrium.

For the simulation we choose a scale free network P (d) ∝ d−2.5 with a maximum

degree D = 1000, τ = 0.2 and b = 10. The dynamics are qualitatively similar to different

values of τ and b larger than 0,9 however, it turns out that the initial levels of individual

inclinations have a subtle impact. In the first run we will choose them such that α1 > α0

and compare it with the opposite case afterwards.10

Figure 6 depicts the vector field of (αt, xt) for t = 0, 1, 2, 3, 5 and 10 for different

values of (α0, x0). In each dot the line indicates the moving direction.11 The color of

9In a nutshell, higher values of τ lead to faster convergence. The level of b influences the shape of the

attractor as shown in Proposition 5.
10This can easily be satisfied by a decreasing series of {α0

d} in d. In order to have a somewhat

systematic approach we choose a set of values {x0m | 0 ≤ m ≤ 100} with x0i = 0.01m, and a set of vectors

{{α0
n,d} | 0 ≤ n ≤ 100} where α0

n,d =
∑D
d=1 P̃ (d)

∑d
k=1 P (k)−

∑d
k=1 P (k) + 0.02n. For each n, It follows

that α0
n =

∑
d P̃ (d)α0

n,d = 0.02n ≥ 0. Furthermore, {α0
n,d} is decreasing in d, and as a result, α1

n > α0
n.

11The magnitude of speed is not shown in these plots as the variation of speed with different positions

can be quite large.
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dots gives a classification of moving directions, e.g., red corresponds to increase in both

axes while blue corresponds to increase in inclinations but decrease in adoption rate.

Other directions are also represented by distinguished colors. The gray curve illustrates

α = f(x) given by (20). Any trajectory starting above α = f(x) moves to the upper

right and eventually converge to some point on the curve. The behavior below α = f(x)

depends on the location. Trajectories starting with sufficiently high α0 cross the curve

α = f(x) and merge with the behavior of those starting above α = f(x) to begin with.

The crucial value of α0 to exhibit this type of behavior depends on initial adoption rate.

Starting with an initial average inclination lower than the crucial value, however, leads

the trajectory to end up in a trivial attractor. The crucial α0 will be further depicted in

Figure 9 and 10.

Three typical time series of (αt, xt) with different initial values are depicted in Figure 7.

The interesting behavior is the black path which starts only slightly different compared

to the blue path. In the first few time periods the dynamic behavior is comparable,

however, eventually the black path takes a turnoff, crosses and shows a similar evolution

of red path. This implies that the trajectory of xt is not monotone but decreases first

and turns to increasing later. Recall that this is the behavior we observed in Figure 2,

where different levels of α were exogenously given.

We now turn to the case α1 < α0 which will be described by choosing a linear increas-

ing {α0
d}.12 Typical sample paths under the new initial condition are shown in Figure

8-(a). The major difference in comparison to Figure 7 are the trajectories starting above

the grey curve at in the area α ≥ f(x). Here, both the purple and the red path cross the

curve α = f(x) from above at some point in time, and then continue with decreasing xt.

The red and black paths are eventually attracted to non-trivial attractors. The initial

level α0 for the other trajectories, however, were too low to ensure adoption in the long

run.

The distinguished areas of Figure 9 and 10 are called ’basin of attraction’. The red

area includes initial values whose path will be attracted to a point on α = f(x), i.e., a

non-trivial attractor, whereas all other points lead to a trivial attractor. For lower values

of x0 the border between the two areas merges with α = f(x).

As a conclusion of the current subsection, we summarize the long run behavior of our

two-dimensional model as follows:

• There is a curve α = f(x) defined by Equation (20) which divides the domain

R+ × [0, 1] into two areas in which xt behaves differently.

• Monotonic behavior of αt can be observed in the initial phase of the process.

12Keeping other parameters unchanged, we let α0
n,d = 0.2+0.01d+0.02n. It then follows that α1 < α0

for all n.
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Figure 6: 2D vector plot of (xtm, α
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n) for t = 0, 1, 2, 3, 5, 10
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Figure 7: Three typical paths of (αt, xt) satisfying α1 ≥ α0. In subfigure (a) points with

a circle indicate the initial values.
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Figure 8: Four typical paths of (αt, xt) satisfying α1 < α0. Points with a circle in subfigure

(a) are the initial values.

21



0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

a
lp

h
a

Figure 9: Basin of attraction corresponding to Figure 7: red initial points indicate con-

vergence to non-trivial equilibrium on black curve, blue points convergence to a trivial
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• Non-trivial attractors are located on the increasing part of the curve α = f(x).

• The domain R+ × [0, 1] of initial values can be divided into two areas with one of

them containing initial values converging to non-trivial attractors, while the other

leads to zero adoption rate in the long run. Part of the border between these two

areas coincides with α = f(x).

4 Concluding Remarks

In this paper we proposed a network game model where the driving factor describing

the inclination towards adopting a new behavior is endogenous. The learning dynamics

about the inclinations was governed by the social network. There are four main insights

that come out of the paper. First, collective adoption rate can display non-monotonic

changes in behavior. This could help to understand ’sparks’ of collective action, i.e.

sudden change in behavior as if the collectivity was conducted. The explanation is that

collective behavior is coupled to social learning, the invisible part, which governs by means

of the social network. The second insight is that the convergence of individual inclinations

is immediate provided the system starts from an average equilibrium. The third insight

is that the definition of a critical mass is too short-sighted as its level depends on initial

inclinations. The fourth insight is that despite the complexity of the model it is possible to

derive equilibria in a closed form for network with low dimensionality. For networks with

a larger number of possible degrees we have seen by simulation that collective behavior

shows qualitatively different trajectories depending on the starting point. However, the

long run behavior can be easily predicted since the model rules out cycling behavior. The

fact that the network was given by a degree distribution instead of adjacency matrices

allowed extensive simulation without running into storage problems.

Following Young [2009] we intended to keep the model general in order to keep it

applicable to a broad range of problems. The dynamics is determined by a surprisingly

small amount of parameter specifications. These are the social network and idiosynchratic

costs, given by probability distributions, as well as an inertia parameter and a technology

parameter which captures how the number of neighbors affects the individual benefits

from adoption.13

Appendix: Proofs of Propositions

Proof of Proposition 3

We first assume τd1 = τd2 and relax it later. Since d ∈ {d1, d2}, average inclination α in

13The network game is determined by P , F , {τd} and β.

23



equilibria satisfies the following simplified equation

α = P̃ (d1)
τα0

d1
+ d1xα

τ + d1x
+ P̃ (d2)

τα0
d2

+ d2xα

τ + d2x
. (21)

It follows that

α =
P̃ (d1)(τα

0
d1

+ d1xα)(τ + d2x)

(τ + d1x)(τ + d2x)
+
P̃ (d2)(τα

0
d2

+ d2xα)(τ + d1x)

(τ + d1x)(τ + d2x)

=
P̃ (d1)

[
τ 2α0

d1
+ τx(d1α + d2α

0
d1

) + x2αd1d2
]

τ 2 + τx(d1 + d2) + x2d1d2

+
P̃ (d2)

[
τ 2α0

d2
+ τx(d2α + d1α

0
d2

) + x2αd1d2
]

τ 2 + τx(d1 + d2) + x2d1d2

=
τ 2α0 + τx

[
P̃ (d1)(d1α + d2α

0
d1

) + P̃ (d2)(d2α + d1α
0
d2

)
]

+ x2αd1d2

τ 2 + τx(d1 + d2) + x2d1d2

=
τ 2α0 + τx

[
{P̃ (d1)d1 + P̃ (d2)d2}α + {P̃ (d1)d2α

0
d1

+ P̃ (d2)d1α
0
d2
}
]

+ x2αd1d2

τ 2 + τx(d1 + d2) + x2d1d2

= α + E1

where

E1 =
τ 2(α0 − α)

τ 2 + τx(d1 + d2) + x2d1d2

+
τx
[
{(P̃ (d1)− 1)d1 + (P̃ (d2)− 1)d2}α + {P̃ (d1)d2α

0
d1

+ P̃ (d2)d1α
0
d2
}
]

τ 2 + τx(d1 + d2) + x2d1d2

=
τ 2(α0 − α) + τx

[
{−P̃ (d2)d1 − P̃ (d1)d2}α + {P̃ (d1)d2α

0
d1

+ P̃ (d2)d1α
0
d2
}
]

τ 2 + τx(d1 + d2) + x2d1d2

=
τ 2(α0 − α) + τx

[
P̃ (d1)d2(α

0
d1
− α) + P̃ (d2)d1(α

0
d2
− α)

]
τ 2 + τx(d1 + d2) + x2d1d2

.

Therefore it should be that E1 = 0. Since τ > 0, d1 > 0, d2 > 0, and we are interested in

non-trivial equilibria with x 6= 0, one has

τ 2(α0 − α) + τx
[
P̃ (d1)d2(α

0
d1
− α) + P̃ (d2)d1(α

0
d2
− α)

]
= 0

⇔ τ 2α0 + τx
[
P̃ (d1)d2α

0
d1

+ P̃ (d2)d1α
0
d2

]
= τ 2α + τx

[
P̃ (d1)d2 + P̃ (d2)d1

]
α

⇔ α =
τ 2α0 + τx

[
P̃ (d1)d2α

0
d1

+ P̃ (d2)d1α
0
d2

]
τ 2 + τx

[
P̃ (d1)d2 + P̃ (d2)d1

]
= α0 +

τx
[
P̃ (d1)d2(α

0
d1
− α0) + P̃ (d2)d1(α

0
d2
− α0)

]
τ 2 + τx

[
P̃ (d1)d2 + P̃ (d2)d1

] .

Here we use a small trick. α0
d1
− α0 can be rewritten as

α0
d1
− α0 = α0

d1
− P̃ (d1)α

0
d1
− P̃ (d2)α

0
d2

= {1− P̃ (d1)}α0
d1
− P̃ (d2)α

0
d2

= P̃ (d2)(α
0
d1
− α0

d2
) .
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Similarly,

α0
d2
− α0 = P̃ (d1)(α

0
d2
− α0

d1
) .

Thus we have

α = α0 +
τx
[
P̃ (d1)d2P̃ (d2)(α

0
d1
− α0

d2
) + P̃ (d2)d1P̃ (d1)(α

0
d2
− α0

d1
)
]

τ 2 + τx
[
P̃ (d1)d2 + P̃ (d2)d1

]
= α0 +

τx(d2 − d1)P̃ (d1)P̃ (d2)(α
0
d1
− α0

d2
)

τ 2 + τx
[
P̃ (d1)d2 + P̃ (d2)d1

]
If α is a fixed point, by setting α0 = α, it should hold that the second term of the above

equation is 0. This can only happen when α0
d1

= α0
d2

, which implies that each individual

has the same initial inclination which does not change through our updating rule. This

is equivalent to the one-dimensional process of xt with a constant α.

For the case of τd1 6= τd2 , the same procedure can be used. After some algebra we

obtain an equation that needed to hold true for an equilibrium α as follows

α = α0 +
x(d2τ

0
d1
− d1τ 0d2)P̃ (d1)P̃ (d2)(α

0
d1
− α0

d2
)

τ 0d1τ
0
d2

+ x
[
P̃ (d1)d2τ 0d1 + P̃ (d2)d1τ 0d2

] .

For equilibrium we need α = α0, which implies an necessary condition that either α0
d1

=

α0
d2

or d2τ
0
d1

= d1τ
0
d2

. �

Proof of Proposition 4

The similar strategy as that in the proof of Proposition 3 is used, thus we only show an

outline of analysis but ignore the details of algebra. In equilibrium, α must satisfy the

following equation.

α =
∑

d∈{d1,d2,d3}

P̃ (d)
τα0

d + dxα

τ + dα

= P̃ (d1)
τα0

d1
+ d1xα

τ + d1x
+ P̃ (d2)

τα0
d2

+ d2xα

τ + d2x
+ P̃ (d3)

τα0
d3

+ d3xα

τ + d3x
(22)

By reducing the fractions to a common denominator and after simplification, one has

α = α +
EN

2

ED
2

,

where

EN
2 = τ 3(α0 − α)

+ τ 2x
[
d1
{
P̃ (d2)(α

0
d2
− α) + P̃ (d3)(α

0
d3
− α)

}
+ d2

{
P̃ (d3)(α

0
d3
− α) + P̃ (d1)(α

0
d1
− α)

}
+ d3

{
P̃ (d1)(α

0
d1
− α) + P̃ (d2)(α

0
d2
− α)

}]
+ τx2

[
d1d2P̃ (d3)(α

0
d3
− α) + d2d3P̃ (d1)(α

0
d1
− α) + d3d1P̃ (d2)(α

0
d2
− α)

]
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and

ED
2 = (τ + d1x)(τ + d2x)(τ + d3x) > 0 .

Then we obtain EN
2 = 0, and solving this equation for α yields α = α0 +

EN
3

ED
3

where

EN
3 = τx

[
(τ + d3x)(d2 − d1)P̃ (d1)P̃ (d2)(α

0
d1
− α0

d2
)

+ (τ + d1x)(d3 − d2)P̃ (d2)P̃ (d3)(α
0
d2
− α0

d3
)

+ (τ + d2x)(d3 − d1)P̃ (d1)P̃ (d3)(α
0
d1
− α0

d3
)
]

and

ED
3 = τ 3 + τ 2x

[
d1
{
P̃ (d2) + P̃ (d3)

}
+ d2

{
P̃ (d3) + P̃ (d1)

}
+ d3

{
P̃ (d1) + P̃ (d2)

}]
+ τx2

[
d1d2P̃ (d3) + d2d3P̃ (d1) + d3d1P̃ (d2)

]
> 0 .

In equilibrium it should hold that EN
3 = 0. Unlike the 2-degrees case, here we have

a sum of three terms which cannot be all positive or negative. So we need a careful

discussion for different initial values of {α0
d1
, α0

d2
, α0

d3
}. Without loss of generality, we

assume d1 < d2 < d3. Distinguish the following cases where 1) α0
d’s are equal, 2) two α0

d’s

are equal and 3) the α0
d’s are different:

1) α0
d1

= α0
d2

= α0
d3
→ EN

3 = 0.

2) α0
d1

= α0
d2
< α0

d3
→ EN

3 < 0

α0
d1

= α0
d2
> α0

d3
→ EN

3 > 0

α0
d1

= α0
d3
6= α0

d2
→ EN

3 = 0 if
τ + d3x

τ + d1x
=

(d3 − d2)P̃ (d3)

(d2 − d1)P̃ (d1)
α0
d2

= α0
d3
< α0

d1
→ EN

3 > 0

α0
d2

= α0
d3
> α0

d1
→ EN

3 < 0

3) α0
d1
< α0

d2
< α0

d3
→ EN

3 < 0

α0
d1
< α0

d3
< α0

d2
→ α0

d non-monotonic in d, discussion follows below

α0
d2
< α0

d1
< α0

d3
→ α0

d non-monotonic in d, discussion follows below

α0
d2
< α0

d3
< α0

d1
→ α0

d non-monotonic in d, discussion follows below

α0
d3
< α0

d1
< α0

d2
→ α0

d non-monotonic in d, discussion follows below

α0
d3
< α0

d2
< α0

d1
→ EN

3 > 0

As a conclusion, it is possible to have non-symmetric equilibria only if α0
d1

= α0
d3
6= α0

d2
,

or in cases that α0
d’s are all different and not monotonic in d. Suppose α0

d1
= α0

d3
6= α0

d2
,

then we have

τ + d3x

τ + d1x
=

(d3 − d2)P̃ (d3)

(d2 − d1)P̃ (d1)
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is a linear function of x, it is easy to find the condition for the existence of non-zero x and

thus we omit the calculation. The other cases, of non-monotonic α0
d, need to be discussed

separately. We will focus on the case α0
d2
< α0

d1
< α0

d3
, since the story for other cases is

similar. The equality EN
3 = 0 holds if

(τ + d3x)(d2 − d1)P̃ (d1)P̃ (d2)(α
0
d1
− α0

d2
)

= (τ + d1x)(d3 − d2)P̃ (d2)P̃ (d3)(α
0
d3
− α0

d2
) + (τ + d2x)(d3 − d1)P̃ (d1)P̃ (d3)(α

0
d3
− α0

d1
).

Both sides of the above equation are larger then 0. Solving this equation for α0
d3

leads to

α0
d3

= C1α
0
d1

+ C2α
0
d2

where

C1 =
(τ + d3x)(d2 − d1)P̃ (d1)P̃ (d2) + (τ + d2x)(d3 − d1)P̃ (d1)P̃ (d3)

(τ + d1x)(d3 − d2)P̃ (d2)P̃ (d3) + (τ + d2x)(d3 − d1)P̃ (d1)P̃ (d3)
, and

C2 =
(τ + d1x)(d3 − d2)P̃ (d2)P̃ (d3)− (τ + d3x)(d2 − d1)P̃ (d1)P̃ (d2)

(τ + d1x)(d3 − d2)P̃ (d2)P̃ (d3) + (τ + d2x)(d3 − d1)P̃ (d1)P̃ (d3)
.

It is easy to see that C1 + C2 = 1, C1 > 0 and C2 < 1. This means α0
d3

is an affine

combination of α0
d1

and α0
d2

. Since α0
d2
< α0

d1
< α0

d3
, we need that C1 > 1. Equivalently,

we need that

(τ + d3x)(d2 − d1)P̃ (d1)P̃ (d2) > (τ + d1x)(d3 − d2)P̃ (d2)P̃ (d3)

⇔ τ + d3x

τ + d1x
>

(d3 − d2)P̃ (d3)

(d2 − d1)P̃ (d1)
. (23)

So (23) gives a necessary condition for existence of equilibria when α0
d2
< α0

d1
< α0

d3
.

The next step is to find the valid corresponding non-zero fixed point value for x. Since

α0 = P̃ (d1)α
0
d1

+ P̃ (d2)α
0
d2

+ P̃ (d3)α
0
d3

, and from the relation α0
d3

= C1α
0
d1

+ C2α
0
d2

, one

has

α0 =
A(x)

A(x) +B(x)
α0
d1

+
B(x)

A(x) +B(x)
α0
d2

where A(x) = (τ + d2x)(d3− d1)P̃ (d1) and B(x) = (τ + d1x)(d3− d2)P̃ (d2). A non-trivial

fixed point (x, α) satisfies equations

α =
A(x)

A(x) +B(x)
α0
d1

+
B(x)

A(x) +B(x)
α0
d2
,

x = 1− 1

bαx
,

which boil down to

A(x) +B(x) = bx(1− x)A(x)α0
d1

+ bx(1− x)B(x)α0
d2
. (24)
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Notice that the right-hand side of the equation (24) is 0 for x = 0 and x = 1 while for

these values of x the left-hand side is strictly positive. Then an equilibrium exists if and

only if the mapping h : x 7→ A(x) + B(x)− bx(1− x)A(x)α0
d1
− bx(1− x)B(x)α0

d2
has a

minimum value of at most 0 on (0, 1). This means that checking for equilibria involves

only solving for critical points of h, i.e., solving a quadratic equation. �

Proof of Proposition 5

For all xt ∈ (0, 1], we first consider the case αt > 1
b(1−xt)xt . It follows that

αt ≥ 1

b(1− xt)xt
>

1

bxt
⇒ xt >

1

bαt
⇔ 1

bαtxt
< 1 .

From Equation (18), one then has

xt+1 = 1−
∑
d

min{1, 1

bαtxt
}P̃ (d) = 1−

∑
d

1

bαtxt
P̃ (d) = 1− 1

bαtxt
,

which implies that

xt+1 − xt = 1− xt − 1

bαtxt
> 0 .

The last inequality follows the condition αt > 1
b(1−xt)xt together with αt > 0 and xt > 0.

If αt = 1
b(1−xt)xt , it is easy to see that xt+1 − xt = 0.

For αt < 1
b(1−xt)xt , one has

αt <
1

b(1− xt)xt
⇔ 1− xt < 1

bαtxt
⇔ 1− 1

bαtxt
< xt .

Equation (18) again gives us

xt+1 = 1−
∑
d

min{1, 1

bαtxt
}P̃ (d) =

∑
d

P̃ (d)
[
1−min{1, 1

bαtxt
}
]

=

0 for xt < 1
bαt

1− 1
bαtxt

for xt ≥ 1
bαt

< xt ,

which completes the proof. �
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