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Airline route structure competition and network policy

Hugo E. Silva∗, Erik T. Verhoef, Vincent A.C. van den Berg

Department of Spatial Economics, VU University Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam,
The Netherlands. Tinbergen Institute, Gustav Mahlerplein 117, 1082 MS, Amsterdam, The Netherlands.

Abstract

This paper studies whether a regulator needs to correct the route structure choice

by carriers with market power in the presence of congestion externalities, in addition to

correct their pricing. We account for passenger benefits from increased frequency, passenger

connecting costs, airline endogenous hub location and route structure strategic competition.

We find that, for some parameters, an instrument directly aimed at regulating route

structure choice may be needed to maximize welfare, in addition to per-passenger and

per-flight tolls designed to correct output inefficiencies. This holds true when the regulator

is constrained to set non-negative tolls, but also for the case of unconstrained tolling.

Keywords: Route structure competition, Aviation policy, Hub-and-spoke networks,

Fully-connected networks

1. Introduction

Following the deregulation of the airline industry, several changes in aviation markets

were observed (see Morrison and Winston (1995) for an overview of the changes in the US

industry, and Burghouwt and Hakfoort (2001) for Europe). In addition to changes in fares,

the most notorious change was in the way markets were served: the adoption of hub-and-

spoke route structures by carriers became dominant. Such a decision by carriers has often

been explained with three arguments: economies of density, frequency effects and strategic

advantages. The first refers to the fact that average cost in a direct route decreases with

the number of passengers, and the second to the fact that there are benefits for passengers

of increased frequencies, e.g. reductions in schedule delay costs (the difference between

desired and actual departure/arrival time). Both may be better exploited under hub-and-

spoke structures. In a monopoly framework, Hendricks et al. (1995) show that economies

of density alone can induce an airline to adopt a hub-and-spoke route structure; Pels et al.

(2000) analyze the choice of route structure under linear marginal costs and the effect
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of fixed costs in the decision; and Brueckner (2004) shows how frequency effects favors

the adoption of hub-and-spoke. The third argument, strategic advantages, refers to the

fact that adopting hub-and-spoke route structures may bring, in oligopolistic competition,

further advantages because of the effect it may have on competitors. For instance, Oum

et al. (1995) show that using a hub-and-spoke structure can be a top-dog strategy, in the

sense of Fudenberg and Tirole (1984), allowing the carrier to be more aggressive in output

market competition; it can deter entry in hub markets if the complementarities among hub

markets are large, or the number of complementary hub markets is large (Hendricks et al.,

1997); and it can prevent competition in local markets between two hub carriers because

invading the competitor’s local market may reduce own profit in all connecting markets

due to a more aggressive competition in the trans-hub market (Zhang, 1996).

The outcomes of a deregulated environment where carriers can choose how to serve mar-

kets, and the conditions that give rise to hub-and-spoke route structures as an equilibrium

of unregulated competition, have been well studied in the literature. Recent contributions

include Hendricks et al. (1999), Alderighi et al. (2005), Barla and Constantatos (2005),

and Flores-Fillol (2009, 2010). These studies, however, ignore the endogenous nature of

the hub location, do not study the socially optimal route structure, and most of them

also ignore congestion effects. On the other hand, literature on pricing and regulation in

aviation markets has mostly focused on either a single origin destination pair, hence ignoring

network effects, or in networks with fixed route structures, hence ignoring its endogenous

nature and its effect on optimal policy.

The objective of this paper is to extend the congestion pricing and regulation analysis

by elaborating on policy instruments that can decentralize the socially efficient outcome in a

network setting, where carriers with market power choose a route structure in the presence

of congestion externalities. It is known from earlier literature, which abstracts away from

endogenous route structure, that oligopolistic carriers partially internalize congestion and

exert market power (e.g. Brueckner (2002); Pels and Verhoef (2004)). This means that

two inefficiencies need to be corrected: the dead-weight loss from market-power markups

(e.g. with subsidies) and the excessive number of flights that are scheduled (e.g. with

slot constraints or congestion pricing).1 In this paper, we study whether and how the

inclusion of route structure choice by carriers changes these conclusions. Specifically, do

regulators need an additional instrument, on top of the ones described above, to induce the

socially desirable outcome? We carry out the analysis in what we believe is the simplest

possible setting that allows us to account for strategic interactions in route structure choice,

endogenous hub locations, market power exertion by airlines, congestion externalities at

airports, and passenger frequency benefits and transfer costs.

1See Zhang and Czerny (2012) for an up-to-date review on airport pricing.
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The main result of our analysis is that a regulatory instrument directly targeted on

route structure choice may be needed to maximize welfare, in addition to tolls designed to

induce the efficient outputs, given the networks chosen. We find that social welfare can be

increased by using an additional policy instrument when the regulator is restrained from

subsidizing airlines, but also when it does not face such constraint on tolling. Specifically,

the first-best optimal route structures and output levels cannot always be decentralized by

just using an airline- and market-specific per-passenger toll (to correct for market power),

together with an airline- and link-specific per-flight toll (to correct for congestion), designed

to induce the efficient output for the optimal route structure. Thus, the equilibrium with

those tolls is not always efficient, even when the regulator can perfectly discriminate airlines

and has no pricing constraints. This is because these tolls, especially the market-specific

per-passenger subsidies, which are required to counteract market power exertion, provide

incentives to airlines to adopt the route structure that better exploits the subsidies, and

which may differ from the one that maximizes welfare.

First-best pricing as just discussed typically requires a regulator to give asymmetric

per-passenger subsidies to airlines, a policy that is arguably, in practice, impossible to

implement. To address this limitation, we also study the case in which the regulator

is constrained to charge non-negative tolls. We show that when the second-best optimal

route structure is different to the outcome of unregulated competition, second-best tolls may

not induce the second-best optimal equilibrium. That is, the route structure and output

levels that maximize welfare in absence of market power corrections possibly cannot be

decentralized through tolls alone. Thus, also in the absence of subsidization, tolls designed

to correct output inefficiencies are not always a sufficient instrument for (constrained)

welfare maximization.

Our results may have important policy implications. In some cases an instrument

directly aimed at regulating route structure choice is needed for welfare maximization, and

in the cases where the pricing instruments are sufficient, the rationale for the charges is not

always the same. In some cases they are required only to correct output choices, in other

cases the tolls are needed to correct simultaneously output and route structure choices,

and finally they can also be needed in order to change the market structure in terms

of suppliers present in the network, in addition to correct output and route structure.

It is therefore evident from the analysis that a regulator designing a pricing policy for

the aviation industry has to take into account its effect on the long-run route structure

equilibrium, and assess the optimality of the observed setting before deciding on toll levels.

In addition, more information is needed to achieve the first-best: if only “local variables”

(notably marginal external cost and marginal benefit) are available, adaptive pricing would

“guide” the regulator to the (second-best) optimum. But, with discrete changes in route

structures, and multiple local optima, this is no longer true. A “naive” regulator, who
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observes a sub-optimal route structure configuration, and set the tolls based on this, may

not always achieve welfare maximization, neither first-best nor second-best. Finally, the

extent to which each of the different situations described above hold is a matter of empirical

research.

In Section 2 we introduce the model and the configuration of nodes between which

endogenous route structures can be offered. Section 3 analyzes the equilibria of the untolled

competition for a duopoly, while Section 4 derives the welfare maximizing equilibria. Section

5 studies whether pricing is enough to achieve the welfare maximizing setting as the result

of tolled competition, and extends the analysis to the second-best case where the regulator

cannot subsidize airlines. Finally, Section 6 concludes.

2. The model

In order to keep the simplest possible focus on the route structure choice by agents with

market power in presence of externalities, we use a stylized model that follows Brueck-

ner’s (2004) in the basic assumptions, and extends it by considering congestion, airline

competition and the analysis of how to enforce the social optimum.

We consider a symmetric duopoly of airlines that compete in each of the three symmetric

markets that are shown in Figure 1. These markets M = {AB,BC,AC} represent return-

trips for simplicity (e.g. people travel from A to B and return); direction-specific return-

trips (e.g. people making round-trips both from A to B and from B to A) may be introduced

without altering the analysis. The links L = {ab, bc, ac} are always available to any airline;

that is, both airlines have permission to schedule flights between any city-pair. Each market

m can be served by airlines either directly, flying non-stop from the origin airport to the

destination airport, or via a hub airport that an airline chooses to use for the connection.

As a result, the two possible route structures for an airline are: fully connected (henceforth

F); or hub-and-spoke (henceforth H), where they choose one airport as its hub, and fly only

between the hub and the two remaining airports, serving two markets non-stop and one

with connecting flights.2 We let each airline’s hub to be endogenous, therefore asymmetric

settings with hub-and-spoke structures may arise.

We model the airlines’ competition with a two-stage game where, first, carriers simul-

taneously choose route structure, and then they compete in output at a market level.

Specifically, in the latter stage, airlines have the number of passengers in each market (qm),

number of flights in each link (fl), and aircraft size (sl) as strategic variables; this is an

extension of the Cournot assumption that airlines take rival’s quantities, instead of fares,

2Equilibria where an airline chooses to serve less than the 3 origin-destination pairs will be considered

in the numerical model.
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as given.3

We assume that the full price faced by a passenger when traveling with airline i, is:

θmi = pmi +Dm
i + gmi . (1)

This is the sum of the fare, pmi , the congestion delay cost, Dm
i , and schedule delay cost,

gmi .4 We further assume that airlines are perceived as imperfect substitutes and that the

passenger demand function for an airline i in market m, qmi , is linear in own and the rival’s

price. Therefore, the demand faced by the airline depends on its own full price, θmi , as well

as its rival’s, θmj (hereafter, when subscript j appears in the same expression with i, it refers

to the rival airline). These assumptions are summarized in the following inverse demand:

θmi = A−B · qmi − E · qmj , (2)

where A, B, and E are positive parameters satisfying 0 ≤ E ≤ B. Note that we ignore

demand dependencies between markets (city-pairs). This set of assumptions allows us to

analyze the effect of airline horizontal differentiation on route structure choice by means of

varying the ratio of substitutability, E/B, that ranges from 0—when the airlines’ outputs

are independent in terms of demand interaction—to 1—when the airlines’ outputs are

perfect substitutes. At the same time, we consider that not all passengers choose the

airline with the most attractive fare-delay combination due to factors that may differ across

carriers, such as service level (e.g. language), and make passengers perceive airlines as

imperfect substitutes.

3The assumption that airlines compete in a Cournot fashion is common in the airline literature and is

supported by empirical evidence by Brander and Zhang (1990) and Oum et al. (1993). For a discussion of

the implications of leadership behavior see Brueckner and Van Dender (2008), and for Bertrand competition

with differentiated airlines see Silva and Verhoef (2013).
4The schedule delay is the time difference between a passengers desired departure time and the actual

departure time. As we do not explicitly model trip-timing decisions, this represents an average measure of

the schedule delay cost, that, at least, provides the right intuition.
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Following Brueckner (2004), we model the airlines’ cost per flight as a function of the

aircraft size (s) in the following way:

C(s) = cf + cq · s , (3)

where cf is the fixed cost per flight, and cs the marginal cost per seat. This formulation

captures in a simple way that increasing the number of passengers per link may reduce

average cost per passenger through economies of seats. We also assume a constant load

factor of 100% that allows for analytical tractability. A more realistic model would have

endogenous aircraft size and load factors, with stochastic demand, but this would prevent

us from providing analytical transparent understanding of route structure equilibria.

As a natural benchmark, we consider a regulator that controls all airports and maximizes

welfare, so that we analyze a three-stage game. In the first stage, the regulator sets per-

passenger tolls to each airline in each market (τmi ), and per-flight tolls to each airline in

each link (τ li ).
5 In the second and third stage, airlines choose route structure and output

respectively.6 We look at sub-game perfect equilibria through backward induction, so we

first analyze, in the following section, the airlines’ Nash equilibria.

3. Airlines equilibrium

In the second stage, airlines have a discrete choice between alternative route structures

(F or H at any of the airports). Hence, we first look at their profits while taking route

structures as given, and then analyze the equilibrium in route structure.

3.1. The fully connected route structure

In this setting, airline i uses F as its route structure, and chooses the frequency on

each link, f li ; and the number of passengers in each market, qmi . The seats per flight are

sli = qli/f
l
i , where qli is the number of passengers flying through link l, because there is no

gain of having spare capacity.

We assume that the average schedule delay depends only on the flight frequency of the

airline in the link that connects that market, and that it decreases with frequency (e.g.

∂gABi /∂fabi < 0 ∧ ∂gABi /∂f li = 0 ∀ l 6= ab ∧ ∂gABi /∂f lj = 0 ∀ l). The assumption that

schedule delay does not depend on the rival’s frequency, as congestion does, reflects our view

that, in the differentiated duopoly, frequency is perceived as an airline-specific attribute.

5This formulation is a reduced form of a system of welfare maximizing airports, or a regulator, setting

charges per passenger and charges per flight at each airport. The difference would matter if each airport is

controlled by a different authority, that may, for instance, maximize local welfare.
6We assume that airlines treat the tolls as parametric, i.e. they do not believe that their actions may

change the way a regulator chooses instruments. See Brueckner and Verhoef (2010) for a detailed discussion

on how to account for such behavior of agents with market power in presence of externalities.
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We also assume that there is congestion at the origin and destination, that airport runway

congestion depends on total number of flights at that airport, and that it increases in the

total number of flights. For example, denoting F l = f li + f lj the total number of flights on

link l, the full price faced by a passenger of market AB flying with airline i is:

θABi = pABi +D(F ab + F ac,KA) +D(F ab + F bc,KB) + gABi (fabi ) , (4)

where D is the delay cost function, assumed common to all airports. The full price then

equals the sum of the fare; the congestion at the origin, A, which depends on the total

number of flights operating at that airport (F ab + F ac) and the airport’s capacity (KA);

the congestion at the destination airport, B; and the schedule delay cost.7 We look at the

particular case where all airports have the same capacity, but this could easily be extended.

The airline’s profit, using (3) and sli = qli/f
l
i , is:

πFi =
∑
m∈M

qmi · (pmi − cq − τmi )−
∑
l∈L

f li · (cf + τ li ) , (5)

where the superscript F refers to the fully connected structure. Using this, together with

(2), we can rewrite profit as:

πFi =
∑
m∈M

qmi · (A−B · qmi − E · qmj − gmi −Dm
i − cq − τmi )−

∑
l∈L

f li · (cf + τ li ) . (6)

Airline profit indirectly depends also on the rival’s route structure. That structure will

be reflected in the rival’s number of passengers and in number of flights, which will affect

demands and delays. What we do, in this section, is to look at the airlines’ best response

in output irrespective of which route structure underlies the rival’s quantities, and then,

when deriving the equilibrium in route structure, compare the differences that arise from

the different rival’s route structure choices. The first-order conditions for qmi and f li imply

the following pricing and frequency setting rules:

∂πFi
∂qmi

= 0⇒ pmi = cq + τmi +B · qmi , (7)

∂πFi
∂f li

= 0⇒ −
∑
m∈M

qmi ·
(
∂Dm

i

∂f li
+
∂gmi
∂f li

)
= cf + τ li . (8)

Equation (7) states that the fare charged by the airline in market m is the sum of the

marginal cost per capacity unit (cq), the airport charge per passenger in that market

(τmi ), and a conventional markup reflecting carrier market power (B · qmi ). Equation

(8) states that airline’s marginal cost per flight (right-hand side of (8)) equals marginal

revenue (left-hand side, marginal congestion costs plus marginal schedule delay benefits).

7Without loss of generality, both delay functions, D and g, include the passengers valuation of time.
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Therefore, airlines internalize own-passenger congestion. These rules are analogous to the

rules obtained previously in Cournot competition (e.g. Pels and Verhoef, 2004).

The airline’s profit using a fully connected route structure, in sub-game equilibrium, is:

ΠF
i =

∑
m∈M

B · (qmi )2 −
∑
l∈L

f li · (cf + τ li ) , (9)

which is obtained by replacing Eq. (7) into Eq. (6). This is the revenues from the markup

(B · qmi per passenger) minus the costs that are not directly charged to passengers.

3.2. The hub and spoke route structure

We now look at the case where an airline (i) chooses to serve the markets with a

hub-and-spoke route structure. For illustration purpose, we analyze in this section the case

where the airline chooses airport B as its hub. Other cases are simply obtained by changing

notation only. When we study the full game equilibrium, then it is necessary to explicitly

model the choice of hub airport. The changes with respect to the fully connected case is

that the market AC (the spoke market) is served with connecting flights at the hub. We

assume, as in previous studies of hub-and-spoke route structures, that the fare for the spoke

market is set independently; this implies that the fare for market AC is not restricted to

be equal to the sum of the fares of the two hub markets (AB and BC). The fares must,

however, satisfy the arbitrage condition: the sum of the fares of the hub markets (in this

case, AB and BC) cannot be lower that the fare charged to the connecting passengers

(market AC).

The number of seats per flight, on each link, changes in this case because, in addition to

the passenger from hub markets, the passengers from the spoke market are also traveling

through links ab and bc. As a consequence, in this setting, aircraft sizes will satisfy:

sabi = (qABi + qACi )/fabi ,

sbci = (qBCi + qACi )/f bci . (10)

Full prices in the hub markets have the same structure as before (see (4)), but they change

in the spoke market. We assume that the passengers’ congestion delay is the sum of the

delays at each leg, and that schedule delay cost for a “hubbing” passenger is the sum of the

schedule delays of a passenger flying both legs. This gives:

D̃AC
i = DAB

i +DBC
i , (11)

g̃ACi = gABi + gBCi .

The definition of g̃ACi reflects our assumption that g captures the schedule delay cost (first

term, gABi ), and that is also able to capture the transfer costs at the hub (second term,

gBCi ). This is a simple way to model the fact that—leaving congestion and travel delays
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aside—a passenger incurs an additional cost from connecting and that the cost is lower

when the frequency of connections is higher. Although there is no reason why the transfer

cost should be exactly equal to the schedule delay cost incurred by a passenger traveling

only the second leg, it is a convenient assumption as for unequal frequencies it is hard to

express the frequency at the origin-destination level.8 These assumptions shape profit in

the following way:

πHi =
∑

m∈{AB,BC}

qmi · (A−B · qmi − E · qmj − gmi −Dm
i − cq − τmi ) +

qACi · (A−B · qACi − E · qACj − g̃ACi − D̃AC
i − 2 · cq − TACi )−

∑
l∈{ab,bc}

f li · (cf + τ li ) , (12)

where the superscript H refers to the profit when an airline is serving the markets with a

hub-and-spoke route structure. The difference, besides the new definition of delays, is that,

everything else constant, an additional passenger in the AC market requires an increase of

aircraft size in both links, hence the cost per passenger is 2 · cq.
The first-order conditions lead to the following pricing and frequency setting rules:

∂πHi
∂qmi

= 0⇒ pmi = cq + τmi +B · qmi ∀m ∈ {AB,BC} , (13)

∂πHi
∂qACi

= 0⇒ pACi = 2 · cq + TACi +B · qACi , (14)

∂πHi
∂f li

= 0⇒ −
∑

m∈{AB,BC}

(qmi + qACi ) ·
(
∂Dm

i

∂f li
+
∂gmi
∂f li

)
= cf + τ li ∀ l ∈ {ab, bc} . (15)

These equations state that airlines apply a market power markup in each market and

set frequency to equalize own marginal revenue with own marginal cost, hence partially

internalizing congestion. In this setting, the sub-game equilibrium profit, using the first-

order conditions (Eqs. (13) and (14) in Eq. (12)), can be written as:

ΠH
i =

∑
m∈M

B · (qmi )2 −
∑

l∈{ab,bc}

f li · (cf + τ li ) . (16)

Just as in the previous case, it is the revenues from the markup minus frequency costs that

are not charged to passengers.

3.3. Second-stage: the choice of route structure

In contrast to the third-stage, in this stage the airlines’ decision variables are discrete.

Airlines either serve the markets with a fully connected route structure or with a hub-

and-spoke route structure. As we ignore the possibility of serving only one market in the

8An alternative assumption used in the literature is that passengers incur a fixed cost when transferring.

The results do not change significantly if we assume this instead.
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analytical model, no other configurations are possible. When an airline chooses to use a

hub-and-spoke structure, it also chooses which airport to use as the hub. To characterize

the equilibria, we need to compare the airlines’ best responses, knowing the outcome of the

third stage (quantity and frequency), for all the rival’s possible route structures.

Denote the route structure choice of an airline i as a choice of ri ∈ RS = {F,HA, HB, HC},
where Hx refers to a hub-and-spoke structure with airport X as the hub. The relevant

comparisons are the profits given the route structure of the rival. Let Πi(r, v) be the airline’s

i profit, evaluated at the outputs of the third-stage equilibrium, when it has chosen r as its

route structure, and the rival uses v. Then, it is straightforward that a symmetric setting

with both airlines using route structure r will be an equilibrium of the airlines’ game if and

only if:

Πi(r, r) ≥ Πi(u, r) ∀ u ∈ RS . (17)

Because airlines are symmetric, whenever this holds true for one airline, it will hold true

for the other as well, and both airlines having r will be a perfect sub-game equilibrium of

the airlines’ competition. Also note that, whenever both airlines choose HA in equilibrium,

both having HB and both having HC are also equilibria, because markets are symmetric

as well. We will refer to this set of equilibria as (H,H): both airlines using hub-and-spoke

route structures and both using the same airport as their hub. It follows that (F, F ) is the

equilibrium where both airlines choose the fully connected route structure.

As hub location is endogenous, asymmetric equilibria where airlines use different hubs

may arise. We denote this set of possible equilibria as (Hx, Hy), regardless of the location

of the airlines’ hubs. Asymmetric equilibria, with one airline choosing route structure u

and the other v (6= u), will arise if and only if the following holds:

Πi(u, v) ≥ Πi(w, v) ∧ Πi(v, u) ≥ Πi(y, u) ∀ w ∈ RS ,∀ y ∈ RS u 6= v . (18)

This implies that u is the best response when the rival chooses v and vice versa, which

again, because of airline and market symmetry, implies that there are multiple equilibria

for a particular u and v. We denote (F,H) to the asymmetric equilibria where one airline

serves the markets with a fully connected route structure and the other with a hub-and-

spoke route structure, regardless of the hub airport choice.

Note that the above conditions, (17) and (18), are not necessarily mutually exclusive,

therefore multiple equilibria may arise. For instance, it may be the case that for a certain

parameter constellation (F, F ) and (Hx, Hy) are both equilibria. Despite having a highly

stylized model, these comparisons are hard to perform analytically. To surpass this, we

look at some of the relevant equilibrium conditions that, together with numerical examples,

allows us to solve the equilibrium, provide intuition and compare our results to those in

previous literature.
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First, we look at the expression that makes using a fully connected structure a best

response to the rival using fully connected as well, Γi ≡ Πi(F, F )−Πi(HB, F ). Using Eqs.

(9) and (16), it is given by:

Γi =
∑
m∈M

B ·
[
(qmi|(F,F ))

2 − (qmi|(HB ,F ))
2
]

+ cf ·

 ∑
l∈{ab,bc}

f li|(HB ,F ) −
∑
l∈L

f li|(F,F )

 , (19)

where the variables in Eq. (19) are evaluated at the untolled equilibrium with route

structures indicated in parentheses. Eq. (19) shows that there are two effects driving

the adoption of fully connected over hub-and-spoke: the change in revenues, as a result of

the change in the number of passengers in all three markets (first bracketed term in the

right-hand side), and the change in costs, due to variations in the total number of flights

(second bracketed term in the right-hand side). Despite that is not possible to assess the

sign of Γi analytically, the sign of each term is intuitive. Hub-and-spoke networks are

meant to save airline costs through to a reduced number of links flown, thus, a natural

expectation is that the total number of flights is reduced when moving from fully connected

to hub-and-spoke (Brueckner, 2004). Is is, therefore, expected that the second bracketed

term is negative, so that it favors the adoption of a hub-and-spoke route structure over

fully connected. The change in number of passengers in each market, however, may favor

the point to point structure. To see this, note that in the connecting market (AC in this

case), the passengers face a higher full price under HB than under F , because they incur

higher travel delays and the cost of connecting (see Eq. (11)). As a result, the equilibrium

number of passengers in the connecting market (for a given route structure of the rival)

should be higher under a fully connected route structure. On the other hand, the full

price in the remaining two markets that are serve directly under both structures (markets

AB and BC) may be higher or lower due to two counteracting effects: a higher (lower)

frequency under hub-and-spoke with respect to fully connected in each link implies higher

(lower) congestion, but decreased (increased) schedule delay costs. Therefore, its sign is, a

priori, ambiguous. However, numerical analyses show that, for the considered parameters,

the number of passengers in these markets that are higher under a hub-and-spoke route

structure than under a fully connected structure, given that the rival uses a fully connected

structure; therefore, this effect also favors hub-and-spoke route structures.

For a monopoly and in absence of congestion, Brueckner (2004) already showed that

this expression can be positive or negative depending on parameters, and that the own-

demand sensitivity parameter plays a key role. Therefore, a meaningful exercise is to

analyze the effect of competition on the indifference point between F and H. For this

purpose, the case with independent products is useful. When airlines are independent,

the only interdependency is through congestion; thus, by looking at cases with E = 0, we

can identify the indifference point in absence of strategic interaction. Then, by varying
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the ratio of substitutability E/B keeping all other parameters constant, it is possible

to assess the effect of competition on the choice of hub-and-spoke over fully connected

route structures. In contrast to previous studies that analyze route structure choice, an

asymmetric equilibrium with both airlines having a hub-and-spoke route structure may

arise because the hub location is endogenous.

Figure 2 shows the equilibria for a range of the own-demand sensitivity B parameter

(horizontal axis) and all possible values of the ratio of substitutability E/B (vertical axis),

for a particular parameter constellation and functional forms (see Appendix A for details).

In our model, the second-order conditions involving the cross derivatives do not hold

globally, but we restrict the numerical analysis to the cases where they do hold. The

lines divide the different parameter regions with a common set of equilibria, and we have

set the tolls to zero to describe the unregulated equilibrium.

Figure 2 reveals that, for the chosen parameters, two set of equilibria arise: both airlines

using fully connected route structure (F, F ), and both using hub-and-spoke but in different

hubs (Hx, Hy); it also reveals that there are regions where both sets of equilibria may arise

(the region between the two lines). Figure 2 also suggests that a higher substitutability

between airlines favors the choice of hub-and-spoke route structures, as the indifference

lines are to the left of the indifference point for E/B = 0.

B
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0,0
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0,4

0,6

0,8
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(F, F ) (Hx, Hy)

(F, F ) & (Hx, Hy)

Figure 2: Untolled equilibrium in route structures. Main parameterization (see Appendix A).
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Our results in Fig. 2 show that, when markets and airlines are symmetric and for the

considered parameters, the best response to the rival using a hub-and-spoke route structure,

is either adopting a fully connected or a hub-and-spoke route structure, but using a different

airport as the hub. That is the reason why asymmetric hub-and-spoke equilibria (Hx, Hy),

arise instead of symmetric hub-and-spoke equilibria (H,H). As the cost advantages that

adopting hub-and-spoke brings can be exploited in a similar way under symmetric and

under asymmetric hub-and-spoke settings, the main difference between both structures

comes from the change in number of passengers in the connecting market. In a symmetric

hub-and-spoke setting (H,H), the competition is direct in all markets; in an asymmetric

hub-and-spoke setting (Hx, Hy), the connecting market of the rival is dominated (as it is

served point to point). This gain from dominating the rival’s connecting market seems to be

higher than the loss of being dominated in the own connecting market, which explains why,

given that the rival is using a hub-and-spoke structure, choosing a different airport as the

hub dominates choosing the same when considering adopting a hub-and-spoke structure.9

As the purpose of the paper is to compare the untolled equilibria with the welfare

maximizing situation, and analyze how to enforce it, the next section studies the first-best

combination of route structure and output.

4. Welfare analysis

We first look at the welfare maximizing output for a given choice of route structure by

airlines, deriving the tolls that induce that output choice. Thereafter, we study the socially

efficient route structure equilibrium and whether these tolls are sufficient to achieve it as

an equilibrium of the full game.

4.1. The symmetric fully connected case

In this case, denoted (F, F ), both airlines serve the markets with a fully connected route

structure. We look at a regulator that maximizes unweighted social surplus, with the toll

per-passenger in each market (τmi ) and the toll per-flight in each link (τ li ) as instruments.

Straightforward calculations yield the following expression for social welfare:

SW (F,F ) =

[∑
m∈M

B

2
· ((qmi )2 + (qmj )2) + E · qmi · qmj

]
+
[
πFi + πFj

]
+[∑

m∈M
τmi · qmi + Tmj · qmj

]
+

[∑
l∈L

τ li · f li + τ lj · f lj

]
, (20)

where the first term in brackets is the consumer surplus, the second term is the airlines’

profit, the third term is the revenue from per-passenger tolls, and the fourth term is the

9We numerically check that choosing a different airport as a hub dominates choosing the same airport

as the rival in the whole parameter range, i.e. not only in the region where (Hx, Hy) is an equilibrium.
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revenue from per-flight tolls. The first-order conditions for welfare maximization under

fully connected route structures imply the following pricing and frequency setting rules:

∂SW (F,F )

∂qmi
= 0⇒ pmi = cq ∀m ∈M, (21)

∂SW (F,F )

∂f li
= 0⇒ −

∑
m∈M

(qmi + qmj ) · ∂D
m

∂f li
+ qmi ·

∂gmi
∂f li

= cf . (22)

Note that the tolls cancel out, because they are only monetary transfers, and that we drop

the index on the delay cost function as it is the same for both airlines, because we are

looking at a symmetric route structure setting. Equation (21) states that the fare should

equal the marginal cost of a seat in all markets, and (22) states that, in every link, frequency

should be such that the airline’s marginal cost per flight equals marginal benefits for all

passengers. Comparing (7) with (21), and (8) with (22), we derive the tolls that maximize

social welfare under (F, F ):

τmi = −qmi ·B ∀m ∈M , (23)

τ li =
∑
m∈M

qmj ·
∂Dm

∂f li
∀ l ∈ L . (24)

This is simply a per-passenger subsidy equal to the markup for each market, to eliminate the

dead-weight loss in all markets, and a per-flight toll equal to the uninternalized congestion

for each link. This is a traditional result in the airport pricing literature (e.g. Brueckner,

2005).

The two instruments above (Eqs. (23) and (24)) attain the social optimum, if both

airlines exogenously choose fully connected structures. The optimal value for social welfare,

in this fixed route structure equilibrium, is:

SW (F,F ) =
∑
m∈M

B

2
· ((qmi )2 + (qmj )2) + E · qmi · qmj −

∑
l∈L

(f li + f lj) · cf , (25)

with quantities and frequencies satisfying (21) and (22).

4.2. The symmetric hub-and-spoke case

Following the same procedure as in Section 4.1, straightforward calculations yield the

following rules for welfare maximizing pricing and frequency setting under (H,H) route

structure (with B as the hub airport in this case):

∂SW (H,H)

∂qmi
= 0⇒ pmi = cq ∀m ∈ {AB,BC} , (26)

∂SW (H,H)

∂qACi
= 0⇒ pACi = 2 · cq , (27)
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∂SW (H,H)

∂f li
= 0⇒ −

∑
m∈{AB,BC}

(qmi +qACi +qmj +qACj )· ∂D
m

∂f li
+(qmi +qACi )· ∂g

m
i

∂f li
= cf . (28)

Again, in the optimum, the fare should equal the marginal cost in all markets, and frequen-

cies should be such that the airline’s marginal cost per flight equals marginal benefits for

all passengers. Comparing first-order conditions, we obtain the tolls that maximize social

welfare under symmetric hub-and-spoke route structures:

τmi = −qmi ·B ∀m ∈M , (29)

τ li =
∑

m∈{AB,BC}

(qmj + qACj ) · ∂D
m

∂f li
∀ l ∈ {ab, bc} . (30)

These are the sufficient instruments when route structure is fixed to be hub-and-spoke for

both airlines. In equilibrium, the optimal value for social welfare under (H,H) can be

written as:

SW (H,H) =
∑
m∈M

B

2
· ((qmi )2 + (qmj )2) + E · qmi · qmj −

∑
l∈{ab,bc}

(f li + f lj) · cf , (31)

with variables satisfying (26)-(28).

4.3. The asymmetric cases

We have shown in Section 3.3 that also asymmetric equilibria may arise, in particular

(F,H) and (Hx, Hy). It is straightforward to show that optimal pricing and frequency

setting rules will be a combination of the rules described above ((21), (22), and (26)–

(28)). As a result, the tolls that maximize welfare for asymmetric equilibria will also be

a combination of the tolls above; for an airline with fully connected route structure, (23)

and (24) should be charged, and for an airline using hub-and-spoke, (29) and (30). The

difference will be that the tolling rules will be evaluated at different outputs, and that Eqs.

(29) and (30) have to be adjusted if the hub is not B.

4.4. The optimal route structure

We now look at the combination of route structure and output that maximizes welfare.

Again, complexity prevents us from fully comparing social welfare values analytically. As in

Section 3, we combine analytical results with numerical examples to identify the equilibria

and provide intuition.

First, we compare the choice of route structure by unregulated firms with the social

welfare maximizing choice, to identify the sources of potential inefficiency. Consider the

comparison only between the following route structure equilibria: (F, F ) and (HA, HB). We

focus on the comparison between these particular structures because the numerical analysis

suggests that, for the considered symmetry, those are the settings that can be first-best
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optimal. To compare the social optimum with the untolled equilibrium, let the difference

between social welfare in both settings be ∆ ≡ SW (F,F ) − SW (HA,HB). The condition

∆ > 0 is necessary for (F, F ) to be the welfare maximizing route structure setting, while

the condition Γi > 0 in Eq. (19), is sufficient for (F, F ) to be an equilibrium. Using (25),

and (31), we get:

∆ =
∑
m∈M

B

2

[
(qmi|(F,F ))

2 − (qmi|(HA,HB))
2
]

+
∑
m∈M

B

2

[
(qmj|(F,F ))

2 − (qmj|(HA,HB))
2
]

+E · [qmi|(F,F ) · q
m
j|(F,F ) − q

m
i|(HA,HB) · q

m
j|(HA,HB)]

+ cf

 ∑
l∈{ab,ac}

f li|(HA,HB) −
∑
l∈L

f li|(F,F )

+ cf

 ∑
l∈{ab,bc}

f lj|(HA,HB) −
∑
l∈L

f lj|(F,F )

 , (32)

where the variables in (32) are evaluated at the social optimum for the given route structure

setting in parentheses. The comparison between Γi in Eq. (19), and ∆ in Eq. (32) sheds

light on the inefficiency of route structures choice by profit maximizing agents and makes

implausible that unregulated competition between airlines will always lead to the first-best

route structure. First, recall that there is a difference in output between the two cases, as

discussed above, due to two effects: market power exertion and the presence of congestion

externalities. This clearly makes the variables of ∆ and Γi differ. Even if the outputs were

the same, in the social welfare comparison there is a term involving the cross sensitivity

parameter (E) that is absent in profit comparison; i.e. a firm ignores the effect of its choices

on the consumer surplus derived by the competitor’s passengers. Moreover, the airlines’

relevant comparison is for a given route structure of the rival, which again makes ∆ and Γi

diverge.

In a monopoly context, Brueckner (2004) shows that the choice of route structure by a

monopoly airline will be biased towards hub-and-spoke. In our problem, the divergence be-

tween settings is complicated because frequency setting—for a given number of passengers—

is distorted by congestion effects, and, when airlines are substitutes, both are distorted by

strategic effects. Therefore, whether competing airlines are biased towards hub-and-spoke

cannot be assessed analytically.

A look at ∆ in Eq. (32) reveals that what drives which route structure composition

maximizes welfare, at least between the symmetric fully connected setting (F, F ) and the

asymmetric hub-and-spoke settings (Hx, Hy), is the cost advantages that hub-and-spoke

may bring (last two terms on the right-hand side of Eq. (32)), versus the changes in the

number of passengers in each market. Figure 3 summarizes, for the same parameter region

used in Section 3 (see Appendix A for details), the welfare maximizing route structure

(when evaluated at the optimal output for those parameters). Recall that the first-best

setting in Figure 3 is the one that maximizes welfare, and it is not necessarily an equilibrium
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of the tolled competition. We analyze whether and when the first-best setting and the

(tolled) equilibrium coincide in the following section.
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Figure 3: Welfare maximizing route structures. Main parameterization (see Appendix A).

Figure 3 suggests that, for the chosen parametrization, the route structure configuration

that maximizes welfare, when all markets are served by both airlines, is either symmetric

fully connected (F, F ) or asymmetric hub-and-spoke (Hx, Hy). A simple comparison be-

tween Figures 2 and 3 confirms that the outcome of the unregulated competition may

lead to route structure equilibria that are different from the efficient one. Figure 3 also

suggests that the higher the substitutability between airlines, the more likely is (Hx, Hy) to

be a more efficient route structure equilibrium than (F, F ). It still brings cost savings and

frequency benefits, but it is less essential that all airlines are present on all routes. One of

the effects that favors the fully connected symmetric equilibrium over the asymmetric hub-

and-spoke structures, is the absence of connecting passengers, because they have a higher

marginal cost per seat and face a higher full price. In an asymmetric hub-and-spoke setting

(Hx, Hy), the number of connecting passengers decreases as the airlines are perceived as

closer substitutes, because in every connecting market of one airline, the rival provides

a direct service priced at marginal cost (because we are looking at the first-best setting).

Therefore, when products are close substitutes, the number of connecting passengers is low,

and the gains from lower total costs due to reduced total frequency dominate. Note that
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this is not possible to achieve under symmetric hub-and-spoke (H,H).

It is also worth noting that when products are independent, asymmetric settings may

be welfare maximizing. This occurs when demand is low (right end of the horizontal axis

in Figure 3), where (Hx, Hy) is the most efficient setting. The intuition behind this is

that cost advantages from reduced total number of flights that hub-and-spoke brings in

this region dominates, and that total congestion costs may be lower under (Hx, Hy) than

under a symmetric hub-and-spoke setting, where all flights either take off or land at the

hub airport. Asymmetric hub-and-spoke structures can benefit non-connecting passengers,

as one of the airports will be less congested compared to when it is the hub of both

airlines. Additional numerical examples, not shown here, reveal that only when airlines

are perceived as independent and there is no congestion, symmetric and asymmetric hub-

and-spoke structures yield the same welfare, for the considered parameters.

On the other hand, when products are perfect substitutes, the social optimum cannot

have two airlines using different route structures ((Hx, Hy) and (F,H)). This is because full

prices must be the same for all airlines that are serving the market, but also should be set at

marginal social cost. As marginal social costs, under different route structures, are different

in at least one market, these two constraints make an asymmetric route structure setting

incompatible with welfare maximization when products are perfect substitutes (E/B =

1). What is optimal, instead, is to have regulated monopolized markets. This result is

driven by that, for a single market, higher welfare is achieved under the full regulation of a

monopoly than of perfect substitute competing airlines. This is because we are looking at

a regulator who solves the congestion inefficiency and the market power exertion through

tolls; therefore, there is no dead-weight loss regardless of the number of firms. In addition,

the frequency set by a fully regulated monopoly airline is higher than for a fully regulated

airline in oligopoly, as demand is divided between firms, thus schedule delay costs will

be lower. This is what favors a monopoly. When differentiation is weak (B � E), the

expansion of demand generated by a new firm may overweight the schedule delay cost

advantages of a monopoly, and competition will bring higher welfare.10

This may also hold when airlines are close substitutes, as Figure 3 reveals: in the

parameter region Mf , it is welfare maximizing to have a regulated monopoly airline serving

the three markets with a fully connected route structure. As already shown by Brueckner

(2004), depending on parameters, it may be more efficient from a social welfare point of

view, to have a regulated monopoly using fully connected route structure (Mf ) or serving

the market with hub-and-spoke.11

10Despite having a different model, the intuition is the same as in Basso (2008).
11For the parameters of our main case, the value of the own-demand sensitivity parameter that makes a

hub-and-spoke route structure more efficient than a fully connected structure under a regulated monopoly

is B = 30.4 (not shown in Figure 3).
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We now turn to the analysis of how to enforce the first-best described in this section.

This is, can the first-best setting be a toll-decentralized equilibrium?

5. Sufficient instruments for social welfare maximization

5.1. First-best analysis

In order to study whether the two pricing instruments described in Section 4 align airline

choices with welfare maximization, we numerically examine the equilibrium of the game

when the regulator charges the optimal tolls conditional on the first-best route structure.

In other words, we derive the outcome of the game in each of the regions of Figure 3,

when the regulator charges the tolls that induce the optimal output for the given welfare

maximizing route structure. For example, in the parameter region denoted by (F, F ) in

Figure 3, the regulator set the tolls according to rules (21) and (22); if the equilibrium

that results from charging these tolls is with both airlines choosing fully connected route

structure, the first-best is achieved as the charges ensure optimal outputs. Conversely, if

the equilibrium with the optimal charges in the parameter region where (F, F ) maximizes

welfare is not with both airlines choosing fully connected route structure, we can conclude

that the two pricing instruments are not sufficient in this case. This is because any other

charge, that may induce the optimal route structure equilibrium, will not induce the optimal

output.

Figure 4a compares the untolled equilibrium in Fig. 2 with the welfare maximizing

setting in Fig 3, in terms of route structure. It reveals that the rationale for the charges

is not always the same: they can be required only to correct output setting, to correct

simultaneously output and route structure choice, and in order to correct market structure

as well. The white areas represent the cases where the airlines’ route structure equilibrium

is the same as the first-best, and only output corrections are needed. The light gray

areas are where the route structure equilibrium from untolled competition is different from

the efficient one, and the tolls are required to induce airlines to choose both the welfare

maximizing outputs and route structures. TheM region, in dark gray, indicates that welfare

maximization requires tolls that exclude one airline from the market, as a fully regulated

monopoly would be optimal. We use the labels to indicate the efficient route structure

when it differs from the one adopted by unregulated competing airlines.

Let us first discuss the difference between the route structure in the untolled equilibrium

versus that in the optimum (later we will discuss whether tolls alone can decentralize

the optimum). Figure 4a shows that the result that a monopoly airline exhibits a bias

towards hub-and-spoke route structure does not fully carry on to competing airlines. This

is, no longer whenever (Hx, Hy) is welfare maximizing, it is also an equilibrium of the

untolled competition. For the chosen parametrization, (Hx, Hy) is optimal but the untolled

equilibrium is (F, F ) when own-demand sensitivity to price changes and substitutability are
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(a) Tolls’ rationale.
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Figure 4: First-best tolls’ rationale and relative efficiency of output-based tolling. Main parameterization

(see Appendix A).

not too low (roughly, in the triangle where B is lower than 18 and E/B between 0.4 and

0.8 in Figure 4a). The reason why in that area we find (F, F ) in the untolled equilibrium

is that, when changing from a fully connected to a hub-and-spoke route structure, the full

price in the connecting market increases. Therefore, when demand is relatively sensitive

to price changes (low B), the profit loss in the connecting market is larger than the cost

benefits and the equilibrium is with (F, F ). However, this demand reduction in the airlines’

connecting market does not necessarily harm welfare. In this area, we find (Hx, Hy) in the

optimum because the cost advantages that hub-and-spoke structures bring can be exploited

without having a large number of connecting passengers. Under (Hx, Hy), in each airline’s

connecting market the competitor offers a direct service with a lower full price. As demand is

relatively sensitive to price changes and substitutability is not low, the number of connecting

passengers is low. This is only possible with airlines adopting different airports as their

hub, as otherwise the number of connecting passengers would not necessarily decrease.

The opposite, (F, F ) being efficient but untolled airlines choosing (Hx, Hy), occurs when

substitutability is not high (below 0.4 in Figure 4a) and own-demand sensitivity with respect

to price changes is low (high B).

The results also indicate that a “naive” regulator, who observes the unregulated equilib-

rium and set the tolls based on the then observed route structure, may not always achieve

the first-best. The regulator should realize whenever the observed equilibrium is not efficient

in terms of route structure (the gray regions), and induce airlines, via tolls, to change the

way they serve the markets.
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A main result of our numerical analyses is that the first-best cannot always be enforced

by using the airline- and market-specific per-passenger tolls together with the airline- and

link-specific per-flight tolls designed to induce the optimal outputs of the first-best route

structures. Thus, the sub game-perfect equilibrium is not always efficient, even when the

regulator can perfectly discriminate between airlines and when it has no budget constraints.

The shaded area in Figure 4b represents the parameter range where the toll instruments

described in the previous sections cannot decentralize the first-best. This region has airlines

adopting fully connected route structures instead of the first-best setting (Hx, Hy). This is

due to the asymmetry of the toll structure: to enforce (Hx, Hy), the regulator must give a

subsidy in each market that increases with the firm’s number of passengers, and a per-flight

toll on the two routes that are flown by each airline. Given this toll configuration, adopting

a hub-and-spoke route structure may be strictly dominated by the fully connected strategy,

because the intended connecting market can be served directly without paying a per-flight

toll. Doing this may increase revenue due to an increased number of passengers, because the

full price in that market is lower when served directly. In the shaded region of Figure 4b,

this effect dominates the potential cost advantages that the firm would have from adopting

a hub-and-spoke structure, in presence of tolls intended for a hub-and-spoke setting.12 To

reach the first-best outcome in these cases, an additional instrument is therefore required.13

This also implies that more information is needed to attain the first-best, as the variables

usually needed for first-best tolling (e.g. marginal external cost) are not enough to assess

discrete changes in welfare under different route structures.

A natural question that follows from the above results is how big the loss in welfare

is, when charging the output-based tolls and not achieving the first-best route structure.

Figure 4b also shows the relative efficiency of such tolls (ω), as the percentage of the

maximum welfare gain that can be obtained (the first-best setting in Section 4) using the

untolled equilibrium as the reference scenario for the welfare level. The relative efficiency

ranges from 1 in the white areas of Fig. 4b where the tolls are sufficient instruments to

achieve the first-best; to 0.77, the lowest possible relative efficiency of the output-based

tolls, in the darkest region of the figure.

Although, in our model, the regulator does not have direct control on the number of

airlines, he can price an airline out of one market through the tolls. To do this, one airline

12We do not find in the numerical analyses that the equilibrium with tolls has airlines adopting hub-and-

spoke route structure in a parameter region where fully connected is the welfare maximizing structure.
13For example a arbitrarily high per-flight toll in the connecting market of each airline can act as a

barrier to fully connected structures. As this charge is not paid in equilibrium, because the airlines adopt

a hub-and-spoke structure, it does not induce any inefficiency in output, but only the incentives to adopt

the optimal route structure. A direct restriction to an airline to fly from those airports is also a sufficient

additional instrument for these cases.
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should receive the per-passenger (market power) subsidy that corresponds to the monopoly

output, and face no congestion toll. This is because a monopolist perfectly internalizes

congestion externalities. The other airline should face a prohibitive toll that removes the

incentives to become active. Note that the latter may not always be needed; in some cases,

a large output choice by the subsidized airline may be enough to shift the rival’s demand

to levels that are not profitable or non-positive, given the congestion delay costs.

Finally, additional numerical analyses (not shown) show that the boundaries indicated

in Figure 4 change when parameters are changed, but the main qualitative results hold.14

5.2. Second-best analysis

The results in Section 5.1 require the regulator to be able to give subsidies to airlines,

and, in some cases, to exclude one airline out of the market. This is arguably close to

impossible to carry out in real networks, and, instead, a regulator will most likely be

constrained to charge non-negative tolls. This section considers the realistic case where only

non-negative tolls can be charged, and compares the second-best optimal route structure

equilibrium with the first-best equilibrium. An important question is, again, whether the

second-best tolls are able to induce the desired (second-best) outcome also in terms of route

structure.

As we normalize airport costs to zero, the first-best toll per passenger we found above

is equal to a market power subsidy, and therefore it is always negative (see Eqs. (23) and

(29)). The first-best per-flight toll is always non-negative (un-internalized congestion, see

Eqs. (24) and (30)). It is, therefore, expected that in the second-best case we now study,

the per-flight tolls are adjusted downwards to compensate for the lack of subsidies, and

that in some parameter region they may even become (constrained to) zero. This would

be the case if the congestion externality is sufficiently low compared to the justified market

power subsidy.15

Figure 5 shows the second-best optimal setting for the same parameter constellation

and functional forms as in Sections 3 and 4. The solid line divides the different second-best

optimal regions, which are again (F, F ) or (Hx, Hy), and the dashed line is the analogous

divisional line for the first-best case. This allows for a comparison between the second- and

first-best equilibria.

14We assess how the airlines’ untolled equilibrium in route structure changes and whether the first-best

setting can be decentralized with tolls for different parameters of the delay function, the airline cost function,

and the passenger values of time. The changes in route structure equilibria follow the intuition provided by

previous studies (e.g., Brueckner, 2004): hub-and-spoke route structures are favored by higher values of the

per-flight fixed cost cf , lower fixed marginal cost per seat cq, higher disutility of schedule delay γ, and lower

congestion.
15Pels and Verhoef (2004) analyze this using a single origin-destination pair. They find that in some cases

the second-best policy is to set the tolls equal to zero.
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Figure 5: Second-best optimal route structures and comparison with the first-best case. Main parameteri-

zation (see Appendix A).

Figure 5 shows that, when subsidies are not feasible, fully connected route structures

are favored when the degree of substitutability (E/B) is low and own-demand sensitivity

is high (low B), and asymmetric hub-and-spoke route structures are favored when the

opposite applies, in a similar manner as in the first-best case. However, there is a region—

denoted X—where (F, F ) is second-best optimal whereas (Hx, Hy) is first-best optimal,

and vice versa (the Y region). The difference is caused by the fact that in the second-best

cases, there are dead-weight losses due to the lack of subsidies. Competition under both

airlines using fully connected is direct in all three markets, whereas in the asymmetric

hub-and-spoke equilibrium there is one market where one airline has an advantage over

the other (offering a direct flight). In the area X, where substitutability (E/B) is high

and demand is more price sensitive (low B), the direct competition that a fully connected

route structure brings may decrease dead-weight losses by more than under an asymmetric

hub-and-spoke structure, and it is more favored than the case where all inefficiencies are

dealt with through pricing. In the area Y , where demand is less price sensitive (higher B)

and substitutability (E/B) is low, this effect is decreased and the difference in number of

passengers becomes smaller; as a result, the cost advantages of hub-and-spoke structures

become more attractive.
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The results also show that the monopoly region does not exist for the considered

parameters, as the dead-weight losses from monopoly pricing are no longer being corrected

through the subsidy; it is better to regulate a duopoly when tolls are constrained to be

non-negative.

Figure 6 compares the second-best optimal route structure equilibria with the untolled

equilibria, and it reveals that also the rationale for the second-best charges may include the

desire to change the route structure. The white areas again indicate the cases where the

route structure in the untolled equilibrium is the same as the second-best optimum, and

tolls only correct for output inefficiencies. The light gray and dark gray regions show where

the inefficiency occurs both in route structures and in outputs, and therefore tolls may be

required to correct both.
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Figure 6: Second-best tolls’ rationale and decentralization of the second-best optimum. Main parameteri-

zation (see Appendix A).

Finally, where the second-best optimal route structures in Figure 6 are assumed to

apply, we also study whether they are decentralized by second-best tolls, in order to study

whether the per-flight tolls are sufficient instruments to achieve the second-best outcome

in route structures shown in Figure 5. As explained above, these tolls might be zero if

the congestion externality is sufficiently low compared to the market power exertion by

airlines. Therefore, it follows that in the regions where second-best tolls are zero and the
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route structure in the untolled equilibrium is not the same as the second-best optimal route

structure, an instrument aimed at regulating route structure choices will be needed.

The main result of this exercise is that a regulatory instrument designed to correct

route structure may be needed in addition to the second-best per-flight tolls: there are

different regions where the second-best optimal route structures and outputs differ from

the airlines’ equilibrium with second-best charges. Figure 6 summarizes these results. Both

the dark gray and the light gray regions show the cases where the second-best optimal

equilibrium (in labels) cannot be enforced by a regulator constrained to non-negative tolls,

and without additional instruments. In the light gray regions, the second-best optimal tolls

are zero and the route structure in the untolled equilibrium differs from the second-best

optimal. Therefore, an instrument that directly regulates route structure is required in

these parameter areas. In the dark gray region, the constrained per-flight tolls are positive,

but they are not able to decentralize the second-best optimal equilibrium. In this dark gray

region, the airlines’ equilibrium, when facing the tolls that would induce the optimal output

under asymmetric hub-and-spoke route structure (Hx, Hy), is both using fully connected

(F, F ). This is because in this region, the loss in the connecting market of an airline moving

from fully connected to hub-and-spoke is larger than the cost advantages of adopting a hub-

and-spoke structure in an untolled setting, and, in absence of per-passenger subsidies, this

cannot be overturned.

6. Conclusions

In the present paper, we have compared the unregulated equilibrium of route structure

competition between airlines with market power, in the presence of congestion, with the

welfare maximizing setting. Our analysis shows that the unregulated equilibrium in route

structure may be different than the welfare maximizing one, and that a regulator may not

always be able to decentralize the first-best route structures using the per-passenger tolls

and the per-flight tolls that correct output inefficiency, even if these tolls are allowed to

be market and airline specific. We also study the case where a regulator is constrained

to use non-negative tolls. Again, the second-best optimal route structure may be different

from the outcome of unregulated competition, and again, when the tolls are constrained

to be non-negative, the second-best optimal equilibrium may not be decentralized with

second-best tolls.

It follows from our analysis that, in some cases, a regulator may benefit from using an

additional regulatory instrument, different from the tolls that are only concerned with the

congestion externality and the market power exertion. The additional instrument has to

align the airline choice of route structure with the welfare maximizing one, without affecting

the choice of output. It also imposes additional requirements on the information needed

by the regulator, as discrete changes in welfare due to discrete changes in route structures
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have to be assessed. For example, a direct restriction on the links that can be flown by each

airline can solve the problem, or an arbitrarily high toll in the links that are not supposed

to be used in equilibrium can also induce the first-best setting.

We also show that the result that a profit maximizing airline may have a bias towards

the use of hub-and-spoke does not fully extend to an oligopolistic framework. We find that

it is not the case that whenever hub-and-spoke route structures are welfare maximizing,

they are also the equilibrium of the unregulated competition.

All of the results above, as additional sensitivity analyses show, seem to be robust to

parameter values. Still, for our analysis we have used the simplest possible model that allows

us to study optimal pricing in networks. We see extending the model as a natural avenue for

future research. For example, the consideration of a larger network (more nodes) and the

interaction between several airlines are logical extensions; the role of the endogenous hub

location is likely to be important in those settings. Considering asymmetry of markets and

airlines is also an important topic for future research, as the competition between regional,

national, and low-cost carriers is one of the driving forces of route structure adoption

in aviation networks. Finally, this framework can be extended to analyze how airports

regulated by different authorities interact and affect route structure equilibrium, as well as

to the welfare implications of alliances and merges.
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Appendix A. Functional forms and parameters of the main case

We use the following functional forms for the schedule delay cost (gi) and passengers’

congestion cost (D):

gi(fi) = γ · 1

fi
, (A.1)

D(Fi + Fj ,K) = α ·
(
Fi + Fj
K

)β
, (A.2)

where the schedule delay cost in (A.1) is inversely proportional to the airline frequency,

and γ is a constant representing the monetary value of a unit of schedule delay time. The

congestion delay at each airport in (A.2) is a function of the volume capacity ratio, with α

being proportional to the passengers’ value of travel time, K the capacity, and β the power

of the function.
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Table A.1: Parameter values.

Parameter Value

A 1750

B ∈ [0.5,22]

E/B ∈ [0,1]

α 180

β 1

γ 80

K 4.85

cq 50

cf 33240
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