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Abstract

Structural identification schemes are of essential importance to vector autoregressive

(VAR) analysis. This paper tests a commonly used structural parameter identification

scheme to assess whether it can properly capture fundamental and non-fundamental

shocks to stock prices. In particular, five related structural models, which are widely used

in the literature on assessing stock price determinants are considered. They are either

specified in vector error correction (VEC) or in VAR form. Restrictions on the long-run ef-

fects matrix are used to identify the structural parameters. These identifying restrictions

are tested by means of a Markov switching in heteroskedasticity model. It is found that

for two of the five models considered, the long-run identification scheme appropriately

classifies shocks as being either fundamental or non-fundamental. A series of robustness

tests are performed, which largely confirm the initial findings.

Key Words: Markov switching model, vector autoregression, vector error correction, heteroskedas-

ticity, stock prices

JEL classification: C32 C34
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1 Introduction

The question of how well stock prices reflect their underlying economic fundamentals has

been widely studied in the literature. A popular approach to answer this question is to make

use of vector autoregressive (VAR) or vector error correction (VEC) models. An essential step

of such models is to set up appropriate restrictions so as to identify the structural shocks of

interest. Only based on correctly identified structural shocks, one is able to answer the ques-

tion of whether stock prices are mainly driven by their fundamentals or by non-fundamental

factors.

However, issues regarding identifying restrictions are seldom addressed in the literature

on stock price determinants. This paper is the first to do that in this line of literature. In

fact there are several popular structural models, using a similar type of identification scheme,

which claim to identify fundamental and non-fundamental (bubble) components of stock

prices. The models along with the papers making use of them are summarized in Table 1. All

these models are similar in the sense that they can be derived from asset pricing theory; the

price of an asset being equal to its future discounted cash flows (for example dividends).1

As is common in the literature, all of the models in Table 1 make use of long-run restric-

tions as in Blanchard and Quah (1989) to identify the structural shocks. In fact, it is always

the case that a lower triangular identification scheme is employed. This paper aims to test

whether this identification scheme is supported by the data so as to be able to shed some

light on the issue of whether stock price determinants have properly been captured. In other

words, this analysis is only focused on determining whether the structural parameter identi-

fication scheme is supported by the data.

We test the structural identifying restrictions by using the method developed in Lanne

et al. (2010) and in Herwartz and Lütkepohl (2011). Both extend the basic multivariate struc-

tural model to allow for switching covariance matrices according to a Markov process. This

allows for heteroskedastic error terms across states. Due to the extra covariance parameters,

any structural restrictions then become over-identifying and can thus be tested. This proce-

dure is explained in detail in section 2 along with the relevant models used.

This paper finds support for the structural identification scheme for two out of the five

models listed in Table 1. Those are the models with real GDP and real dividends as proxies

of real economic activity. Results of this paper show that identifying restrictions need to be

implemented with an eye on the type of data one is using as a proxy for the relevant economic

1The dividend discount model (DDM) is popular in asset pricing. Its basic premise is that an asset’s price is

the sum of its expected future discounted payoffs (i.e. dividends). These payoffs are necessarily linked to real

economic activity such as real GDP or industrial production. Hence, Table 1 can be thought of as summarizing

multiple variants of the popular asset pricing model.
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Table 1: Popular models used in the literature.

(Subset) Model Used by

yt = [Yt ,rt , st ]′ Lee (1995a), Rapach (2001)*, Binswanger (2004b), Jean and Eldomiaty (2010)

Lanne and Lütkepohl (2010)

yt = [I Pt ,rt , st ]′ Binswanger (2004b), Laopodis (2009)*, Jean and Eldomiaty (2010)

yt = [D t ,rt , st ]′ Lee (1995a), Allen and Yang (2004), Jean and Eldomiaty (2010)

yt = [Et ,rt , st ]′ Binswanger (2004b), Jean and Eldomiaty (2010)

yt = [Et ,D t , st ]′ Lee (1998), Chung and Lee (1998), Binswanger (2004b), Jean and Eldomiaty (2010)

Here Yt , I Pt , D t , Et , rt and st stand for real GDP, industrial production index, real dividends, real

earnings, real interest rates and real stock prices respectively.
* These variables are a subset of the variables used in the original model.

indicator. For instance, the researcher needs to be sure that the given data series she uses

captures the economic concept to be investigated well.

After elaborating on the models, section 3 discusses the estimation and testing procedure

briefly. Section 4 presents the model results along with relevant details on the model selection

procedure. Section 5 deals with model robustness issues and finally section 6 summarizes the

main conclusions.

2 The Models

This section briefly sets out the structural vector autoregressive (SVAR) and error correction

(SVEC) models that are considered. Later a regime switching extension is introduced and the

basic methodology for testing the identifying restrictions is explained.

2.1 The SVAR and SVEC models

The basic vector autoregressive model with p lags, VAR(p) can be written as

yt = ν+ A1 yt−1 + A2 yt−2 + . . .+ Ap yt−p +ut , (1)

where yt is a (K × 1) vector of stationary endogenous variables, ν is a (K × 1) vector of con-

stants and Ai , i = 1, . . . , p are (K ×K ) autoregressive parameter matrices. The (K ×1) vector of

reduced form error terms, ut is assumed to have an expected value of 0 and a positive definite

covariance matrix Σu . Hence, ut ∼ (0,Σu).
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A reduced form vector error correction model, (VEC(p-1)) is given as follows

∆yt = νt +Πyt−1 +Γ1∆yt−1 +Γ2∆yt−2 + . . .+Γp−1∆yt−p+1 +ut , (2)

where now yt may include variables with unit roots. Here νt is a K dimensional deterministic

component that can include an intercept and a trend term, hence νt = ν0 + ν1t . Further,

Γi , i = 1, . . . , p −1 are (K ×K ) parameter matrices and the residual terms, ut are assumed to

have the same properties as before. Here ∆ is the first difference operator (so that ∆yt =
yt − yt−1 = (1 − L)yt , where L is the lag operator). This means that ∆yt is assumed to be

I (0), such that Πyt−1 also needs to be stationary. The (K ×K ) matrix Π is of rank r , (where

0 < r < K ) and captures the cointegrating relations of the model. More specifically, since Π is

singular, it can be decomposed into the product of two (K × r ) matrices of full column rank,

α,β so that Π = −αβ′. Here β is referred to as the cointegrating matrix and contains the r

linearly independent cointegrating relations, so that β′yt−1 is stationary, and α is known as

the loading matrix.

In line with the literature, structural shocks are defined as ut = Bεt , where εt is a K di-

mensional vector of structural residuals such that εt ∼ (0,Σε), where Σε is usually assumed

to be IK , the identity matrix. Here B is a (K ×K ) matrix depicting contemporaneous effects.

According to these assumptions Σu = BB ′. The structural parameters can be derived from

the reduced form parameters. However, since Σu is symmetric, this only leaves K (K + 1)/2

reduced form parameters to identify the K 2 structural parameters of the B matrix. Hence,

K 2 − K (K + 1)/2 = K (K − 1)/2 restrictions need to be imposed. How this is done for each

model is discussed in the following.

2.1.1 Restrictions on the VAR model

All the papers considered in Table 1 make use of long run identifying restrictions, as in Blan-

chard and Quah (1989). How such restrictions are imposed is briefly explained here. Rewrit-

ing equation (1) in lag polynomial form gives

A(L)yt = ν+ut , (3)

where A(L) = IK − A1L − A2L2 − ·· · − Ap Lp . Provided that A(L)−1 exists, the Wold moving

average (MA) representation for the stationary yt process is

yt =µ+
∞∑

s=0
Φsut−s =µ+Φ(L)ut , (4)

where µ= (IK − A1 − A2 −·· ·− Ap )−1ν= A(1)−1ν, Φ(L) ≡ A(L)−1 and Φ0 = IK . Having defined

the structural shocks as εt = B−1ut , the structural representation of (4) is

yt =µ+
∞∑

s=0
Ψsεt−s =µ+Ψ(L)εt , (5)
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here Ψi ≡ Φi B , for i = 0,1,2, . . .. The accumulated long-run effects of the structural shocks

over all time periods are given by the long-run impact matrix, Ψ≡ΦB , where Φ≡ ∑∞
s=0Φs =

A(1)−1. It is on the Ψ matrix that Blanchard and Quah (1989) suggest imposing identifying

restrictions, usually in the form of zeros. That way some shocks have permanent effects, while

others only have transitory effects.

As is common practice, most papers mentioned in Table 1 make use of the following lower

triangularΨmatrix

Ψ=


F 0 0

F F 0

F F F

 , (6)

where F denotes an unrestricted element. Depending on the way the variables are arranged

this identification scheme distinguishes between fundamental and non-fundamental shocks.

The non-fundamental shock is assumed not to have any permanent effect on any of the vari-

ables except the last one (last column of (6)). The other two shocks are assumed to be of a

fundamental nature; in that one of them (first column of (6)) influences all variables in the

long-run, while the other (second column of (6)) only leaves a permanent impact on the last

two model variables. 2 The identification scheme in (6) is used for testing restrictions on

SVAR models throughout this paper.

2.1.2 Restrictions on the VEC model

The long-run effects matrix for a VEC model is not derived in such a straightforward way as

that for a VAR model. Fortunately, from Granger’s representation theorem, the VEC counter-

part ofΦ is given as

Ξ=β⊥
[
α′
⊥
(
IK −

p−1∑
i=1
Γi

)
β⊥

]−1
α′
⊥,

where ⊥ stands for the orthogonal complement of a given matrix. For instance, the orthogo-

nal complement of an (m×n) matrix, A, is given by the (m×(m−n)) matrix, A⊥. TheΞmatrix

is computed from the estimates of the reduced form parameters. Hence, the long-run impact

matrix is ΞB and restrictions can be imposed on it in a similar way as on theΨmatrix above.

A quick note on the restrictions of the SVEC model is in order. SinceΞ is a singular matrix,

restrictions need to be placed appropriately. In particular, the rank ofΞ is K −r and according

2The zero restriction in the second column ofΨ in (6) is left out in Lee (1995a) and Laopodis (2009). The shocks

are still labeled as fundamental and non-fundamental, even though the model itself is underidentified. Further,

the models used in Jean and Eldomiaty (2010) are initially identified according to the Swanson and Granger (1997)

identification scheme, however, in a section on model robustness, they mention that a lower triangular long-run

impact matrix as in (6) performs equally well.
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to King et al. (1992) there can be at most r transitory shocks, i.e. r columns of ΞB can be 0

and each column of zeros stands for only K − r restrictions. In addition, there need to be

r (r −1)/2 restrictions on the B matrix to identify the non-permanent shocks. The remaining

restrictions needed to identify the model (exactly) can be placed on the non-zero elements of

ΞB or directly on B . A good summary of placing restrictions on a SVEC model can be found

in Lütkepohl (2005).

In a similar lower triangular fashion, long-run restrictions on SVEC models in this paper

are placed as follows

ΞB =


F 0 0

F F 0

F F 0

 . (7)

Here again F denotes unrestricted elements. It is now assumed that a non-fundamental

shock does not have permanent effects on any of the other variables, i.e. the last column of

(7) contains only zeros. Note that such an assumption cannot be made for the SVAR model

restrictions sinceΨ in (6) cannot be a singular matrix. It may be more realistic to assume that

shocks labeled as non-fundamental do not have a permanent impact on any of the model

variables. Further, without skipping too far ahead, the rank of Ξ turns out to be two for all

VEC models and hence, the last column of zeros provides two independent restrictions. The

identification scheme in (7) is thus enough to just identify the SVEC model in the traditional

sense.

2.2 The Markov switching SVAR and SVEC models

In order to test identification schemes, as in (6) or in (7), it is necessary to expand the ba-

sic model to allow at least for switching covariance matrices. Further, for estimation conve-

nience it is also assumed that residuals are normally distributed, hence,

ut ∼ NID(0,Σu(St )). (8)

As is made clear in Lanne et al. (2010), the normality assumption in no way limits the uncondi-

tional distribution and it is also not a crucial assumption for the analysis. Here St is assumed

to follow a first-order discrete valued Markov process with transition probabilities given by

pi j = P (St = j |St−1 = i ).

These can be grouped in an (M ×M) matrix of transition probabilities, P such that the rows

add up to 1 and where M are the number of different states.

Note that it is also possible to allow for switches in the intercept term, ν in the SVAR case

and ν0 in the SVEC case. In principle, all the parameters could be subject to regime switches,
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however such assumptions would need to be justified in the sense of there being structural

breaks in the data or some reasonable economic explanation as to why a certain parameter

could be switching. In this analysis it is crucial for the covariance matrices to be switching, it

may also be reasonable to assume - given the data used - that the intercept parameter could

be subject to regime switches as is discussed later. All other parameters are assumed to be

stable.

As already noted, the Markov switching (MS) model is a convenient way of dealing with

data subject to structural breaks. In the relevant literature changes in structural relation-

ships are documented in Lee (1998), Chung and Lee (1998), Binswanger (2000, 2004a,c) and

Laopodis (2009) among others. In this sense, a MS model may also be better suited to answer-

ing the question of how well stock prices are reflected by their fundamentals. However, in this

paper a MS model is used solely to test the above-mentioned identifying restrictions.

3 Estimation and Testing Procedure

This section briefly examines the estimation and testing procedures used in this paper. Start-

ing with the VAR model, its parameters are estimated by means of OLS. Since only long-run

restrictions are imposed, estimation of the structural parameters is straightforward. With a

simple substitution it follows thatΦΣuΦ
′ =ΨΨ′. The left hand side of this equation is known,

hence for a fully identified model, Ψ is easy to derive. The contemporaneous matrix is then

easily obtained as B =Φ−1Ψ.

The VEC parameters are estimated by the method of reduced rank regression in Johansen

(1995). Since the cointegrating matrix, β, is not unique it can be identified by a simple nor-

malization such that the first r rows contain an (r × r ) identity matrix, as is shown in ?. The

structural parameters are estimated by an iterative algorithm proposed by Amisano and Gi-

annini (1997) subject to identifying restrictions placed as in Vlaar (2004).

The parameters of the MS models are estimated using the iterative expectation maximiza-

tion (EM) algorithm. This algorithm was initially popularized by Hamilton (1994) for univari-

ate processes and later extended to multivariate processes by Krolzig (1997). Since the β

matrix in the VEC models symbolizes long-run relationships, it is not re-estimated at each

maximization step of the EM algorithm. It is trivial to change this though, so that a reduced

rank regression is performed in each maximization step. However, this merely leads to an

increase in computational time without really affecting the conclusions obtained below.

In order to test the identifying restrictions it is necessary to decompose the covariance

matrices in the following way

Σu(1) = BB ′, Σu(2) = BΛ2B ′, . . . Σu(M) = BΛM B ′. (9)
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This adds to a nonlinear optimization procedure in the maximization step of the EM algo-

rithm. The underlying assumption is that the contemporaneous effects matrix, B stays the

same across states. Here the Λi , i = 2, . . . , M matrices are diagonal with positive elements,

λi j , i = 2, . . . , M , j = 1, . . . ,K and can be interpreted as relative variance matrices. In order for

the B matrix in (9) to be unique up to changes in sign and column ordering, it is necessary

for all pairwise diagonal elements in at least one of theΛi , i = 2, . . . , M matrices to be distinct.

For example, for a 3-state model it is required that λi j 6=λi l , i = 2 and/or 3, j , l = 1, . . . ,K , j 6= l .

Hence, even if these elements are equal in one state, they should not be equal in the other

state. For a more detailed explanation of the uniqueness of the B matrix the reader is referred

to Proposition 1 in the appendix of Lanne et al. (2010). If this distinction requirement is ful-

filled, then B is said to be identified through heteroskedasticity.

The assumption of an invariant B matrix may seem rather crucial to this analysis. How-

ever, when there are more than two states, this assumption can be tested by means of a like-

lihood ratio (LR) test. The test statistic has an asymptotic χ2 distribution with (1/2)MK (K +
1)−K 2 − (M −1)K degrees of freedom. Clearly, if M = 2 the degrees of freedom would be 0,

thus giving a nonsensical result. Note, that the above procedures closely follow Lanne et al.

(2010) and Herwartz and Lütkepohl (2011).

Standard errors of the parameter estimates are obtained from the inverse of the nega-

tive of the Hessian matrix evaluated at the optimum. Distinction of the λi j , i = 2, . . . , M , j =
1, . . . ,K parameters is then determined through Wald tests. It is also possible to use LR tests

for this purpose, however, such tests may not give very accurate conclusions since they can

potentially converge to the same optimum each time. 3

If the distinction of the λi j , i = 2, . . . , M , j = 1, . . . ,K parameters is fulfilled, the B matrix

is identified up to changes in sign and column ordering. Hence, any restrictions (short or

long-run) are over-identifying and can therefore be tested. This is achieved by estimating the

model with and without restrictions on the B matrix and comparing both log-likelihoods. In

other words, an LR test is used and the test statistic has an asymptotic χ2 distribution with

degrees of freedom equal to the number of restrictions.

3For instance, the LR test proceeds by restricting two diagonal elements of Λi , i = 2, . . . , M to be equal and

then comparing the log-likelihoods of the restricted and unrestricted models. This is done until all pairwise

combinations of elements are exhausted. However, due to the highly nonlinear nature of the models, it is not

uncommon for the EM algorithm to converge to the same parameter estimates and log-likelihood values for

different pairwise combinations tests. In other words, when testing for the equality of pairwise Λi , i = 2, . . . , M

parameters, the EM algorithm could potentially converge to the same values over different pairwise tests, thereby

giving the same results in each LR test. When working with trivariate models, three pairwise combinations exits,

and it is usually found that the EM algorithm converges to the same optimum usually for two out of the three

cases. Hence, two LR tests would have the same values. Therefore, Wald tests are deemed more reliable.
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4 Model Results

This section presents the main results of the paper in terms of testing the long-run identi-

fication schemes. Before discussing these results a brief word about the data used and the

different models is in order.

4.1 The Data and Model Specification

Most data are from the Federal Reserve Economic Database (FRED). The dividends and earn-

ings data are from Robert Schiller’s webpage.4 Hence, this analysis only investigates US data.

In line with many of the papers mentioned in Table 1, the data is quarterly. The data range

is from 1947:I - 2012:III, with the exception of dividends and earnings, which are until 2012:I.

All variables are in real terms (except for the industrial production (IP) index) and in logs (ex-

cept for the interest rate series). The interest rate is transformed to real terms by subtracting

the CPI growth rate. Other variables are transformed to real terms by dividing by the percent

level of the CPI. Figure 1 plots the data used along with recession periods according to NBER

dating marked by the shaded bars.

(a) GDP, r, s, IP (b) e, d

Figure 1: Data used with recession dates indicated by the bars.

All variables are I (1), meaning that they contain a unit root. This is according to Aug-

mented Dickey-Fuller (ADF) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests. This is

true even for the real interest rate series, although only at the 10% level according to the ADF

test.

All popular models in Table 1 are investigated and are numbered as shown in Table 2.

Both the Johansen (1995) trace test and the Saikkonen and Lütkepohl (2000) tests are used to

4Found at http://www.econ.yale.edu/ shiller/data.htm.
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test for cointegration in these models. According to these tests, only models IV and V show

signs of cointegration and in each case the cointegrating rank, r is 1. Unit root and cointegra-

tion tests are carried out with the JMulTi software by Lütkepohl and Krätzig (2004).

Table 2: Summary of VAR and VEC models.

Model I yt = [Yt ,rt , st ]′ VAR in first differences

Model II yt = [I Pt ,rt , st ]′ VAR in first differences

Model III yt = [D t ,rt , st ]′ VAR in first differences

Model IV yt = [Et ,rt , st ]′ VEC, r = 1

Model V yt = [Et ,D t , st ]′ VEC, r = 1

4.2 Model Restrictions

As discussed, the structural models are all identified by means of restrictions on the long-run

effects matrix. In particular, the type of restrictions on the SVAR models are all of the form as

in (6). The restrictions on the SVEC models depend in part on the number of cointegrating

relationships. In this case both models have one such relationship and hence no short-run

restrictions are required, since r (r − 1)/2 = 0. Hence, the long-run restrictions as in (7) are

used to identify the SVEC models. These identification methods provide three restrictions, as

is necessary to just identify the models and are shown here again for convenience

Ψ=


F 0 0

F F 0

F F F

 ΞB =


F 0 0

F F 0

F F 0

 .

4.3 MS Model Specification

It is now necessary to specify the Markov switching (MS) models that are to be used. The num-

ber of lags and states can in principle be determined according to the model selection crite-

ria developed by Psaradakis and Spagnolo (2006), who show that they work reasonably well.

These criteria are the Akaike Information Criterion (AIC) and the Schwartz Criterion (SC).

The AIC is calculated as −2(log-likelihood −n) and the SC is calculated as −2log-likelihood +

log(T )n, where T is the sample size and n is the number of free parameters of the model.

In principle the log-likelihood increases with the number of states used, although at a

diminishing rate. When using too many states, however, there are usually convergence and
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estimation problems and ultimately it is not possible to escape the problem of too few ob-

servations for a given state. Therefore, these model selection criteria can provide reasonable

judgement as to which model should be used since they penalize over-parameterized models.

As already noted, these criteria can also help in selecting the number of model lags, however

we prefer to choose model lag orders so as to avoid any residual autocorrelation. Hence, the

optimal number of lags are determined by Portmanteau tests.

Table 3 shows results of the information criteria along with values of the log-likelihoods,

ln(L) for all unrestricted models, i.e. models without any short or long-run restrictions. Min-

imum values of the information criteria are in bold. The maximum number of states consid-

ered is four. Beyond that no information criteria reaches a minimum and it becomes likely

that there will be some states with very few observations. As noted, this causes convergence

and estimation problems, often resulting in meaningless results.

Table 3: Information criteria of unrestricted models.

Model States AIC SC ln(L)

I: yt = [Yt ,rt , st ]′

1 1845.537 -1738.716 952.768

2 -1946.747 -1822.123 1008.374

3 -1961.999 -1812.451 1023.000

4 -1980.622 -1798.028 1041.311

II: yt = [I Pt ,rt , st ]′

1 -1537.906 -1367.364 816.953

2 -1680.313 -1492.006 893.157

3 -1727.339 -1514.161 923.669

4 -1713.095 -1467.941 925.547

III: yt = [Dt ,rt , st ]′

1 -1629.014 -1490.600 853.507

2 -1773.642 -1617.482 930.821

3 -1791.649 -1610.646 946.825

4 -1798.315 -1585.371 959.157

IV: yt = [Et ,rt , st ]′

1 -659.727 -535.373 364.863

2 -1220.152 -1085.140 648.076

3 -1297.577 -1137.694 693.789

4 -1327.046 -1135.186 717.523

V: yt = [Et ,Dt , st ]′

1 -2775.382 -2619.222 1431.691

2 -3370.821 -3193.367 1735.410

3 -3455.565 -3253.268 1784.783

4 -3493.145 -3258.906 1812.572

Both information criteria agree for models II and V. For all other models the AIC favors

more states than the SC. Unfortunately, convergence problems sometimes occur, even when

using 4-state models. For instance, model III in four states turns out to have two states with

11



very few observations in them. With model V it is the case that the restricted 4-state model (i.e.

the one with the long-run restrictions) fails to converge in the sense that the decomposition

in (9) gives a singularity after a certain number of iterations. Given these considerations, two

and three states are used for model III and three states are used for model V. For all other

models the states suggested by the information criteria are taken into account.

It is also worth noting that models with one state, or simply SVAR and SVEC models, are

not supported by any criterion. In particular, for the SVEC models IV and V the AIC and SC

values are very high. Further, although not shown here, the log-likelihoods of models with a

varying B matrix over states are only slightly higher than those with a state invariant B matrix;

and the AIC and SC values are lower for a model with a state invariant B matrix as opposed

to a varying one. This means that the assumption of a state invariant B matrix in (9) may well

be justified, although this will formally be tested later on.

Portmanteau tests (not reported here) indicate that models I and III have no residual au-

tocorrelation at 2 lags, models IV and V achieve this with 3 lags and model II needs 4 lags. Al-

though, in fairness models IV and V still show signs of autocorrelation at the 10% level, which

is also the case even when using higher lag orders. Therefore, in the interest of parsimony, for

all models, we choose the lowest reasonable lag length possible.

4.4 Estimation results

For ease of presentation, the results of the MS models are presented according to number of

states.

4.4.1 2-state models

Models I and III are best captured with two states according to the SC in Table 3. The most

relevant parameter estimates, along with standard errors and the covariance matrices (scaled

by 10−3) of the 2-state unrestricted 5 models, are shown in Table 4. Both the values of the

relative variance, λi j , i = 2, . . . , M , j = 1, . . . ,K parameters and the diagonal covariance matrix

elements confirm that state 1 is the less volatile of the two states. This can also be seen from

the smoothed probabilities of state 1 in Figure 2. In both models state 1 is never present

during severe recessions, those with a greater than 2% contraction in GDP. For instance, the

recession of 1958, the 1973-75 recession, both early 1980s recessions and the great recession

of the late 2000s are captured by state 2.

12



Table 4: Parameter estimates, standard errors and covariance matrices (scaled by 10−3) for

2-state unrestricted models.

Model I: yt = [Yt ,rt , st ]′ III: yt = [D t ,rt , st ]′

Parameter estimate σ estimate σ

λ21 4.295 1.088 2.398 0.824

λ22 2.523 0.706 10.004 2.531

λ23 8.084 1.991 6.777 1.730

p11 0.945 0.021 0.939 0.026

p22 0.775 0.081 0.735 0.086

Σ(1)

 0.045 − −
0.893 278.148 −
0.033 −0.082 2.288


 0.067 − −

−0.110 227.717 −
0.033 −1.199 2.440



Σ(2)

 0.195 − −
1.819 2065.566 −
0.296 −12.278 6.423


 0.559 − −

−7.257 1913.660 −
−0.029 −11.653 5.973



(a) Model I (b) Model III

Figure 2: Smoothed probabilities of state 1 along with recession dates.

4.4.2 3-state models

A 3-state model is the most prevalent one. In particular, given the convergence and interpre-

tation issues mentioned above, three states are used instead of four for some of the models.

Hence, models II, III, IV and V are considered in three MS volatility states. As with the 2-state

models, the relevant parameter estimates along with standard errors are shown in Table 5

and the smoothed probabilities of the states are shown in Figure 36.

Table 5 shows that the λi j , i = 2, . . . , M , j = 1, . . . ,K parameters still seem quite diverse,

5Here unrestricted refers to no short or long-run restrictions on the state invariant B matrix.
6Note that when using more than 2 states, all smoothed probabilities need to be displayed since it is no longer

the case that one is the mirror image of the other.
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(a) Model II (b) Model III

(c) Model IV (d) Model V

Figure 3: Smoothed probabilities of State 1 (top), State 2 (middle) and State 3 (bottom) along

with recession dates.

however in some cases their standard errors are also high. Also worth noting is that some

of these parameters have rather low values, below 1, meaning that the relative variance in

the given state is less than that of the first state. This can also be observed by the diagonal ele-

ments of the covariance matrices at the bottom part of the table. With the exception of model

IV, the variances are not always increasing with a given state. This means that interpretation

of the states is slightly more complex than with the 2-state models above.

From the smoothed probabilities in Figure 3 it can be seen that for all models, state 1 is not

usually associated with severe recessions. In particular, this is especially the case for model

IV and, to a lesser extent for model V. State 2 largely tends to capture recession periods along

with some time interval around them. For model III, state 2 is only associated with the early

1980s, where notably Binswanger (2004a,b,c), Groenewold (2004) and Jean and Eldomiaty

(2010) all argue for the existence of a structural break in the relationship between stock prices
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and their fundamentals around that time period. However, no other model indicates any

significant event around that time to warrant its own state. The great recession is always

given by the third state. In model IV this is also the only occurrence of that state and in the

other models state 3 is usually associated with severe recession periods. Hence, it can be

interpreted as being the most volatile state.

The estimates of the transition probabilities in Table 5 are usually close to one, with the

slight exception of p33. 7 This means that the states tend to be quite persistent as seen in

Figure 3, in that the smoothed probabilities do not fluctuate often. The lower persistence

of the third state is also something we would expect, since it is usually the case that crisis

periods tend to be more transitory than economically stable periods. In this case the duration

of the third state is roughly between 3 and 8 quarters, depending on the model used. This is

a reasonable recession duration estimate given the data range we are using.

Finally, as noted in section 3, when using three or more Markov states, the assumption

of a state invariant B matrix can be tested. The test distribution is asymptotically χ2 with

(1/2)MK (K +1)−K 2 − (M −1)K degrees of freedom, or in this case 3. The p-values of such

a test are shown in the bottom part of Table 5. Clearly, at conventional critical levels the

null hypothesis of a state invariant B matrix cannot be rejected. Hence, one of the necessary

model assumptions is justified by the data.

4.4.3 4-state models

Models I and IV are also considered in 4 states. Results of their parameter estimates and

smoothed probabilities are displayed in Table 6 and Figure 4 respectively. These models have

the most parameters out of all the models considered thus far, which consequently makes it

more complicated to classify their states. The diagonal elements of the covariance matrices in

the lower half of Table 6 do not always increase with the given state. Looking at the smoothed

probabilities, it is however possible to classify state 1 as the least volatile state since it tends

to avoid most recession periods. State 4 on the other hand tends to capture periods of severe

recessions and for model IV only the great recession is present in that state. Hence, state 4

can be considered as the one with the highest volatility. States 2 and 3 are similar especially

for model IV in that they are present during different recession periods.

It is again worth noting that the point of a structural break in the early 1980s can be some-

what justified when looking at the smoothed probabilities of state 1 for model I in Panel (a)

of Figure 4. This state seems to be present mainly after the early 1980s, which could indicate

a change in some fundamental relationship due to the lower volatility after that period. Also

7These are not the only unrestricted elements of the transition probabilities, however to save space only these

ones are displayed as they tend to be of most interest.
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Table 6: Parameter estimates, standard errors and covariance matrices (scaled by 10−3) for

4-state unrestricted models. Tests for a state-invariant B matrix at the bottom.

Model I: yt = [Yt ,rt , st ]′ IV: yt = [Et ,rt , st ]′

Parameter estimate σ estimate σ

λ21 3.734 1.051 1.168 0.463

λ22 0.385 0.092 9.553 2.488

λ23 0.946 0.411 1.116 0.370

λ31 2.465 1.049 9.706 2.714

λ32 0.397 0.196 1.250 0.399

λ33 5.685 1.835 2.776 0.798

λ41 9.883 3.521 1086.648 651.861

λ42 6.081 1.916 49.092 34.599

λ43 1.763 0.798 1.544 0.975

p11 0.931 0.097 0.948 0.027

p22 0.948 0.040 0.793 0.090

p33 0.668 0.169 0.816 0.068

p44 0.795 0.082 0.828 0.362

Σ(1)

 0.022 − −
0.254 362.760 −
0.039 −1.357 2.281


 0.305 − −

−0.171 217.329 −
0.117 −1.879 2.164



Σ(2)

 0.077 − −
1.430 180.694 −
0.062 −0.359 2.312


 0.358 − −

−1.881 2073.731 −
0.141 −11.461 2.463



Σ(3)

 0.214 − −
3.287 2148.423 −
0.118 −4.495 2.259


 2.938 − −

0.236 272.111 −
0.580 −3.471 6.030



Σ(4)

 0.082 − −
0.975 1261.377 −
0.265 −7.034 17.680


 327.892 − −

53.393 10667.553 −
40.652 −47.875 8.602


H0: state invariant B

p-value 0.375 0.082
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(a) Model I

(b) Model IV

Figure 4: Smoothed probabilities of state 1 to state 4 (from top to bottom) along with reces-

sion dates. 18



interesting is that both in 3 and 4 states, the most volatile state of model IV only captures the

great recession and nothing else. This may not be that surprising however - when looking

at the real earnings series in Panel (b) of Figure 1 a huge swing in real earnings is observed

during the period of the financial crisis. Whether this particular period drives the results is

investigated in the next section on model robustness.

Finally, as with the 3-state models, the assumption of a state invariant B matrix is formally

tested. The resulting p-values are displayed at the bottom of Table 68. At the 5% critical level

the hypothesis of a state invariant B matrix cannot be rejected. This means that for both three

and four-state models, this assumption is supported by the data.

4.5 Testing the Identification Restrictions

We now turn to testing whether the restrictions in (6) and (7) are supported by the data. The

first step is by testing whether the state invariant B matrix is identified through heteroskedas-

ticity.

4.5.1 Testing for distinct lambda parameters

As discussed in section 3, in order for the B matrix to be identified through heteroskedasticity,

it is necessary that all pairwise λi j , i = 2, . . . , M , j = 1, . . . ,K elements be distinct at least once

in anyΛi , i = 2, . . . , M matrix. Since the standard errors are available, this is most easily tested

by means of a Wald test. Likelihood ratio (LR) tests are also used, however, as already noted,

such tests can suffer from convergence problems and in most cases converge to the same

values for different hypotheses at least once. Nevertheless, when comparable, both tests yield

the same results. The hypotheses and p-values of the Wald tests by models are given in Table

7.

The test statistic follows a χ2 distribution with degrees of freedom equal to the number of

joint hypotheses being examined. Taking a 5% or even a 10% critical level, no 2-state model

can reject the null of at least one parameter pair of diagonal Λ2 parameters being equal. For

the 3-state models this is only true for model IV and all null hypotheses are rejected for the

4-state models.

It is promising that for all models the null hypotheses are rejected for a given number

of states. In particular, the null hypotheses for models I, III and IV are all rejected when

using a higher number of states. This means that for all models the B matrix is uniquely

identified through heteroskedasticity. Hence, any restrictions now on that matrix become

over-identifying and are in a position to be tested.

8The test statistic is asymptotically χ2 distributed with 6 degrees of freedom.
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Table 7: Null hypotheses by state and p-values of Wald tests for all models.

States Model p-values

H0 λ21 =λ22 λ21 =λ23 λ22 =λ23

2 I: [Yt ,rt , st ]′ 0.180 0.091 0.008

III: [Dt ,rt , st ]′ 0.007 0.031 0.266

H0 λ21 =λ22,λ31 =λ32 λ21 =λ23,λ31 =λ33 λ22 =λ23,λ32 =λ33

II: [I Pt ,rt , st ]′ 0.001 0.000 0.000

3 III: [Dt ,rt , st ]′ 0.019 0.009 0.005

IV: [Et ,rt , st ]′ 0.263 0.014 0.016

V: [Et ,Dt , st ]′ 0.001 0.000 0.000

H0 λ21 =λ22,λ31 =λ32,λ41 =λ42 λ21 =λ23,λ31 =λ33,λ41 =λ43 λ22 =λ23,λ32 =λ33,λ42 =λ43

4 I: [Yt ,rt , st ]′ 0.001 0.000 0.001

IV: [Et ,rt , st ]′ 0.000 0.034 0.000

4.5.2 Testing the restrictions

The restrictions to be tested are the lower triangular long-run identification restrictions mainly

used in the literature, given by (6) and (7) for SVAR and SVEC models respectively. These re-

strictions are tested by comparing the log-likelihood values of the unrestricted (and identi-

fied) models with the restricted models according to (6) and (7) by means of an LR test. The

results of these tests are given in Table 8. The distribution of the test statistic is asymptotically

χ2 with 3 degrees of freedom since all restricted models have 3 restrictions so that they are

just-identified in the traditional sense. The alternative hypothesis is the model without any

restrictions on the state invariant B matrix.

Starting with the 2-state models, the long-run restrictions for model I are accepted at

the 10% critical value. However, that model did not have a uniquely identified B matrix as

indicated in Table 7. Hence, any conclusions on the acceptance of the identification scheme

become somewhat ambiguous. Moving on to the 3-state models, at a 5% critical value the

long-run restrictions for model III are accepted. These restrictions are resoundingly rejected

for all other 3-state models, given that their p-values are very close to zero. Finally, in four

volatility states, the long-run restrictions for model I are again accepted, this time at the 5%

critical level. Now however, the B matrix is identified through heteroskedasticity, hence this

result indeed shows support for the long-run identification scheme.

We therefore conclude that only models I and III in four and three states respectively have

support from the data for the lower triangular long-run identification scheme. Such restric-

tions could indeed categorize shocks as fundamental and non-fundamental as the literature

tends to do. With other models these restrictions do not seem to be warranted by the data,
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Table 8: p-values for LR tests of the long-run restrictions. The alternative hypothesis is a state

invariant, unrestricted B matrix.

model H0 LR test p-value

2 states I: [Yt ,rt , st ]′ (6) 0.698 0.874

III: [D t ,rt , st ]′ (6) 8.735 0.033

3 states II: [I Pt ,rt , st ]′ (6) 56.084 4.031 ×10−12

III: [D t ,rt , st ]′ (6) 7.581 0.056

IV: [Et ,rt , st ]′ (7) 19.764 1.900 ×10−4

V: [Et ,D t , st ]′ (7) 25.416 1.264 ×10−5

4 states I: [Yt ,rt , st ]′ (6) 6.601 0.086

IV: [Et ,rt , st ]′ (7) 72.808 1.110 ×10−15

meaning that the identified shocks can probably not be interpreted as fundamental and non-

fundamental.

Finally, it is worth mentioning that in most of the literature VAR models instead of VEC

models are used. However, both cointegration tests indicate a strong presence of cointegra-

tion in models IV and V. Therefore, it would be more advisable to use the VEC form for such

models. Note that a VAR in levels form is also possible, however this would again diverge from

the literature, which mainly uses VARs in first differences.

5 Robustness Analysis

This section investigates whether the results obtained thus far rely to some extent on the exact

model specifications used. Table 8 shows that the number of states do not seem to influence

the final results. They only seem to matter for identifying the B matrix in (9) up to changes in

sign and column ordering. A similar conclusion (although not reported here) can be drawn

for the number of lags; though models with different lag orders may have residual autocorre-

lation as indicated by Portmanteau tests, the results in Table 8 stay similar depending on the

critical level threshold chosen to evaluate them.

In order to investigate model robustness, it would be more relevant for example to try to

determine whether the sample range could somehow drive the results obtained thus far. For

instance, the smoothed probabilities of model IV in panels (c) and (b) of Figures 3 and 4 re-

spectively show that there is one state that always captures the financial crisis. It would be
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interesting to investigate what would happen if the sample is cut to exclude the crisis years.

Further, some papers for instance, Binswanger (2000), Binswanger (2004b) and Jean and El-

domiaty (2010) use data starting from 1953 to avoid having the Korean War influence their

results. Hence, removing the turbulent beginning and end of the sample would give a good

indication of how robust the results are. Therefore, we only keep the observations from 1953:I

- 2007:III for the robustness analysis.

Another factor potentially influencing the results could be the Markov switching (MS)

specification itself. For example, as was already clarified, a MS model in heteroskedasticity

needs to be used so that the B matrix can be identified and any restrictions on it can be tested.

There is, however, little reason to assume that no other parameters can switch. When using

data such as interest rates and stock price indices, it may well be the case that the intercept

term is also subject to the same Markov regime switches as the covariance matrix. Indeed,

stock prices tend to rise (fall) in periods of low (high) volatility. Allowing the intercept term

to switch is another way of testing in how far the results obtained above are robust. Note that

the autoregressive parameters could potentially also be switching, however the case for them

to switch is harder to justify and to interpret. Further, switching autoregressive parameters

may cause estimation issues; in that the number of parameters to be estimated increases and

the data range may be too limited to give accurate estimates of all these parameters when

using many MS states. Hence, we decide to investigate a model only with a further switching

intercept term in addition to the switching covariance matrix. The VAR model, (1) then looks

as follows

yt = ν(St )+ A1 yt−1 + A2 yt−2 + . . .+ Ap yt−p +ut , (10)

where St follows a discrete valued first order Markov process as before and ut still has the

same distributional assumption as in (8). The reduced form VEC model is similar to (10) with

the switching intercept being ν0(St ).

Finally, the Dow Jones index is not the only index followed by market participants. It con-

sists of only 30 companies, whereas for example, the S&P 500 index consists of 500 companies

as its name suggests. Even though these indices are closely correlated and one may argue that

any idiosyncracies are diversified away, the choice of index may still influence the earlier con-

clusions. Further, data on the S&P 500 starts from 1957:I thereby giving a joint robustness

check in terms of a different stock price index and data range compared with the original

analysis.

It is worth noting that by reducing the sample range or introducing a new stock price

index, the models need to again be tested for cointegration. It turns out that the cointegration

relationships discovered earlier are all kept. 9 Hence, models IV and V are still of the VEC

9Only model IV with the 1953:1 - 2007:III sample range shows weak signs of cointegration, however, it is still
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form, with a cointegrating rank of 1, while models I - III are still of the VAR form. This is

reassuring since cointegration is assumed to involve long-run relationships, which should

not be expected to change due to changes in the sample range. Further, for all robustness

specifications, the same lag lengths as in the original analysis are kept. This could in principle

lead to some residual autocorrelation, however by using the same lag lengths the results from

the robustness checks can best be compared to the original ones.

Table 9: p-values for tests of a state invariant B matrix.

H0: state invariant B

1953:I -

model 2007:III intercept S&P 500 Original

3 states II: [I Pt ,rt , st ]′ 1.332 ×10−9 0.138 0.419 0.150

III: [D t ,rt , st ]′ 0.191 0.106 0.051 0.204

IV: [Et ,rt , st ]′ 0.008 0.256 0.307 0.600

V: [Et ,D t , st ]′ 1.459 ×10−5 0.901 0.006 0.946

4 states I: [Yt ,rt , st ]′ 3.195 ×10−8 0.611 2.679 ×10−6 0.375

IV: [Et ,rt , st ]′ 3.840 ×10−5 0.481 0.999 0.082

As in the original analysis, it is first necessary to confirm whether the assumption of a

state invariant B matrix is justified. Recall, that this assumption can be tested for models

with three or more Markov states. The test distribution is given as before; asymptotically

χ2 with (1/2)MK (K +1)−K 2 − (M −1)K degrees of freedom. The p-values of such tests for

all three robustness specifications are given in Table 9. The most right column of the table

shows the original p-values from Tables 5 and 6 for comparison. It can be seen that the null

hypothesis is usually accepted at the 5% significance level. A notable exception to this is for

the shortened sample range. There, in most cases very low p-values are obtained, meaning a

rejection of the assumption of a state invariant B matrix. Overall however, from the results of

the other robustness specifications, we can conclude that the assumption of a state invariant

B matrix is a rather robust one.

Assuming that there indeed is enough justification for a state invariant B matrix, we then

test whether this matrix is identified through heteroskedasticiy and if so whether the long-

run restrictions in (6) and (7) are supported by the data. The p-values for tests of the long-run

restrictions are reported in Table 1010. The most right column of the table again shows the

present.
10The test distributions are again asymptotically χ2 with three degrees of freedom, since both identification
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Table 10: p-values for LR tests of the long-run restrictions for different robustness specifica-

tions. The alternative hypothesis is a state invariant, unrestricted B matrix.

1953:I -

model H0 2007:III intercept S&P 500 Original

2 states I: [Yt ,rt , st ]′ (6) 0.911 0.644 0.699 0.874

III: [D t ,rt , st ]′ (6) 0.287 0.032 0.888 0.033

3 states II: [I Pt ,rt , st ]′ (6) 1.332 ×10−9* 2.854 ×10−10* 0.038* 4.031×10−12*

III: [D t ,rt , st ]′ (6) 0.272* 0.474 0.984* 0.056*

IV: [Et ,rt , st ]′ (7) 0.277* 2.718 ×10−4 1.373 ×10−4 1.900 ×10−4

V: [Et ,D t , st ]′ (7) 1.325 ×10−10* 7.704 ×10−13* 0.055* 1.264 ×10−5*

4 states I: [Yt ,rt , st ]′ (6) 0.451 0.023* 0.026* 0.081*

IV: [Et ,rt , st ]′ (7) 0.002* 9.525 ×10−9* 6.387 ×10−7* 1.110 ×10−15*

* The B matrix is identified up to changes in sign.

original p-values from Table 8 for comparison. The stars in the table indicate when the B

matrix is identified (through heteroskedasticity) up to changes in sign and column ordering,

i.e. when the null hypotheses in Table 7 are rejected.

Analyzing the results by model, it can be seen that there is no new conclusion for model I

in two states; in all cases, the B matrix is not identified and the restricted model is accepted.

When using a 1% critical value, the original conclusion also holds for that model in four states.

Granted, the p-values are usually less than in the original specification, however they are not

arbitrarily close to zero, as is the case for some of the other models. Only for the short sample

range is the B matrix not identified through heteroskedasticity, making any conclusion on

accepting the identification scheme ambiguous.

Moving on to model II, its identification scheme is rejected over all robustness specifica-

tions, except when using the S&P 500 series and a 1% critical value. Overall, these results

suggest that the identification restrictions for model II can largely be rejected. This means

that when using industrial production data instead of GDP data the structural shocks may

not be properly identified in the sense that the structural identifying restrictions are not sup-

ported by the data. This could be due to the stock price index and interest rates being more

reflective of GDP rather than the industrial production index. It illustrates the need of being

able to test a given identification scheme so as to let the data speak up about the restrictions.

schemes contain three restrictions.
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This indicates that simply using the same identification scheme for different although closely

related models, does not necessarily lead to the identification of the same type of shocks.

The original conclusion for model III in two states does not change since again the B ma-

trix is not identified for any of the models. When using three states, the restricted model is

accepted, as was originally the case. The p-values are in all cases higher than for the origi-

nal model. However, the B matrix is not identified through heteroskedasticity when using a

model with a switching intercept term. Nevertheless, it can be concluded with reasonable

confidence that the identification scheme in (6) is robustly accepted for model III.

For model IV, the original conclusion is widely upheld except when using a shorter sam-

ple range and three states. Then the identification restrictions in (7) are accepted. This could

mainly be due to omission of the financial crisis period. As seen in Figure 1, panel (b), real

earnings were severely affected during that time period. However, since the original conclu-

sion rejecting the long-run identification scheme holds in most cases, it can be said to be

quite robust.

Similarly for model V, the original conclusion is only rejected in one instance at the 5%

critical level. Overall, the results in Table 10 lend some credibility to the original findings and

show that they are rather robust over different model specifications.

To complete this analysis, a brief note on the smoothed probabilities is in order. For the 2-

state models, the periods depicted by the smoothed probabilities are very similar to the ones

shown in Figure 2. In other words, they are not really different from the original ones.

The smoothed probabilities of the 3-state MS-SVAR models do not seem as robust to

model specification however. In particular, for model II a similar picture as that in Panel

(a) Model IV (b) Model IV

Figure 5: Smoothed probabilities of model IV with the 1953:I - 2007:III sample range with 3,

(a) and 4, (b) states.
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(a) of Figure 3 is only obtained when using a model with a switching intercept term. Similarly,

for model III, none of the robustness specifications show a unique event in the early 1980s

as is the case in Panel (b) of Figure 3. Nevertheless, for all robustness models, the first state

still depicts the most stable periods and recessions and crises are captured by states two and

three as before.

The MS-SVEC models, on the other hand, tend to deliver rather robust smoothed proba-

bilities over different robustness specifications when modeled in three Markov states. They

largely resemble the ones in Panels (c) and (d) of Figure 3. Interestingly, when cutting the

sample to before the financial crisis, state three no longer indicates a unique event for model

IV. Rather recession periods are depicted by both states two and three as can be seen in Panel

(a) of Figure 5. Model V with a switching intercept displays the financial crisis as a unique

event in the third state.

A similar conclusion can be made for the 4-state models in the sense that the smoothed

probabilities of the MS-SVEC models are more robust than those of the MS-SVAR models. It is

also the case with these models that the first state depicts the more stable economic periods,

while other states capture more turbulent times. As in the 3-state case, when excluding the

financial crisis, the fourth state no longer depicts a unique event for model IV, as shown in

Figure 5, (b).

The robustness tests show that the results obtained earlier are not merely subject to chance

and that there is some credible evidence either in favor or against the relevant identification

scheme of a given model.

6 Conclusion

This analysis focuses on testing a commonly used structural parameter identification scheme,

that claims to identify fundamental and non-fundamental components of stock prices. In

particular, five related structural models, which are widely used in the literature on assessing

stock price determinants are considered. Each of these models consist of three variables. The

first variable represents different proxies of economic activity such as real GDP, the industrial

production index, real dividends and real earnings; each proxy being a different model. All

models are either specified in vector error correction (VEC) or in vector autoregressive (VAR)

form. Restrictions are placed on the long-run effects matrix as in Blanchard and Quah (1989),

making it lower triangular. All models are hence just-identified in the traditional sense.

A Markov switching in heteroskedasticity model as in Lanne et al. (2010) and Herwartz

and Lütkepohl (2011) is used to test whether the long-run restrictions are supported by the

data. It is found that for two of the models considered, the long-run identification scheme
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appropriately classifies shocks as being either fundamental or non-fundamental. Those are

the models with real GDP and real dividends as proxies of real economic activity.

Three robustness tests are performed; one by removing very turbulent periods at the be-

ginning and at the end of the sample. Another by allowing for a switching intercept term

in addition to the switching covariance matrix; and a final robustness test uses the S&P 500

index instead of the DJIA 30 index to represent the stock price. The robustness tests largely

confirm the original findings.

Therefore, even though all the models are similar in the sense of using a different proxy

for economic activity, results of this paper suggest that simply using the same identification

scheme for models with different variables may not be warranted by the data. Structural

shocks may not be properly identified in this way, making any labeling of the shocks ambigu-

ous. Hence, in order to ensure that economic shocks of interest are captured, it is important

to test the relevant identification scheme using the Markov switching in heteroskedasticity

framework.

This paper therefore finds that models in which real GDP and real dividends are used as

proxies for economic activity could potentially capture fundamental and non-fundamental

shocks to stock prices. Since the findings in this paper are relatively robust, they serve as a

good guideline when conducting future research in this field.
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