Boswijk, H. Peter; Cavaliere, Giuseppe; Rahbek, Anders; Taylor, A. M. Robert

Working Paper
Inference on Co-integration Parameters in Heteroskedastic Vector Autoregressions

Tinbergen Institute Discussion Paper, No. 13-187/III

Provided in Cooperation with:
Tinbergen Institute, Amsterdam and Rotterdam

Suggested Citation: Boswijk, H. Peter; Cavaliere, Giuseppe; Rahbek, Anders; Taylor, A. M. Robert (2013) : Inference on Co-integration Parameters in Heteroskedastic Vector Autoregressions, Tinbergen Institute Discussion Paper, No. 13-187/III, Tinbergen Institute, Amsterdam and Rotterdam

This Version is available at:
http://hdl.handle.net/10419/89241

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Inference on Co-integration Parameters in Heteroskedastic Vector Autoregressions

H. Peter Boswijk¹
Guiseppe Cavaliere²
Anders Rahbek³
A.M. Robert Taylor⁴

¹ Faculty of Economics and Business, University of Amsterdam, and Tinbergen Institute, The Netherlands;
² University of Bologna, Italy;
³ University of Copenhagen & CREATEs,
⁴ University of Essex, United Kingdom.
Tinbergen Institute is the graduate school and research institute in economics of Erasmus University Rotterdam, the University of Amsterdam and VU University Amsterdam.

More TI discussion papers can be downloaded at http://www.tinbergen.nl

Tinbergen Institute has two locations:

Tinbergen Institute Amsterdam
Gustav Mahlerplein 117
1082 MS Amsterdam
The Netherlands
Tel.: +31(0)20 525 1600

Tinbergen Institute Rotterdam
Burg. Oudlaan 50
3062 PA Rotterdam
The Netherlands
Tel.: +31(0)10 408 8900
Fax: +31(0)10 408 9031

Duisenberg school of finance is a collaboration of the Dutch financial sector and universities, with the ambition to support innovative research and offer top quality academic education in core areas of finance.

DSF research papers can be downloaded at: http://www.dsf.nl/

Duisenberg school of finance
Gustav Mahlerplein 117
1082 MS Amsterdam
The Netherlands
Tel.: +31(0)20 525 8579
Inference on Co-integration Parameters in Heteroskedastic Vector Autoregressions

H. Peter Boswijka, Giuseppe Cavaliereb,*, Anders Rahbekc and A.M. Robert Taylord

a Amsterdam School of Economics and Tinbergen Institute, University of Amsterdam
b Department of Statistical Sciences, University of Bologna
c Department of Economics, University of Copenhagen and CREATES
d Essex Business School, University of Essex

November 14, 2013

Abstract

It is well established that the shocks driving many key macro-economic and financial variables display time-varying volatility. In this paper we consider estimation and hypothesis testing on the coefficients of the co-integrating relations and the adjustment coefficients in vector autoregressions driven by both conditional and unconditional heteroskedasticity of a quite general and unknown form in the shocks. We show that the conventional results in Johansen (1996) for the maximum likelihood estimators and associated likelihood ratio tests derived under homoskedasticity do not in general hold in the presence of heteroskedasticity. As a consequence, standard confidence intervals and tests of hypothesis on these coefficients are potentially unreliable. Solutions to this inference problem based on Wald tests (using a “sandwich” estimator of the variance matrix) and on the use of the wild bootstrap are discussed. These do not require the practitioner to specify a parametric model for volatility, or to assume that the pattern of volatility is common to, or independent across, the vector of series under analysis. We formally establish the conditions under which these methods are asymptotically valid. A Monte Carlo simulation study demonstrates that significant improvements in finite sample size can be obtained by the bootstrap over the corresponding asymptotic tests in both heteroskedastic and homoskedastic environments. An application to the term structure of interest rates in the US illustrates the difference between standard and bootstrap inferences regarding hypotheses on the co-integrating vectors and adjustment coefficients.

Keywords: Co-integration; adjustment coefficients; (un)conditional heteroskedasticity; heteroskedasticity-robust inference; wild bootstrap.

J.E.L. Classifications: C30, C32.

*Corresponding author. Department of Statistical Sciences, Via Belle Arti 41, I-40126 Bologna, Italy. Tel: +39 051 2098230; fax: +39 051 232153.

E-mail addresses: h.p.boswijk@uva.nl (H.P. Boswijk), giuseppe.cavaliere@unibo.it (G. Cavaliere), anders.rahbek@econ.ku.dk (A. Rahbek), rtaylor@essex.ac.uk (A.M.R. Taylor)
1 Introduction

In this paper we focus on the problem of conducting inference (estimation and hypothesis testing) on the coefficients of the co-integrating relations and associated adjustment parameters, based around the likelihood-based methods of Johansen (1996), in vector autoregressive time series which display time-varying behaviour in the variance of the driving shocks. We allow for both unconditional heteroskedasticity (often referred to as non-stationary volatility in the literature) and conditional heteroskedasticity in our analysis.

Discussing the inappropriateness of the assumption of (conditional) homoskedasticity inherent in much applied econometric modelling, Gonçalves and Kilian (2004, p. 92) argue that “... the failure of the independent and identically distributed (i.i.d.) assumption is well-documented in empirical finance ... many monthly macroeconomic variables also exhibit evidence of conditional heteroskedasticity”. A large body of recent applied work has grown suggesting that the assumption of constant unconditional volatility is also at odds with what is observed in the data, with a general decline in the unconditional volatility of the shocks driving macroeconomic series in the twenty years or so leading up to the recent financial crisis, the so-called “Great Moderation”, commonly observed; see, for example, inter alia, Kim and Nelson (1999), McConnell and Perez Quiros (2000), Sensier and van Dijk (2004), and references therein.

These empirical findings have helped stimulate research into the impact of time-varying conditional and unconditional volatility on standard time series methods. Of most relevance to this paper, Cavaliere, Rahbek and Taylor (2010b) analyse the impact of non-stationary volatility in the innovation process driving a co-integrated vector autoregressive (VAR) model on the conventional co-integrating rank test statistics of Johansen (1996). They demonstrate that the asymptotic null distributions of these pseudo likelihood ratio (PLR) statistics, which assume that the innovations are i.i.d. and Gaussian, are non-pivotal in the presence of unconditional heteroskedasticity. Cavaliere, Rahbek and Taylor (2014) [CRT] show that wild bootstrap implementations of the PLR statistics are, however, asymptotically valid.1 Cavaliere, Rahbek and Taylor (2010a) provide a separate treatment for the case where the shocks are conditionally heteroskedastic but unconditionally homoskedastic. Here they show that the standard PLR tests (based on asymptotic critical values) are asymptotically valid, but that the corresponding wild bootstrap tests can deliver considerable finite sample improvements.

In this paper we focus attention on inference on the long run and adjustment coefficients in the co-integrated VAR model (β and α, respectively, in standard notation), rather than on the co-integration rank. In doing so we make two distinct contributions to the literature.

1The algorithm proposed in CRT generates bootstrap samples using estimates all of which are obtained under the rank restriction imposed by the null, as is also done in Cavaliere, Rahbek and Taylor (2012), who use an i.i.d., rather than wild, re-sampling scheme. Cavaliere, Rahbek and Taylor (2010a,b) also propose an alternative algorithm, along the lines of that considered in Swensen (2006) using restricted estimates only for the long run parameters of the model. Cavaliere, Rahbek and Taylor (2012) and CRT demonstrate that the algorithms they propose are preferable to those proposed in Cavaliere, Rahbek and Taylor (2010a,b).
Utilising a very general set-up which combines the assumptions of Cavaliere, Rahbek and Taylor (2010a) and Cavaliere, Rahbek and Taylor (2010b) into a unified framework, our first contribution is to examine the impact of time-varying volatility on the large sample properties of the standard likelihood-based methods of estimation and hypothesis testing on the coefficients of the long run relations and the associated adjustment coefficients detailed in Johansen (1996). In particular, we analyse the pseudo maximum likelihood (PML) estimates of these parameters and the associated PLR test for linear restrictions on these parameters, both derived under the assumption of an i.i.d. Gaussian pseudo-likelihood. We also analyse the corresponding Wald statistic, based around a PML (“sandwich”) variance matrix estimator. We demonstrate that although the PML estimates are consistent, standard confidence intervals and PLR test statistics based on the PML estimates of α and β will not be reliable in general, their form depending on nuisance parameters arising from any heteroskedasticity in the shocks. Where the shocks are unconditionally homoskedastic, however, inference on β alone is shown to be asymptotically pivotal. For this to hold for the PLR tests involving α, volatility clustering must also be absent from the shocks. We show that asymptotically robust inference can be achieved on α, regardless of any heteroskedasticity present, by using the Wald statistic. This also holds when using the Wald statistic to test hypotheses involving β, provided the shocks are unconditionally homoskedastic, but in general is not true when non-stationary volatility is present. These results complement those given in Hansen (1992a) for the case of a single equation error-correction model (as in Engle and Granger, 1987), driven by an error term whose volatility follows a first-order integrated ($I(1)$) process.

Our second contribution is to develop wild bootstrap implementations of the standard PLR and Wald tests. We derive the conditions under which the wild bootstrap tests can replicate the first order limiting null distributions of the corresponding standard test statistics. In such cases asymptotically valid bootstrap inference can be performed in the presence of time-varying volatility using the wild bootstrap versions of these tests. For the bootstrap PLR tests involving α this requires the assumption of a further moment condition and the assumption of the absence of any leverage effects. For the PLR tests involving only β neither of these additional assumptions is required, while for the Wald tests, the additional leverage assumption is also not required.

The remainder of the paper is organised as follows. Section 2 defines the heteroskedastic model, discussing in detail the type of time-varying volatility that we consider. We then characterise the asymptotic behaviour of the common trends in the process. Next, we introduce a class of hypotheses on the co-integrating vectors and error correction coefficients. Section 3 derives the asymptotic null distributions of the PLR and Wald test statistics for the class of hypotheses we consider. The wild bootstrap approach, based on a sieve-type procedure using the PML coefficient matrix estimates from the co-integrated VAR model, is outlined in Section 4. Here the conditions under which the wild bootstrap tests deliver asymptotically valid inference are also detailed. In Section 5 we use Monte Carlo simulation evidence to compare the small
sample size properties of the standard (asymptotic) tests and their bootstrap analogues for a variety of heteroskedastic co-integrated VAR models. An empirical application of the proposed methods to the term structure of interest rates in the US is presented in Section 6. Section 7 concludes. All proofs are contained in the Appendix.

In the following ‘\(\Rightarrow \)' denotes weak convergence and ‘\(\Rightarrow_P \)' convergence in probability; \(\mathbb{I}(\cdot) \) denotes the indicator function and ‘\(x := y \)’ (‘\(x := y \)’) indicates that \(x \) is defined by \(y \) (\(y \) is defined by \(x \)); \(\lfloor \cdot \rfloor \) denotes the integer part of its argument. The notation \(C_{\mathbb{R}^{m \times n}[0,1]} \) is used to denote the space of \(m \times n \) matrices of continuous functions on \([0,1] \); \(D_{\mathbb{R}^{m \times n}[0,1]} \) denotes the space of \(m \times n \) matrices of càdlàg functions on \([0,1] \), equipped with the Skorohod metric. The space spanned by the columns of any \(m \times n \) matrix \(A \) is denoted as \(\text{col}(A) \); if \(A \) is of full column rank \(n < m \), then \(A_L \) denotes an \(m \times (m-n) \) matrix of full column rank satisfying \(A_L' A = 0 \). For any square matrix, \(A \), \(|A| \) is used to denote the determinant of \(A \), \(\|A\| \) the norm \(\|A\|^2 := \text{tr} \{A'A\} \), and \(\rho(A) \) its spectral radius (that is, the maximal modulus of the eigenvalues of \(A \)). For any vector, \(x \), \(\|x\| \) denotes the usual Euclidean norm, \(\|x\| := (x'x)^{1/2} \). Finally, \(\otimes \) denotes the Kronecker product.

2 The Heteroskedastic VAR Model and Hypotheses

We consider the following VAR\((k)\) model in error-correction format:

\[
\Delta X_t = \alpha \beta' X_{t-1} + \sum_{j=1}^{k-1} \Gamma_j \Delta X_{t-j} + \alpha \rho_1' D_{1t} + \mu_2 D_{2t} + \varepsilon_t, \quad t = 1, \ldots, T,
\]

where \(X_t \) is a \(p \)-variate vector process, with initial values \((X_{1-k}, \ldots, X_0)\), which are taken to be fixed in the statistical analysis, and \(D_{1t} \) and \(D_{2t} \) are vectors of deterministic terms, such as a constant or linear trend, of dimensions \(d_1 \) and \(d_2 \), respectively. The disturbance \(\varepsilon_t \) is assumed to be a \(p \)-variate vector martingale difference sequence relative to some filtration \(\mathcal{F}_t \), with finite and positive definite conditional variance matrix. Further conditions on \(\varepsilon_t \) are discussed below.

The parameter matrices \(\alpha \) and \(\beta \), which are our key focus in this paper, are dimension \(p \times r \), with \(0 < r < p \), and \(\{\Gamma_j\}_{j=1}^{k-1} \) are \(p \times p \) lag coefficient matrices. The co-integration rank, \(r \), is assumed to be known in what follows; in practice this would first be determined using the wild bootstrap co-integration rank tests of CRT. The parameter matrices \(\rho_1 \) and \(\mu_2 \) are of dimensions \(d_1 \times r \) and \(p \times d_2 \); note that \(D_{1t} \) enters the model through the error correction term \(\alpha(\beta' X_{t-1} + \rho_1' D_{1t}) \) only, whereas \(D_{2t} \) appears unrestrictedly. The usual cases of interest which we consider in this paper are: (i) \(D_t = 1, d_t = 0 \) (restricted constant), and (ii) \(D_t = t, d_t = 1 \) (restricted linear trend); see Johansen (1992).

We assume that the process in (1) satisfies the following condition (referred to as the ‘\(I(1,r) \) condition’ hereafter):

Assumption 1. (a) the characteristic equation associated with (1), i.e. \(|A(z)| = 0 \) with \(A(z) := (1-z) I_p - \alpha \beta' z - \sum_{j=1}^{k-1} \Gamma_j z (1-z) \), has \(p-r \) roots equal to 1 and all other roots
outside the unit circle, and (b) α and β have full column rank r.

An implication of Assumption 1 is that ΔX_t and $\beta' X_t$ may be written as linear processes in terms of ε_t, with exponentially decaying coefficient matrices. That is, these are “stable” processes in the sense of Cavaliere, Rahbek and Taylor (2010b), which would reduce to stationary [or $I(0)$] processes if the unconditional variance of ε_t were constant. Because we allow for time-varying behaviour in the variance matrices (both conditional and unconditional), the definitions of integrated and co-integrated processes do not formally apply in the present case, although it will be convenient still to refer to the elements of β as co-integration parameters (as in the title of this paper). The assumption on the number of unit roots excludes integration of a higher order, and is equivalent to the assumption that $|\alpha'_\perp \Gamma \beta'_\perp| \neq 0$, with $\Gamma := I_p - \sum_{j=1}^{k-1} \Gamma_j$; see Johansen (1996).

As regards the sequence ε_t, we assume the following:

Assumption 2. The process ε_t can be written as $\varepsilon_t = \sigma_t z_t$, where:

(a) $\sigma_t = \sigma(t/T)$, where $\sigma(\cdot)$ is a non-stochastic element of $\mathcal{D}_{\mathbb{R}^p \times \mathbb{R}^p}[0,1]$ such that $\Sigma(u) := \sigma(u)\sigma(u)' > 0$ for all $u \in [0,1]$;

(b) z_t is a p-vector martingale difference sequence relative to a filtration \mathcal{F}_t, with conditional variance matrix $h_t := E(z_t z_t'|\mathcal{F}_{t-1})$, satisfying

i. $T^{-1} \sum_{t=1}^{T} h_t \overset{p}{\rightarrow} E(z_t z_t') = I_p$,

ii. $T^{-1} \sum_{t=1}^{T} (h_t \otimes z_{t-i}) \overset{p}{\rightarrow} E(z_t z_t' \otimes z_{t-i}) = 0$ for $i \geq 1$,

iii. $T^{-1} \sum_{t=1}^{T} (h_t \otimes z_{t-i} z_{t-j}) \overset{p}{\rightarrow} E(z_t z_t' \otimes z_{t-i} z_{t-j}) = \tau_{ij}$ for $i, j \geq 1$, with $\sup_{t,i,j} \|\tau_{ij}\| = \tau < \infty$,

iv. $\sup_t E \|z_t\|^{4r} < \infty$ for some $r > 1$.

Assumption 2 implies that ε_t is a vector martingale difference sequence relative to \mathcal{F}_t, with conditional variance matrix $\Sigma_{t|t-1} := E(\varepsilon_t \varepsilon_t'|\mathcal{F}_{t-1}) = \sigma_t h_t \sigma_t'$, and time-varying unconditional variance matrix $\Sigma_t := E(\varepsilon_t \varepsilon_t') = \sigma_t \sigma_t' > 0$. As such, it combines the assumptions of Cavaliere, Rahbek and Taylor (2010a) and Cavaliere, Rahbek and Taylor (2010b), who consider VAR models with stationary conditional heteroskedasticity or non-stationary unconditional volatility, respectively. These are obtained as special cases with $\sigma(\cdot) = \sigma$ (constant unconditional variance, hence only conditional heteroskedasticity) and $h_t = I_p$ (so $\Sigma_{t|t-1} = \Sigma_t = \Sigma(t/T)$, only unconditional non-stationary volatility). As discussed in Cavaliere, Rahbek and Taylor (2010b), Assumption 2 (a) implies that the elements of Σ_t are only required to be bounded and to display a countable number of jumps, therefore allowing for an extremely wide class of potential models for the behaviour of the variance matrix of ε_t, including single or multiple variance or covariance shifts, variances which follow a broken trend, and smooth transition variance shifts. Assumption 2 (b) is inspired by Assumption A of Gonçalves and Kilian (2004). Deo (2000) provides
examples of stochastic volatility and generalised autoregressive-conditional heteroskedasticity (GARCH) processes that satisfy Assumption 2 (b), including Gaussian GARCH(1, 1) processes with a finite unconditional 8th moment.

2.1 Representation

Before we introduce the class of hypotheses we will consider in this paper, we provide some preliminary results on the stable and unstable linear combinations of X_t. Let $\mu D_t = \mu_1 D_1 + \mu_2 D_2$, where $\mu_1 = \alpha \rho_1^t$, and let $X_t := (X'_t, \ldots, X'_{t-k+1})'$, and $X_{\beta t} := (X'_t \gamma, \Delta X'_t, \ldots, \Delta X'_{t-k+1})' = B' \Delta_t$, where B is defined implicitly; if $k = 1$, then $B = \beta$ and $X_{\beta t} = \beta^t X_t$. Lemma 1 of Cavaliere, Rahbek and Taylor (2010b) applies directly to our model under Assumptions 1 and 2, and states that

$$X_{\beta t} = \Phi X_{\beta t-1} + F(\mu D_t + \varepsilon_t),$$

where the autoregressive matrix is defined by $\Phi := I_{r+p(k-1)} + B' A$, with

$$A := \begin{pmatrix} \alpha & \Psi \\ 0 & I_{p(k-1)} \end{pmatrix}, \quad \Psi := [\Gamma_1, \ldots, \Gamma_{p-1}],$$

and where $F := (\beta, I_p, 0, \ldots, 0)'$. Because $\rho(\Phi) < 1$, $X_{\beta t}$ is a stable process. For X_t, Lemma 1 of Cavaliere, Rahbek and Taylor (2010b) yields the result that

$$X_t = C \sum_{i=1}^t (\mu D_t + \varepsilon_t) + S_t + C_0,$$

where $C := \beta_\perp (\alpha_\perp \Gamma_\beta_\perp)^{-1} \alpha_\perp$, $S_t := (I_r, 0, \ldots, 0) A \Delta_t X_{\beta t}$, and where C_0 is a constant, depending on the initial values, defined by $C_0 := C (I_p, -\Psi) X_0$. These results are purely algebraic and, hence, do not depend on specific assumptions on $\varepsilon_t = \sigma_t z_t$. The result in (3) implies that the stochastic part of $\alpha_\perp \Gamma X_t$ is given by the sum of the heteroskedastic random walk $\sum_{i=1}^t \alpha_\perp \varepsilon_i$, and the stable process $\alpha_\perp \Gamma S_t$.

The following result gives the limiting behaviour of the random walk component, $\sum_{i=1}^t \varepsilon_i$, and of a particular sample moment matrix. It is a direct extension of Lemma 2 of Cavaliere, Rahbek and Taylor (2010b), although in the present context we also allow for stationary conditional heteroskedasticity in z_t of the form specified in Assumption 2 (b):

Lemma 1. Let $\varepsilon_t = \sigma_t z_t$ satisfy Assumption 2, and let $W(\cdot)$ denote a p-variate standard Brownian motion. Then, as $T \to \infty$,

$$\left(M_T(\cdot), \int_0^1 M_T(s)dM_T(s)' \right) := \left(\frac{1}{T^{1/2}} \sum_{t=1}^{\lfloor T \rfloor} \varepsilon_t, \frac{1}{T} \sum_{t=1}^T \left(\sum_{i=1}^{t-1} \varepsilon_i \right) \varepsilon_t \right) \rightsquigarrow \left(M(\cdot), \int_0^1 M(s)dM(s)' \right),$$

where $M(\cdot) := \int_0^T \sigma(s) dW(s)$ is a p-variate continuous martingale.
2.2 Hypotheses

For unknown parameters α and β (of dimension $p \times r$ but not necessarily of full column rank), ρ_1, \{\Gamma_j\}_{j=1}^{k-1}$ and μ_2, and for a given sequence $\{\xi_t\}$ satisfying Assumption 2, (1) is the unrestricted heteroskedastic co-integrated VAR model, denoted in what follows as H_r. It will be convenient to write the model in the compact form

$$Z_{0t} = \alpha \beta^\# Z_{1t} + \Psi^\# Z_{2t} + \varepsilon_t,$$

with $Z_{0t} := \Delta X_t$, $Z_{1t} := (X'_{t-1}, D'_{1t})'$, $Z_{2t} := (\Delta X'_{t-1}, \ldots, \Delta X'_{t-k+1}, D'_{2t})'$, $\beta^\# := (\beta', \rho_1')'$ and $\Psi^\# := (\Psi, \mu_2)$. If D_{it} is set equal to 0, it is understood that D_{it} is to be dropped from the definition of Z_{it}, $i = 1, 2$. We also define $p^\# := p + d_1$, the number of rows of $\beta^\#$.

Within this model we wish to test linear hypotheses on the co-integration parameters $\beta^\#$ and the adjustment coefficients α. Because $\beta^\#$ is only identified up to its column space, some restrictions are needed to identify the individual components of $\beta^\#$, before further (over-identifying) restrictions can be considered. Therefore, we normalise β by $c' \beta = I_r$ for some known $p \times r$ matrix of full column rank, so that $\beta = \bar{c} + c_\perp \beta_2$, where $\beta_2 = c'_\perp \beta$ is a $(p - r) \times r$ matrix of free parameters; where $\bar{c} = c(c'c)^{-1}$ and $c_\perp = c_\perp (c'_\perp c_\perp)^{-1}$. Defining

$$\beta_2^\# := \begin{pmatrix} \beta_2 \\ \rho_1 \end{pmatrix}, \quad c^\# := \begin{pmatrix} c \\ 0 \end{pmatrix}, \quad c_\perp^\# := \begin{pmatrix} c_\perp & 0 \\ 0 & I_{d_1} \end{pmatrix},$$

and

$$c^\# = c^\#(c'^\#c^\#)^{-1}, \quad c_\perp^\# = c_\perp^\#(c'^\#c_\perp^\#)^{-1},$$

we similarly have $\beta^\# = \bar{c}^\# + c_\perp^\# \beta_2^\#$, with $\beta_2^\# = c_\perp^\# \beta_2^\#$.

Based on this normalisation, we consider the following class of hypotheses on $\beta_2^\#$ and α:

$$H_{0\beta} : R_\beta \text{vec } \beta_2^\# = q_\beta,$$

$$H_{0\alpha} : R_\alpha \text{vec } \alpha' = q_\alpha,$$

$$H_0 = H_{0\beta} \cap H_{0\alpha} : R\theta = q,$$

where R_β and R_α are matrices of dimensions $r_\beta \times (p^\# - r)$ and $r_\alpha \times pr$, respectively, of full row rank, and q_β and q_α are $r_\beta \times 1$ and $r_\alpha \times 1$ vectors; furthermore, $R = \text{diag}(R_\beta, R_\alpha)$, $q = (q_\beta, q_\alpha)$, and $\theta = ((\text{vec } \beta_2^\#)', (\text{vec } \alpha')')'$. The theory developed in this paper could be extended to more general non-linear restrictions, and restrictions linking α and β, but (5) appears to offer a sufficient level of generality for most practical purposes.

For obtaining the PML estimators under the restrictions (5), needed to compute the PLR statistic, we rewrite the joint hypothesis H_0 (together with the normalisation of $\beta^\#$) as:

$$H'_0 : \text{vec } \beta^\# = H \phi + h, \quad \text{vec } \alpha' = G \psi + g, \quad (\phi, \psi) \in \mathbb{R}^l \times \mathbb{R}^k,$$

where $H = Q_\perp$ and $h = Q(Q'Q)^{-1}((\text{vec } I_r')', q_\beta')'$, with

$$Q = \left[(I_r \otimes c^\#) (I_r \otimes c_\perp^\#) R_{1r} \right],$$

which is a $(pr \times p^\#) \times (pr \times pr)$ matrix.
where $G = (R'_\alpha)_\perp$ and $g = R'_\alpha(R_\alpha R'_\alpha)^{-1}q_\alpha$, and where ϕ and ψ are unrestricted parameters, of dimensions $l_\phi = (p^\# - r)r - r_\beta$ and $l_\psi = pr - r_\alpha$. Null hypotheses of the form (6), but with $g = 0$, were considered by Boswijk (1995) (see also Boswijk and Doornik (2004)), as a generalisation of the restrictions $\beta_i^\# = H_i \phi_i + h_i$ on the separate vectors of $\beta^\#$ considered by Johansen (1995). If only restrictions on $\beta^\#$ are considered (i.e., for testing $H_{0\beta}$), then $G = I_{pr}$ and $g = 0$; for hypotheses $H_{0\alpha}$ on only α, take $H = (I_r \otimes c_1^\#)$ and $h = \text{vec} \tilde{e}^\#$.

3 Asymptotic Inference

In this section we analyse asymptotic inference on the class of hypotheses in (5) defined in the previous section, in the model (1) under Assumptions 1 and 2. As in Johansen (1996), the analysis will be based on the Gaussian pseudo-likelihood, derived from the assumption that ε_t is an i.i.d. $N(0, \Sigma)$ sequence. Assumption 2 implies that in general, this likelihood is based on a misspecified model, and the purpose of this section is to assess the asymptotic consequences of this misspecification. We analyse the PLR test as well as a Wald test based on the PML variance matrix estimate of the parameter estimators.

To simplify notation, asymptotic results will be provided only for the model with a restricted constant, where $Z_{1t} = (X'_{t-1}, 1)'$ and $Z_{2t} = (\Delta X'_{t-1}, \ldots, \Delta X'_{t-k+1})'$, so $\Psi^\# = \Psi$. Analogous results can be obtained for models with a more general specification of the deterministic components, but at the cost of more involved notation.

In what follows, for a given vector of parameters, θ say, the unrestricted PML estimator for θ will be denoted $\hat{\theta}$, while the PML estimator obtained under the restriction of H_0 of (5) will be denoted $\bar{\theta}$.

3.1 The PLR Test

The concentrated pseudo-log-likelihood in terms of the parameters α, $\beta^\#$ and Σ can be expressed in terms of the sample moment matrices

$$S_{ij} := M_{ij} - M_{i2} M_{22}^{-1} M_{2j}, \quad i, j = 0, 1,$$

(7)

with $M_{ij} := T^{-1} \sum_{t=1}^T Z_t Z'_{jt}$, $i, j = 0, 1, 2$. Up to a constant, the pseudo-log-likelihood is given by

$$\ell(\alpha, \beta^\#, \Sigma) = -\frac{T}{2} \log |\Sigma| - \frac{T}{2} \text{tr} \Sigma^{-1} (S_{00} - 2\alpha \beta^\# S_{10} + \alpha \beta^\# S_{11} \beta^\# \alpha').$$

(8)

If α is unrestricted, the log-likelihood may be further concentrated with respect to α and Σ to yield

$$\ell(\beta^\#) = -\frac{T}{2} \log |S_{00} - S_{01} \beta^\# (\beta^\# S_{11} \beta^\#)^{-1} \beta^\# S_{10}| - \frac{T p}{2}$$

(9)

The maximiser of $\ell(\beta^\#)$ under the normalisation $c^\# \beta^\# = I_r$, see Johansen (1996), is given by $\hat{\beta}^\# := \hat{\beta}_u^\# (c^\# \beta^\#)^{-1}$, where $\hat{\beta}_u^\# := [\hat{v}_1, \ldots, \hat{v}_r]$, with $\hat{v}_i, i = 1, \ldots, r$ the eigenvectors corresponding to r largest eigenvalues $\hat{\lambda}_1 \geq \ldots \geq \hat{\lambda}_r$ of the generalised eigenvalue problem
\[|\lambda S_{11} - S_{10} S_{00}^{-1} S_{01} | = 0. \] The maximised log-likelihood is given by
\[\ell(\hat{\beta}^\#) = \ell(\hat{\beta}_u^\#) = -\frac{T}{2} \left(p + \log |\Sigma| \right), \quad \Sigma := S_{00} \prod_{i=1}^p (1 - \hat{\lambda}_i). \]
Under the restrictions \(\text{vec} \beta^\# = H \phi + h, \text{vec} \alpha' = G \psi, \) the log-likelihood (8), possibly after concentrating out \(\Sigma, \) can be maximised over \((\phi, \psi) \) using a Newton-type algorithm. Alternatively, a switching algorithm can be used that exploits the fact that expressions for the partial maximisers \(\hat{\beta}^\#(\alpha, \Sigma), \hat{\alpha}(\beta^\#, \Sigma) \) and \(\hat{\Sigma}(\alpha, \beta^\#) \) of \(\ell(\alpha, \beta^\#, \Sigma) \) are available in closed form; see Boswijk (1995) and Boswijk and Doornik (2004) for further details. Letting \(\hat{\Sigma} \) denote the PML estimator of \(\Sigma \) under the restrictions, the PLR statistic is then given by
\[\text{LR}_T := T \log |\hat{\Sigma}|/|\Sigma|. \]

The next lemma characterizes the asymptotic behaviour of the three sufficient statistics \(S_{00}, S_{10} = S_{01} \) and \(S_{11}. \) These results will subsequently be used to characterize the limiting behaviour of the likelihood function and, hence, of the PLR statistic.

Lemma 2. Let \(X_t \) satisfy the model (1) under Assumptions 1 and 2. Let \(B_T := \text{diag}(T^{-1/2} \beta_1, 1) \) and \(S_{1\epsilon} := S_{10} - S_{11} \beta^\# \alpha', \) with \(S_{ij}, i, j = 0, 1 \) as given in (7). Then, as \(T \to \infty, \)
\[\beta^\# S_{11} \beta^\# \overset{p}{\to} \Sigma_{\beta\beta}, \quad \beta^\# S_{10} \overset{p}{\to} \Sigma_{\beta 0}, \quad S_{00} \overset{p}{\to} \Sigma_{00}, \quad (10) \]
and
\[T^{1/2} \beta^\# S_{1\epsilon} \overset{w}{\to} N(0, \Omega), \quad (11) \]
where \(\Sigma_{\beta\beta} \) and \(\Omega \) are positive definite matrices, defined in the Appendix, and where \(\Sigma_{\beta 0} := \Sigma_{\beta \alpha'}/ \Sigma_{\alpha 0} := \Sigma + \alpha \Sigma_{\beta \alpha'}, \) with \(\Sigma := \int_0^1 \Sigma(s) ds. \) Furthermore,
\[\left(B_T' S_{11} B_T, T^{1/2} B_T' S_{1\epsilon} \right) \overset{w}{\to} \left(\int_0^1 G(s) G(s)' ds, \int_0^1 G(s) dM(s)' \right), \quad (12) \]
where \(G(u) := (M(u)') C_1, 1)' \), and
\[B_T' S_{11} \beta^\# \overset{p}{\to} 0. \quad (13) \]

The expressions for \(\Sigma_{\beta\beta} \) and \(\Omega, \) derived in the proof of Lemma 2 in the Appendix, imply that in general \(\Omega \neq \Sigma \otimes \Sigma_{\beta\beta}. \) This implies that \(T^{1/2} (\beta^\# S_{11} \beta^\#)^{-1/2} \beta^\# S_{1\epsilon} \Sigma^{-1/2} \), which would be a natural candidate for a standardised version of \(\beta^\# S_{1\epsilon} \) provided that \(\hat{\Sigma} \overset{p}{\to} \Sigma, \) is in general not an asymptotically standard normal random vector. The property \(\Omega = \Sigma \otimes \Sigma_{\beta\beta} \) only holds if both \(\sigma(s) = \sigma \) (a constant unconditional volatility) and \(\tau_{ij} = \mathbb{I}(i = j) I_{\rho_2} \) for all \(i, j \geq 1 \) (which excludes volatility clustering). This will have implications for testing hypotheses on \(\alpha \) in the next theorem, which gives the asymptotic null distribution of the PLR statistic, together with some additional results on the consistency and asymptotic distribution of the PML estimators. For notational convenience, we only consider the case where the restrictions on \(\beta^\# \) do not involve the constant term \(\rho_1, \) and hence relate to \(\beta_2 \) only.
Theorem 1. Under the conditions of Lemma 2, and as $T \to \infty$:

(a) the PML estimators of $(\beta^#, \alpha, \Psi)$ are consistent, i.e.,

$$\hat{\beta}^# \xrightarrow{p} \beta^#,$$
$$\hat{\alpha} \xrightarrow{p} \alpha,$$
$$\hat{\Psi} \xrightarrow{p} \Psi,$$

and $\hat{\Sigma} \xrightarrow{p} \Sigma$;

(b) the asymptotic distribution of $\hat{\beta}_2$, $\hat{\rho}_1$ and $\hat{\alpha}$ is given by

$$\left(\begin{array}{c} T(\hat{\beta}_2 - \beta_2) \\ T^{1/2}(\hat{\rho}_1 - \rho_1) \end{array} \right) \xrightarrow{w} \left(\begin{array}{c} \int_0^1 G_c(s)G_c(s)'ds \int_0^1 G_c(s)dM_\alpha(s)' \\ \int_0^1 G_c(s)'ds \int_0^1 G_c(s)dM_\alpha(s)' \end{array} \right),$$

$$T^{1/2}(\hat{\alpha} - \alpha)' \xrightarrow{w} N(0, [I_p \otimes \Sigma_{\beta\beta}^{-1}]\Omega[I_p \otimes \Sigma_{\beta\beta}^{-1}]),$$

where $G_c(u) := \text{diag}(\beta_1^c, (\beta_2^c, \beta_3^c)^{-1}, 1)G(u)$ and $M_\alpha(u) := (\alpha'\Sigma_\alpha^{-1}\alpha)^{-1}\alpha'\Sigma_\alpha^{-1}M(u)$;

(c) under H_0,

$$\text{LR}_T \xrightarrow{w} (\mathcal{L}_\infty(\beta) + \mathcal{L}_\infty(\alpha)) =: \mathcal{L}_\infty$$

where

$$\mathcal{L}_\infty(\beta) := \left(R_\beta \text{vec} \left(\int_0^1 G_c(s)G_c(s)'ds \int_0^1 G_c(s)dM_\alpha(s)' \right) \right)' \times \left(R_\beta \left[(\alpha'\Sigma_\alpha^{-1}\alpha)^{-1} \otimes \left(\int_0^1 G_c(s)G_c(s)'ds \int_0^1 G_c(s)'ds \int_0^1 G_c(s)dM_\alpha(s)' \right) \right] R_\beta' \right)^{-1} \times R_\beta \text{vec} \left(\int_0^1 G_c(s)G_c(s)'ds \int_0^1 G_c(s)'ds \int_0^1 G_c(s)dM_\alpha(s)' \right)$$

$$\mathcal{L}_\infty(\alpha) := Z' \left(R_\alpha [I \otimes \Sigma_{\beta\beta}^{-1}] \Omega[I \otimes \Sigma_{\beta\beta}^{-1}] R_\alpha' \right)^{1/2} \times \left(R_\alpha [\Sigma \otimes \Sigma_{\beta\beta}^{-1} R_\alpha']^{-1} \left(R_\alpha[I \otimes \Sigma_{\beta\beta}^{-1}] \Omega[I \otimes \Sigma_{\beta\beta}^{-1}] R_\alpha' \right)^{1/2} Z \right)$$

and where $Z \sim N(0, I_{r_\alpha})$, independent of (G_c, M_α).

Remark 3.1. It can be seen from part (b) of Theorem 1 that the normalised estimators, $\hat{\beta}_2$, $\hat{\rho}_1$ and $\hat{\alpha}$ attain exactly the same rates of consistency under heteroskedasticity of the form given in Assumption 2 as they do under the assumption of i.i.d. shocks; cf. Johansen (1996, Chapter 13). Moreover, it is also seen from part (a) that the PML estimates of the short-run dynamic parameter matrices, $\Gamma_1, \ldots, \Gamma_{k-1}$, also retain consistency under heteroskedasticity.

Remark 3.2. Observe from part (c) of Theorem 1 that the limiting null distribution of the PLR test statistic is comprised of two components which are independent of one another. The first component, $\mathcal{L}_\infty(\beta)$, derives from the restrictions $H_{0\beta}$ in (5), while the second, $\mathcal{L}_\infty(\alpha)$, derives from the restrictions $H_{0\alpha}$ in (5). Both of these components can be seen to depend on nuisance parameters arising from the heteroskedasticity present in the shocks. Moreover, notice
that when only $H_{0\beta}$ [$H_{0\alpha}$] is tested, then so the component $LR_{\infty}(\alpha)$ [$LR_{\infty}(\beta)$] vanishes from the right member of (14).

Remark 3.3. The independence of the two components $LR_{\infty}(\beta)$ and $LR_{\infty}(\alpha)$ derives from the independence of Z and $M(\cdot)$. As shown in the proof of Lemma 2, this independence is guaranteed by Assumption 2 (b) ii., which requires the conditional variance matrix of z_t to be independent of lagged levels, ruling out statistical leverage effects. It should be emphasised, however, that this assumption is needed only for the independence of the two components, which is relevant only in case the null hypothesis restricts both β_2 and α. For hypotheses on β_2 only (or, indeed, on α only), this assumption is not required.

Remark 3.4. Consider the first component, $LR_{\infty}(\beta)$, relating to the restrictions on β. The stochastic integral $\int_0^1 G_c(s) dM_\alpha(s)'$ clearly plays a key role in the asymptotic distribution of $\beta_2^\#$. Both $G_c(\cdot)$ and $M_\alpha(\cdot)$ can be expressed as linear combinations of the continuous-time Gaussian martingale $M(\cdot) = \int_0^\cdot \sigma(s) dW(s)$. This means that these two processes are independent only if their cross-variation process

\[\langle G_c, M_\alpha \rangle(u) = A\beta_2^\prime C \langle M \rangle(u) \Sigma^{-1}\alpha (\alpha' \Sigma^{-1}\alpha)^{-1} = A\beta_2^\prime C \int_0^u \Sigma(s) ds \Sigma^{-1}\alpha (\alpha' \Sigma^{-1}\alpha)^{-1} \]

is zero for all $u \in [0,1]$, where $A := \text{diag}(\beta_2^\prime, 1)$. Although the property $C\alpha = \beta_\perp (\alpha' \Gamma \beta_\perp)^{-1} \alpha_\perp \alpha = 0$ implies that $\langle G_c, M_\alpha \rangle(1) = 0$, this property does not extend to all u, so that in general, the two processes are not independent. This in turn implies that the distribution of $\int_0^1 G_c(s) dM_\alpha(s)'$ is in general not mixed Gaussian, which is a necessary condition for a quadratic form in this stochastic integral to have a χ^2 distribution. Clearly, if the variance process $\sigma(u)$ is constant, then G_c and M_α are independent vector Brownian motions, and here it is simple to show that $LR_{\infty}(\beta)$ is $\chi^2(\nu)$ distributed, as is the case where the shocks are i.i.d.; see Johansen (1996).

Remark 3.5. Another example where $G_c(\cdot)$ and $M_\alpha(\cdot)$ are independent occurs where $\Sigma(u)$ can be written as the product of a constant matrix Σ and a scalar time-varying process $v(u)$, corresponding to the case of “common volatility shocks”; see Remark 2.3 of Cavaliere, Rahbek and Taylor (2010b). However, in this example $LR_{\infty}(\beta)$ will not be $\chi^2(\nu)$ distributed in general. To see why, observe that $\int_0^u \Sigma(s) ds \Sigma^{-1} = \int_0^u v(s) ds \bar{v}^{-1} I_p$, where $\bar{v} = \int_0^1 v(s) ds$, so that $\langle G_c, M_\alpha \rangle_u = 0$ for all u, and the distribution of $\int_0^1 G_c(s) dM_\alpha(s)'$ is again mixed Gaussian, but in this case with conditional variance matrix

\[\left[(\alpha' \Sigma^{-1}\alpha)^{-1} \alpha' \Sigma^{-1} \otimes I_p \right] \int_0^1 [\Sigma(s) \otimes G_c(s) G_c(s)'] ds \left[\Sigma^{-1} \alpha' (\alpha' \Sigma^{-1}\alpha)^{-1} \otimes I_p \right] . \]

Now

\[\int_0^1 [\Sigma(s) \otimes G_c(s) G_c(s)'] ds = \Sigma \otimes \int_0^1 v(s) G_c(s) G_c(s)' ds \]

\[\neq \Sigma \bar{v} \otimes \int_0^1 G_c(s) G_c(s)' ds = \bar{\Sigma} \otimes \int_0^1 G_c(s) G_c(s)' ds \]

11
unless \(v(u) = 1 \) and, hence, \(\Sigma(u) = \Sigma \) for all \(u \in [0, 1] \). Consequently, in this case \(LR_\infty(\beta) \) will only be \(\chi^2(r_\beta) \) distributed when \(\sigma(u) \) is constant. However, we will subsequently show in Section 3.2 below that the independence of \(G_r(\cdot) \) and \(M_\alpha(\cdot) \) is necessary and sufficient for the Wald tests based on the use of a sandwich-type PML variance matrix to deliver \(\chi^2 \) inference.

Remark 3.6. Notice that inference on \(\beta^# \) is asymptotically unaffected by the possibility of volatility clustering in \(z_t \) (where the conditional variance matrix \(h_t \) may be correlated with lagged squares and cross-products), because the matrices \(\tau_{ij} = E(z_tz_t' \otimes z_{t-i}z_{t-j}') \) do not enter the right member of (15).

Remark 3.7. For the second component of the limiting null distribution of \(LR_T \) appearing in the right member of (14), relating to the restrictions on \(\alpha \), we observe that \(LR_\infty(\alpha) \) is a quadratic form in a standard normal vector. However, because the weight matrix in this quadratic form is, in general, not an identity matrix, \(LR_\infty(\alpha) \) will not have a \(\chi^2(r_\alpha) \) distribution in general. As discussed below Lemma 2, standard inference does, however, obtain if both \(\sigma(u) \) is constant and \(z_t \) does not display volatility clustering, so that \(\tau_{ij} = \mathbb{I}(i = j)I_{p^2} \) for all \(i, j \geq 1 \). More generally, however, standard asymptotic inference is expected to be delivered by the PML-based Wald test, as will be discussed in the next subsection.

Remark 3.8. Hansen (1992a) considers asymptotic inference on \(\beta_2 \) in a single equation Engle and Granger (1987) co-integrating regression model where the regressors are homoskedastic \(I(1) \) processes but the errors display non-stationary volatility (specifically, volatility follows an \(I(1) \) process in his set-up). In the notation of the present paper, this corresponds to the case where \(\alpha_1' M(u) \) is a Brownian motion with constant variance matrix \(\alpha_1' \Sigma \alpha_1 \), and where \(M_\alpha(u) \) has a time-varying (conditional) variance matrix. Hansen (1992a) shows that mixed normal inference arises if the Brownian motion driving \(M_\alpha \) is independent of \(\alpha_1' M(u) \) and the stochastic volatility process, which implies that \(\alpha' \Sigma^{-1} \Sigma(u) \alpha_\perp = 0 \) for all \(u \in [0, 1] \). Notice that by a suitable choice of the matrix square root \(\sigma(\cdot) \) of \(\Sigma(\cdot) \), we may write

\[
\begin{bmatrix}
\alpha' \Sigma^{-1} \\
\alpha_\perp'
\end{bmatrix}
\sigma(u) =
\begin{bmatrix}
\omega_{11}(u) & \omega_{12}(u) \\
0 & \omega_{22}
\end{bmatrix},
\]

where \(\omega_{22} = \alpha_\perp' \Sigma \alpha_\perp \) and \(\omega_{11}(u)\omega_{11}(u)' + \omega_{12}(u)\omega_{12}(u)' = \alpha' \Sigma^{-1} \Sigma(u) \Sigma^{-1} \alpha \). We also know that

\[
\int_0^1 \alpha' \Sigma^{-1} \Sigma(u) \alpha_\perp du = \int_0^1 \omega_{12}(u)\omega_{22}' du = \bar{\omega}_{12} \omega_{22} = 0.
\]

However, this by itself does not guarantee or require that \(\omega_{12}(u) = 0 \) for all \(u \). It is the specific structure of the model considered in Hansen (1992a) which implies that \(\alpha' \Sigma^{-1} M(u) = \int_0^u \omega_{11}(s) dW_1(s) \) and \(\alpha_\perp' M(u) = \omega_{22} W_2(u) \), and hence yields the independence of the two processes. \[\square\]
3.2 The Wald Test

A Wald test statistic for null hypothesis $H_0 : R\theta = q$ in (5) takes the form

$$W_T := (R\hat{\theta} - q)'(R\hat{Var}[\hat{\theta}]R')^{-1}(R\hat{\theta} - q),$$

(17)

where $\hat{Var}[\hat{\theta}]$ is an estimate of the asymptotic (conditional) variance matrix of $\hat{\theta}$. We consider a PML-based variance matrix, which may be expressed as follows. Let $\gamma := (\theta', (\text{vec } \Psi')')'$, and define the following estimates of the information matrix for γ based on minus the Hessian matrix and the outer product of gradients, respectively:

$$\mathcal{H} := -\frac{\partial^2 \ell(\gamma)}{\partial \gamma \partial \gamma'^t} = T \left[J'(\Sigma^{-1} \otimes M_{11})J \quad J'(\Sigma^{-1} \otimes M_{12}) \right]$$

$$\mathcal{I} := \sum_{t=1}^{T} \frac{\partial \ell_t(\gamma)}{\partial \gamma} \frac{\partial \ell_t(\gamma)}{\partial \gamma'} = \sum_{t=1}^{T} \left[J'(\Sigma^{-1} \otimes M_{11})J \quad J'(\Sigma^{-1} \otimes M_{12}) \right]$$

where

$$J := \frac{\partial \text{vec}(\beta^\# \alpha^\#)}{\partial \theta^t} = \left[(\alpha \otimes e_1^\#) \quad (I_p \otimes \beta^\#) \right].$$

Then

$$\hat{\text{Var}}[\hat{\theta}] = \left(\begin{array}{c} \hat{I}_\theta \ 0 \end{array} \right) \hat{\mathcal{H}}^{-1} \hat{\mathcal{I}} \hat{\mathcal{H}}^{-1} \left(\begin{array}{c} \hat{I}_\theta \ 0 \end{array} \right),$$

where $\hat{l}_\theta := (p^\# - r)r + pr = \dim \theta$, and $\hat{\mathcal{H}}$ and $\hat{\mathcal{I}}$ are as defined above, evaluated at $\gamma = \hat{\gamma}$. In the expressions above, the dependence of the pseudo-log-likelihood function ℓ on Σ is suppressed, and derivatives with respect to the variance parameters are not taken into account, because of the asymptotic block-diagonality of the Hessian matrix with respect to the regression and variance parameters.

In Theorem 2 we detail the asymptotic null distribution of the Wald statistic, W_T of (17). This follows an important preparatory result relating to the scaled partial sum of the PML residuals from the estimation of (1), $\hat{\varepsilon}$, given in Lemma 3.

Lemma 3. Under the conditions of Lemma 2, and as $T \to \infty$,

$$\hat{V}_T(u) := T^{-1} \sum_{t=1}^{[Tu]} \hat{\varepsilon}_t \hat{\varepsilon}_t' \xrightarrow{D} \int_0^u \Sigma(s) ds =: V(u),$$

uniformly in $u \in [0, 1]$.

Theorem 2. Under the conditions of Lemma 2, and under H_0, and as $T \to \infty$,

$$W_T \xrightarrow{D} W_\infty(\beta) + Z'Z =: W_\infty$$

(18)

where

$$W_\infty(\beta) := \left(R_\beta (I_r \otimes K^{-1}) \text{vec} \int_0^1 G_c(s) dM_\alpha(s)' \right)'$$

$$\times \left(R_\beta (I_r \otimes K^{-1}) \left(\text{vec} \int_0^1 G_c(s) dM_\alpha(s)' \right) (1) (I_r \otimes K^{-1}) R_\beta \right)^{-1}$$

$$\times R_\beta (I_r \otimes K^{-1}) \text{vec} \int_0^1 G_c(s) dM_\alpha(s)'.$$
and where $K := \int_0^1 G_c(s)G_c(s)'ds,$

$$\left\langle \int_0^u \text{vec} G_c(s) dM_\alpha(s)' \right\rangle (u) = \int_0^u \left[(M_\alpha(s) \otimes G_c(s)G_c(s)') \right] ds,$$

with $\langle M_\alpha(s) \rangle = (\alpha'\Sigma^{-1}\alpha)^{-1} \alpha'\Sigma^{-1}\Sigma(s)\Sigma^{-1}\alpha(\alpha'\Sigma^{-1}\alpha)^{-1},$ and where $Z \sim N(0, I_{r_\alpha}),$ independent of $(G_c, M_\alpha).$

Remark 3.8. It is seen from the result in (18) that, in contrast to the PLR test, the PML-based Wald test leads to standard asymptotic χ^2 inference on the adjustment parameters $\alpha.$ However, inference on β is in general not mixed Gaussian in the limit, because the processes G_c and M_α which appear in $W_\infty(\beta)$ are in general not independent, as discussed in Remark 3.4. However, and in contrast to the component $LR_\infty(\beta)$ appearing in the asymptotic null distribution of the LR$_T$ statistic, the quadratic form in $W_\infty(\beta)$ now involves a weight matrix that is the inverse quadratic variation of the stochastic integral. This implies that $W_\infty(\beta)$ will be $\chi^2(r_\beta)$ distributed in the special case where G_c and M_α are independent, as happens in the “common volatility shocks” example outlined in Remark 3.5.

For completeness, we summarize the asymptotic null distribution of the W_T statistic in the case where G_c and M_α are independent in following corollary.

Corollary 1. Under the conditions of Lemma 2, and if $\alpha'_\perp \Sigma(u)\Sigma^{-1}\alpha = 0$ for all $u \in [0, 1],$ then under H_0 and as $T \to \infty,$ $W_T \xrightarrow{w} \chi^2(r_\beta + r_\alpha).$

We conclude this section by providing a theorem detailing the consistency of the restricted PML estimators, which will subsequently be needed to prove the consistency of our proposed method of bootstrap inference outlined in the next section.

Theorem 3. Under the conditions of Lemma 2, under $H_0,$ and as $T \to \infty,$

$$\tilde{\beta}_2 - \beta_2 = O_p(T^{-1}), \quad \tilde{\rho}_1 - \rho_1 = O_p(T^{-1/2}), \quad \tilde{\alpha} - \alpha = O_p(T^{-1/2}), \quad \tilde{\Psi} - \Psi = O_p(T^{-1/2}).$$

Furthermore, denoting the PML residuals from the estimation of (1) under H_0 by $\tilde{\epsilon}_t,$

$$\tilde{V}_T(u) := T^{-1} \sum_{t=1}^{[Tu]} \tilde{\epsilon}_t \tilde{\epsilon}_t' \xrightarrow{p} V(u),$$

uniformly in $u \in [0, 1].$

4 Bootstrap Inference

In this section we outline our proposed wild bootstrap-based implementations of the PLR and Wald tests from Section 3. We will provide sufficient conditions for the wild bootstrap implementations of the PLR and Wald tests to be asymptotically valid under heteroskedasticity.
of the form given in Assumption 2, although as we will show in some cases these conditions will need to be strengthened somewhat.

The following notation will be used throughout this section: \(P^* \) and \(E^* \) respectively denote the probability and expectation conditional on the realization of the original sample. Moreover, for a given sequence \(X_T^* \) computed on the bootstrap data, with the notations \(X_T^* = o_p(1) \), in probability, and \(X_T^* \overset{p}{\to} X \) we mean that \(P^*(|X_T^*| > \epsilon) \to 0 \) in probability and \(P^*(|X_T^* - X|) > \epsilon) \to 0 \) in probability, respectively, for any \(\epsilon > 0 \) as \(T \to \infty \). Finally, \(\overset{w}{\to}_p \) denotes weak convergence in probability (Giné and Zinn (1990); Hansen (1996)); that is, \(X_T^* \overset{w}{\to}_p X \) if \(\sup_{x \in \mathbb{R}} |P^*(X_T \leq x) - P(X \leq x) | \to_p 0 \).

4.1 Wild Bootstrap Algorithms

We first outline our proposed algorithm which draws on the wild bootstrap principle; see, *inter alia*, Wu (1986), Liu (1988) and Mammen (1993). The bootstrap algorithm we propose is based on the restricted PML parameter estimates obtained by estimating the model in (1) under the null hypothesis \(H_0 \) of (5), as outlined in 3. More specifically, let \(\tilde{\theta} := \{\tilde{\alpha}, \tilde{\beta}, \tilde{\rho}_1, \tilde{\Psi}^#, \tilde{\mu}_2\} \) denote the restricted PML estimators of \(\theta := \{\alpha, \beta, \rho_1, \Psi^#, \mu_2\} \), define \(\tilde{\beta}^# := \left(\tilde{\beta}^#, \tilde{\rho}_1^\prime \right)^\prime \). Recall that \(\tilde{\varepsilon}_t := Z_{it} - \tilde{\alpha}\tilde{\beta}^#Z_1 - \tilde{\Psi}^#Z_{2t} \), with \(Z_{it}, i = 0, 1, 2 \), as defined in Section 2.2, denote the corresponding PML residuals from the estimation of (1) under \(H_0 \).

Algorithm 1 (Wild Bootstrap):

(i) Estimate model (1) using Gaussian PML under the null hypothesis yielding the estimates \(\tilde{\theta} \), together with the corresponding restricted PML residuals, \(\tilde{\varepsilon}_t \), as defined above.

(ii) Check that the equation \(|\hat{A}(z)| = 0 \), with \(\hat{A}(z) := (1 - z) I_p - \tilde{\alpha}\tilde{\beta}^#z - \sum_{i=1}^{k-1} \hat{\Gamma}_i z (1 - z) \), has roots either equal to 1 or outside the unit circle. If so, proceed to step (iii).

(iii) Compute the re-centered residuals \(\tilde{\varepsilon}_{c,t} := \tilde{\varepsilon}_t - T^{-1} \sum_{i=1}^{T} \tilde{\varepsilon}_t \) and construct the bootstrap errors \(\varepsilon_t^* := \tilde{\varepsilon}_{c,t}w_t \), where \(w_t, t = 1, \ldots, T \), is an i.i.d. sequence with \(E(w_t) = 0, E(w_t^2) = 1 \), and \(E(w_t^4) < \infty \).

(iv) Construct the bootstrap sample \(\{X_t^*\} \) from the recursion

\[
\Delta X_t^* = \tilde{\alpha}\tilde{\beta}^#X_{t-1}^* + \sum_{j=1}^{k-1} \hat{\Gamma}_j \Delta X_{t-j}^* + \tilde{\alpha}\tilde{\rho}_1 D_{1t} + \tilde{\mu}_2 D_{2t} + \varepsilon_t^*, \quad t = 1, \ldots, T, \tag{19}
\]

with the \(T \) bootstrap errors \(\varepsilon_t^* \) generated in step (ii) and with initial values \(X_t^* = X_t \) for \(t = -k + 1, \ldots, 0 \).

(v) Using the bootstrap sample, \(\{X_t^*\} \), compute the bootstrap test statistic \(S_T^* \), where \(S_T^* \) generically denotes either the PLR or the Wald statistic, as detailed in section 3.1. Define the corresponding \(p \)-value as \(P_T^* := 1 - G_T^*(S_T^*) \) with \(G_T^*(\cdot) \) denoting the conditional (on the original data) cumulative density function (cdf) of \(S_T^* \).
(vi) The wild bootstrap test of H_0 at level ξ rejects if $P^*_T \leq \xi$.

Remark 4.1. Step (ii) of Algorithm 1 checks whether the bootstrap data generating process satisfies the $I(1,r)$ conditions (cf. Assumption 1). Although this will always be true in large samples, see Theorem 3, this could fail with a finite sample size. Consequently, step (ii) checks that the bootstrap samples are indeed $I(1)$ with co-integration rank r. Analogous conditions are also checked in the bootstrap algorithms for testing the co-integrating rank proposed in Swensen (2006) and in Cavaliere, Rahbek and Taylor (2010a,b, 2012, 2014).

Remark 4.2. In the context of stationary data, it is often seen in the wild bootstrap literature (for a review, see Davidson and Flachaire (2008)) that improved bootstrap accuracy can be achieved by generating the pseudo-data according to an asymmetric distribution with $E(w_t) = 0$, $E(w^2_t) = 1$ and $E(w^3_t) = 1$ (Liu, 1988). A well-known example of this is the Mammen (1993) distribution: $P(w_t = -0.5(\sqrt{5}-1)) = 0.5(\sqrt{5}+1)/\sqrt{5} =: \pi$, $P(w_t = 0.5(\sqrt{5}+1)) = 1 - \pi$. Two other commonly used distributions are the two-point distribution $P(w_t = -1) = P(w_t = 1) = 0.5$ and an i.i.d. $N(0,1)$ sequence. The large sample properties of the resulting bootstrap tests are not affected by this choice. In simulations we found that these three distributions gave very similar small sample performances, and so the results presented in Section 5 relate to the use of the $N(0,1)$ distribution for w_t.

Remark 4.3. In step (i) of Algorithm 1 the estimates of the parameters characterizing (1), which are then used in constructing the bootstrap sample data in steps (ii) and (iii), are obtained under the restriction of the null hypothesis, H_0 of (5). As suggested in Fachin and Omtzigt (2006), it would also be possible to estimate these parameters without imposing the null hypothesis (i.e., using the unrestricted PML estimators detailed in section 3.1 and in Theorem 1), and to subsequently calculate a bootstrap test statistic for the hypothesis $R\theta = R\hat{\theta}$. Unreported simulations indicate that the bootstrap based on restricted estimates is largely preferred. Hence, throughout this section for economy of discussion we will only explicitly discuss the bootstrap based on restricted estimates.

Remark 4.4. In practice, the cdf $G^*_T(\cdot)$ required in step (iv) of Algorithm 1 will be unknown, but can be approximated in the standard way through numerical simulation. This is achieved by generating B (conditionally) independent bootstrap statistics, S^*_T,b, $b = 1, \ldots, B$, computed as in Algorithm 1 above. The simulated bootstrap p-value for S_T, for example, is then computed as $\tilde{P}_T := B^{-1}\sum_{b=1}^B 1(S^*_T,b > S_T)$, and is such that $\tilde{P}_T \overset{a.s.}{\rightarrow} P^*_T$ as $B \rightarrow \infty$. The choice of B is discussed by, *inter alia*, Andrews and Buchinsky (2000) and Davidson and MacKinnon (2000).

\[\square \]

4.2 Bootstrap Asymptotic Theory

In this section we provide results on the asymptotic properties of the bootstrap PLR and Wald statistics from Algorithm 1. In doing so we establish the conditions under which the bootstrap
tests the first-order asymptotically valid.

For some aspects of the bootstrap asymptotic theory to hold we will need to strengthen Assumption 2 in one of two possible ways. The first of these is to restrict z_t (and hence ε_t) to have finite 8^+ moments. This is stated in Assumption 2′.

Assumption 2′. Assumption 2 holds with (b) iv. replaced by the following:

(b) iv. $\sup T \rightarrow \infty$ for some $r > 2$.

The second additional restriction rules out leverage effects in the conditional variance of z_t; that is, correlation between the conditional variance h_t and the past shocks $z_{t-i}z'_{t-j}$ ($i \neq j = 1, 2, \ldots$), see Gonçalves and Kilian (2004). This is formally stated in Assumption 2′.

Assumption 2′. Assumption 2 holds with (b) iii. replaced by the following:

(b) iii. $T^{-1} \sum_{t=1}^{T} (h_t \otimes z_{t-i}z'_{t-j}) \xrightarrow{p} E(z_t z'_{t} \otimes z_{t-i}z'_{t-j}) = \tau_{ij}$ for $i, j \geq 1$, with $\sup_{i, j \geq 1} \left\| \tau_{ij} \right\| = \tau < \infty$ and $\tau_{ij} = 0$ for all $i \neq j$.

Before detailing the large sample behaviour of the bootstrap PLR and Wald statistics, we first need to establish two preparatory Lemmas. The first of these is the counterpart of Lemma 1 for the wild bootstrap shocks.

Lemma 4. Let the conditions of Lemma 2 hold, and let ε^*_t be defined as in step (iii) of Algorithm 1. Then, as $T \rightarrow \infty$,

$$
\left(M^*_T(\cdot), \int_0^1 M^*_T(s) dM^*_T(s)' \right) := \left(\frac{1}{T^{1/2}} \sum_{t=1}^{T} \varepsilon^*_t, \frac{1}{T} \sum_{t=1}^{T} \left(\sum_{i=1}^{T-1} \varepsilon^*_i \right) \varepsilon^*_t \right)
$$

$$
\xrightarrow{w^*} \left(M(\cdot), \int_0^1 M(s) dM(s)' \right),
$$

where $M(\cdot) := \int_0^1 \sigma(s) dW(s)$ is a p-variate continuous martingale defined in terms of the p-variate Brownian motion $W(\cdot)$.

Remark 4.4. Lemma 4 establishes that the two scaled cumulated functions considered of the wild bootstrap errors can replicate the limiting process of the corresponding quantities formed from the original shocks, ε_t; cf. Lemma 1. Notice, however, that for this this result to hold Assumption 1 must be satisfied, since this is needed to ensure that the restricted PML estimate, $\hat{\theta}$, from (1) is consistent, as demonstrated in Theorem 3.

The next lemma, which is the bootstrap counterpart of Lemma 2, characterises the asymptotic behaviour of the three bootstrap sufficient statistics, S^*_0, $S^*_1 = S^*_{01}$ and S^*_1. These results will subsequently be used in determining the limiting behaviour of the bootstrap PLR statistic.

Lemma 5. Let X^*_t be generated as in Algorithm 1 and let $B_T := \text{diag}(T^{-1/2} \tilde{\beta}_1, 1)$ and $S'_{11} := S^*_1 - S^*_1 \tilde{\beta}^\# \alpha'$, with $S^*_{11}, i, j = 0, 1$ defined analogously to (7) but for the bootstrap data. Then, under the conditions of Lemma 2, as $T \rightarrow \infty$,

$$
\tilde{\beta}^\# S^*_0 \xrightarrow{p} \tilde{\beta}^\# \Sigma_{\beta 0}, \quad S^*_1 \xrightarrow{p} \Sigma_{\beta \beta}, \quad S^*_0 p^*_{\ell} \Sigma_{\beta 0}, \quad S^*_0 \xrightarrow{p} \Sigma_{00}.
$$

(20)
where \(\Sigma_{\beta 0}, \Sigma_{00} \) and \(\Sigma_{\beta \beta} \) are as previously defined. Furthermore,

\[
(B_T^t S_{11}^t B_T, T^{1/2} B_T^t S_1) \xrightarrow{w} \mathcal{N}_p \left(\int_0^1 G(s)G(s)'ds, \int_0^1 G(s)dM(s)' \right),
\]

where \(G(u) := (M(u)'C'\beta \perp, 1)' \), and

\[
B_T^t S_{11}^t \beta \perp \xrightarrow{w} \mathcal{N}_p 0.
\]

Finally, if Assumption 2 is strengthened by Assumption 2', then

\[
T^{1/2} \beta \perp \# S_{1e}^t \xrightarrow{w} \mathcal{N}(0, \Omega^\dagger),
\]

where \(\Omega^\dagger \) is a positive definite matrix, defined in the Appendix.

Remark 4.5. It is useful to compare the asymptotic distributions involving \(S_{1e}^t \) in Lemma 5 with the corresponding distributions in Lemma 2. In the non-stationary directions of the system, both \((B_T^t S_{11}^t B_T, T^{1/2} B_T^t S_{1e}) \) and its bootstrap counterpart \((\tilde{B}_T^t S_{11}^t B_T, T^{1/2} \tilde{B}_T^t S_{1e}) \) have the same limiting distributions; compare (12) and (21). These distributions depend on the time series behaviour of the unconditional volatility of the shocks (through the function \(\sigma(\cdot) \) of Assumption 2(a)) but not on the dynamics of the conditional volatility of \(\varepsilon_t \). Conversely, in the stationary directions of the system the wild bootstrap cannot, in general, replicate the correct limiting distributions. For example, the limiting variance of \(T^{1/2} \beta \perp \# S_{1e}^t \), which is given by \(\Omega^\dagger \) (see equation (23)), is not equivalent to the limiting variance \(\Omega \) of \(T^{1/2} \beta \perp \# S_{1e}^t \) (see equation (11)). This disparity occurs because \(\Omega \) depends on the cross moments, \(E(\varepsilon_t \varepsilon_t' \otimes \varepsilon_{t-i} \varepsilon_{t-j}') = \tau_{ij} \), which the wild bootstrap cannot replicate since, conditionally on the sample data,

\[
E^*(\varepsilon_i' \varepsilon_i' \otimes \varepsilon_{t-i} \varepsilon_{t-j}') = E^*(\tilde{\varepsilon}_t \tilde{\varepsilon}_t' w_t^2 \otimes \tilde{\varepsilon}_{t-i} \tilde{\varepsilon}_{t-j}' w_{t-i} w_{t-j})
\]

\[
= (\tilde{\varepsilon}_t \tilde{\varepsilon}_t' E(w_t^2)) \otimes (\tilde{\varepsilon}_{t-i} \tilde{\varepsilon}_{t-j}' E(w_{t-i} w_{t-j})) = 0
\]

for all \(i \neq j \). Therefore, it is anticipated that bootstrap PLR test statistics for hypotheses that include restrictions on \(\alpha \), and which therefore involve \(\beta \perp \# S_{1e}^t \), will not be asymptotically pivotal under the null unless Assumption 2'' is additionally satisfied.

We are now in a position to detail the asymptotic null properties of the wild bootstrap PLR statistic from Algorithm 1.

Theorem 4. Let the conditions of Lemma 5 hold. Then, as \(T \to \infty \):

(a) the asymptotic distribution of \(\hat{\beta}_2^* \), \(\hat{\rho}_1^* \) and \(\hat{\alpha}^* \) is given by

\[
\left(\frac{T (\hat{\beta}_2^* - \beta_2) \quad T^{1/2} (\hat{\rho}_1^* - \rho_1)}{T^{1/2} (\hat{\rho}_1^* - \rho_1)} \right) \xrightarrow{w} \mathcal{N}_p \left(\int_0^1 G_c(s)G_c(s)'ds, \int_0^1 G_c(s)dM_c(s)' \right),
\]

where \(G_c(u) = \text{diag}(\beta \perp_1 (\beta \perp_1)'^{-1}, 1)G(u) \) and \(M_c(u) = (\alpha' \Sigma^{-1} \alpha)^{-1} \alpha' \Sigma^{-1} M(u) \).

If, in addition Assumption 2 is strengthened by Assumption 2', then

\[
T^{1/2} (\hat{\alpha}^* - \alpha)' \xrightarrow{w} \mathcal{N}(0, [I_p \otimes \Sigma_{\beta \beta}^{-1}] \Omega^\dagger [I_p \otimes \Sigma_{\beta \beta}^{-1}])
\]
(c) Under H_0, and if Assumption 2 is strengthened by Assumption 2', then, as $T \to \infty$:

$$\text{LR}_T^* \xrightarrow{w} \mathcal{LR}_\infty(\beta) + \mathcal{LR}_\infty^\perp(\alpha)$$

where $\mathcal{LR}_\infty(\beta)$ is as defined in (15) and

$$\mathcal{LR}_\infty^\perp(\alpha) := Z \left(R_\alpha [\Sigma \otimes \Sigma^{-1}_\beta] R_\alpha \right)^{1/2} \left(R_\alpha [I \otimes \Sigma^{-1}_\beta] R_\alpha \right)^{-1/2} Z,$$

where $Z \sim N(0, I_{r_\alpha})$, independent of (G_c, M_α).

For general linear hypotheses on α and $\beta^\#$, the limiting null distribution of the bootstrap PLR statistic LR_T^* from Algorithm 1 can be seen to depend on the limiting variance matrix Ω^\dagger, rather than on the limiting variance matrix Ω as is the case for the original LR_T statistic; cf. part (c) of Theorem 1. Consequently, the bootstrap PLR test will not have the same first-order limiting null distribution as the original PLR statistic unless $\Omega^\dagger = \Omega$. This equality holds under the condition in Assumption 2’ that $\tau_{ij} = 0$ for all $i \neq j$. Where this holds, $\mathcal{LR}_\infty^\perp(\alpha)$ and $\mathcal{LR}_\infty(\alpha)$ coincide, which means that $\text{LR}_T^* \xrightarrow{w} \mathcal{LR}_\infty(\beta)$. As a consequence, the bootstrap PLR test is, in general, only asymptotically valid if Assumption 2’ holds. For completeness we formalise this result in the following corollary, which gives the conditions under which the bootstrap PLR test is guaranteed to be first-order asymptotically valid. Here P_T^* denotes the (wild bootstrap) p-value associated with the PLR test statistic.

Corollary 2. If the conditions of Lemma 5 hold, strengthened by Assumptions 2’ and 2”, then, under H_0, $P_T^* \xrightarrow{w} U[0,1]$, where $U[0,1]$ denotes a uniform distribution on $[0,1]$.

Remark 4.6. The result in Corollary 2 can be shown to hold under weaker conditions if the null hypothesis being tested involves the co-integrating vectors $\beta^\#$ only. In this case it is seen from (24) that $\text{LR}_T^* \xrightarrow{w} \mathcal{LR}_\infty(\beta)$, which does not depend on τ_{ij}. Hence, the result in Corollary 2 holds without the need for the extra conditions in Assumption 2” ($\tau_{ij} = 0$ for $i \neq j$) to hold. Indeed, as can be seen from the proof of Theorem 4, Assumption 2’ (finite 8^+ order moments) is also not needed to hold for Corollary 2 to hold when testing on $\beta^\#$ alone.

Remark 4.7. Under the alternative hypothesis, it is proved in Cavaliere, Nielsen and Rahbek (2013) for the i.i.d. bootstrap and under the assumption that the shocks ε_t are i.i.d., that the bootstrap PLR statistic is of O_p^* (1), in probability. An immediate consequence of this result is that the bootstrap PLR test is consistent, due to the divergence of the standard LR$_T$ statistic when the null hypothesis does not hold. Their result can be extended to our framework by using the asymptotic results given here.

We conclude this section by detailing the asymptotic null distribution of the bootstrap Wald statistic, W_T^*, from Algorithm 1. Here we let P_T^* denote the (wild bootstrap) p-value associated with the Wald test statistic.
Theorem 5. Let the conditions of Lemma 5 hold, strengthened by Assumptions 2'. Then under H_0, as $T \to \infty$:

$$W_T^* \overset{w}{\to} p \ W_\infty$$

where W_∞ is as given in (18). Consequently, $P_T^* \overset{w}{\to} U[0,1]$, where P_T^* denotes the (wild bootstrap) p-value associated with the PML-based Wald statistic, W_T.

Remark 4.8. In contrast to the bootstrap PLR test, it is seen from Theorem 5 that the wild bootstrap implementation of the Wald test does not require that Assumption 2'' holds. □

5 Monte Carlo Simulations

In this section, using Monte Carlo simulation methods, we compare the finite sample performance of the asymptotic PLR and Wald tests from Section 3 with the corresponding wild bootstrap tests from Section 4. For comparative purposes, we also report results for standard i.i.d. bootstrap versions of the PLR and Wald tests. We note that the i.i.d. bootstrap statistics are first order asymptotic equivalent to the standard PLR and Wald tests and hence the i.i.d. bootstrap tests are asymptotically valid if and only if the corresponding asymptotic tests are valid.

Our simulation DGP is the VAR(1) process of dimension $p = 2, 3$ and 4, with co-integrating rank $r = 1$ and

$$\Delta X_t = \alpha \beta' X_{t-1} + \varepsilon_t, \quad \alpha = \begin{pmatrix} -0.2 \\ 0_{p-1} \end{pmatrix}, \quad \beta = \begin{pmatrix} 1 \\ 0_{p-1} \end{pmatrix},$$

where 0_m denotes an m-vector of zeroes. The process is initialised at $X_0 = 0$ and we consider sample sizes of $T = 100, 200$ and 400. A restricted constant term is included in the estimation. All experiments are run over 10,000 Monte Carlo replications using $B = 499$ bootstrap repetitions. In the context of Algorithm 1, any samples violating the root check conditions in step (ii) are discarded. For each bootstrap procedure the observed (rounded) frequency of such violations was below 0.3% for $T = 100$, and below 0.0% for the larger sample sizes considered.

As in Section 2, the errors are defined as $\varepsilon_t = \sigma_t z_t$, z_t being a martingale difference sequence with unit unconditional variance matrix. Three versions of the unconditional variance matrix $\Sigma_t = \sigma_t \sigma_t'$ are considered. Specifically, with ι_m denoting an m-vector of ones, we consider

$$\Sigma_t^{(1)} = (1 - \rho) I_p + \rho \iota_p \iota_p' =: \bar{\Sigma}$$
$$\Sigma_t^{(2)} = v_t \bar{\Sigma}$$
$$\Sigma_t^{(3)} = (v_t - \rho) I_p + \rho \iota_p \iota_p' = (v_t - 1) I_p + \bar{\Sigma}$$

which we label Cases 1, 2 and 3, respectively. In each case, we set $\rho = 0.4$ (implying a moderate degree of correlation between the components of ε_t) and

$$v_t = 0.5 \mathbb{I}_{[0,0.8)} \left(\frac{T}{T} \right) + 3 \mathbb{I}_{[0.8,1]} \left(\frac{T}{T} \right),$$

where \mathbb{I}_A denotes the indicator function for set A. This choice of v_t reflects the fact that σ_t is bounded above by 1.5. The simulation results are summarised in Table 5.1.
such that the time-varying volatility factor \(v_t \) displays a late positive shift. Notice that the volatility factor is normalized such that \(\bar{v} := \int_0^1 v(s) \, ds = 1 \), which implies that \(\bar{\Sigma}^{(i)} = \bar{\Sigma} \), \(i = 1, 2, 3 \), where \(\bar{\Sigma}^{(i)} \) is defined analogously to the definition of \(\bar{\Sigma} \) in Lemma 2. For \(\Sigma_t = \Sigma_t^{(1)} \), the errors \(\varepsilon_t \) are unconditionally homoskedastic. For \(\Sigma_t = \Sigma_t^{(2)} \), a common time-varying factor affects the whole unconditional variance matrix. In this case, we have that \(\alpha' \Sigma(u) \bar{\Sigma}^{-1} \alpha = 0 \), and the estimator \(\hat{\beta}_2 \) of the co-integrating vector is asymptotically mixed Gaussian; cf. Remark 3.5. Finally, for \(\Sigma_t = \Sigma_t^{(3)} \) there are no common unconditional volatility factors, and so \(\hat{\beta}_2 \) is no longer mixed Gaussian. Regarding \(z_t \), this is generated as the linear map

\[z_t = \Lambda e_t \]

where \(\Lambda \) is an invertible \(p \times p \) matrix which is constant over time, with the \(p \) components of \(e_t := (e_{1t}, ..., e_{pt})' \) independent across \(i = 1, ..., p \). Without loss of generality, we set \(\Lambda = I_p \).

Each of the \(p \) components \(e_{it} \) is specified to follow a stationary GARCH(1,1) process driven by standard normal innovations; that is, \(e_{it} = h_{it}^{1/2} \xi_{it}, i = 1, \ldots, p, \) where \(\xi_{it} \) is i.i.d. \(N(0,1) \), independent across \(i \), and \(h_{it} = (1 - d_0 - d_1) + d_0 e_{i,t-1}^2 + d_1 h_{i,t-1}, t = 0, \ldots, T \). Results are reported for \((d_0, d_1) \in \{(0.0,0.0), (0.1,0.8)\} \); notice that for the former the errors are i.i.d. Gaussian. In both of these cases, \(\tau_{ij} = 0 \) for all \(i \neq j \); cf. Assumption 2 (b).

We report results for tests of the following hypotheses

\[H_{0\beta} : \beta_2 = 0, \]
\[H_{0\alpha} : \alpha_2 = 0, \]

where \(\beta_2 = (0_{p-1} : I_{p-1}) \beta \) and \(\alpha_2 = (0_{p-1} : I_{p-1}) \alpha \), together with tests of the joint hypothesis

\[H_0 = H_{0\beta} \cap H_{0\alpha}. \]

In each case, we report empirical rejection frequencies [ERFs] for the tests which reject for large values of the PLR and Wald statistics when compared to: (i) asymptotic (\(\chi^2 \)) critical values; (ii) i.i.d. bootstrap critical values; (iii) wild bootstrap critical values, where the bootstrap errors in step (ii) of Algorithm 1 are instead obtained by i.i.d. sampling from the recentered \(\{\varepsilon_t\}_{t=1}^T \).

All tests are run at the nominal 5% significance level.

Insert Tables 1–3 about here

Results are reported in Tables 1, 2 and 3 for \(p = 2, p = 3 \) and \(p = 4 \), respectively. Entries in italics correspond to tests which are not asymptotically valid; cf. Sections 3 and 4. The following observations can be drawn from these results:

1. The results highlight the tendency for significant oversize in the standard asymptotic PLR and Wald tests, even in cases where these are asymptotically valid. For example, in Case 1 (i.i.d.) for \(p = 3 \) and \(T = 100 \), the ERF of the asymptotic tests range from 13.4% to
49.0%. Even for $T = 400$, the asymptotic tests on β have ERFs in excess of 10%. For cases where the asymptotic tests are valid, both the i.i.d. and wild bootstrap versions of these perform well, with ERFs significantly closer to the 5% nominal level than is seen for the asymptotic tests.

2. In general, where the tests are known to be asymptotically valid, the observed size distortions are seen to decrease with the sample size T, as would be expected.

3. Other things being equal, the observed size distortions (of both the asymptotically valid and invalid tests) display a clear dependence on the dimension of the system, p. In particular, these tend to increase significantly with p. For example, the asymptotic PLR test for H_{03} in Case 3 with no GARCH, for $T = 100$ displays an ERF of 22.5% for $p = 2$, rising to 43.4% for $p = 3$ and 65.3% for $p = 4$. In this case, the ERFs of the corresponding wild bootstrap PLR test are 6.1% for $p = 2$, 7.6% for $p = 3$ and 9.4% for $p = 4$.

4. Of the bootstrap tests considered, the wild bootstrap PLR test appears, on average, to perform best, particularly so for the joint test of H_0. For example, for $p = 4$ in Case 2 with no GARCH and $T = 100$ ($T = 400$), the wild bootstrap PLR test has an ERF of 5.7% (5.5%) while the wild bootstrap Wald test has an ERF of 10.3% (6.3%). In this example, the invalidity of the i.i.d. bootstrap PLR test is clearly demonstrated, while the i.i.d. bootstrap Wald test has an ERF of 11.2% for $T = 100$ reducing only to 8.1% for $T = 400$.

5. A comparison of the results for the i.i.d. and the GARCH(1,1) cases suggests little apparent differences between the two. This is to be expected for tests of H_{03}, since these tests are asymptotically valid in both cases. Only very small differences are seen in those tests involving H_{0a} which are asymptotically invalid under GARCH dynamics, suggesting that, at least for the GARCH(1,1) model considered here, the impact on finite sample behaviour is limited.

6 Empirical Application

In this section we apply the methods developed in the previous sections to an empirical model of the term structure of interest rates in the US. We use monthly observations over the period 1970:1–2009:12 on government zero yields $y_t(\tau)$ for maturities $\tau = 3, 12, 36, 60, 120$ (measured in months), and hence we consider a VAR model for $X_t = (y_t(3), y_t(12), y_t(36), y_t(60), y_t(120))'$. The zero yields have been constructed from the CRSP un-smoothed Fama and Bliss (1987) forward rates, see Diebold and Li (2006). The maturities have been chosen such that the dimension of the VAR model stays manageable ($p = 5$), and yet a reasonable coverage of the short, middle and long end of the term structure is obtained.
The econometric analysis of term structure data in recent years has been dominated by factor models, in particular the dynamic Nelson-Siegel model of Diebold and Li (2006). In this model, the time-series behaviour of \(y_t(\tau) \) is described by the sum of level, slope and curvature factors (\(f_{1t} \) through \(f_{3t} \)), each multiplied by their factor exposures:

\[
y_t(\tau) = f_{1t} + \frac{1 - e^{-\lambda \tau}}{\lambda \tau} f_{2t} + \left(\frac{1 - e^{-\lambda \tau}}{\lambda \tau} - e^{-\lambda \tau} \right) f_{3t},
\]

where the shape parameter \(\lambda \) could be time-varying but in practice is often taken as constant (Diebold and Li (2006) set \(\lambda = 0.0609 \)). An idiosyncratic error term is implicitly needed to fit the model to the data.

Depending on the unit root properties of \(f_{1t} \), \(f_{2t} \) and \(f_{3t} \), the model has clear co-integration implications. If all three factors have a unit root (and are not co-integrated), then a VAR model of dimension \(p = 5 \) should contain 3 common trends and hence \(r = p - 3 = 2 \) co-integrating relations. If the level and slope factors have a unit root, but the curvature factor is stable, then \(r = 3 \); this is found by Diebold and Li (2006). Finally, if only the level factor has a unit root, then \(r = 4 \) and \(\beta' \perp X_t \) consists of spreads \(y_t(\tau) - y_t(3) \) for \(\tau > 3 \). This hypothesis also arises as the so-called (weak-form) expectations hypothesis of interest rates; see Campbell and Shiller (1987).

We estimate a VAR(2) model with a constant term for \(X_t \), using observations on the first two months of 1970 as starting values; hence, the estimation sample is 1970:3–2009:12, with \(T = 478 \). The lag order \(k = 2 \) is selected by the Hannan-Quinn information criterion; the Schwarz (Bayesian) information criterion selects \(k = 1 \), but a first-order VAR model displays some rather large first-order residual autocorrelation coefficients. The VAR(2) has much smaller, though apparently significant residual autocorrelation. However, this significance may be partly driven by the time-varying volatility; see Godfrey and Tremayne (2005). The Lagrange-multiplier \(F \)-tests for first- and second-order residual (vector) autocorrelation in the VAR(2) model have asymptotic \(p \)-values of 0.004 and 0.005; however, the corresponding wild bootstrap \(p \)-values are 0.32 and 0.42, respectively. This already illustrates the large impact that non-stationary volatility may have on the validity of standard asymptotic inference methods, when applied to these data.

To visualise the possible presence of non-stationary volatility, we plot time series of VAR(2) residuals, as well as the corresponding variance profiles, in Figure 1. The variance profiles, see Cavaliere and Taylor (2007), are plots of \(\hat{V}_{T,ii}(u)/\hat{V}_{T,ii}(1) \) against \(u \in [0, 1] \), where \(\hat{V}_{T,ii}(u) := T^{-1} \sum_{t=1}^{[T u]} \hat{e}_{it}^2 \). Deviations of this function from the diagonal (45 degree) line indicate the presence of persistent changes in volatility. We focus on the first, third and fifth residual, corresponding to the 3-month, 3-year and 10-year yields. In all series we may clearly distinguish a period of relatively high volatility around the late 1970s and early 1980s, and a period of low volatility since the mid-1980s (associated with the Great Moderation). This pattern is most pronounced in the short rate residuals, and dampened in the longer-maturity residuals.

Insert Figure 1 about here
Table 4 displays the trace test statistics for co-integration rank (with restricted constant), together with asymptotic, standard bootstrap and wild bootstrap p-values. The asymptotic p-values are obtained using the procedure given in MacKinnon, Haug and Michelis (1999); the standard (sieve-type) bootstrap follows Cavaliere, Rahbek and Taylor (2012), whereas the wild bootstrap procedure is implemented as in Cavaliere, Rahbek and Taylor (2014); in all cases we take $B = 999$ bootstrap replications. The standard bootstrap p-values are included to assess to what extent the difference between the asymptotic and wild bootstrap results are due to the correction for non-stationary volatility, or due to finite sample problems only.

We observe that there is strong evidence against $r = 0$ or $r = 1$, regardless of the p-value method used. The asymptotic and standard bootstrap p-values also lead us to reject $r = 2$ (at the 5% level), but the wild bootstrap leads to weaker evidence for $r \geq 3$. Rejection of $r = 3$ against $r \geq 4$ is not supported by any of the methods at conventional significance levels, although the asymptotic p-values would lead us to consider this possibility more seriously than the bootstrap p-values. We conclude that a co-integration rank of $r = 3$ is supported by the data (although only at the 10% significance level for the wild bootstrap procedure). In the remainder of this section, we analyse some hypotheses on the co-integration parameters β and adjustment coefficients α, first in the overspecified model with $r = 4$, and subsequently in the preferred model with $r = 3$.

The unrestricted (but normalised) estimates of β and α in the model with $r = 4$, together with the PML standard errors, are as follows:

$$
\hat{\beta} = \begin{pmatrix}
-1.02_{(0.03)} & -0.99_{(0.07)} & -0.95_{(0.10)} & -0.87_{(0.12)} \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}, \quad \hat{\alpha} = \begin{pmatrix}
0.11_{(0.24)} & -0.15_{(0.49)} & 0.22_{(0.48)} & -0.07_{(0.14)} \\
0.48_{(0.16)} & 0.40_{(0.34)} & -0.13_{(0.37)} & -0.02_{(0.12)} \\
0.30_{(0.12)} & -0.02_{(0.26)} & 0.11_{(0.28)} & -0.02_{(0.09)} \\
-0.34_{(0.12)} & 0.19_{(0.24)} & -0.10_{(0.24)} & 0.02_{(0.08)} \\
-0.26_{(0.11)} & -0.06_{(0.22)} & 0.20_{(0.21)} & -0.09_{(0.07)}
\end{pmatrix}.
$$

We observe that $\hat{\beta}$ is fairly close to the theoretical value implied by the expectations hypothesis, or equivalently by the hypothesis of a dynamic Nelson-Siegel model with stable slope and curvature factors. The PLR statistic for this hypothesis is equal to 8.01, with an asymptotic p-value of 0.09, but a wild bootstrap p-value of 0.34. Therefore, this hypothesis cannot be rejected (conditional on a co-integration rank of $r = 4$), although the asymptotic p-value would cast some doubt on it.

A possible hypothesis of interest on α is that its first row is zero. This corresponds to the hypothesis of weak exogeneity of the short rate $X_{1t} = y_t(3)$ for the co-integration parameters. Equivalently, it corresponds to the hypothesis that the single common trend (the non-stationary
level factor) is fully driven by the disturbance from the first equation of the VAR model ($\alpha'_\perp \varepsilon_t = \varepsilon_{1t}$). The PLR test for this hypothesis has an asymptotic p-value of 0.25 and a bootstrap p-value of 0.68, so this hypothesis cannot be rejected. The PLR test for the joint hypothesis (stationary spreads and weak exogeneity of $y_t(3)$) has an asymptotic p-value of 0.08 and a wild bootstrap p-value of 0.55. This gives another example of a hypothesis where asymptotic and bootstrap inference might yield different conclusions, at least if a significance level of 10% were adopted.

We now consider hypotheses in the model with $r = 3$ co-integrating vectors. In this model, the spreads $s_t(\tau) := y_t(\tau) - y_t(3)$ are not (all) stable, but a hypothesis of interest is that the co-integrating relations can be expressed in terms of these spreads, which requires $\beta'(1, \ldots, 1) = 0$. The PLR statistic for this hypothesis has an asymptotic p-value of 0.24, and a wild bootstrap p-value of 0.45, so this hypothesis is not rejected. The PML estimates under this restriction are given by

$$\hat{\beta} = \begin{pmatrix} -1.007 & -0.71 & -0.44 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0.007 & -0.29 & -0.56 \end{pmatrix}, \quad \hat{\alpha} = \begin{pmatrix} 0.13 \\ -0.48 \\ -0.30 \\ 0.007 \end{pmatrix} \begin{pmatrix} -0.21 \\ 0.42 \\ 0.06 \\ -0.29 \end{pmatrix} \begin{pmatrix} 0.28 \\ -0.11 \\ 0.09 \\ -0.10 \end{pmatrix} \begin{pmatrix} 0.25 \\ -0.09 \\ 0.21 \end{pmatrix}$.$$

For example, the second co-integrating vector implies that the three-year spread $s_t(36)$ minus 0.29 times the 10-year spread $s_t(120)$ is stable. The particular normalisation of β chosen in this representation is inspired by the fact that the one-year spread $s_t(12)$ is close to being stable (as the estimate of 0.007 indicates). This would mean that the coefficient a in a stable relation of the form of $s_t(\tau) - a \cdot s_t(12)$ is not well defined, as it is normalised on the wrong variable.

Finally, it may be of interest to test whether the co-integrating relation found here is in agreement with a dynamic Nelson-Siegel model of the form (26) with $\lambda = 0.0609$. This requires that the matrix β is orthogonal to both the vector of level factor exposures (a vector of ones), and the vector of slope factor exposures. It is easily seen that this corresponds to the hypothesis

$$H_0: \beta' X_t = \begin{pmatrix} s_t(12) - 0.26 \cdot s_t(120) \\ s_t(36) - 0.65 \cdot s_t(120) \\ s_t(60) - 0.83 \cdot s_t(120) \end{pmatrix}.$$

The PLR test for this hypothesis (in the unrestricted model with $r = 3$) has a wild bootstrap p-value of 0.01, which leads us to reject this hypothesis. A simpler model, in which the slope factor exposure increases linearly with the horizon τ, corresponds to a hypothesis that cannot be rejected, with a wild bootstrap p-value of 0.24.
7 Conclusions

In this paper we have investigated the impact of the presence of time-varying volatility in co-integrated VAR models on the standard methods of estimation (PML estimators) and hypothesis testing (PLR tests) on the coefficients of the co-integrating relations and the adjustment coefficients outlined in Johansen (1996). In particular, for a very general model which allows both conditional and unconditional heteroskedasticity of a quite general form, we have shown that the PML estimates remain consistent but that their limiting distributions depend in general on nuisance parameters arising from the underlying volatility process. The latter is also shown to be the case for the limiting null distributions of the PLR statistics, with the implication that the resulting PLR tests can have true size significantly in excess of the nominal significance level when based on conventional χ^2 critical values. Solutions to this problem based on Wald tests and on the use of the wild bootstrap were subsequently discussed. The conditions under which these methods yield asymptotically valid inference were provided, with the wild bootstrap implementation of the Wald test shown to require only a relatively mild strengthening of the necessary moment conditions for this to be obtained under the class of time-varying volatility processes considered. Monte Carlo evidence was reported for a variety of conditionally and unconditionally heteroskedastic models which suggested that the proposed bootstrap co-integration tests perform well in finite samples largely avoiding the oversize problems that can occur with the standard tests, the latter being worse, other things equal, the higher the dimension of the system. Finally, an application to the term structure of interest rates in the US was used to highlight the differences that can occur in practice between standard and bootstrap inferences regarding hypotheses on the co-integrating vectors and adjustment coefficients.

A Appendix

A.1 Preliminary Results

The following Lemma will be used throughout.

Lemma A.1. Let ε_t be defined as in Assumption 2. Then, as $T \to \infty$,

(i) $T^{-1} \sum_{t=1}^{T} E(\varepsilon_t \varepsilon_t' | F_{t-1}) = T^{-1} \sum_{t=1}^{T} \sigma_t h_t \sigma_t' \overset{p}{\to} \Sigma := \int_{0}^{1} \Sigma (s) ds$;

(ii) $T^{-1} \sum_{t=1}^{T} (E(\varepsilon_t \varepsilon_t' | F_{t-1}) \otimes \varepsilon_{t-i}) = T^{-1} \sum_{t=1}^{T} (\sigma_t h_t \sigma_t' \otimes \sigma_{t-i} z_{t-i}) \overset{p}{\to} 0$ for $i \geq 1$;

(iii) $T^{-1} \sum_{t=1}^{T} (E(\varepsilon_t \varepsilon_t' | F_{t-1}) \otimes \varepsilon_{t-i} z_{t-j}') = T^{-1} \sum_{t=1}^{T} (\sigma_t h_t \sigma_t' \otimes \sigma_{t-i} z_{t-i} z_{t-j} \sigma_{t-j}') \overset{p}{\to} \int_{0}^{1} \left[\sigma (s) \otimes \sigma (s) \right] \tau_{ij} [\sigma (s) \otimes \sigma (s)]' ds$, for $i, j \geq 1$.

Proof. For part (i), notice that

$$\frac{1}{T} \sum_{t=1}^{T} \sigma_t h_t \sigma_t' = \frac{1}{T} \sum_{t=1}^{T} \sigma_t (h_t - I_p) \sigma_t' + \frac{1}{T} \sum_{t=1}^{T} \sigma_t \sigma_t'.$$
where $T^{-1} \sum_{t=1}^{T} \sigma_t \sigma'_t \rightarrow \Sigma$. For the term $T^{-1} \sum_{t=1}^{T} \sigma_t (h_t - I_p) \sigma'_t$ we can proceed as in Theorem A.1 of Cavaliere and Taylor (2009), using $\sup_t ||h_t|| < \infty$ (which is implied by the moment assumption on ε_t) and that $||\sigma(u) \sigma(u)'||$ is a càdlàg process in $D[0,1]$. Notice that Cavaliere and Taylor (2009) require the stochastic term $(h_t - I_p)$ to be a mixingale, but their proof of Theorem A.1 goes through by replacing this assumption with Assumption 2(b) i. of Section 2. Parts (ii) and (iii) follow similarly.

A.2 Results for The Asymptotic Test Statistics

Proof of Lemma 1. Assumption 2(b) implies that z_t satisfies a functional central limit theorem (Brown, 1971, Theorem 3), since the higher moment assumption implies a conditional Lindeberg condition. Therefore

$$W_T(\cdot) := \frac{1}{T^{1/2}} \sum_{t=1}^{[T:]} z_t \wrightarrow W(\cdot),$$

where W is a p-dimensional standard Brownian motion. Next, define

$$\sigma_T(u) = \sigma_{[Tu]+1}, \quad 0 \leq u < 1, \quad \sigma_T(1) = \sigma_T,$$

and

$$M_T(\cdot) := \int_0^1 \sigma_T(s) dW_T(s) = \frac{1}{T^{1/2}} \sum_{t=1}^{[T:]} \sigma_t z_t.$$

It is clear that $\sigma_T(\cdot) \rightarrow \sigma(\cdot)$ in $D_{\mathbb{R}^{p \times p}}[0,1]$, and since both σ_T and σ are non-stochastic, this holds jointly with (A.1), i.e., $\left(\sigma_T(\cdot), W_T(\cdot)\right) \wrightarrow (\sigma(\cdot), W(\cdot))$. Because $\sup_T T^{-1} \sum_{t=1}^{T} E(z_t z'_t) = I_p < \infty$, it follows from Theorem 2.1 of Hansen (1992b) that

$$\left(\sigma_T(\cdot), W_T(\cdot), M_T(\cdot)\right) \wrightarrow (\sigma(\cdot), W(\cdot), M(\cdot)).$$

(A.2)

Next, define

$$\int_0^1 M_T(s) dM_T(s)' = \frac{1}{T} \sum_{t=1}^{T} \left(\sum_{i=1}^{t-1} \sigma_{i} z_i \right) z'_t \sigma'_t,$$

so that

$$\text{vec} \int_0^1 M_T(s) dM_T(s)' = \int_0^1 [\sigma_T(s) \otimes M_T(s)] dW_T(s).$$

Via the continuous mapping theorem, (A.2) implies

$$\left([\sigma_T(\cdot) \otimes M_T(\cdot)], W_T(\cdot) \right) \wrightarrow \left([\sigma(\cdot) \otimes M(\cdot)], W(\cdot) \right),$$

so applying Theorem 2.1 of Hansen (1992b) once more, we find

$$\text{vec} \int_0^1 M_T(s) dM_T(s)' \wrightarrow \int_0^1 [\sigma(s) \otimes M(s)] dW(s) = \text{vec} \int_0^1 M(s) dM(s)' ,$$

jointly with (A.2).
Proof of Lemma 2. Define \(X_{\beta t}^\# = (Z_{\beta t-1}, Z_{\beta t-1})', \) with \(Z_{\beta t} = \beta^t Z_{\beta t}; \) therefore, \(X_{\beta t}^\# \) equals \(X_{\beta t} \) except that the mean \(\rho_t' \) has been subtracted from \(\beta^t X_{\beta t-1}. \) This means that \(X_{\beta t}^\# = \Phi X_{\beta,t-1}^\# + F\varepsilon_t, \) see Section 2.1, a stable vector process (because \(\rho(\Phi) < 1 \)) with zero mean, except for the effect of fixed starting values. Because \(\|\Phi^i\| \leq c\lambda^i \) for some positive constant \(c \) and \(|\lambda| < 1, \) we therefore may write

\[
X_{\beta t}^\# = \Phi X_{\beta 0} + \sum_{i=0}^{t-1} \Phi^i F \varepsilon_{t-i} = \sum_{i=0}^{t-1} \Phi^i F \varepsilon_{t-i} + o_p(1),
\]

where the \(o_p(1) \) term will be neglected in the following.

First, as in Lemma A.1 of Cavaliere, Rahbek and Taylor (2010b) we have that

\[
\left(\begin{array}{c} \beta^t M_{11} \beta^t \\ M_{21} \beta^t \\ M_{22} \end{array} \right) = \frac{1}{T} \sum_{t=1}^{T} X_{\beta t-1}^\# X_{\beta t-1}^\# \overset{p}{\to} \sum_{i=0}^{\infty} \Phi^i F \Sigma F' \Phi^i =: \left(\begin{array}{cc} \bar{M}_{\beta} & \bar{M}_{\beta 2} \\ \bar{M}_{2\beta} & \bar{M}_{22} \end{array} \right),
\]

from which we find

\[
\beta^t S_{11} \beta^t = \beta^t M_{11} \beta^t - \beta^t M_{12} M_{22}^{-1} M_{21} \beta^t \\
\overset{p}{\to} \bar{M}_{\beta} - \bar{M}_{\beta 2} \bar{M}_{22}^{-1} \bar{M}_{2\beta} =: \bar{\Sigma}_{\beta 3}.
\]

The convergence in (A.3) is obtained as follows.

Consider

\[
\frac{1}{T} \sum_{t=1}^{T} X_{\beta t-1}^\# X_{\beta t-1}^\# = \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{t-1} \sum_{j=1}^{t-1} \Phi^i F \varepsilon_{t-i} \varepsilon_{t-j} F' \Phi^j = \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{t-1} \Phi^i \varepsilon_{t-i} h_{t-i} \varepsilon_{t-j} F' \Phi^j \\
+ \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{t-1} \Phi^i F (\varepsilon_{t-i} \varepsilon_{t-j} - \sigma_{t-i} h_{t-j} \sigma_{t-j}) F' \Phi^j \\
+ \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{t-1} \sum_{j=1}^{t-1} \Phi^i \varepsilon_{t-i} \varepsilon_{t-j} F' \Phi^j
=: A_T + B_T + C_T,
\]

where \(A_T, B_T \) and \(C_T \) are implicitly defined. Using Lemma A.1 (a), we find that

\[
A_T = \sum_{i=1}^{T-1} \Phi^i F \left(\frac{1}{T} \sum_{t=1}^{T-i} \sigma_t h_t \sigma_t \right) F' \Phi^i = \sum_{i=1}^{T-1} \Phi^i F \Sigma F' \Phi^i.
\]

Next,

\[
B_T = \sum_{i=1}^{T-1} \Phi^i F \left(\frac{1}{T} \sum_{t=1}^{T-i} \sigma_t (z_t z_t' - h_t) \sigma_t' \right) F' \Phi^i = o_p(1),
\]

by the martingale law of large numbers, using the fact that \(z_t \) has finite fourth moment, \(\sigma_t \) is a bounded sequence, and \(\|\Phi^i\| \leq c\lambda^i. \) Using the fact that \(E(\varepsilon_{t-i} \varepsilon_{t-j}) = 0 \) with
\(k = \max(i, j) + 1 \) and that \(\varepsilon_{t-i} \varepsilon'_{t-j} \) has bounded variance because \(\sigma_t \) and \(\tau_{ij} \) are bounded, it follows that \(C_T = o_p(1) \), which proves (A.3).

By the same approach, we have
\[
\begin{pmatrix}
\beta'^t M_{1t} \\
M_{2t}
\end{pmatrix} := \frac{1}{T} \sum_{t=1}^{T} X'^t_{\beta, t-1} \varepsilon'_t \xrightarrow{p} 0,
\]
so that
\[
\beta'^t S_{10} = \beta'^t S_{1t} + \beta'^t S_{11} \beta'^t \alpha' = \beta'^t M_{1t} - \beta'^t M_{22}^{-1} M_{2t} + \beta'^t S_{11} \beta'^t \alpha' \xrightarrow{p} \Sigma_{\beta, \beta'} =: \Sigma_{\beta, 0},
\]
and, defining \(S_{ee} := M_{ee} - M_{e2} M_{22}^{-1} M_{ee} \) with \(M_{ee} := T^{-1} \sum_{t=1}^{T} \varepsilon_t \varepsilon'_t \),
\[
S_{00} = \alpha \beta'^t S_{10} + S_{e0} = \alpha \beta'^t S_{10} + S_{ee} + S_{e1} \beta'^t \alpha' = \alpha \beta'^t S_{10} + M_{ee} - M_{e2} M_{22}^{-1} M_{ee} + M_{e1} \beta'^t \alpha' - M_{e2} M_{22}^{-1} M_{21} \beta'^t \alpha' \xrightarrow{p} \alpha \Sigma_{\beta, 0} + \Sigma = \alpha \Sigma_{\beta, \beta'} + \Sigma =: \Sigma_{00}.
\]
This proves (10).

To prove (11), we start with
\[
\text{vec} X'^t_{\beta, t-1} \varepsilon'_t = \text{vec} \Phi^{t-1} X'^t_{\beta, 0} \varepsilon'_t + \sum_{i=1}^{t-1} \text{vec} \Phi^{t-1} F \varepsilon_{t-i} \varepsilon'_t.
\]
For any fixed \(n \in \mathbb{N} \), consider the decomposition
\[
\frac{1}{T^{1/2}} \sum_{t=1}^{T} \text{vec} X'^t_{\beta, t-1} \varepsilon'_t = S_T^{(n)} + R_T^{(n)} + R_{0T}, \tag{A.5}
\]
where (taking \(z_t = 0 \) and hence \(\varepsilon_t = 0 \) for \(t \leq 0 \)),
\[
S_T^{(n)} := \frac{1}{T^{1/2}} \sum_{t=1}^{T} \sum_{i=1}^{n} \text{vec} \Phi^{t-1} F \varepsilon_{t-i} \varepsilon'_t = \sum_{i=1}^{n} (I_p \otimes \Phi^{t-1} F) \frac{1}{T^{1/2}} \sum_{t=1}^{T} (\sigma_t \otimes \sigma_{t-i}) (z_t \otimes z_{t-i}),
\]
\[
R_T^{(n)} := \frac{1}{T^{1/2}} \sum_{t=1}^{T} \sum_{i=n+1}^{T} \text{vec} \Phi^{t-1} F \varepsilon_{t-i} \varepsilon'_t, \quad R_{0T} := \frac{1}{T^{1/2}} \sum_{t=1}^{T} \text{vec} \Phi^{t-1} X'^t_{\beta, 0} \varepsilon'_t.
\]
We will focus first on the limit of \(S_T^{(n)} \) as \(T \to \infty \) for fixed \(n \), and then let \(n \to \infty \) to obtain the limiting distribution of the right-hand side of (A.5), where we need to show that \(\| R_{0T} \| = o_p(1) \) and \(\lim_{n \to \infty} \limsup_{T \to \infty} P(\| R_T^{(n)} \| > \epsilon) = 0 \) for all \(\epsilon > 0 \), see Proposition 6.3.9 of Brockwell and Davis (1991).

Consider the process
\[
U_T^{(n)} = \begin{pmatrix}
(z_t \otimes z_{t-1}) \\
\vdots \\
(z_t \otimes z_{t-n})
\end{pmatrix},
\]
Assumption 2 (b) implies that $U_t^{(n)}$ is a vector martingale difference sequence, with conditional variance matrix satisfying

$$\frac{1}{T} \sum_{t=1}^T E(U_t^{(n)} U_t^{(n)\prime}|F_{t-1}) \Rightarrow E(U_t^{(n)} U_t^{(n)\prime})$$

where $\tau^{(n)}$ is a matrix with blocks τ_{ij}, $i, j = 1, \ldots, n$. Furthermore, the finite $(4r)$th moment of z_t implies that $U_t^{(n)}$ has a finite $(2r)$th moment, $r > 1$, which in turn implies a Lindeberg condition, such that $U_t^{(n)}$ satisfies the invariance principle of Brown (1971), i.e.,

$$W_T^{(n)}(\cdot) = \left(\begin{array}{c} W_{1T}(\cdot) \\ \vdots \\ W_{nT}(\cdot) \end{array} \right) := \frac{1}{T^{1/2}} \sum_{t=1}^{[T]} U_t^{(n)} \xrightarrow{w} W^{(n)}(\cdot) = \left(\begin{array}{c} W_1(\cdot) \\ \vdots \\ W_n(\cdot) \end{array} \right),$$

where $W^{(n)}$ is a vector Brownian motion with variance matrix $\tau^{(n)}$, independent of W because $E(U_t^{(n)} z_t^\prime) = 0$ by Assumption 2 (b) ii.

Next, we may write

$$S_T^{(n)} = \sum_{i=1}^n (I_p \otimes \Phi^{i-1} F) \int_0^1 [\sigma_T(s) \otimes \sigma_T(s - i/T)]dW_i T(s),$$

which by Theorem 2.1 of Hansen (1992b) converges weakly to

$$S^{(n)} := \sum_{i=1}^n (I_p \otimes \Phi^{i-1} F) \int_0^1 [\sigma(s) \otimes \sigma(s)]dW_i(s) \sim N(0, V^{(n)}),$$

with

$$V^{(n)} := \sum_{i=1}^n \sum_{j=1}^n (I_p \otimes \Phi^{i-1} F) \int_0^1 [\sigma(s) \otimes \sigma(s)] \tau_{ij} [\sigma(s) \otimes \sigma(s)]' ds (I_p \otimes \Phi^{j-1} F)'.$$

Because $\sigma(u)$ and τ_{ij} are bounded and $\rho(\Phi) < 1$, $\lim_{n \to \infty} V^{(n)} = V := V(\infty)$, and as $n \to \infty$, $S^{(n)} \xrightarrow{w} N(0, V)$.

It is easily seen that the assumptions imply that R_{0T} has mean zero and variance of order T^{-1}, so that $R_{0T} = o_p(1)$. Similarly, for each fixed T and n, $R_T^{(n)}$ has mean zero and variance matrix

$$\sum_{i=n+1}^{T-1} \sum_{j=n+1}^{T-1} (I_p \otimes \Phi^{i-1}) \left[\frac{1}{T} \sum_{t=i+1}^T (\sigma_t \otimes F\sigma_{t-1}) \tau_{ij} (\sigma_t \otimes F\sigma_{t-j})' \right] (I_p \otimes \Phi^{j-1})'',$$

the matrix norm of which is less than

$$\sum_{i=n+1}^{T-1} \sum_{j=n+1}^{T-1} \left\| I_p \otimes \Phi^{i-1} \right\| \left\| I_p \otimes \Phi^{j-1} \right\| \frac{1}{T} \sum_{t=i+1}^T \left\| \sigma_t \otimes F\sigma_{t-1} \right\| \left\| \sigma_t \otimes F\sigma_{t-j} \right\|',$$

$$\leq \sum_{i=n+1}^{\infty} \sum_{j=n+1}^{\infty} p \left\| \Phi \right\|^{i+j-2} \max_{n<i,j<T} \left\| \sigma_t \otimes F\sigma_{t-1} \right\| \left\| \sigma_t \otimes F\sigma_{t-j} \right\|',$$
and since the final factor is bounded because \(\sigma(u)\) and \(\tau_{ij}\) are bounded, this converges to 0 as \(n \to \infty\). Therefore, using Chebyshev’s inequality,

\[
\lim_{n \to \infty} \lim_{T \to \infty} \sup \frac{1}{T} \sum_{t=1}^{T} \text{vec} \ X_{\beta, t-1}^\# z_t^\# N(0, V).
\]

From the definition of \(\beta^\# \) and \(S_{1\varepsilon}\), this in turn implies

\[
T^{1/2} \beta^\# \to \mathcal{N}(0, \Omega),
\]

with \(\Omega = [I : -\tilde{M}_{2\varepsilon} M_{22}^{-1}] V [I : -\tilde{M}_{2\varepsilon} M_{22}^{-1}]^t\). This proves (11).

To prove (12) and (13), we note that from (3) with \(\mu D_t = \alpha_t\) and hence \(C \mu D_t = 0\), we have

\[
B_T Z_1 = \left(T^{-1/2}(\beta_1^C \sum_{i=1}^{t-1} \varepsilon_i + \beta_1^t S_{t-1} + \beta_1^C 0) \right).
\]

Letting \(G_T(\cdot) = B_T Z_1(T^{-1} + 1)\), we have \(G_T(\cdot) \Rightarrow G(\cdot)\), using the fact that \(\beta_1^t S_t\) is linear in \(\mathcal{X}_{\beta t}\), and \(T^{-1/2} \mathcal{X}_{\beta t}^{[T]} = o_p(1)\). Therefore, using the continuous mapping theorem and Theorem 2.1 of Hansen (1992b), we have that

\[
(B_T M_{11} B_T, B_T M_{1\varepsilon}) \Rightarrow \left(\int_0^1 G_T(s) G_T(s)' ds, \int_0^1 G_T(s) dM_T(s) \right),
\]

which together with (A.3) and (A.4), implies that (A.6)–(A.7) also holds with \(M_{11}\) and \(M_{1\varepsilon}\) replaced by \(S_{11}\) and \(S_{1\varepsilon}\), respectively.

Proof of Theorem 1. Consistency of \(\beta^\#\) follows from the limiting behaviour of the concentrated pseudo-log-likelihood (9), together with the results of Lemma 2. This is analysed in detail in Lemmas 13.1 and Theorem 13.3 of Johansen (1996), which can be applied directly to the present case. It also follows that \(\hat{\beta}_2 - \hat{\beta}_2 = O_p(T^{-1})\) and \(\hat{\rho}_1 - \rho = O_p(T^{-1/2})\), and this in turn implies that

\[
\hat{\alpha} = S_{01}^\delta \beta^\# (\beta^\# S_{11} \beta^\#)^{-1} = S_{01} \beta^\# (\beta^\# S_{11} \beta^\#)^{-1} + o_p(1) \overset{p}{\to} 0 \Sigma_{\beta} \Sigma_{\beta}^{-1} = \alpha,
\]

and similarly

\[
\hat{\Sigma} = S_{00}^\delta - S_{01}^\delta (\beta^\# S_{11} \beta^\#)^{-1} \hat{\beta}^\# S_{10} = S_{\varepsilon \varepsilon} - S_{\varepsilon 1} \beta^\# (\beta^\# S_{11} \beta^\#)^{-1} \beta^\# S_{1\varepsilon} + o_p(1) \overset{p}{\to} \Sigma.
\]
The PML estimator of \(\Psi \) is readily obtained from the unconcentrated pseudo-log-likelihood, and this leads to

\[
\hat{\Psi} = M_{22}^{-1}(M_{20} - M_{21}\hat{\beta}'\hat{\alpha}') = \Psi + M_{22}^{-1}\left[M_{21}(\beta'^{#}\alpha' - \hat{\beta}'\hat{\alpha}') + M_{2e}\right] \sim \Psi.
\]

This proves part (a).

For the asymptotic distributions of the estimators, we use the fact that consistency at the appropriate rate, and a sufficient degree of differentiability, allows the following result based on a second-degree Taylor approximation of \(\ell \):

\[
D_T^{-1}(\hat{\theta} - \theta) = \left(-D_T \frac{\partial^2 \ell(\theta)}{\partial \theta \partial \theta'} D_T^T \right)^{-1} D_T' \frac{\partial \ell(\theta)}{\partial \theta} + o_p(1), \tag{A.8}
\]

where \(\theta \) is the parameter vector and \(D_T \) is a matrix chosen such that the matrix in parentheses converges to a finite non-singular limit. See Appendix C of Johansen (1991) and Saikkonen (1995) for the extension of the usual argument to models with different rates of convergence in different directions. Choosing

\[
\theta = \left(\begin{array}{c} \text{vec } \beta_2^{#} \\ \text{vec } \alpha' \end{array} \right), \quad D_T = \left(\begin{array}{cc} I_r \otimes D_{\beta T} & 0 \\ 0 & T^{-1/2}I_{pr} \end{array} \right), \quad D_{\beta T} = \left(\begin{array}{cc} T^{-1}I_{(p-r)} & 0 \\ 0 & T^{-1/2} \end{array} \right),
\]

we have

\[
D_T' \frac{\partial \ell(\theta)}{\partial \theta} = \left(\begin{array}{c} t^' \text{vec}(D_{\beta T}^{#}c_{11}'S_{11}\Sigma^{-1}\alpha) \\ T^{1/2} \text{vec}(\beta'^{#}S_{11}\Sigma^{-1}) \end{array} \right) \overset{w}{\rightarrow} \left(\begin{array}{c} \text{vec } f_0^1 AG(s)dM(s)'\Sigma^{-1}\alpha \\ N(0, \Sigma^{-1} \otimes I_r) \end{array} \right), \tag{A.9}
\]

\[-D_T' \frac{\partial^2 \ell(\theta)}{\partial \theta \partial \theta'} D_T = \left(\begin{array}{c} (\alpha'\Sigma^{-1}\alpha) \otimes \left(T^{1/2}D_{\beta T}^{#}c_{11}'S_{11}\beta'^{#}\Sigma^{-1}\alpha \right) \\ (\Sigma^{-1}\alpha) \otimes \left(T^{1/2}D_{\beta T}^{#}c_{11}'S_{11}\beta'^{#}\Sigma^{-1}\alpha \right) \end{array} \right) + o_p(1), \tag{A.10}
\]

where \(A = \text{diag}(c_1'\beta_{11}(\beta_{11}'\beta_{11})^{-1}, 1) \); this matrix arises from

\[
T^{1/2}D_{\beta T}^{#}c_{11}'Z_{1t} = \left(\begin{array}{c} T^{-1/2}c_1'X_{t-1} \\ 1 \end{array} \right) = AB_T'Z_{1t} + o_p(1),
\]

because \(c_1'X_{t-1} = c_1'\beta(\beta')^{-1}\beta'X_{t-1} + c_1'\beta_{11}(\beta_{11}'\beta_{11})^{-1}\beta_{11}'X_{t-1} \). Note that \(\hat{\Sigma} \) is the pseudo-true value of \(\Sigma \); formally, one should include vech \(\Sigma \) in the parameter vector \(\theta \), or use the pseudo-log-likelihood concentrated with respect to \(\Sigma \), but this will lead to the same result, since the asymptotic information is block-diagonal with respect to vech \(\Sigma \) and the other parameters. Combining (A.8), (A.9) and (A.10) leads to part (b).

For part (c), let \(\tilde{\theta} \) denote the PMLEs under the restrictions in (5). Consistency of \(\tilde{\theta} \), which is proved formally in Theorem 3, together with a second-order Taylor series expansion leads to the following expression of the PLR test statistic under \(H_0 \):

\[
\text{LR}_T := -2\left(\ell(\tilde{\theta}) - \ell(\hat{\theta}) \right) = (\hat{\theta} - \tilde{\theta})'\widetilde{\mathcal{H}}(\hat{\theta} - \tilde{\theta}) + o_p(1),
\]

32
where \(\hat{H} = -\partial^2 \ell(\hat{\theta})/\partial \theta \partial \theta' \). Standard derivations involving restricted maximum likelihood estimation lead to

\[
D_T^{-1}(\hat{\theta} - \tilde{\theta}) = -D_T^{-1}\hat{H}^{-1}R'(RH^{-1}R')^{-1}R(\hat{\theta} - \tilde{\theta}) + o_p(1).
\]

Let \(\tilde{D}_T = \text{diag}(T^{-1}I_{r_p}, T^{-1/2}I_{r_u}) \), so that

\[
\tilde{D}_T^{-1}R \rightarrow R. \tag{A.11}
\]

Here we use the fact that the restrictions do not involve \(\rho_1 \), so that \(R_{\beta \hat{\beta}_2} \) only involves linear combinations of the \(O_p(T^{-1}) \)-consistent estimator \(\hat{\beta}_2 \). Then

\[
\text{LR}_T = (\hat{\theta} - \tilde{\theta})'(D_T R' \tilde{D}_T^{-1})(\tilde{D}_T^{-1}R \tilde{D}_T)(D_T R' \tilde{D}_T^{-1})^{-1}D_T R(\hat{\theta} - \tilde{\theta}) + o_p(1),
\]

and combining this with (A.8), (A.9), (A.10) and (A.11), this leads to the results in part (c), where \(Z \sim N(0, I_{r_u}) \) is obtained as the limit in distribution of

\[
\left(R_{\alpha} [I \otimes \Sigma_{\beta \beta}^{-1}] W \otimes [I \otimes \Sigma_{\beta \beta}^{-1}] R_{\alpha} \right)^{-1/2} T^{1/2} R_{\alpha} \text{vec}(\hat{\alpha} - \alpha)'.
\]

Because the asymptotic distribution of \(T^{1/2} \text{vec}(\hat{\alpha} - \alpha)' \) is defined from the Brownian motions \(W_t \), see the proof of Lemma 2, and these are independent of \(W \) and hence \((G_c, M_a) \), it follows that \(Z \) is also independent of these. \(\square \)

Proof of Lemma 3. The proof follows the same approach as the proof of Lemma A.5 of Cavaliere, Rahbek and Taylor (2010b). As indicated there, it suffices to prove \(\hat{V}_T(u) \overset{p}{\rightarrow} V(u) \) for fixed \(u \in [0, 1] \), which is then strengthened to uniform convergence because \(\hat{V}_T(u) \) is monotonically increasing and \(V(u) \) is continuous in \(u \). Letting \(V_T(u) = T^{-1} \sum_{t=1}^{\lfloor Tu \rfloor} \varepsilon_t \varepsilon_t' \), we have \(\hat{V}_T(u) - V_T(u) = o_p(1) \) because of consistency (at the appropriate rate) of \(\hat{\gamma} \). Moreover,

\[
V_T(u) = T^{-1} \sum_{t=1}^{\lfloor Tu \rfloor} \varepsilon_t \varepsilon_t' = T^{-1} \sum_{t=1}^{\lfloor Tu \rfloor} \sigma_t z_t z_t' \sigma_t'
\]

\[
= T^{-1} \sum_{t=1}^{\lfloor Tu \rfloor} \sigma_t (z_t z_t' - h_t) \sigma_t' + T^{-1} \sum_{t=1}^{\lfloor Tu \rfloor} \sigma_t (h_t - I_p) \sigma_t' + T^{-1} \sum_{t=1}^{\lfloor Tu \rfloor} \sigma_t \sigma_t'
\]

\[
=: A_{1T}(u) + A_{2T}(u) + A_{3T}(u),
\]

with \(A_{1T}(\cdot) \), \(A_{2T}(\cdot) \) and \(A_{3T}(\cdot) \) defined implicitly.

First, since \((z_t z_t' - h_t) \) is a martingale difference sequence with bounded fourth order moments and \(\sigma_t \) is non-stochastic and bounded, \(\sigma_t (z_t z_t' - h_t) \sigma_t' \) is uncorrelated over time and \(A_{1T}(u) \overset{p}{\rightarrow} 0 \) by a standard application of Chebyshev’s inequality.

Second, since by Assumption 2 (i) \(T^{-1} \sum_{t=1}^{\lfloor Tu \rfloor} (h_t - I_p) \overset{p}{\rightarrow} 0 \) and \(\sigma_t = \sigma(t/T) \) with \(\sigma(\cdot) \) càdlàg, by Lemma A.1 we have that \(A_{2T}(u) \overset{p}{\rightarrow} 0 \).
Finally, Assumption 2 (a) implies that

$$A_{3T}(u) = \frac{1}{T} \sum_{t=1}^{\lfloor Tu \rfloor} \Sigma(t/T) \xrightarrow{w} \int_0^u \Sigma(s) ds.$$

Taken together, these results imply that $V_T(u) \xrightarrow{w} \int_0^u \Sigma(s) ds$, as required. \hfill \Box

Proof of Theorem 2. The results will follow from the asymptotic properties \hat{T}, which is defined from sums of the type $\sum_{t=1}^T (\hat{\epsilon}_t\hat{\epsilon}_t' \otimes Z_{i1}Z_{i1}'), i, j = 1, 2$. Consider first

$$\frac{1}{T} \sum_{t=1}^T (\hat{\epsilon}_t\hat{\epsilon}_t' \otimes B'TZ_{i1}Z'_{i1}B_T) = \int_0^1 [d\hat{V}_T(s) \otimes G_T(s)G_T(s)'],$$

where the right-hand side should be read as a matrix with blocks $\int_0^1 G_T(s)G_T(s)'d\hat{V}_{Tij}(s)$. Because Lemma 3 and the results in the proof of Lemma 1 imply $(G_T(\cdot), \hat{V}_T(\cdot)) \xrightarrow{w} (G(\cdot), V(\cdot))$, we find

$$\frac{1}{T} \sum_{t=1}^T (\hat{\epsilon}_t\hat{\epsilon}_t' \otimes B'TZ_{i1}Z'_{i1}B_T) \xrightarrow{w} \int_0^1 [dV(s) \otimes G(s)G(s)'] = \int_0^1 [\Sigma(s) \otimes G(s)G(s)']ds.$$

Note that $V(\cdot)$ is a deterministic matrix function of bounded variation, so that the limiting integral is a Lebesgue-Stieltjes integral, and the result follows from the continuous mapping theorem. This in turn implies

$$\sum_{t=1}^T (\hat{\epsilon}_t\hat{\epsilon}_t' \otimes \hat{X}_{\beta,t-1}'\hat{X}_{\beta,t-1}') = \frac{1}{T} \sum_{t=1}^T (\hat{\epsilon}_t\hat{\epsilon}_t' \otimes \hat{X}_{\beta,t-1}'\hat{X}_{\beta,t-1}') + o_p(1),$$

where $\hat{X}_{\beta,t-1}'$ is as defined in the proof of Lemma 2, and the asymptotic negligibility of the estimation error in $\hat{\epsilon}_t$ follows from consistency at the appropriate rate of $\hat{\gamma}$, and the fact that $\hat{X}_{\beta,t-1}$ is a stable process with bounded fourth moments. Using again $\hat{X}_{\beta,t-1} = \Phi^{t-1}\hat{X}_{\beta0} + \sum_{i=1}^{t-1} \Phi^{i-1}F\hat{\epsilon}_{t-i}$, we find

$$\frac{1}{T} \sum_{t=1}^T (\hat{\epsilon}_t\hat{\epsilon}_t' \otimes \hat{X}_{\beta,t-1}'\hat{X}_{\beta,t-1}')$$

$$\quad = \frac{1}{T} \sum_{t=1}^T \sum_{t=1}^{T-1} \sum_{j=1}^{T-1} (\hat{\epsilon}_t\hat{\epsilon}_{t}' \otimes \Phi^{i-1}F\hat{\epsilon}_{t-i}\hat{\epsilon}_{t-j}'F'\Phi^{j-1})$$

$$\quad + \frac{1}{T} \sum_{t=1}^T (\hat{\epsilon}_t\hat{\epsilon}_t' \otimes \Phi^{i-1}\hat{X}_{\beta0}'\hat{X}_{\beta0}')\Phi^{i-1}$$

$$\quad + \frac{1}{T} \sum_{t=1}^T \sum_{i=1}^{t-1} (\hat{\epsilon}_t\hat{\epsilon}_t' \otimes [\Phi^{i-1}\hat{X}_{\beta0}'\hat{X}_{\beta0}']F'\Phi^{i-1} + \Phi^{i-1}F\hat{\epsilon}_{t-i}\hat{X}_{\beta0}'\Phi^{i-1}]).$$

34
The second right-hand side term is \(o_p(1) \), because \(\varepsilon_t \varepsilon_t' \) has bounded mean and bounded variance, and \(\rho(\Phi) < 1 \). The third term converges in probability to 0, because \(T^{-1} \sum_{t=1}^T (z_t z_t' - z_t z_{t-1}) \overset{p}{\to} 0 \) by Assumption 2 (b) ii and the law of large numbers for martingale difference sequences. (As before, take \(z_1 = 0 \) and hence \(\varepsilon_t = 0 \) for \(t \leq 0 \).) By Assumption 2 (b) iii and the law of large numbers, we have \(T^{-1} \sum_{t=1}^T (z_t z_t' - z_t z_{t-1}) \overset{p}{\to} \tau_{ij} \). From this it follows that

\[
\frac{1}{T} \sum_{t=1}^T (\hat{\varepsilon}_t \hat{\varepsilon}_t' \otimes X^{\#}_{\beta,t-1}X^{\#}_{\beta,t-1}) \overset{p}{\to} \tau_{ij}.
\]

which equals \(V = V^{(\infty)} \) defined in the proof of Lemma 2. Following the same approach, it can be shown that

\[
\frac{1}{T^{1/2}} \sum_{t=1}^T (\hat{\varepsilon}_t \hat{\varepsilon}_t' \otimes D_{\beta \tau} c_{S_1}^T Z_{1t} X_{\beta,t-1}^{\#}) \overset{p}{\to} 0.
\]

The result of Theorem 2 now follows from (A.12)–(A.14), combined with (A.8)–(A.10) and the results of Theorem 1. \(\square \)

Proof of Theorem 3. The proof mimics the proof of consistency given in Theorem 4.7of Kristensen and Rahbek (2013) [KR13], and is based on an application of KR13 (Lemma D.1), where a third-order Taylor expansion of the log-likelihood function is employed. In fact, the proof we give below implies also weak convergence of the QMLE \(\hat{\vartheta} \), see KR13 (Lemma D.2 with \(v_T := T \)). With \(\vartheta := (\varphi', \psi')' \in \mathbb{R}^{p \times t_0} \), the criterion function in Lemma D.1 in KR13 reduces here to, cf. (6), \(Q_T(\vartheta) := -\frac{1}{2} \ell(\vartheta) \) for which we need to evaluate first-, second- and third-order differentials. Moreover, in terms of Lemma D.1, set \(U_T = V_T := \sqrt{T} D_{\vartheta T} \), where \(D_{\vartheta T} \) is a normalization matrix defined below.

Note initially that under \(H_0^\vartheta \), \(\text{vec} (\alpha') = G \psi + g \) and \(\text{vec} (\beta^\#) = H \phi + h \), and therefore, using in particular \(\beta^\# = \hat{\varepsilon}^\# + \hat{c}_1^\# \beta_2^\# \),

\[
d \text{vec} (\beta_2^\#) = (I_r \otimes \hat{c}_{I_2}^\#) H d\phi \quad \text{and} \quad d \text{vec} (\alpha') = G_d \psi,
\]

Hence it follows immediately that the first- and second-order derivatives of \(\ell(\cdot) \), and hence of \(Q_T(\cdot) \), from the proof of Theorem 1 can be applied using classic rules for Jacobians as done next.

Consider the first-order differentials of \(\ell(\vartheta) \) in the direction \(d\vartheta \), \(d\ell(\vartheta; d\vartheta) \). We find that

\[
-\frac{1}{2} d\ell(\vartheta; d\vartheta) = \text{tr} \left\{ \Sigma^{-1} \alpha d\beta^\# \left[S_{10} - S_{11} \beta^\# \alpha' \right] \right\} + \text{tr} \left\{ \Sigma^{-1} \alpha d\beta^\# \left[S_{10} - S_{11} \beta^\# \alpha' \right] \right\},
\]

which evaluated at \(\vartheta = \hat{\vartheta}_0 \), gives

\[
-\frac{1}{2} d\ell(\hat{\vartheta}_0; d\vartheta) = \text{tr} \left\{ \hat{c}_1^\# S_{1\varepsilon} \Sigma^{-1} \alpha d\beta_2^\# \right\} + \text{tr} \left\{ \beta^\# S_{1\varepsilon} \Sigma^{-1} \alpha d\beta_2^\# \right\}
\]

\[
= d \text{vec} (\beta_2^\#)' \text{vec} \left(\hat{c}_1^\# S_{1\varepsilon} \Sigma^{-1} \alpha \right) + d \text{vec} (\alpha') \text{vec} \left(\beta^\# S_{1\varepsilon} \Sigma^{-1} \right).
\]

35
Observe, using standard matrix calculus, that
\[d\text{vec} \left(\alpha' \right) \text{vec} \left(\beta'^{\#} S_{1\epsilon} \Sigma^{-1} \right) = d\psi' G' \text{vec} \left(\beta'^{\#} S_{1\epsilon} \Sigma^{-1} \right),\]
and, similarly,
\[d\text{vec} \left(\beta'^{\#}_2 \right) \text{vec} \left(c^{\#}_1 S_{1\epsilon} \Sigma^{-1} \alpha \right) = d\phi' H' \text{vec} \left(c^{\#}_1 c^{\#}_1 S_{1\epsilon} \Sigma^{-1} \alpha \right).
\]
Inserting the normalization matrix \(D_{\beta T} \) from (A.9), we find,
\[d\phi' H' \text{vec} \left(c^{\#}_1 D'_{\beta T} c^{\#}_1 S_{1\epsilon} \Sigma^{-1} \alpha \right) = d\phi' H' \left(I_r \otimes c^{\#}_1 D'_{\beta T} \right) \text{vec} \left(c^{\#}_1 S_{1\epsilon} \Sigma^{-1} \alpha \right).\]
That is, the normalisation \(D_{\phi T} := \left(I_r \otimes D_{\beta T} c^{\#}_1 \right) \) \(H \) replaces \(\left(I_r \otimes D_{\beta T} \right) \) in (A.9). Likewise, \(\sqrt{T} G' \text{vec} \left(\beta'^{\#} S_{1\epsilon} \Sigma^{-1} \right) \) converges, such that with \(D_{\phi T} := \text{diag} \left(D_{\phi T}, T^{-1/2} I_{\psi} \right) \) replacing \(D_T \) in (A.9), we have that
\[D'_{\phi T} \left[\frac{-1}{T} \frac{\partial \ell (\vartheta)}{\partial \vartheta} \right]_{\vartheta = \vartheta_0} \overset{w}{\rightarrow} \left(H' \text{vec} \left(c^{\#}_1 A \int_0^1 G(s) dM(s) \Sigma^{-1} \alpha \right) \right) = N \left(0, G' \left[\Sigma^{-1} \otimes I_r \right] \Omega \left[\Sigma^{-1} \otimes I_r \right] G \right).
\]
Consider next the second-order differentials of \(\ell (\vartheta) \) in the directions \(d\vartheta \) and \(d\vartheta \), \(d^2 \ell \left(\vartheta; d\vartheta, d\vartheta \right) \).

Observe that by definition,
\[-\frac{1}{T} d^2 \ell \left(\vartheta; d\vartheta, d\vartheta \right) = \text{tr} \left\{ \Sigma^{-1} d\alpha d\beta'^{\#} \left[S_{10} - S_{11} \beta'^{\#} \alpha' \right] \right\} - \text{tr} \left\{ \Sigma^{-1} d\alpha \beta'^{\#} S_{11} \beta'^{\#} d\alpha' \right\}
- \text{tr} \left\{ \alpha' \Sigma^{-1} d\alpha \beta'^{\#} S_{11} \beta'^{\#} \right\} + \text{tr} \left\{ \Sigma^{-1} d\alpha \beta'^{\#} S_{10} \beta'^{\#} \right\}
+ \text{tr} \left\{ \alpha' \Sigma^{-1} d\alpha \beta'^{\#} S_{11} \beta'^{\#} \right\} - \text{tr} \left\{ \alpha' \Sigma^{-1} d\alpha \beta'^{\#} S_{11} d\beta' \right\}
\]
and, hence, at \(\vartheta = \vartheta_0 \),
\[-\frac{1}{T} d^2 \ell \left(\vartheta_0; d\vartheta, d\vartheta \right) = -\text{tr} \left\{ \alpha' \Sigma^{-1} d\alpha \beta'^{\#} S_{11} d\beta' \right\}
= -\text{vec} \left(d\beta'^{\#}_2 \right)' \left(\alpha' \Sigma^{-1} \alpha \otimes c^{\#}_1 S_{11} c^{\#}_1 \right) \text{vec} \left(d\beta'^{\#}_2 \right)
= -d\phi' H' \left(\alpha' \Sigma^{-1} \alpha \otimes c^{\#}_1 c^{\#}_1 S_{11} c^{\#}_1 c^{\#}_1 \right) H d\phi.
\]
As before, inserting \(D_{\phi T} \) we find,
\[d\phi' D'_{\phi T} \left(\alpha' \Sigma^{-1} \alpha \otimes c^{\#}_1 c^{\#}_1 S_{11} c^{\#}_1 c^{\#}_1 \right) D_{\phi T} H d\phi
= d\phi' H' \left(\alpha' \Sigma^{-1} \alpha \otimes c^{\#}_1 c^{\#}_1 S_{11} c^{\#}_1 c^{\#}_1 \right) D_{\phi T} H d\phi
\]
which converges weakly, see (A.10). Likewise,
\[-\frac{1}{T} d^2 \ell \left(\vartheta_0; d\psi, d\psi \right) = -\text{tr} \left\{ \Sigma^{-1} d\alpha \beta'^{\#} S_{11} \beta'^{\#} d\alpha' \right\}
= -d\psi' G' \left(\Sigma^{-1} \otimes \beta'^{\#} S_{11} \beta'^{\#} \right) G d\psi,
\]
which converges in probability, see (A.10). Finally,
\[-\frac{1}{T} d^2 \ell \left(\vartheta_0; d\vartheta, d\psi \right) = \text{tr} \left\{ \Sigma^{-1} d\alpha \beta'^{\#} S_{1\epsilon} \right\} - \text{tr} \left\{ \Sigma^{-1} \alpha d\beta'^{\#} S_{11} \beta'^{\#} d\alpha' \right\},\]

36
where, for example, the last term can be rewritten as,
\[
\text{tr} \left\{ \Sigma^{-1} \delta \alpha \Sigma^{\#} S_{11} \beta \right\} = \text{vec} \left(\delta \beta^{\#}_2 \right)' \left(\alpha' \Sigma^{-1} \otimes c_{\perp}^{\#} S_{11} \beta^{\#} \right) \text{vec} \left(\delta \alpha' \right) = \delta \phi' H' \left(I_T \otimes c_{\perp}^{\#} \right) \left(\alpha' \Sigma^{-1} \otimes c_{\perp}^{\#} S_{11} \beta^{\#} \right) G d\psi,
\]
and \(D_{\beta T} \) can be inserted as above. Collecting terms, we find, using (A.10), that
\[
D_{\theta T} \left(\frac{\partial^2 \ell (\theta)}{\partial \delta \partial \delta} \right) \bigg|_{\theta = \theta_0, \Sigma = \Sigma} D_{\theta T} \xrightarrow{w} \begin{pmatrix} H' \left(\alpha' \Sigma^{-1} \alpha \otimes c_{\perp}^{\#} \left[\int_0^1 A G(s) G(s)' A' ds \right] c_{\perp}^{\#} \right) & 0 \\ 0 & G' \left(\Sigma^{-1} \otimes \Sigma_{\beta} \right) G \end{pmatrix}.
\]

Finally, consider third-order differentials of \(\ell (\theta) \), \(d^3 \ell (\cdot) \) say, in the directions \(d\theta, d\tilde{\theta} \) and \(d\theta^* \). Using Lemma D.1 in KR13, the supremum of the norm of \(\frac{1}{T} d^3 \ell (\cdot) \) needs to be bounded in probability uniformly over \(\theta \in \mathcal{N}_T (\theta_0) \), where the sequence of neighbourhoods is given by,
\[
\mathcal{N}_T (\theta_0) = \left\{ \theta \mid \nabla_2 \frac{1}{2} \| \theta - \theta_0 \| \leq \epsilon \right\}.
\]
Here \(\nabla_2 \frac{1}{2} \| \theta \| = T^{-1/2} D_{\theta T}^{-1} \) and (some small) \(\epsilon > 0 \). In terms of \(d\theta \) in the differential, \(d\theta \) should be normalized as \(\nabla_2 \frac{1}{2} d\theta \); and likewise for \(\tilde{\theta}, \theta^* \). Now, the only non-zero third-order differentials of \(\frac{1}{T} \ell (\theta) \) have the form,
\[
\text{tr} \left\{ \delta \alpha' \Sigma^{-1} d\alpha d\beta^{\#}_2 c_{\perp}^{\#} S_{11} \beta \right\}, \quad \text{tr} \left\{ \alpha' \Sigma^{-1} d\alpha d\beta^{\#}_2 c_{\perp}^{\#} S_{11} e_{\perp} d\beta^{\#}_2 \right\}.
\]
Consequently, using the identities in (A.15), and in particular that in \(\mathcal{N}_T (\theta_0) \), \(\phi - \phi_0 = T^{-1/2} h \), with \(\| h \| \leq \epsilon \), it follows that,
\[
T^{-1} \sup_{\theta \in \mathcal{N}_T (\theta_0)} \left\| d^3 \ell \left(\theta; \nabla_2 \frac{1}{2} d\theta, \nabla_2 \frac{1}{2} d\theta \nabla_2 \frac{1}{2} d\theta^*, \nabla_2 \frac{1}{2} d\theta^* \right) \right\|,
\]
is bounded by,
\[
C_T \| d\theta \| \| d\tilde{\theta} \| \| d\theta^* \| \| \frac{1}{T} S_{11} \| = O_p (1),
\]
since \(\| \frac{1}{T} S_{11} \| \) converges weakly, and \(C_T \) contains (standard) terms converging in probability. The consistency \(\hat{V}_T \) follows by similar arguments as in the proof of Lemma 3.

A.3 Results for the bootstrap tests

Proof of Lemma 4. The proof follows as in the proof of Lemma A.5 in Cavaliere, Rahbek and Taylor (2010b) by showing that the conditional variance of \(W_T^\# (\cdot) \) satisfies
\[
E^* (W_T^\# (u) W_T^\# (u)') = \frac{1}{T} \sum_{t=1}^{[T]} \tilde{\varepsilon}_t \tilde{\varepsilon}_t' = \frac{1}{T} \sum_{t=1}^{[T]} \tilde{\varepsilon}_t \tilde{\varepsilon}_t' + o_p (1) \xrightarrow{L} \int_0^u \Sigma (s) ds.
\]
The latter convergence is established in Theorem 3 and this completes the proof. \(\square \)
Proof of Lemma 5. As done for the proof of Lemma 2, define \(\mathcal{X}_{\beta}^{##} = (Z_{\beta t}, Z_{\beta t+1}^\prime) \), with \(Z_{\beta t} = \beta^t Z_{\beta t}^* \); therefore, \(\mathcal{X}_{\beta t}^{##} \) equals \(\mathcal{X}_{\beta t} \) except that \(\rho_t D_{1t} \) has been added to \(\beta^t X_{\beta t}^* \). This means that \(\mathcal{X}_{\beta t}^{##} = \Phi \mathcal{X}_{\beta,t-1}^{##} + \tilde{F}\varepsilon_t^* \), where \(\Phi \) and \(\tilde{F} \) are defined as \(\Phi \) and \(F \) but with the restricted estimators replacing the population parameter values. Moreover, since \(||\Phi^i|| \leq c\lambda^i \) for some positive constant \(c \) and \(|\lambda| < 1 \) (see the proof of Lemma 2), the consistency of the restricted estimators implies that for \(T \) large enough, \(||\Phi^i|| \leq c\lambda^i \). The initial value is \(\mathcal{X}_{\beta,0}^{##} = \mathcal{X}_{\beta,0} \), as the bootstrap sample is initialized at the original data. We therefore may write

\[
\mathcal{X}_{\beta t}^{##} = \Phi^t \mathcal{X}_{\beta 0} + \sum_{i=0}^{T-1} \Phi^i \tilde{F}\varepsilon_{t-i}^* = \Phi^t \mathcal{X}_{\beta 0} + \sum_{i=0}^{T-1} \Phi^i \tilde{F}\varepsilon_{t-i}^* + o_p(1),
\]

where the \(o_p(1) \) term will be neglected in the following.

First, as in Lemma A.7 of Cavaliere, Rahbek and Taylor (2010b) we have that

\[
\begin{pmatrix}
\beta^t M_{11}^{##} \\
M_{21}^{##} \\
M_{22}^{##}
\end{pmatrix} = \frac{1}{T} \sum_{t=1}^{T} \mathcal{X}_{\beta,t-1}^{##} \mathcal{X}_{\beta,t-1}^{##}^\prime \xrightarrow{p} \frac{\sum_{i=0}^{\infty} \Phi^i F^i \Sigma F^i \Phi^i}{\sum_{i=0}^{\infty} \Phi^i} = \begin{pmatrix}
M_{1\beta} & M_{12} \\
M_{21} & M_{22}
\end{pmatrix},
\]

(A.16)

from which we find

\[
\beta^{##} = \beta^t M_{11}^{##} - \beta^t M_{12} M_{22}^{-1} M_{21}^{##} \beta^{##} \xrightarrow{p} \frac{M_{1\beta}}{M_{2\beta}} - \frac{M_{12}M_{22}^{-1}M_{21}^{##}}{M_{2\beta}},
\]

The convergence in (A.16) follows by the triangle inequality by using the following two results.

First, as \(\varepsilon_t^* \varepsilon_t^* = \tilde{\varepsilon}_{c,t} \tilde{\varepsilon}_{c,t}^2 \) and hence \(E^{##} (\varepsilon_t^* \varepsilon_t^*) = \tilde{\varepsilon}_{c,t} \tilde{\varepsilon}_{c,t}^2 \), we have that

\[
E^{##} \left(\frac{1}{T} \sum_{t=1}^{T} \mathcal{X}_{\beta,t-1}^{##} \mathcal{X}_{\beta,t-1}^{##}^\prime \right) = \frac{1}{T} \sum_{t=1}^{T} E^{##} \left(\mathcal{X}_{\beta,t-1}^{##} \mathcal{X}_{\beta,t-1}^{##}^\prime \right)
\]

\[
= \frac{1}{T} \sum_{t=1}^{T} E^{##} \left(\sum_{i=1}^{t-1} \Phi^{i-1} \tilde{F} E^{##} (\varepsilon_{t-i}^* \varepsilon_{t-i}^*) \tilde{F}^\prime \Phi^{i-1} \right)
\]

\[
= \sum_{i=1}^{T-1} \Phi^{i-1} \tilde{F} \left(\frac{1}{T} \sum_{t=1}^{T} \tilde{\varepsilon}_{c,t} \tilde{\varepsilon}_{c,t}^2 \right) \tilde{F}^\prime \Phi^{i-1}
\]

\[
= \sum_{i=0}^{\infty} \Phi^i F^i \Sigma F^i \Phi^i,
\]

since, by consistency of the restricted estimators and Lemma A.1(i),

\[
\sum_{i=1}^{T-1} \Phi^{i-1} \tilde{F} \left(\frac{1}{T} \sum_{t=T-i+1}^{T} \tilde{\varepsilon}_{c,t} \tilde{\varepsilon}_{c,t}^2 \right) \tilde{F}^\prime \Phi^{i-1} \xrightarrow{p} \sum_{i=0}^{\infty} \Phi^i F^i \Sigma F^i \Phi^i,
\]

and furthermore

\[
\left\| \sum_{i=1}^{T-1} \Phi^{i-1} \tilde{F} \left(\frac{1}{T} \sum_{t=T-i+1}^{T} \tilde{\varepsilon}_{c,t} \tilde{\varepsilon}_{c,t}^2 \right) \tilde{F}^\prime \Phi^{i-1} \right\| \leq \left\| \tilde{F} \left(\sum_{i=0}^{T-2} \Phi^i \right) \right\| \frac{1}{T} \max_{t=1,...,T} \left\| \tilde{\varepsilon}_{c,t} \tilde{\varepsilon}_{c,t}^2 \right\| \leq cT \frac{1}{T} \max_{t=1,...,T} \left\| \tilde{\varepsilon}_{c,t} \tilde{\varepsilon}_{c,t}^2 \right\| = o_p(1),
\]

38
as \(c_T = O_p(1) \) and
\[
P \left(\frac{1}{T} \max_{t=1,\ldots,T} \| \hat{e}_{c,t} \| \geq \epsilon \right) \leq \sum_{t=1}^{T} P \left(\| \tilde{e}_{c,t} \| \geq \epsilon T \right)
\leq \frac{\sup_{t} E \left(\| \tilde{e}_{c,t} \|^{2} \right)}{\epsilon^{2} T} = \frac{E \left((\tilde{e}_{c,t})^{2} \right)}{\epsilon^{2} T} \to 0
\]
as \(\epsilon_t \) has finite 4\(^{th} \) order moments.

Second, using the fact that \(\epsilon_{t}^{*} \epsilon_{t}^{*'} - E^{*} (\epsilon_{t}^{*} \epsilon_{t}^{*'}) = \tilde{e}_{c,t} \tilde{e}_{c,t}' (w_{t}^{2} - 1) \), we have that
\[
\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{T-1} \Phi_{i} \left(\tilde{e}_{c,t} \tilde{e}_{c,t}' (w_{t}^{2} - 1) \right) \to 0
\]
where \(R_{T}^{*} := T^{-1} \sum_{i=1}^{T-1} \sum_{t=1}^{T} (\epsilon_{t}^{*} \epsilon_{t}^{*'}) (w_{t}^{2} - 1) \). To show that (A.17) is of \(o_{p}^{*}(1) \) in probability, notice first that
\[
\text{vec} \left(\sum_{i=1}^{T-1} \Phi_{i} \left(\frac{1}{T} \sum_{t=1}^{T} \tilde{e}_{c,t} \tilde{e}_{c,t}' (w_{t}^{2} - 1) \right) \right) = \left(\sum_{i=1}^{T-1} \left(\tilde{e}_{c,t} \tilde{e}_{c,t}' (w_{t}^{2} - 1) \right) \right)
\]
which (conditionally on the data) is the average of an independent sequence with variance
\[
\frac{1}{T^{2}} \sum_{t=1}^{T} \left(\sum_{i=1}^{T-1} \left(\tilde{e}_{c,t} \tilde{e}_{c,t}' (w_{t}^{2} - 1) \right) \right) \to 0
\]

In the same way of (A.16) it can be proved that
\[
\tilde{\beta}^{#} \begin{pmatrix} M_{1 \epsilon}^{*} \\ M_{2 \epsilon}^{*} \end{pmatrix} := \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{T-1} \epsilon_{t}^{*} \epsilon_{t}^{*'} \tilde{\gamma}_{p,0}, \quad \text{(A.18)}
\]
which also implies, as in the proof of Lemma 2, that
\[
\tilde{\beta}^{#} S_{10}^{*} \to_{p} \tilde{\Sigma}_{\beta \alpha} =: \tilde{\Sigma}_{\beta 0},
\]
and
\[
S_{00}^{*} \to_{p} \tilde{\Sigma}_{00}.
\]

39
This proves (20).

To prove (21) and (22), as in the proof of Lemma 2 notice that we have

\[B^*_T Z^*_{1t} = \left(T^{-1/2}(\beta'_T \tilde{C} \sum_{j=1}^{t-1} \varepsilon^*_t \beta'_T S^*_T \beta'_T \tilde{C} \hat{\beta}'_T) \right) + o_p(1) \]

in probability (see also Lemma A.4 in Cavaliere, Rahbek and Taylor (2010b) for details on the \(o_p(1) \) term). Letting \(G^*_T(\cdot) = B^*_T Z^*_{1t,1:T+1} \), we have \(G^*_T(\cdot) \xrightarrow{w} G(\cdot) \). Using the continuous mapping theorem and Theorem 2.1 of Hansen (1992b), together with Lemma 4, we have that

\[\left(\tilde{B}^*_T M^*_{11} \tilde{B}_T, \tilde{B}_T M_{1\epsilon}^* \right) = \left(\int_0^1 G^*_T(s) G^*_T(s)' ds, \int_0^1 G^*_T(s) dM^*_T(s)' \right) \]

\[\xrightarrow{w} \left(\int_0^1 G(s) G(s)' ds, \int_0^1 G(s) dM(s)' \right). \]

The fact that \(Z^*_{1t} \) is a linear process in \(\varepsilon^*_t \) with exponentially decaying weights implies that

\[\tilde{B}^*_T M^*_{1\epsilon} = O_p(T^{-1/2}), \quad \tilde{B}^*_T M^*_{11} \tilde{\beta}^# = O_p(T^{-1/2}), \]

in probability, which together with (A.16) and (A.18), implies that (A.6)–(A.7) also holds with \(M^*_{11} \) and \(M^*_{1\epsilon} \) replaced by \(S^*_{11} \) and \(S^*_{1\epsilon} \), respectively.

Finally, to prove (23), we start with

\[Y^*_t := \text{vec} X^*_{\beta,t-1} \varepsilon^*_t = \text{vec} \left(\bar{\Phi}^{t-1} X^*_{\beta0} + \sum_{i=1}^{t-1} \bar{\Phi}^{i-1} \bar{F} \varepsilon^*_i \right) \varepsilon^*_{t'} \]

\[= \text{vec} \left(\bar{\Phi}^{t-1} X^*_{\beta0} \varepsilon^*_{t'} \right) + \text{vec} \left(\sum_{i=1}^{t-1} \bar{\Phi}^{i-1} \bar{F} \varepsilon^*_i \varepsilon^*_{t'} \right) \]

\[= \text{vec} \left(\bar{\Phi}^{t-1} X^*_{\beta0} \varepsilon^*_{t'} \right) + \sum_{i=1}^{t-1} \left(\varepsilon^*_i \otimes \bar{\Phi}^{i-1} \bar{F} \varepsilon^*_{t-i} \right) \]

\[= \text{vec} \left(\bar{\Phi}^{t-1} X^*_{\beta0} \varepsilon^*_{t'} \right) + \sum_{i=1}^{t-1} \left(J_p \otimes \left(\bar{\Phi}^{i-1} \bar{F} \right) \right) \left(\varepsilon^*_i \otimes \varepsilon^*_{t-i} \right) =: Y^*_{0,t} + Y^*_{1,t} \]

with \(Y^*_{0,t} \) and \(Y^*_{1,t} \) defined implicitly. We now prove that show that \(T^{-1/2} \sum_{t=1}^T Y^*_t \) satisfies (in probability) a CLT by showing (i) that \(T^{-1/2} \sum_{t=1}^T Y^*_t \) satisfies (in probability) a CLT and (ii) that \(T^{-1/2} \sum_{t=1}^T Y^*_{0,t} = o_p(1) \) (in probability).

Part (i). With \(F^*_{t} := \sigma (w_1, w_2, \ldots, w_t) \), notice that, conditionally on the data, \(E^* \left(Y^*_t \, | \, F^*_{t-1} \right) = 0 \) and hence \(\{ Y^*_{t, t}, F^*_{t} \} \) is a vector martingale difference sequence. We prove that a central limit theorem holds on \(T^{-1/2} \sum_{t=1}^T Y^*_{1,t} \) by proving that its conditional variance converges in probability and that (conditionally on the data) the Lindeberg condition holds.

First, since for \(i \geq 1 \),

\[E^* \left((\varepsilon^*_i \otimes \varepsilon^*_{t-i}) (\varepsilon^*_i \otimes \varepsilon^*_{t-i})' \right) = E^* \left((\varepsilon^*_i \varepsilon^*_{t-i} \otimes \varepsilon^*_i \varepsilon^*_{t-i})', F^*_{t-1} \right) = (\varepsilon_{c,t} \varepsilon^*_{c,t} \otimes \varepsilon^*_i \varepsilon^*_{t-i}), \]

40
we have that

\[E^* (Y_{t}^{*}Y_{t}^{*'}) | F_{t-1}^*) = \sum_{i=1}^{t-1} \left(I_p \otimes \left(\Phi^{i-1} \tilde{F} \right) \right) E^* \left(\left(\varepsilon_{t,i}^{*} \varepsilon_{t-i}^{*'} \right) | F_{t-1}^* \right) \left(I_p \otimes \left(\Phi^{i-1} \tilde{F} \right) \right) \]

\[= \sum_{i=1}^{t-1} \left(I_p \otimes \left(\Phi^{i-1} \tilde{F} \right) \right) \left(\varepsilon_{c,t} \varepsilon_{c,t-i} \right) \left(I_p \otimes \left(\Phi^{i-1} \tilde{F} \right) \right) \]

\[+ \sum_{i=1}^{t-1} \left(I_p \otimes \left(\Phi^{i-1} \tilde{F} \right) \right) \left(\varepsilon_{c,t} \varepsilon_{c,t-i} \right) \left(I_p \otimes \left(\Phi^{i-1} \tilde{F} \right) \right) \]

where \(\eta_t := w_t^2 - 1 \). Averaging across \(t \) yields

\[\frac{1}{T} \sum_{t=1}^{T} E^* (Y_{t}^{*}Y_{t}^{*'} | F_{t-1}^*) \]

\[= \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{t-1} \left(I_p \otimes \left(\Phi^{i-1} \tilde{F} \right) \right) \left(\varepsilon_{c,t} \varepsilon_{c,t-i} \right) \left(I_p \otimes \left(\Phi^{i-1} \tilde{F} \right) \right) \]

\[+ \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{t-1} \left(I_p \otimes \left(\Phi^{i-1} \tilde{F} \right) \right) \left(\varepsilon_{c,t} \varepsilon_{c,t-i} \right) \left(I_p \otimes \left(\Phi^{i-1} \tilde{F} \right) \right) \]

\[=: V_{0,T} + V_{1,T}^*, \]

where \(V_{0,T} \) and \(V_{1,T}^* \) are implicitly defined. Notice that \(V_{1,T}^* = o_p^* (1) \), in probability, since by Chebychev’s inequality

\[V_{1,T}^* = \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{t-1} \left(I_p \otimes \left(\Phi^{i-1} \tilde{F} \right) \right) \left(\varepsilon_{c,t} \varepsilon_{c,t-i} \right) \left(I_p \otimes \left(\Phi^{i-1} \tilde{F} \right) \right) \]

\[= \frac{1}{T} \sum_{t=1}^{T-1} \sum_{i=1}^{t-1} \left(I_p \otimes \left(\Phi^{i-1} \tilde{F} \right) \right) \left(\varepsilon_{c,t+i} \varepsilon_{c,t+i} \eta_i \right) \left(I_p \otimes \left(\Phi^{i-1} \tilde{F} \right) \right) \]

\[= o_p^* (1) \] in probability,

as \(\eta_t \) is (conditionally) independent and \(\varepsilon_t \) has finite \(8^+ \) moments.

Regarding \(V_{0,T} \), we have that

\[V_{0,T} = \frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{t-1} \left(I_p \otimes \left(\Phi^{i-1} \tilde{F} \right) \right) \left(\varepsilon_{c,t} \varepsilon_{c,t-i} \right) \left(I_p \otimes \left(\Phi^{i-1} \tilde{F} \right) \right) \]

\[= \sum_{i=0}^{T-1} \left(I_p \otimes \left(\Phi^{i-1} \tilde{F} \right) \right) \left(I_p \otimes \left(\Phi^{i-1} \tilde{F} \right) \right) \]

\[= V_{0,T}^{(n)} + R_{0,T}^{(n)}, \]

where, for any \(n \leq T - 1 \), we set

\[V_{0,T}^{(n)} := \sum_{i=0}^{n} \left(I_p \otimes \left(\Phi^{i-1} \tilde{F} \right) \right) \left(I_p \otimes \left(\Phi^{i-1} \tilde{F} \right) \right), \]
and
\[
R_{0,T}^{(n)} := \sum_{i=n+1}^{T-1} \left(I_p \otimes \left(\Phi^{i-1} F \right) \right) \frac{1}{T} \sum_{t=i+1}^{T} \left(\bar{e}_{c,t} \bar{e}'_{c,t} \otimes \bar{e}_{c,t-i} \bar{e}'_{c,t-i} \right) \left(I_p \otimes \left(\Phi^{i-1} F \right) \right) \\
= \sum_{i=n+1}^{T-1} \left(I_p \otimes \left(\Phi^{i-1} F \right) \right) \frac{1}{T} \sum_{t=i+1}^{T} \left(\varepsilon_t \varepsilon_t' \otimes \varepsilon_{t-i} \varepsilon_{t-i}' \right) \left(I_p \otimes \left(\Phi^{i-1} F \right) \right) + o_p(1),
\]
where the \(o_p(1) \) term does not depend on \(n \). We now derive the limit of \(V_{0,T}^{(n)} \) as \(T \to \infty \) for fixed \(n \), and then let \(n \to \infty \) to obtain the limiting distribution of \(V_{0,T} \), where we also need to show that \(\lim_{n \to \infty} \limsup_{T \to \infty} P(\| R_{0,T}^{(n)} \| > \epsilon) = 0 \) for all \(\epsilon > 0 \), as in the proof of Lemma 2.

For fixed \(n \),
\[
V_{0,T}^{(n)} = \sum_{i=0}^{n} \left(I_p \otimes \left(\Phi^{i-1} F \right) \right) \frac{1}{T} \sum_{t=i+1}^{T-i} \left(\bar{e}_{c,t} \bar{e}'_{c,t} \otimes \bar{e}_{c,t-i} \bar{e}'_{c,t-i} \right) \left(I_p \otimes \left(\Phi^{i-1} F \right) \right) \\
\overset{p}{\to} \sum_{i=0}^{n} \left(I_p \otimes \left(\Phi^{i-1} F \right) \right) \int_{0}^{1} [\sigma(s) \otimes \sigma(s)] \tau_{ii} \sigma(s) [\sigma(s) \otimes \sigma(s)]' ds \left(I_p \otimes \left(\Phi^{i-1} F \right) \right) =: V^{(n)}
\]
since for any fixed \(i \), we have that
\[
\frac{1}{T} \sum_{t=i+1}^{T-i} \left(\bar{e}_{c,t} \bar{e}'_{c,t} \otimes \bar{e}_{c,t-i} \bar{e}'_{c,t-i} \right) = \frac{1}{T} \sum_{t=i+1}^{T-i} \left(\varepsilon_t \varepsilon_t' \otimes \varepsilon_{t-i} \varepsilon_{t-i}' \right) + o_p(1)
\]
by Lemma A.1(iii) and as \(((\varepsilon_t \varepsilon_t' - \sigma_t h_t \sigma_t') \otimes \varepsilon_{t-i} \varepsilon_{t-i}' \) is a martingale difference array with bounded \(1^\perp \) moments, so that a WLLN applies (see e.g. Hall and Heyde (1980, Theorem 2.13 (i))). Next, we have that
\[
\lim_{n \to \infty} V^{(n)} = \sum_{i=0}^{n} \left(I_p \otimes \left(\Phi^{i-1} F \right) \right) \int_{0}^{1} [\sigma(s) \otimes \sigma(s)] \tau_{ii} \sigma(s) [\sigma(s) \otimes \sigma(s)]' ds \left(I_p \otimes \left(\Phi^{i-1} F \right) \right) =: V.
\]
Finally we have that, for \(T \) large enough,
\[
P(\| R_{0,T}^{(n)} \| > \epsilon) = P \left(\left\| \sum_{i=n+1}^{T-1} \left(I_p \otimes \left(\Phi^{i-1} F \right) \right) \frac{1}{T} \sum_{t=i+1}^{T} \left(\varepsilon_t \varepsilon_t' \otimes \varepsilon_{t-i} \varepsilon_{t-i}' \right) \left(I_p \otimes \left(\Phi^{i-1} F \right) \right) \right\| > \epsilon \right) \\
\leq P \left(\sum_{i=n+1}^{T-1} \left\| \left(I_p \otimes \left(\Phi^{i-1} F \right) \right) \right\|^2 \frac{1}{T} \sum_{t=i+1}^{T} \left(\varepsilon_t \varepsilon_t' \otimes \varepsilon_{t-i} \varepsilon_{t-i}' \right) \right) > \epsilon \right) \\
\leq E \left(\sum_{i=n+1}^{T-1} \left\| \left(I_p \otimes \left(\Phi^{i-1} F \right) \right) \right\|^2 \frac{1}{T} \sum_{t=i+1}^{T} \left(\varepsilon_t \varepsilon_t' \otimes \varepsilon_{t-i} \varepsilon_{t-i}' \right) \right) \\
= \sum_{i=n+1}^{T-1} \left\| \left(I_p \otimes \left(\Phi^{i-1} F \right) \right) \right\|^2 E \left(\frac{1}{T} \sum_{t=i+1}^{T} \left(\varepsilon_t \varepsilon_t' \otimes \varepsilon_{t-i} \varepsilon_{t-i}' \right) \right) \\
\leq \frac{K \lambda^2 n}{\epsilon} \to 0
\]
as \(n \to \infty \). This completes the proof that \(T^{-1} \sum_{t=1}^{T} E^\perp \left(Y_{1,t} Y_{1,t}^* F_{t-1}^* \right) P_{\gamma} V \).
We prove the (conditional) Lindberg conditions by showing that $T^{-2} \sum_{t=1}^{T} E^* (||Y_{1,t}^*||^4) \to_p 0$. First, we have that, since ε_t^* is independent under P^*,

$$E^* \left[Y_{1,t}^* \right] = E^* \left(\varepsilon_t^* \right) = E^* \left(\sum_{i=1}^{t-1} (\Phi_{i-1}^* F) \varepsilon_{t-i}^* \right) = E^* \left(\varepsilon_t^* \right) = E^* \left(\sum_{i=1}^{t-1} (\Phi_{i-1}^* F) \varepsilon_{t-i}^* \right) \leq K \|\varepsilon_t^*\|^4 E^* \left(\sum_{i=1}^{t-1} (\Phi_{i-1}^* F) \varepsilon_{t-i}^* \right)$$

with $K = E|w_t^d|$. Moreover,

$$E^* \left(\sum_{i=1}^{t-1} (\Phi_{i-1}^* F) \varepsilon_{t-i}^* \right) = E^* \left(\sum_{i=1}^{t-1} \varepsilon_{t-i}^* \vec{e}_{t-i}^* \right) \left(\sum_{i=1}^{t-1} \Phi_{i-1}^* \vec{e}_{t-i}^* \right) \leq E^* \left(\sum_{i=1}^{t-1} \varepsilon_{t-i}^* \vec{e}_{t-i}^* \right) \left(\sum_{i=1}^{t-1} \Phi_{i-1}^* \vec{e}_{t-i}^* \right) \leq K T (k = i, l = j) (\varepsilon_{t-i}^* \varepsilon_{t-j}^* \varepsilon_{t-l}^* \varepsilon_{t-k}^*)$$

Since

$$E^* (\varepsilon_{t-i}^* \varepsilon_{t-j}^* \varepsilon_{t-l}^* \varepsilon_{t-k}^*) = E^* (w_{t-i} w_{t-j} w_{t-k} w_{t-l}) (\tilde{\varepsilon}_{t-i} \tilde{\varepsilon}_{t-j} \tilde{\varepsilon}_{t-l} \tilde{\varepsilon}_{t-k})$$

we have that

$$\frac{1}{T^2} \sum_{t=1}^{T} E^* (||Y_{1,t}^*||^4) \leq K \frac{1}{T^2} \sum_{t=1}^{T} \|\varepsilon_t^*\|^4 \sum_{i=1}^{t-1} \sum_{i=1}^{t-1} \text{tr} \left(\tilde{F}^i \tilde{F}^j \varepsilon_{t-i}^* \varepsilon_{t-j}^* \varepsilon_{t-l}^* \varepsilon_{t-k}^* \right) \leq O_T (T^{-1})$$

since ε_t has finite 8^+ moments and $\text{tr} \left(\tilde{F}^i \tilde{F}^j \varepsilon_{t-i}^* \varepsilon_{t-j}^* \varepsilon_{t-l}^* \varepsilon_{t-k}^* \right)$ is exponentially decaying, see above.

Part (ii). To show this part if suffices to notice that, since $X_{\beta_0}^{#} = X_{\beta_0}^{#}$ due to the initialization of the bootstrap sample, we have that (conditionally on the original sample)

$$T^{-1/2} \sum_{t=1}^{T} Y_{0,t}^* = T^{-1/2} \sum_{t=1}^{T} \text{vec} (\Phi_{i-1}^* X_{\beta_0}^{#} \varepsilon_{t}^*) = T^{-1/2} \sum_{t=1}^{T} \text{vec} (\Phi_{i-1}^* X_{\beta_0}^{#} \varepsilon_{t}^*) = T^{-1/2} \sum_{t=1}^{T} (\varepsilon_t^* \otimes \tilde{\Phi}_{i-1}^* X_{\beta_0}^{#})$$

has variance

$$\frac{1}{T^2} \sum_{t=1}^{T} \left(E^* (\varepsilon_t^* \varepsilon_{t}^*) \otimes (\tilde{\Phi}_{i-1}^* X_{\beta_0}^{#} \varepsilon_{t}^* \tilde{\Phi}_{i-1}^*) \right) = \frac{1}{T^2} \sum_{t=1}^{T} (\varepsilon_t^* \varepsilon_{t}^* \otimes \tilde{\Phi}_{i-1}^* X_{\beta_0}^{#} \tilde{\Phi}_{i-1}^*) \to_p 0$$
under the stated assumptions. The proof of Part (ii) completes the proof of (23), since, from
the definition of $\tilde{\beta}^{\#} S_{1e}^\ast$, this implies $T^{1/2} \tilde{\beta}^{\#} S_{1e}^\ast \overset{w}{\rightarrow} N(0, \Omega^\dagger)$, with
$$
\Omega^\dagger = [I : -\bar{M}_{92} \bar{M}_{22}^{-1}] V^\dagger [I : -\bar{M}_{92} \bar{M}_{22}^{-1}]^\prime.
$$

Proof of Theorem 4. It follows using the same steps as in the proof of Theorem 1, using
the wild bootstrap results of Lemma 5. □

Proof of Corollary 2. Theorems 4 and 5 imply that, uniformly in probability, the (condi-
tional) cdf of the bootstrap statistic LR_T^\ast satisfies $G_T^\ast(\cdot) \rightarrow F(\cdot)$, with F the cdf of the limiting
distribution of LR_T. This implies that, under the null hypothesis, P_T^\ast converges weakly to
$U[0, 1]$, see Hansen (2000, proof of Theorem 5). □

Proof of Theorem 5. It follows using the same steps as in the proof of Theorem 2, using the
wild bootstrap results of Lemma 5 and the fact that, under the assumptions of the Theorem,
we have that, as $T \rightarrow \infty$,
$$
\hat{V}_T^\ast(u) := T^{-1} \sum_{t=1}^{[Tu]} \tilde{\varepsilon}_t^\ast \tilde{\varepsilon}_t^\ast = T^{-1} \sum_{t=1}^{[Tu]} \varepsilon_t^\ast \varepsilon_t^\ast + o_p(1) \overset{p}{\rightarrow} \int_0^u \Sigma(s)ds =: V(u),
$$
uniformly in $u \in [0, 1]$. This result can be proved by noticing that
$$
\frac{1}{T} \sum_{t=1}^{[Tu]} \varepsilon_t^\ast \varepsilon_t^\ast = \frac{1}{T} \sum_{t=1}^{[Tu]} \tilde{\varepsilon}_{c,t} \tilde{\varepsilon}_{c,t}^\prime (w_t^2 - 1) + \frac{1}{T} \sum_{t=1}^{[Tu]} \tilde{\varepsilon}_{c,t} \tilde{\varepsilon}_{c,t}^\prime \overset{p}{\rightarrow} V(u)
$$
as, by Lemma 3, $T^{-1} \sum_{t=1}^{[Tu]} \tilde{\varepsilon}_{c,t} \tilde{\varepsilon}_{c,t}^\prime \overset{p}{\rightarrow} V(u)$ and, conditionally on the data, $\tilde{\varepsilon}_{c,t} \tilde{\varepsilon}_{c,t}^\prime (w_t^2 - 1)$ is
an independent sequence and $T^{-1} \sum_{t=1}^{[Tu]} \tilde{\varepsilon}_{c,t} \tilde{\varepsilon}_{c,t}^\prime (w_t^2 - 1)$ converges to 0 by standard arguments. □

References

Andrews, D.W.K. and M. Buchinsky (2000), A three-step method for choosing the number of
bootstrap repetitions, Econometrica 68, 23–51.

Boswijk, H.P. (1995), Identifiability of cointegrated systems. Tinbergen Institute Discussion

Boswijk, H.P. and J.A. Doornik (2004), Identifying, estimating and testing restricted cointe-

Brown, B.M. (1971), Martingale central limit theorems, Annals of Mathematical Statistics 42,
59–66.

Hansen, B.E. (1992b), Convergence to stochastic integrals for dependent heterogeneous pro-

Hansen, B.E. (1996), Inference when a nuisance parameter is not identified under the null hypothesis, *Econometrica* 64, 413–430.

Figure 1: Time series (e_i) and variance profiles (v_i) of VAR(2) residuals, $i = 1, 3, 5$.

![Time series and variance profiles](image-url)
Table 1: Monte Carlo rejection frequencies for \(p = 2 \)

<table>
<thead>
<tr>
<th>GARCH</th>
<th>(\Sigma_i^{(i)})</th>
<th>(H_{0:i} : \beta_2 = 0)</th>
<th>(H_{0:i} : \alpha_2 = 0)</th>
<th>(H_0 = H_{0:3} \cap H_{0:i})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(T)</td>
<td>PLR Asy</td>
<td>IBS</td>
<td>WBS</td>
</tr>
<tr>
<td>N</td>
<td>100</td>
<td>11.1</td>
<td>5.6</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>7.2</td>
<td>4.8</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>5.9</td>
<td>4.8</td>
<td>4.7</td>
</tr>
<tr>
<td>Y</td>
<td>100</td>
<td>20.5</td>
<td>12.1</td>
<td>5.9</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>15.9</td>
<td>12.1</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>13.9</td>
<td>12.1</td>
<td>5.0</td>
</tr>
<tr>
<td>Y</td>
<td>100</td>
<td>22.5</td>
<td>14.1</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>18.1</td>
<td>14.2</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>16.0</td>
<td>14.1</td>
<td>5.1</td>
</tr>
</tbody>
</table>

Notes: \(p \) denotes the dimension of the system. \(\beta_2 = (0_{p-1} : I_{p-1})\beta \) and \(\alpha_2 = (0_{p-1} : I_{p-1})\alpha \), so \(H_{0:i} (H_{0:i}) \) restricts the last \(p - 1 \) components of \(\beta (\alpha) \) to zero. PLR and Wald refer to the pseudo-likelihood ratio and PML-based Wald tests. The columns labelled Asy, IBS and WBS refer to rejection frequencies using \(\chi^2 \), i.i.d. bootstrap and wild bootstrap critical values, respectively, all at the 5% nominal level. Entries in italics correspond to tests which are not asymptotically valid. \(T \) is the sample size; the three choices for \(\Sigma_i^{(i)} \), \(i = 1, 2, 3 \) are described in Section 5. The column GARCH N/Y indicates whether (Y) or not (N) the errors were generated from univariate GARCH processes with parameter values indicated in Section 5.
<table>
<thead>
<tr>
<th>GARCH</th>
<th>$\Sigma_i^{(1)}$</th>
<th>$H_{0\beta}: \beta_2 = 0$</th>
<th>$H_{0\alpha}: \alpha_2 = 0$</th>
<th>$H_0 = H_{0\beta} \cap H_{0\alpha}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/Y</td>
<td>i</td>
<td>T</td>
<td>PLR Asy</td>
<td>IBS</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>17.5</td>
<td>5.8</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>200</td>
<td>10.0</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>7.2</td>
<td>5.0</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>31.7</td>
<td>15.6</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>200</td>
<td>22.4</td>
<td>15.1</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>18.8</td>
<td>14.8</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>43.4</td>
<td>27.7</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>200</td>
<td>32.0</td>
<td>24.4</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>27.3</td>
<td>23.5</td>
<td>5.2</td>
</tr>
</tbody>
</table>

	100	17.8	6.5	5.7	32.8	5.9	6.5	14.1	7.0	6.4	24.0	6.6	8.8	15.5	5.6	5.0	49.1	5.8	9.0	
	1	200	10.2	5.6	5.4	18.9	5.5	6.3	8.3	5.9	5.5	14.2	6.0	6.8	9.1	5.7	5.1	24.3	5.5	6.9
	400	6.9	4.8	4.7	11.0	5.0	5.3	6.6	5.5	5.1	8.9	5.4	5.6	6.8	4.9	4.9	13.1	4.9	5.5	
	100	31.2	15.9	6.8	31.6	7.6	6.5	30.6	21.0	7.1	24.3	8.7	8.9	37.9	22.0	5.9	54.5	9.3	8.6	
	2	200	22.4	15.0	6.2	20.3	6.6	6.0	24.4	20.4	6.4	15.9	7.3	7.2	30.4	23.1	6.0	30.0	8.3	6.8
	400	18.2	14.5	4.9	11.9	5.5	5.2	22.8	20.6	5.4	9.9	6.6	6.0	27.7	23.8	5.1	15.5	6.9	5.9	
	100	42.4	27.3	7.7	32.3	9.5	6.7	34.9	25.9	7.4	23.1	10.0	9.2	48.1	32.7	6.2	56.1	13.0	8.7	
	3	200	31.8	24.4	6.4	18.3	6.5	5.8	27.9	23.6	6.2	15.2	7.8	7.4	40.4	32.9	5.8	30.2	10.1	7.1
	400	27.2	23.1	5.1	11.1	5.0	4.9	25.5	23.5	5.5	10.3	6.8	6.2	37.2	33.2	5.1	15.9	7.4	5.9	

Notes: See Notes to Table 1.
Table 3: Monte Carlo rejection frequencies for $p = 4$

<table>
<thead>
<tr>
<th>GARCH</th>
<th>$\Sigma_i^{(i)}$</th>
<th>$H_{03}: \beta_2 = 0$</th>
<th>$H_{0a}: \alpha_2 = 0$</th>
<th>$H_0 = H_{03} \cap H_{0a}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N/Y</td>
<td>i</td>
<td>T</td>
<td>PLR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PLR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td>400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>400</td>
</tr>
</tbody>
</table>

Notes: See Notes to Table 1.
Table 4: Trace test statistics (Q_r) for co-integration rank (r), with asymptotic (p_{Asy}), standard bootstrap (p_{IBS}) and wild bootstrap (p_{WBS}) p-values.

<table>
<thead>
<tr>
<th>r</th>
<th>Q_r</th>
<th>p_{Asy}</th>
<th>p_{IBS}</th>
<th>p_{WBS}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>191.6</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1</td>
<td>105.3</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>41.66</td>
<td>0.009</td>
<td>0.013</td>
<td>0.081</td>
</tr>
<tr>
<td>3</td>
<td>17.44</td>
<td>0.117</td>
<td>0.212</td>
<td>0.280</td>
</tr>
<tr>
<td>4</td>
<td>2.664</td>
<td>0.645</td>
<td>0.891</td>
<td>0.770</td>
</tr>
</tbody>
</table>