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Abstract

This paper analyzes the distortions of health insurers’ benefit packages due to ad-
verse selection when there is imperfect competition. Within a discrete choice setting
with two risk types, the following main results are derived:For intermediate levels
of competition, the benefit packages of both risk types are distorted in the separating
equilibrium. As the level of competition decreases, the distortion decreases for the
low risk type, but increases for the high risk type; in addition, the number of insurers
offering the benefit package for the low risk type increases.If the level of competi-
tion is low enough, a pooling equilibrium emerges, which generally differs from the
Wilson-equilibrium. It is shown that these results have important implications for risk
adjustment: For intermediate levels of competition, risk adjustment can be ineffective
or even decrease welfare if it is not reasonably precise.
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1 Introduction

Adverse selection has long been recognized as a potentiallyserious problem for insurance
markets in general, and health insurance markets in particular.1 If individuals differ in their
expected medical cost, but health insurers are not allowed to charge an individual-specific
premium, this creates incentives to distort the benefit package, so that the medical services
offered are attractive for some individuals, but not for others. Several empirical studies have
shown that these distortions exist and can be severe.2

Theoretical studies analyzing these distortions have usually considered the case of perfect
competition, see, e.g., the highly influential paper of Glazer and McGuire (2000). Health
insurance markets may, however, not always be perfectly competitive. For the U.S., Dafny
(2010) has demonstrated that in some markets, health insurers have a considerable degree of
market power.3 For the European context, Schut et al. (2003) and Tamm et al. (2007) have
shown that price elasticities of demand are low and that the number of individuals switching
insurers is smaller than what would have to be expected in a perfectly competitive market.
Some health insurance markets are rather imperfectly competitive.

This paper analyzes the interaction of these two phenomena –adverse selection and imper-
fect competition – with a special focus on the distortions ofthe benefit packages offered.
The literature that explicitly considers this interactionfor health insurance markets is rather
small, and so far has only examined the following two settings: Either, all insurers offer
one contract, and a pooling equilibrium is assumed, see, e.g., Frank et al. (2000). Or, a
separating equilibrium is considered, where (for the case of two risk types) each insurer
offers two contracts so that an incentive compatibility constraint is satisfied, see Olivella
and Vera-Hernandez (2007).4

The first type of analysis is restrictive in the sense that it rules out the sorting of individ-
uals into different contracts by assumption; in equilibrium, all risk types receive the same
contract.

The second class of models, on the other hand, implicitly assumes a strong asymmetry of
demand responses: A new contract, yielding slightly higherutility for some individuals
than the contract they currently hold, would attract all these individuals, if offered by the
same insurer, but only a small share of them, if offered by a different insurer. For some
health insurance settings, this is a very reasonable assumption and captures the behavior of
the insured well. One example is a fee-for-service setting,where contracts differ mainly in
the deductibles and coinsurance rates (and maybe the drug formularies). Insured will easily
switch to a different contract of the same insurer if it yields higher utility, but – being not
perfectly informed about whether other insurers reimbursebills as timely and at the same
level of generosity – may hesitate to switch to another insurer if the benefit package itself is
only slightly superior.

The setting we want to analyze is a different one, where each insurer offers only one con-
tract, and contracts do not specify reimbursement rates butbenefit packages of medical

1See Cutler and Zeckhauser (2000) and Breyer et al. (2011).
2See Frank et al. (2000), Cao and McGuire (2003) and Ellis and McGuire (2007).
3See also Cebul et al. (2011); for the Medigap market, see Maestas et al. (2009) and Starc (2013).
4See also Biglaiser and Ma (2003), Jack (2006) and Bijlsma et al. (2011).
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services (possibly at different quality levels). We therefore consider insurers that are in-
tegrated to a certain degree. To be more concrete, the setting we have in mind is that an
insurer’s physician network may either be small or large, comprising few or many special-
ists, but an insurer does not offer a choice of different physician networks. Also, an insurer
either monitors utilization closely or not, but does not offer several contracts that differ in
the level of utilization reviews. In a similar manner, this applies to disease management
programs, that are either implemented for certain illnesses or not; pay-for-performance is
yet another example, which may be difficult to conceive to be offered at different levels by
one insurer.

However, our model also applies to a setting where each insurer can offer several contracts,
but contracts are so different with respect to the benefit package (like the physician net-
works), that for the insured it does not make much of a difference whether two contracts are
offered by the same insurer or two different insurers. We return to this interpretation of the
model in the discussion section (see Section 5.4), but throughout the paper, we refer to the
setting that each insurer offers just one contract.

To keep the model simple we consider the case of only two risk types. Also, to focus on
the interaction of imperfect competition and adverse selection, we do not add heterogeneity
in a second dimension, like risk aversion or preferences forthe level of medical services
conditional on being ill.5

If there are two risk types, but each insurer offers only one contract, a meaningful model
that is supposed to also capture a separating equilibrium must comprise more than two
insurers. With more than two insurers, a Hotelling-model – often used to analyze imperfect
competition – is not appropriate. We therefore consider a discrete choice model that imposes
no restriction on the number of insurers and allows to endogenize whether a pooling or a
separating equilibrium emerges.6 The discrete choice model has been extensively used for
empirical analyses of health insurance choice;7 here it is used for a theoretical model of
adverse selection.

For a very high level of competition, this discrete choice model replicates the results of a
model under perfect competition, where an efficient benefit package is offered for the high
risk type, and an inefficient one for the low risk type. With this model we then show that
the distortions caused by adverse selection critically depend on the level of competition. In
particular, the following main results are derived:

First, for intermediate levels of competition, not only thebenefit package of the low risk
type, but also the benefit package of the high risk type is distorted in a separating equi-
librium. Therefore, the result of no distortion at the top does not hold in general under
imperfect competition. This implies that even in a setting where there are indeed only two

5See Cutler et al. (2008), Einav et al. (2010) and Bundorf et al. (2012).
6Olivella and Vera-Hernandez (2010) have analyzed a different extension of the Hotelling model, the spokes

model of Chen and Riordan (2007). They show that when each insurer can offer two contracts, a pooling
equilibrium does not exist; also, an equilibrium where eachinsurer offers only one contract (but contracts differ
by insurer) does not exist either: At least one insurer offers both contracts so that the incentive compatibility
constraint is satisfied.

7See, e.g., Feldman et al. (1989), Royalty and Solomon (1999), Harris et al. (2002), Keane (2004) and
Ericson and Starc (2012).
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risk types – e.g., being chronically ill or not – the more comprehensive benefit package can
be a (severely) biased indicator of the efficient level of medical services.

Secondly, if the level of competition decreases, the distortion of the benefit package de-
creases for the low risk type, but increases for the high risktype. In addition, the number of
insurers offering the contract for the low risk type increases, until a pooling equilibrium is
reached. The pooling equilibrium, however, usually differs from the Wilson-equilibrium.

Thirdly, in the pooling equilibrium, welfare increases if competition becomes less intense;
for the separating equilibrium, the reverse may hold (as is shown in an example), but the
welfare effects of a decrease in competition are in general indeterminate.

We then show that the economic forces driving these results have important implications
for risk adjustment: For intermediate levels of competition, a risk adjustment scheme that
is imprecise and only partially compensates insurers for the cost differences of different
risk types may be ineffective or even increase distortions;at such levels of competition,
risk adjustment only increases welfare if the cost differences are reduced by a considerable
amount. This contrasts with the case of either high or low levels of competition, where risk
adjustment always increases welfare, even if transfers only compensate cost differences to
a small degree. With these results we add to the small literature that analyzes the negative
side effects of risk adjustment.8

To illustrate these results in a less abstract manner, we first provide a concrete example
in the following Section 2. This example will demonstrate the effects in greater detail,
and will make it easier to precisely state the properties of the equilibrium under imperfect
competition, which are then shown to hold in general. We postpone the detailed outline of
the remainder of the paper until the end of Section 2, after weintroduced the basic model
and discussed the example.

2 Basic model and example

We consider a setting as in Frank et al. (2000) where each individual may suffer fromS
different illnesses. In case an illnesss is developed, utility changes byvs(ms), wherems

is the medical services (measured in monetary terms) provided by the insurer;vs(ms) is
increasing at a decreasing rate, i.e.v′s(ms) > 0 and v′′s (ms) < 0. The individual has
incomey and has to pay a premium̃R. Adopting the separability assumption of Frank et al.
(2000), utility is given by

u = y − R̃+

S∑

s=1

psvs(ms),

whereps is the probability for illnesss. The efficient level of medical services for each
illness is implicitly defined byv′s(m

∗
s) = 1.

8See Brown et al. (2012) who show that for the U.S., the improvement of the risk adjustment scheme
used for Medicaid has increased the incentive to enroll certain subgroups of individuals which are now even
more ‘overpriced’ than before the reform; this increases health insurers’ wasteful expenditures to attract these
individuals.
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Insurers maximize profits by deciding which levels of medical services to offer and which
premium to charge. We comment on why we do not consider the case where the premium
is set by a regulator in the discussion section (see Section 5.6).9

For all illnessess for which the probabilityps is identical across individuals, insurers will
offer the efficient level of medical services (see Appendix A.1). Distortions only arise for
those illnesses for which there is heterogeneity in risk. Tokeep the model as simple as
possible, we analyze the case where probabilities differ for only one of the illnesses. Since
insurers will then offer all the other medical services at the efficient level, we will skip these
illnesses to simplify the notation, and write utility as

u = pv(m)−R.

We consider, however, the full model to be that in addition tom, insurers also offer these
other medical services (at the efficient level), and charge apremiumR̃ that differs fromR
by the expected cost of these other illnesses. Any distortion ofm that occurs should thus be
considered to apply to a specific illness, like diabetes, rather than an overall level of medical
services.10

There are two risk types,L andH, with pL < pH ; the share ofL-types isλ. Each insurer
offers a contractc = {m,R}. Under perfect competition, applying the equilibrium concept
of Rothschild and Stiglitz (1976), it can be shown that if an equilibrium exists,H-types
receive a contract with the efficient level of medical services at a fair premium,

cH = {mH , RH} = {m∗, pHm∗},

while L-types receive a contract withmL < m∗ at their fair premium so thatH-types are
indifferent between the two contracts:11

cL = {mL, RL} = {mL, pLmL}, with uH(cL) = uH(cH).

Consider the following example withpL = 0.2, pH = 1, λ = 0.5 andv(m) = ln(m), so
that the efficient level of medical services ism∗ = 1 and one of the risk types is chronically
ill. Then

cH = {1, 1} and cL = {0.398, 0.0797}.

A graphical depiction of these equilibrium contracts can befound in Figure 1, whereA de-
notes the contract for theL-types, andB the contract for theH-types;pL andpH represent
the zero profit lines for the two risk types.

If the pooling zero profit linepLH crosses the indifference curve of theL-types that passes
through contractA (denoted byILRS), the separating Rothschild-Stiglitz equilibrium does
not exist.12 In this case, it is common to refer to the Wilson pooling equilibrium: the
contract on the pooling zero profit line that maximizes the utility of the L-types.13

9The main results regarding the distortions of the benefit packages would be identical, but the analysis of
the welfare effects would be obscured by the adjustment of the premium that becomes necessary when the level
of competition changes.

10We prefer this interpretation of the model because it seems unusual to have one probability of consuming
the whole benefit package of a health insurer.

11See Zweifel et al. (2009, p. 264).
12The probabilitypLH is given bypLH = λpL + (1− λ)pH .
13See Zweifel et al. (2009, p. 178).
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Figure 1: Rothschild-Stiglitz-equilibrium and ‘Wilson’-contract under perfect competition

With λ = 0.5, the pooling zero profit line does not cross theILRS-indifference curve (see Fig-
ure 1), so the separating equilibrium does exist. Because there exists a pooling equilibrium
for this example under imperfect competition, we nevertheless determine the contract on the
pooling zero profit line that maximizes the utility of theL-types: it iscW = {0.333, 0.2},
and is depicted as contractC in Figure 1. We will denote this contract, as it may often not
constitute the Wilson-equilibrium, simply as the ‘Wilson’-contract.

We now compare these results to the case of imperfect competition, which is captured with
a discrete choice model. This model is explained in greater detail in Section 3; here we only
state its main components and the results.

There aren insurersj, each offering a contractcj = {mj , Rj}.14 Individuals’ utility is
augmented by an insurer specific utility componentεij , that captures all the influences on
the choice of an insurer that are independent ofm andR. The utility of individual i when
choosing insurerj therefore is

ui(m
j , Rj) = piv(mj)−Rj + εij .

Each individual chooses the insurer that offers the highestutility, taking into account not
only mj andRj, but alsoεij . We assumeεij to be i.i.d. extreme value withVar(εij) =

σ2 π2

6 , but later show that the main results also hold for other distributional assumptions.15

The variance ofεij is a measure of the degree of competition: Ifσ is large, the additional
utility component is important, so competition with respect to different benefit packages is
low. If, on the other hand,σ is small,εij only has a small influence on the decision of which
insurer to choose, so competition is high. Withσ = 0, the model encompasses the case of

14Note that for the case of imperfect competition contracts are indexed by insurer, not risk type. In Section 3
it will become apparent why this is more appropriate.

15Note that it is common to state the variance ofεij as a multiple ofπ
2

6
for the extreme value distribution,

see Train (2009, p. 24).
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Table 1: Example I withv(m) = ln(m), pL = 0.2, pH = 1, λ = 0.5, for different values
of σ The first row (RS) contains the Rotschild-Stiglitz-equilibrium, the last row (WI) the
‘Wilson’-contract.

4 insurers 6 insurers 10 insurers

σ nA nB mA mB W nA nB mA mB W nA nB mA mB W

RS - - .398 1.00 -.632 - - .398 1.00 -.632 - - .398 1.00 -.632

.01 2 2 .378 1.00 -.636 3 3 .378 1.00 -.636 5 5 .377 1.00 -.636

.02 2 2 .365 1.00 -.640 3 3 .364 1.00 -.640 5 5 .364 1.00 -.640

.04 2 2 .351 1.00 -.646 3 3 .348 1.00 -.647 5 5 .346 1.00 -.647

.06 2 2 .349 1.00 -.654 3 3 .340 1.00 -.654 5 5 .337 1.00 -.654

.08 2 2 .361 .997 -.663 3 3 .342 .998 -.662 5 5 .334 .998 -.662

.12 3 1 .369 .983 -.731 4 2 .342 .983 -.703 6 4 .336 .980 -.688

.16 pooling .444 .444 -.753 5 1 .407 .903 -.740 7 3 .378 .901 -.718

.17 pooling .459 .459 -.742 pooling .433 .433 -.762 8 2 .395 .884 -.736

.18 pooling .472 .472 -.734 pooling .448 .448 -.751 9 1 .418 .847 -.749

.20 pooling .500 .500 -.716 pooling .474 .474 -.733 pooling .455 .455 -.746

.25 pooling .556 .556 -.686 pooling .529 .529 -.699 pooling .510 .510 -.710

WI pooling .333 .333 -.859 pooling .333 .333 -.859 pooling .333 .333 -.859

perfect competition. Withσ > 0, the level of competition of course also increases in the
total number of insurers,n.

Table 1 presents the equilibrium when there are 4, 6 or 10 insurers, for different values of
σ; in addition, the Rothschild-Stiglitz equilibrium (RS) and the ‘Wilson’-contract (WI) can
be found in the first and in the last row, respectively. The superscriptsA andB indicate
the ‘type’ of the insurer: Insurers of typeA offer the contract for theL-type individuals,
insurers of typeB the contract for theH-type individuals.16

Using this example we can now state in greater detail, what isthen shown to hold in general
in this imperfect competition setting.

Separating equilibrium: Decrease inn

A decrease in competition due to a smaller number of insurersincreasesmA, the level of
medical services offered for theL-types, so the distortion is reduced; see, e.g., the row for
σ = 0.08, wheremA increases from0.334 (10 insurers) to0.361 (4 insurers).17

Separating equilibrium: Increase inσ

A decrease in competition due to a larger value ofσ has a different effect:mA first decreases
and only later increases inσ. Note that for 4 insurers, the increase begins before the number

16Section 3.3 will make clear why do not useL andH to denote insurer type.
17For low levels ofσ the increase inmA may not be seen; this is, however, only due to rounding.
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of insurers offering the two different types of contracts (nA andnB) changes; see, e.g.,mA

for σ ≤ 0.08 for 4 insurers.

A decrease in competition due to a larger value ofσ also has an effect onmB, the medical
services offered for theH-types: At some point,mB decreases, and therefore deviates
from the efficient level. Note that for the case of 10 insurers, mB is heavily distorted asσ
increases up to0.18. The result of no distortion at the top clearly does not hold in general
under imperfect competition.

Finally, a decrease in competition due to a larger value ofσ also has an effect on the number
of insurers offering the two different contracts: Asσ increases, the number of insurers
offering the contract for theL-types increases, until the pooling equilibrium is reached; see
any of the three columns fornA.

Pooling equilibrium: Decrease inn and increase inσ

For the pooling equilibria we can observe that as competition decreases, the distortion is
reduced:m increases as eithern decreases (see, e.g., the row forσ = 0.20) or asσ increases
(see, e.g., the case of 4 insurers forσ ≥ 0.16).

Note that in this example, in all the pooling equilibriam is above the value of the ‘Wilson’-
contract (see the last row). This is, however, not a general result. In Section 3.4 we present
an example wherem is below, at or above the ‘Wilson’-contract, depending on the level of
competition; there we also explain what determines which ofthe three cases occurs.

Welfare

We finally comment on welfareW , which is calculated as the sum of expected surplus
generated by the consumption ofm,

W =
∑

i

Si, (1)

where for each risk typei, the expected surplus is given by

Si = piv(m)− pim, (2)

with m being the level of medical services consumed by a particularrisk type. Of course,
the premiumR does not appear in (2), as it is only a transfer from the insured to the insurer.

For the pooling equilibrium, it is obvious from what we foundfor m that welfare increases
as competition decreases; see, e.g., the columnW for σ ≥ 0.16 for 4 insurers, or the row
for σ = 0.20.

For the separating equilibrium, the opposite holds: Welfare decreases as the level of com-
petition decreases; see any of the three columns forW with σ below the value at which the
pooling equilibrium arises. This result, however, may not hold in general, as the counter-
vailing effects that are derived in the following section will show. Because of these coun-
tervailing effects, the change in welfare is also indeterminate when competition decreases
due to a decrease inn. Compare, e.g., the rows forσ = 0.04 andσ = 0.08: in the first
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case, welfare slightly increases asn decreases from 10 to 4; in the second, welfare slightly
decreases.

Comparison of the effect ofn andσ

For both the level of medical servicesm and welfareW , the differences due to different
levels ofσ are much larger than the differences due to different levelsof n. What is impor-
tant for a large effect is individuals’ responsiveness to different benefit packages, but not the
number of insurers.18

In the following Section 3 we show that the results just discussed do hold in general. The
section is organized in a way so that an intuitive understanding of the economic forces
driving the results can be provided. Because the demand response is somewhat different
than in a standard Hotelling-model, we will first analyze thecase of one observable risk
type at some length in Section 3.1; there we also give an explanation for whyσ has a larger
effect on the results thann. We proceed with two observable risk types in Section 3.2,
where we determine the number of insurersnA andnB; as it turns out, the share of insurers
of typeA generally differs from the share ofL-types. We then consider the case that the risk
type is unobservable: in Section 3.3 we derive the separating equilibrium, and show how it
depends onσ (Section 3.4) and the total number of insurers,n, (Section 3.5). The pooling
equilibrium is discussed in Section 3.6. We comment on the welfare effects of a decrease in
competition for both the separating and the pooling equilibrium in Section 3.7.

We then analyze the implications of these results for risk adjustment in Section 4. We first
present an example where welfare decreases as the risk adjustment scheme becomes more
precise (Section 4.1). We then explain under what conditions this decrease occurs by ana-
lyzing the separating equilibrium in Section 4.2 and the pooling equilibrium in Section 4.3.

Finally, several of the assumptions of the model are discussed in Section 5, and Section 6
concludes.

3 The discrete choice model

3.1 One risk type

There aren insurersj, each offering a contractcj = {mj , Rj}. An individual i, choosing
insurerj receives utility

ui(m
j , Rj) = pv(mj)−Rj + εij , (3)

whereεij captures the utility component of choosing insurerj that is independent of the
benefit-premium-bundle. We denote the part that depends on the benefit-premium-bundle
by

V j = pv(mj)−Rj . (4)

18This also holds ifn is increased to a much larger number.
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Individual i will choose an insurerk, if uki yields the highest utility, i.e. if

V k + εik > V l + εil ∀ l 6= k.

Assuming that allεij are distributed i.i.d. extreme value with varianceV ar(εij) = σ2 π2

6 , it
follows that the probability ofi choosing insurerk is19

Prob(i choosesk) =
e

V k

σ

∑
j e

V j

σ

.

We denote this probability byP k. Normalizing the mass of individuals to one, and assuming
profit maximization, the objective of insurerk is

max
mk,Rk

πk = P kπk
i ,

whereπk
i = Rk − pmk denotes insurerk’s profit per individual.

It will turn out much easier to derive the main results for thecase of unobservable risk types
if we reformulate the insurer’s objective in terms of{m,V } instead of{m,R}. Graphically,
in m-R-space, insurerk chooses an indifference curveIV

k
associated with the utility level

V k, and a level of medical servicesmk along this indifference curve.

Using (4) to substitute forRk in πk
i , the insurers objective can be restated as

max
mk,V k

πk = P kπk
i =

e
V k

σ

∑
j e

V j

σ

(
pv(mk)− V k − pmk

)
. (5)

Before we derive the solution to this problem, note that the derivative ofP k with respect to
V k can be expressed in terms ofP k itself in a simple way:

∂P k

∂V k
=

P k(1− P k)

σ
. (6)

The FOCs of the insurer’s objective (5) are

∂πk

∂mk
= P k

[
pv′(mk)− p

]
= 0 (7)

∂πk

∂V k
=

P k(1− P k)

σ
πk
i − P k = 0. (8)

Condition (7) requiresv′(mk) = 1, somk is chosen efficiently. This holds regardless of
which benefit-premium-bundles are offered by the other insurers. It also holds irrespective
of the utility levelV k chosen by insurerk: along an indifference curveIV

k
, mk will always

be set at the efficient levelm∗. Therefore, all insurers will offerm∗.

19See Train (2009, p. 40).
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Condition (8) shows the two countervailing effects of increasingV k: The share of individ-
uals choosingk increases byP k(1− P k) 1

σ
; weighting byπk

i captures the additional profit.
On the other hand, increasingV k (for a givenmk) implies reducingRk by the same amount,
and thereforeπk

i ; this applies to the share of individuals choosingk, P k, capturing the loss
in profit. For these two effects to cancel out, we have to haveπk

i = σ
1−P k .

It can be shown that the only equilibrium is a symmetric one, where all insurers choose the
same level of utilityV j = Ṽ ∀j. Since, in this case,P k = 1

n
, in equilibrium profit per

individual is
πk
i =

n

n− 1
σ, (9)

and total profit per insurer is

πk =
σ

n− 1
. (10)

As is to be expected, more competition leads to lower profits:both, profit per individual,
πk
i , and total profit per insurer,πk, increase inσ and decrease inn.

If σ is small, offering a higher utility level yields a large increase in the share of individu-
als. This raises the incentive to offer a higher utility level (i.e. a lower premium), thereby
reducing profits in equilibrium.

If n is large, each insurer’s market share is small. Offering a higher utility level then attracts
individuals from a large ‘external’ market share1 − P k. This again raises the incentive to
offer higher utility levels, lowering profits. We refer to this as the ‘more competition due to
a larger external market share’-effect. This effect plays an important role when risk types
are unobservable, and also when there is risk adjustment.

Note that this external market share1 − P k is confined to the interval[0.5, 1[. The effect
of the total number of insurers on profits is therefore ratherlimited: Increasing this number
from n = 2 to n → ∞ only cuts profit per individualπk

i in half, see condition (9). In
contrast, the effect ofσ on profit per individual is not bounded. In that sense,σ can be
considered to be the more important variable to capture large differences in the level of
competition. This is what we found in the example in Section 2, where the differences inm
andW are very small for different values ofn compared to different values ofσ.

We will now present this solution graphically in somewhat greater detail than necessary for
this basic model, because it facilitates the derivation of the results for the case of unobserv-
able risk types.

As P k denotes the probability that an individuali chooses insurerk, it can be considered a
distribution functionP k(V k), with corresponding densityP k(1−P k) 1

σ
, (see equation (6)).

In equilibrium, when all the other insurers offer the same level of utility Ṽ , we have

P k =
e

V k

σ

e
V k

σ + (n− 1)e
Ṽ
σ

. (11)

We can depict this distribution function by drawing a shadedarea around theI Ṽ -indifference
curve, which captures (the support of) the corresponding density, and where the darkness
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Figure 2: Equilibrium contract in discrete choice model with one risk type

of the shaded area is a measure of the level of that density, see Figure 2.20 If insurer k
offers a utility levelV k < Ṽ , the corresponding indifference curveIV

k
lies aboveI Ṽ , see

Figure 2 again. As contractA is above the shaded area,P k = 0.21 Increasing utilityV k

than moves contractA (along the linem = m∗) into the shaded area, which increasesP k

and decreasesπk
i . These two effects cancel out when contractA lies on theI Ṽ -indifference

curve. IncreasingV k even further then increasesP k beyond 1
n

; as soon as contractA is
below the shaded area,P k = 1.

Note that as insurerk moves along theIV
k
-indifference curve,P k does not change, regard-

less of whetherIV
k

is above, within or below the shaded area. This is because thedistance
betweenIV

k
andI Ṽ in theR-direction is the same for all levels ofm. TheIV

k
-indifference

curve is therefore also an iso-P k-curve.

We can now discuss the effects of an increase ofσ: First, the iso-profit line associated with
the equilibrium contract is shifted upwards. Secondly, it is straightforward to show that the
distribution functionP k as stated in (11) decreases forV k < Ṽ , and increases forV k > Ṽ ;
it also becomes less steep atV k = Ṽ , so the density decreases aroundṼ (see Figure 7
in Appendix A.2 for a graphical representation ofP k). As σ increases, the distribution
function is spread out (over a wider range), which can be depicted in Figure 2 by drawing a
wider shaded area around the indifference curveI Ṽ .

20As a technical detail, note that forn = 2, the maximum of this density is atV k = Ṽ , but forn > 2, it is

atV k > Ṽ . Therefore the ‘center’ of the shaded area is at theI Ṽ -indifference curve forn = 2, and somewhat
below it forn > 2. To simplify the exposition in the graphs, we will always draw the center of the shaded area
at Ṽ .

21Of course, technically,P k > 0 ∀ V k, see (11), but above the shaded area, bothP k and the density
P k(1− P k) 1

σ
are almost equal to zero.
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Finally note thatP k depends on the utility levels offered by the other insurers only via

the aggregate
∑

j 6=k e
V j

σ . It is easy to show that an increase in this aggregate only shifts

the distribution function to the right (in aV k-P k-diagram like in Figure 7(a)), but does
not change its shape; of course, then also the density is onlyshifted to the right (in aV k-
density-diagram like in Figure 7(b)). If, e.g., all insurers exceptk increase the utility level
they offer by some∆V , thenI Ṽ and the shaded area in Figure 2 are shifted downwards, but
the width of the shaded area does not change. Insurerk then has to increaseV k by the same
∆V to keepP k unaltered. The same applies if the total number of insurers is increased:

In equilibrium, this increases the aggregate
∑

j 6=k e
V j

σ , shifting I Ṽ and the shaded area
downwards, but keeping the width of the shaded area constant, again.

3.2 Two observable risk types

When there are two observable risk typesL andH, with pL < pH , insurers will offer
different contracts. We denote the insurers offering contracts for theL-types as insurers of
typeA, and insurers offering contracts for theH-types as insurers of typeB. The number
of insurers isnA andnB respectively, withnA + nB = n.

It follows immediately from what we derived for the case of one observable risk type that, in
equilibrium, all insurers will offer the efficient level of medical servicesmA = mB = m∗,
but premiums will differ according to risk type. As insurerscan decide whether to be of
typeA or typeB, in equilibriumπA = πB has to hold. Taking into account that the share
of L-types isλ and using (10), total profits per insurer are

πA = λ
σ

nA − 1
and πB = (1− λ)

σ

nB − 1
. (12)

Solving forπA = πB , it follows that

nA = λn+ (1− 2λ) and nB = (1− λ)n− (1− 2λ). (13)

As can be seen, the share of insurers of typeA equals the share ofL-types only forλ = 1
2 .

Forλ < 1
2 , we havenA > λn. This is for the following reason: Withλ < 1

2 , there will be
fewer insurers of typeA than of typeB, (nA < nB), so the market served by insurers of
typeA will be less competitive. This causes profit per individual to be higher in the smaller
market (πA

i > πB
i ), which induces a somewhat higher number of insurers to become of type

A than given byλn.

The same reasoning applies forλ > 1
2 . However, asλ ∈]0, 1[, we have−1 < (1−2λ) < 1,

so there will be at most one more insurer in the smaller marketthan given by the share of
the respective risk type.

Of course,nA andnB have to be integer numbers, so that the expressions given in (13) are
only an approximation to the true value. As it is not important for the derivation of our main
results, we do not elaborate on a formula that indicates whethernA as given by (13) has to
be rounded up or off. We do state, however, that the requirement ofnA andnB to be integer
can, for some parameter settings, cause an equilibrium not to exist: For some value ofnA
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andnB, it may be profitable for an insurer of typeB to enter the market for theL-types and
become an insurer of typeA; but after the new ‘equilibrium’ has been attained, whereπA

i is
decreased andπB

i increased, the same insurer may then find it profitable to become of type
B again. We comment on this problem of the existence of an equilibrium in the discussion
section (see Section 5.5).

Note that fornA = nB, (i.e.λ = 1
2 ), the iso profit lines associated with the contracts offered

by the two types of insurers start at the same point on the ordinate (at nA

nA−1
σ = nB

nB−1
σ).

This is not the case fornA 6= nB. However, to simplify the exposition in the graphs, we
always depict the case where both iso profit lines start at thesame point, but all results that
are derived hold for the general case ofnA 6= nB.

As is apparent from condition (13),nA andnB do not depend onσ, the level of competition.
This will, however, change for the case of unobservable risktypes, to which we now turn.
We begin with the separating equilibrium.

3.3 Two unobservable risk types: the separating equilibrium

In this section, we derive the separating equilibrium when the risk type is unobservable. Un-
der perfect competition, for the separating equilibrium toexist, the share ofL-types must
be below a critical level (Rothschild and Stiglitz 1976). The same applies for this discrete
choice model if the level of competition is high. Then the shaded areas around the indif-
ference curves are very narrow and the argument for the non-existence of an equilibrium is
the same as under perfect competition: If the share ofL-types is too large, the ‘separating
equilibrium’ can be destroyed by offering a contract that would be chosen by both risk types
and yield a higher profit than either of the two contracts in the ‘separating equilibrium’. On
the other hand, a pooling equilibrium can be destroyed by offering a contract that is cho-
sen only (or primarily) by theL-types. However, as we saw in the example in Section 2
(where the separating equilibrium does exist), a pooling equilibrium emerges if the level of
competition is low enough. As we show in the following, this result does hold in general.
In fact, the pooling equilibrium always emerges if the levelof competition is low enough,
irrespective of whether the separating equilibrium under perfect competition does exist or
not.

Therefore, in this section we assumeσ andλ to be small enough, so that the separating
equilibrium does exist. We begin with the case of a very smalllevel ofσ so that the contract
designated to theL-types will yield a negative profit when chosen by anH-type. The effects
of an increase inσ are then derived in the following Section 3.4. There we also discuss the
case that the separating equilibrium does not exist becausea pooling equilibrium emerges.

If the risk type is unobservable, a contract offered by insurer A may be chosen by both
risk types (and likewise for insurerB).22 The utility level associated with such a contract
{mA, RA} depends on the risk type according to

V A
L = pLv(mA)−RA and V A

H = pHv(mA)−RA.

22In the following we will often use the term ‘insurerA’ instead of ‘one of the insurers of typeA.’
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We formulate the objective of insurerA in terms ofV A
L andmA, and expressV A

H as

V A
H = V A

L + (pH − pL)v(mA).

The utility levels associated with the contract offered by insurerB are defined equivalently.
As insurerB offers a contract for theH-types, we formulate its objective in terms ofV B

H .

As each contract may be chosen by both risk types, four probabilities (or market shares)
have to be distinguished: We denote byPA

L the probability that anL-type chooses insurer
A; it is given by

PA
L =

e
V A
L
σ

e
V A
L
σ +

∑
j 6=A e

V
j
L
σ

. (14)

The remaining probabilities (and market shares),PA
H , PB

L andPB
H , are defined accordingly.

Note thatPA
H depends onV A

L andmA according to

PA
H =

e
V A
H
σ

e
V A
H
σ +

∑
j 6=A e

V
j
H
σ

=
e

V A
L

+(pH−pL)v(mA)

σ

e
V A
L

+(pH−pL)v(mA)

σ +
∑

j 6=A e
V
j
H
σ

.

In equilibrium, when all insurers of typeA offer the same contract for theL-types, and all
insurers of typeB offer the same contract for theH-types, we have

PA
L =

e
V A
L
σ

nAe
V A
L
σ + nBe

V B
L
σ

, (15)

and equivalently forPA
H , PB

L andPB
H . Finally, we have to define profit per individual of a

specific type in terms ofV andm. For insurerA we have

πA
L = pLv(mA)− V A

L − pLmA and πA
H = pLv(mA)− V A

L − pHmA. (16)

Using these definitions, insurerA’s objective reads as

max
V A
L
,mA

πA = λPA
L πA

L + (1− λ)PA
HπA

H , (17)

with FOCs

∂πA

∂V A
L

= λ

[
PA
L (1− PA

L )

σ
πA
L − PA

L

]
+ (1− λ)

[
PA
H (1− PA

H )

σ
πA
H − PA

H

]
= 0 (18)

∂πA

∂mA
= λPA

L

[
pLv′(mA)− pL

]
+ (1− λ)PA

H

[
pLv′(mA)− pH

]
(19)

+(1− λ)
PA
H (1− PA

H )

σ
(pH − pL)v′(mA)πA

H = 0.

The FOCs of insurerB are

∂πB

∂V B
H

= λ

[
PB
L (1− PB

L )

σ
πB
L − PB

L

]
+ (1− λ)

[
PB
H (1− PB

H )

σ
πB
H − PB

H

]
= 0 (20)

∂πB

∂mB
= λPB

L

[
pHv′(mB)− pL

]
− (1− λ)

PB
L (1− PB

L )

σ
(pH − pL)v′(mB)πB

L (21)

+(1− λ)PB
H

[
pHv′(mB)− pH

]
= 0.
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As insurers will decide whether to be of typeA or typeB, we finally have to haveπA = πB ,
i.e.

λPA
L πA

L + (1− λ)PA
HπA

H = λPB
L πB

L + (1− λ)PB
H πB

H . (22)

Without a specific utility function, the equilibrium contracts can of course not be determined
explicitly from the four FOCs (18)-(21) and the profit equality condition (22). Nevertheless,
all the properties of the equilibrium that have been illustrated in the example in Section 2
can be derived. To do so, it will be helpful to also present themain effects and results
graphically.

m

nB

nB−1
σ

R

mA

A3

B

A1

A2

IV
B
H

IV
A
L

m∗

Figure 3: Separating equilibrium with two unobservable risk types. ContractsB andA3 are
offered. The casenA = nB (i.e.λ = 0.5) is depicted.

With unobservable risk types and perfect competition, in Figure 3, the equilibrium consists
of contractB, chosen by theH-types, and contractA1, chosen by theL-types.23 However,
as the shaded area of theIV

B
H -indifference curve shows, in this case, insurerA would find

a considerable share ofH-types choosing contractA1.24 Therefore, contractA1 has to be
shifted outside the shaded area. Assume, that it is shifted (along the iso-πA

L -line) to A2,
where (almost) none of theH-types choose this contract. But then insurerA could move
its contract along theIV

A
L -indifference curve to the right: This would leave the number

of L-types choosing this insurer unaffected (see the definitionof PA
L in (14)), but increase

profits perL-type,πA
L . This is because the slope of theIV

A
L -indifference curve is larger than

the slope of the iso-πA
L -lines for all contracts withmA < m∗. It would also increase the

number of theH-types choosing this insurer; however, since the densityPA
H (1 − PA

H ) 1
σ
≈

0 at contractA2, in the beginning this effect is of second order. There is a third effect
when moving alongIV

A
L : Depending on whether the slope of theIV

A
L -indifference curve is

smaller or larger than the slope of the iso profit lines for theH-types,pH , this will increase
or decrease profit perH-type,πA

H .

InsurerA will therefore move along theIV
A
L -indifference curve until these three effects

cancel out, which will be at a contract as indicated byA3 in Figure 3.
23In this case, the iso profit lines would of course start at the origin, asσ → 0.
24The shaded area represents the density of the distribution functionPA

H (V A
H ) = PA

H (V A
L , mA).
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In equilibrium, a small share ofH-types chooses contractA; this contrasts to the contract
offered by insurerB: As contractB is far away from the shaded area that can be drawn
around theIV

A
L -indifference curve, none of theL-types choose contractB.25 As there is

no interference of theL-types, contractB is at the efficient level, as in the case of perfect
competition.

Results 1. In the separating equilibrium, ifσ is small, then only the benefit package for the
L-types is distorted:mA < m∗ andmB = m∗. A small share of theH-types chooses the
contract designated for theL-types, but none of theL-types choose the contract designated
for theH-types:PA

H > 0 andPB
L = 0.

In the remainder of this section we show how these results arereflected in the FOCs (18)-
(21). First, sincePB

L = 0 (as none of theL-types choose contractB), condition (21) simpli-

fies tov′(mB) = 1, (i.e.,mB = m∗), and from condition (20) it follows thatπB
H =

PB
H

1−PB
H

σ.

For insurerA, dividing (19) byλPA
L pL, the FOC with respect tomA can be rewritten as

v′(mA)− 1 +
1− λ

λ

PA
H

PA
L

[
v′(mA)−

pH

pL

]
+

1− λ

λ

PA
H

PA
L

1− PA
H

σ

pH − pL

pL
πA
Hv′(mA) = 0.

(23)

If PA
H was equal to zero, this condition would simplify tov′(mA) − 1 = 0 , so we would

havemA = m∗. This, together with the lower premium, would induce at least some of the
H-types to choose insurerA, a contradiction toPA

H = 0, soPA
H > 0. With PA

H > 0, the
following distortionary effects can be identified: First, because of the term in brackets, we

have to havev′(mA) > 1, aspH

pL
> 1. Note that if atmA, theIV

A
L -indifference curve is less

steep than the iso profit line for theH-types, (pLv′(mA) < pH ), the bracket is negative,
capturing the third effect stated above. Secondly, sinceπA

H is negative, the last summand
of (23) is negative, which is an additional effect that requires v′(mA) > 1. Therefore,
v′(mA) > 1 andmA < m∗.

We now turn to condition (18), the FOC with respect toV A
L : With PA

H = 0, this condition

would simplify to πA
L =

PA
L

1−PA
L

σ, the FOC if risk types were observable (condition (8)

derived in Section 3.1). However, withPA
H > 0 the second bracket is negative because

πA
H < 0; therefore,πA

L has to be larger than for the case ofPA
H = 0: IncreasingV A

L not only
reduces profits forL-types byPA

L (and profits forH-types byPA
H ), but has the additional

effect of increasing the share ofH-types byPA
H (1− PA

H ) 1
σ

, which yield negative profit per
individual. This reduces the incentive to offer higher utility V A

L , which increasesπA
L , so the

equilibrium contractA3 is above the iso-profit line as shown in Figure 3.

However, ifσ is very small,PA
H will be very close to zero, andA3 will only be slightly

above the iso-profit-lineπA
L as shown in Figure 3. AsπA

L is almost not affected by the very
low share of high risks, the number of insurers of typeA and typeB, nA andnB, will then
not be different from the case when risk types are observable. This, however, changes asσ
increases.

25The shaded area represents the density ofPB
L (V B

L ) = PB
L (V B

H ,mB).

17



3.4 The dependence of the separating equilibrium onσ

So far, the equilibrium under imperfect competition looks rather similar to the case of per-
fect competition. We will now show that this only holds for high levels of competition. In
this section, we analyze the effects of a decrease in competition due to an increase inσ; we
discuss a decrease of competition due to a decrease ofn in the following Section 3.5.

In Section 3.1 it was shown that an increase inσ increases profits, as insurers reduce the
utility levels they offer by increasing the premium; this shifts the iso profit line associated
with the equilibrium upwards. The same applies if risk typesare unobservable. However,
the increase in premiums alone does not yet constitute the new equilibrium because of the
following additional effects:

Effect onmA andPA
H

First, asσ increases, the shaded area around theIV
B
H -indifference curve becomes wider.

This creates an incentive to decreasemA. As the distribution functionPA
H increases inσ

for all values ofV A
H < V B

H , if (after the increase inσ) mA did not change, moreH-types
would choose insurerA. To avoid being chosen by theseH-types, insurerA reducesmA.
This first effect can be seen in condition (23) by consideringthe terms up to and including
the bracket as a weighted average: As the weight of the secondsummand goes up,v′(mA)
has to be increased.

Secondly, there is the countervailing effect that as premiums increase, insuring an additional
H-type now causes a smaller loss; this creates an incentive toincreasemA. The aggregate
of these two effects onmA is indeterminate, but in Appendix A.3 it is shown that the share
of H-types choosing insurerA, PA

H , unambiguously increases. Here, we only give a brief
intuitive explanation: If, by the first effect,mA was reduced to a level so thatPA

H was
the same as before the increase inσ, there would then be an incentive to increasemA

(and therebyPA
H ) for three different reasons: First, ifPA

H is at the same level as before,
but v′(mA) has been increased, condition (23) is not satisfied anymore,so v′(mA) has to
be decreased. Secondly, ifPA

H is at the same level as before, the densityPA
H (1 − PA

H ) 1
σ

now is lower (due to the larger value ofσ); moving along theIV
A
L -indifference curve does

not attract as manyH-types as before. In condition (23), this effect is found byσ in the
denominator in the last term. Thirdly, as premiums have beenincreased,πA

H is increased,
so attracting an additionalH-type causes a smaller loss than before. In (23) this effect can
again be found in the last term, whereπA

H increases.

After the increase ofσ, moreH-types will choose the contract offered by insurers of type
A. WhethermA increases or decreases is indeterminate for a general utility functionv(·). It
depends on whether the effect of the wider shaded area aroundtheIV

B
H -indifference curve

or the three countervailing effects dominate. Initially, as σ is very small, andπA
H is far

below zero, the effect of an increase inσ on πA
H is small in relative terms, which makes it

likely thatmA decreases, as was the case in our example in Section 2.

Effect onnA

We now turn to the question of why the number of insurers offering contractA increases:
In Appendix A.4 it is shown that asσ increases, profits increase faster for type-A insurers
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than for type-B insurers, so that at some point it will be profitable for one ofthe type-B
insurers to switch and to become a type-A insurer. Here again, we only state an intuitive
explanation: Ifσ increases,PA

H increases, so the number of individuals choosing any of
the type-B insurers decreases. This is the first effect reducing (the increase of) total profits
of type-B insurers. In addition, as the number of individuals choosing type-A insurers
increases, for the type-B insurers there is the ‘more competition due to a larger external
market share’-effect, which, as we saw in Section 3.1, decreases profits per individual. Due
to these two effects,πB increases at a lower rate thanπA.

As πA increases faster thanπB , nB would have to decrease continuously inσ. However, as
nA andnB have to be integer numbers, there will only be a switch of an insurer of typeB
to become of typeA if the difference betweenπA andπB is large enough. This is why in
the example in Section 2,nA is constant in the first rows of Table 1 and does not increase
in σ.

Effect onmB

We finally discuss why for an intermediate level of competition, contractB is distorted.
As σ increases, the shaded areas around both indifference curves get wider. At some level
of σ, the shaded area around the indifference curve of theL-types,IV

A
L , becomes so wide

that it ‘reaches’ contractB, so that a small share ofL-types chooses contractB. It will
then be profitable for insurerB to move along theIV

B
H -indifference curve and reducemB

(see Figure 4, where only the shaded area around theIV
A
L -indifference curve is drawn). On

the one hand, this reduces profits perH-type,πB
H , but at (or close to) the efficient level of

m, this effect will be of second order. On the other hand, it increases the share of theL-
types, (as the iso-PB

L -curves have a lower slope than theIV
B
H -indifference curve), thereby

increasing profits.26

m

R

mA

B0

B1

IV
B
H

IV
A
L

m∗

Figure 4: Separating equilibrium with two unobservable risk types;σ large: ContractB
distorted fromB0 toB1.

26Of course, technically speaking,mB is always distorted, asPB
L is always larger than zero. However, for

low levels ofσ, PB
L is so close to zero, that the distortion ofmB is negligible. In our example, withσ = 0.01,

PB
L is on the order of10−30.
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Comparing the effects of a decrease in competition onmA andmB , we see that asσ in-
creases,mA changes even for low values ofσ, while the effect onmB only arises above
some threshold level ofσ, at which the shaded area ‘reaches’ contractB.

Results 2. In the separating equilibrium, ifσ is at an intermediate level, then both benefit
packages are distorted:mA < mB < m∗. A small share of both risk types chooses the
contract designated for the other risk type:PA

H > 0 andPB
L > 0. The number of insurers

offering the contract designated for theL-types increases inσ.

In the remainder of this section, we illustrate these effects with an example. Table 2 presents
the example of Section 2 again, now with the additional variablesPA

L , PA
H , PB

L , PB
H and

profits, for the case of 10 insurers. Asσ increases from 0.01 to 0.08,PB
L remains zero, so

(almost) none of theL-types choose insurerB; on the other hand,PA
H increases to 0.0172,

so that forσ = 0.08, 8.62% of theH-types choose one of the insurers of typeA (see the
column

∑
PA
H ). Forσ = 0.13, already about 25% of theH-types choose an insurer of type

A, while still less than 1% of theL-types choose an insurer of typeB (since
∑

PA
L > 0.99).

Table 2: Example I withv(m) = ln(m), pL = 0.2, pH = 1, λ = 0.5, 10 insurers.

σ nA nB mA mB PA
L PA

H PB
L PB

H

∑
PA
L

∑
PA
H πA/σ πB/σ

.01 5 5 .377 1.00 .2000 .0011 .0000 .1989 1.000 .0054 .01302 .01235

.02 5 5 .364 1.00 .2000 .0024 .0000 .1976 1.000 .0120 .01319 .01217

.04 5 5 .346 1.00 .2000 .0059 .0000 .1941 1.000 .0293 .01364 .01169

.06 5 5 .337 1.00 .2000 .0106 .0000 .1894 1.000 .0532 .01426 .01106

.08 5 5 .334 .998 .2000 .0172 .0000 .1828 .9998 .0862 .01512 .01022

.10 6 4 .324 .994 .1665 .0239 .0002 .2142 .9992 .1434 .01108 .01459

.11 6 4 .329 .989 .1664 .0293 .0004 .2060 .9984 .1759 .01168 .01337

.12 6 4 .336 .980 .1662 .0355 .0007 .1967 .9971 .2132 .01238 .01206

.13 6 4 .345 .966 .1658 .0423 .0013 .1865 .9948 .2541 .01314 .01074

The second to last and last column show total profit per insurer of type A and typeB,
divided byσ. Dividing byσ makes it easier to see that profits increase faster for insurers of
typeA than for typeB: While πA/σ increases inσ, πB/σ decreases, so that at some point,
it becomes profitable for one of the insurers of typeB to switch and to become an insurer
of typeA.27 Of course, after the switch, profits per insurer are larger for insurers of type
B than for typeA (see the row forσ = 0.10). As profits increase faster for typeA than
for typeB, this quickly reverses, so that forσ = 0.13, profits for typeA are already larger
than for typeB again. Ifσ increases further, then the next insurer of typeB will switch and
become an insurer of typeA.

Note that we can havenB = 1 at some high level ofσ, see Table 1 in Section 2. Even
with only one insurer of typeB, there is still enough competition to keep the premiumRB

down because insurerB would lose too many individuals to the type-A insurers ifRB was
increased.

27Forσ = 0.09 an equilibrium does not exist.
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3.5 The dependence of the separating equilibrium onn

We now discuss how the equilibrium depends onn, the total number of insurers. Asn in-
creases,nA andnB increase proportionally forλ = 1

2 , and almost proportionally forλ 6= 1
2 .

Accordingly, all market shares decrease (about) proportionally, which leaves condition (23)
unchanged. Also, there is no widening of the shaded areas around the indifference curves.

Recall, that as the aggregate
∑

j 6=k e
V k

σ changes, (which is the case asn increases), this
only shifts the distribution function, but does not change its shape.

The only effect of an increase ofn therefore is on profits (in particular onπA
H ): As n

increases, profits per individual go down. This increases the loss caused by anH-type,
so the incentive to avoid theH-types increases; see condition (23) wheremA has to be
decreased whenπA

H decreases. Therefore,mA decreases inn.

Results 3. In the separating equilibrium, the distortion of the benefitpackage of the low
risk type increases in the total number of insurers:∂mA

∂n
< 0.

3.6 The pooling equilibrium

As has been shown in Section 3.4, whenσ increases, the number of type-A insurers in-
creases. At some point, all insurers will be of typeA and a symmetric equilibrium occurs.28

Using the fact that in this casenB = 0 andPA
L = PA

H = 1
nA , wherenA = n, condition (18),

the FOC with respect toV A
L , simplifies to

λπA
L + (1− λ)πA

H =
nσ

n− 1
. (24)

Solving this equation forRA and substituting in the FOC with respect tomA, we have
[
1−

λ(1− λ)(pH − pL)2

nσ
n−1p

mA

]
v′(mA) = 1. (25)

Because the fraction in (25) is positive, it is immediately apparent thatv′(mA) > 1, so that
mA is distorted downward. As is to be expected, the distortion increases in the difference
pH − pL. Also, it decreases inσ and increases inn: The distortion in the symmetric
equilibrium is less severe if the market is less competitive.

We can now show whetherm is below, at, or above the ‘Wilson’-contract that is character-
ized by maximizing the utility of theL-type on the pooling iso-profit line, where, formally,
m satisfiespLv′(mW ) = p. Using conditions (24) and (25) it is straightforward to show
that this results inπA

H = 0, see Appendix A.5. Of course, if profits for theH-types are
zero,H-types do not play a role when choosing the optimal contract on the iso-profit line,
so insurers will maximize the utility of theL-types (to have as manyL-types as possible).
If πH < 0, it will be profitable to reducem along the iso profit line: this will only have

28We denote insurers to be of typeA in the pooling equilibrium, because the level of medical services
offered in the pooling equilibrium is closer tomA thanmB offered in the separating equilibrium; see Table 1
in Section 2, and Table 3 in this section.
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Table 3: Example II:pL = 0.5, pH = 1, λ = 0.5.

4 insurers

σ nA nB mA mB

RS - - .464 1.00

.02 2 2 .450 1.00

.06 3 1 .501 .972

.10 pooling .615 .615

.125 pooling .666 .666

.15 pooling .701 .701

WI pooling .666 .666

a second order effect on the utility ofL, but a first order effect of reducing the number of
H-types. If, on the other hand,πH > 0, then having moreH-types increases profits, so in-
surers will raisem abovemW . Table 3 presents an example where the pooling equilibrium
is below, at or above the ‘Wilson’-contract, depending on the level ofσ.

Results 4. In the pooling equilibrium, the distortion increases in thelevel of competition:
∂mA

∂n
< 0 and ∂mA

∂σ
> 0. The pooling equilibrium only coincides with the ‘Wilson’-contract

if profit perH-type is zero:mA T mW for πA
H T 0.

From a technical perspective, this result shows that in a Rothschild-Stiglitz model under im-
perfect competition, where a pooling equilibrium is not imposed by assumption, a pooling
equilibrium in pure strategies can exist. It is therefore possible to rationalize the pool-
ing equilibrium without imposing Wilson-foresight, a concept that has been criticized by
Rothschild and Stiglitz (1997).

Newhouse (1996) had already identified a different reason for a pooling equilibrium to exist,
fixed costs of setting up a new contract: If trying to attract theL-types with a new contract
causes high costs, the symmetric equilibrium is stable.

Here, the argument is somewhat similar, but the costs are of adifferent kind: Offering a
contract between the indifference curves of the two risk types would, under perfect compe-
tition, only attract theL-types and thereby destroy the symmetric equilibrium. Here, if σ
is large, a contract close to the symmetric equilibrium attracts bothL- andH-types, where,
due to the large influence of the utility componentεij that is independent of the benefit-
premium-bundle, the relative share of theL-types in this new contract is not much larger
than the share ofL-types in the symmetric equilibrium. To only attract theL-types, the
new contract would have to be far away from the symmetric equilibrium, where the shaded
areas of the two indifference curves do not overlap. But if this contract is far away, it would
be below the iso-profit line for theL-types and thereby not provide a higher profit than the
contract in the symmetric equilibrium.
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3.7 Welfare effects of a decrease in competition

From what has been derived in the previous section it followsthat the welfare effects of a
decrease in competition for the separating equilibrium areambiguous, while for the pooling
equilibrium, welfare increases.

For the separating equilibrium we found that an increase inσ creates countervailing ef-
fects formA: it may either increase or decrease inσ. The additional effects we identified,
however, clearly decrease welfare: First,PA

H increases, so that more individuals choose the
benefit package with the higher distortion; secondly,nA increases, so again the number
of individuals choosing the benefit package with the higher distortion increases. Thirdly,
at some pointmB is distorted. Therefore, if in addition to these three effects, alsomA

decreases, welfare unambiguously decreases; if not, the welfare effects are indeterminate.
However, in the large number of examples where we derived theequilibrium for a specific
utility function explicitly, welfare in the separating equilibrium always decreased.

The welfare effects of a decrease in competition due to a decrease in the total number of
insurers are indeterminate as well. It was shown that asn decreases,mA increases, because
the loss associated with theH-types decreases as competition decreases. But for the same
reasonPA

H increases, creating a countervailing effect on welfare. Inaddition, becausenA

and nB have to be integer, there will be both up- and downward jumps of the relative
sharenA

nB asn decreases; (there is, e.g., both an increase and a decrease in either sequence
5
5 → 5

4 → 4
4 or 5

5 → 4
5 → 4

4 asn decreases from 10 to 8).

For the pooling equilibrium, on the other hand, as competition decreases, welfare increases
unambiguously, see condition (25). This holds for both the increase inσ and the decrease
in n.

To sum up: Should policy makers try to increase competition in health insurance markets?
Regarding the distortions of the benefit packages, and from awelfare perspective, there
is a definitive answer only for some levels of competition andit is negative: If competi-
tion is low, so that a pooling equilibrium emerges, more competition decreases welfare. If
competition is high enough, so that a separating equilibrium emerges, there is no definitive
answer.

4 Implications for risk adjustment

We now discuss the implications of the results derived so farfor risk adjustment. In partic-
ular, we show that the welfare effects of introducing or improving a risk adjustment scheme
(RAS) critically depend on the level of competition: For lowand high levels of competition,
a RAS that becomes more precise unambiguously increases welfare. However, for interme-
diate levels of competition, welfare may initially remain constant or even decrease as the
RAS is improved.

We will not model explicitly which risk adjusters are used inthe RAS, or which econometric
method is applied to estimate the payments. What is important for our model is that when-
ever a RAS becomes more precise, it reduces the cost difference between the two risk types
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to a larger extent. A RAS can be improved by, e.g., using more and more risk adjusters,
like hospital stays, or diagnostic information; a regulator may also apply the formula for
optimal risk adjustment developed by Glazer and McGuire (2000). In all cases, the cost
difference between risk types will be reduced, and with a perfect RAS, this cost difference
is eliminated completely.

We will model the RAS in the easiest way possible: Each insurer receives a payment of
RAH for anH-type, and has to payRAL for anL-type. For the RAS to break even, we
have to have

λRAL = (1− λ)RAH .

SettingRAH to some levelRA, this requiresRAL = 1−λ
λ

RA. In this way, the RAS can be
expressed with only one parameter,RA. AsRA increases, the RAS becomes more precise.

We will first present an example to show how the welfare effects of increasingRA depend
on the level of competition. We then explain why for intermediate levels of competition wel-
fare may decrease inRA by analyzing the effects of the RAS-payments for the separating
equilibrium in Section 4.2, and for the pooling equilibriumin Section 4.3.

4.1 Example

We present the same example as before, withv(m) = ln(m), pL = 0.2, pH = 1 and
λ = 0.5, and show the impact on welfare by increasingRA = RAL = RAH from 0 to
0.4, at which level the cost difference between theL-type and theH-type is eliminated.
Results are shown for 10 and 20 insurers (see Figure 5(a) and (b) respectively), for different
levels of competition:σ = 0.01 (very competitive),σ = 0.10, σ = 0.12 andσ = 0.14
(intermediate levels of competition), and for the lowest level of σ for which the pooling
equilibrium emerges:σ = 0.19 for 10 insurers, andσ = 0.20 for 20 insurers.

The equilibrium values for the level of medical servicesmA andmB and the number of
insurersnA andnB for one of the cases (n = 20 andσ = 0.12) can be found in Table 5
in Appendix A.6.29 Here, we only plot the equilibrium levels of welfare as a function of
RA for these five different values ofσ. The highest level of welfare for this example is 0.6,
which occurs when all individuals receivem∗ = 1.

As can be seen, forσ = 0.01 andσ = 0.19, welfare increases monotonously inRA.30

However, for intermediate levels of competition, welfare stays about constant or even de-
creases as long asRA is below the threshold level, at which the pooling equilibrium is
reached; only above this level, welfare increases monotonously inRA.31 For the case of 20

29The Excel-files for the other cases are available from the author upon request.
30Forσ = 0.01, there is a small decrease in welfare for some high level ofRA; this is because at this level

of RA there is a switch from the separating to the pooling equilibrium.
31Note that for these intermediate levels of competition, there is usually one level ofRA for which an

equilibrium does not exist: As we already mentioned in Section 3.2, for one of the candidate equilibria
(mA, V A

L ,mB , V B
H ), one of the insurers of typeB has an incentive to become an insurer of typeA; in the

candidate equilibrium for these new levels ofnA andnB , an insurer of typeA then has an incentive to become
an insurer of typeB. In Figure 5 we plot the higher of the two levels of welfare of the two candidate equilibria
to present the case where the RAS is more successful in improving welfare.
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Figure 5: Example III withpL = 0.2, pH = 1, λ = 0.5 and different levels ofσ. Welfare
W is depicted as a function ofRA, with RA increasing from 0 to 0.40.
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insurers andσ = 0.10, this threshold level is as high asRA = 0.17: Although the RAS re-
duces the cost difference between the two risk types by more than 40%, there is no increase
in welfare.

For intermediate levels of competition welfare initially does not increase inRA because
the RAS-payments not only reduce a distortion (by increasing mA), but also introduce or
exacerbate two other distortions: As we show in the following section, the share ofH-types
choosing the benefit package designated for theL-types increases inRA; in addition, the
distortion of the benefit package for theH-types becomes more severe (mB decreases).

This contrasts with the case of either a low or a high level of competition, where these
additional distortions do not occur or are so small that theyare negligible; for these levels
of competition, welfare unambiguously increases inRA.

4.2 Risk adjustment in the separating equilibrium

Taking into account the payments of the RAS, type specific profits for insurerA are now

πA
L = pLv(mA)− V A

L −
1− λ

λ
RA− pLmA (26)

πA
H = pLv(mA)− V A

L +RA− pHmA. (27)

The FOCs for insurerA’s objective are therefore identical to (18) and (19), but with πA
L and

πA
H now defined by (26) and (27). The same applies to insurerB.

For insurerB, from the FOC with respect tomB it follows that for low values ofσ (so
thatPB

L = 0), we havev′(mB) = 1, as before. From the FOC with respect toV B
H , we

haveπB
H = nB

nB−1
σ, again as before. IfRA is increased, so that insurerB receives a larger

subsidy for eachH-type, premiums are reduced (and utilityV B
H increased) by the same

amount, so thatπB
H stays constant. For insurerB, we can therefore depict an increase in

RA by a decrease inRB of equal size: In Figure 6, the contract offered is shifted fromB0
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to B1; accordingly, there is a downward shift of the corresponding iso profit line and the
indifference curve.

There is an opposite effect on the premium of insurers of typeA: asRA increases, this, c.p.,
increases the premiumRA (and reducesV A

L ) byRAL = 1−λ
λ

RA, shifting the iso-profit-line
upwards. Similar to the case of an increase ofσ in Section 3.4, this does not yet constitute
the new equilibrium; there will also be an effect onmA.

m

R

∆RA

∆RA

∆RA

mA
1mA

0 m∗

A0

A1

B0

B1

IV
B
H

I Ṽ
B
H

Figure 6: Equilibrium without and with (imprecise) risk adjustment; the caseRAL = RAH

(i.e.λ = 0.5) is depicted.

As can be seen from Figure 6, due to the downward shift of theIV
B
H -indifference curve

(to I Ṽ
B
H ), and the upward shift of the iso-profit-line of insurerA, offering a contract with

the same level ofmA reduces the share ofH-types choosing contractA. This also follows
immediately from the definition ofPA

H ,

PA
H =

e
V A
H
σ

nAe
V A
H
σ + nBe

V B
H
σ

,

which decreases asV A
H decreases andV B

H increases.

This decrease inPA
H creates an incentive to increasemA, which can also be seen from the

FOC with respect tomA:

v′(mA)− 1 +
1− λ

λ

PA
H

PA
L

[
v′(mA)−

pH

pL

]
+

1− λ

λ

PA
H

PA
L

1− PA
H

σ

pH − pL

pL
πA
Hv′(mA) = 0.

(23)
As PA

H is reduced,mA has to be increased, so that (23) is satisfied again. In addition, due
to the RAS-payment for theH-types,πA

H is increased, which – in an equivalent manner as
for the case of an increase inσ in Section 3.4 – creates a second incentive to increasemA.
AsmA unambiguously increases, this, c.p., leads to an increase in welfare.

The effect onPA
H , however, is ambiguous: Assume thatmA is increased to a level so that

PA
H is the same as before. At that point, it is not clear whether there is an incentive to
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increasemA (and therebyPA
H ) even further or not. On the one hand,πA

H is increased, but
on the other hand,v′(mA) has already been decreased, so for a general utility function, it
is indeterminate whether (23) is positive or negative. As the effect ofRA on πA

H is linear,
while the effect onv′ is decreasing, it is likely thatPA

H increases inRA, if RA is large.
In the large number of examples where we derived the equilibrium for a particular utility
function explicitly,PA

H always increased inRA even from the beginning (RA = 0).

The increase inPA
H , if it occurs, captures the first effect that reduces welfare: EachH-type

choosing contractA instead of contractB induces a loss of welfare, becausemA < mB .
In addition, if PA

H increases, we have the same effects on profits as already described in
Section 3.4: Due to the loss of individuals, competition among insurers of typeB increases,
which reduces profits per individual; together with the smaller market share, profit per in-
surer of typeB decreases. At some point, a type-B insurer will switch and become a type-A
insurer. This is the second negative effect on welfare: Eachinsurer that switches to become
an insurer of typeA incurs a welfare loss, as all its insured receivemA instead ofmB.32

There is a third negative effect on welfare that occurs regardless of whetherPA
H increases

or not: We saw that asRA increases, this shifts theIV
B
H -indifference curve downwards,

and theIV
A
L -indifference curve upwards. This will, in similar manner as described in Sec-

tion 3.4, lead to a distortion ofmB below the efficient level, as soon as the shaded area
around theIV

A
L -indifference curve ‘reaches’ contractB.

Therefore, in addition to the welfare increasing effect of an increase ofmA, a RAS that
becomes more precise may create these three countervailingeffects: a decrease ofPB

H , a
decrease ofnB, and, at some point, a decrease ofmB below the efficient level. Whether
these three effects are significant, or only reduce the effectiveness of the improvement of
the RAS, of course depends on the specific utility function.

It also depends on the level ofσ: If σ is small, the shaded area around theIV
B
H -indifference

curve will be small. In this case, the densityPA
H (1−PA

H ) 1
σ

will already be large whenPA
H is

still small, so for small values ofσ the first countervailing effect is greatly reduced. AsPA
H

is small, the difference in profitsπA − πB is small (see Appendix A.4), so that none of the
insurers of typeB switches to become of typeA; then the second countervailing effect does
not exist. Thirdly, ifσ is small, the shaded area around theIV

A
L -indifference curve will be

narrow, so it will not ‘reach’ contractB until RA is large; for small and intermediate levels
of RA, the third countervailing effect does not exist either. Therefore, ifσ is small enough,
welfare increases as a RAS becomes more precise unlessRA is close to the level at which
the cost difference is eliminated. This exception, however, does not seem to be important,
because a RAS will usually not be perfect and only eliminate the cost difference between
risk types to a certain degree.

32Of course, when this insurer switches and becomes a type-A insurer, a large share of theH-types of this
insurer will choose another insurer of typeB; but those with a high preference for this particular insurer (high
εij ) will stay with this insurer, causing the welfare loss.
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4.3 Risk adjustment in the symmetric equilibrium

For the symmetric equilibrium, the FOC with respect tomA simplifies to
[
1−

(1− λ)(pH − pL)[λ(pH − pL)mA −RA]
nσ
n−1p

]
v′(mA) = 1. (28)

With RA = 0, i.e. without risk adjustment, we have condition (25) from Section 3.4. As
RA increases, the fraction in (28) decreases, somA increases. WithRA = λ(pH − pL)m∗,
the distortion is eliminated. Forλ = 1

2 , as soon asRA equals half the difference in expected
costs between the two risk types, the cost difference vanishes; this is becauseRA both has
to be paid by the insurer for anL-type, and is paid to the insurer for anH-type.

Therefore, for the symmetric equilibrium, an increase inRA unambiguously decreases the
distortion and increases welfare.

5 Discussion

In this section, we discuss several of the assumptions of ourmodel and how they may affect
the results that have been derived.

5.1 Two risk types

One of the assumptions of the model is that there are only two risk types. This contrasts
with the assumption of a continuous distribution of risk types underlying most of the recent
empirical papers that estimate the extent of adverse selection in health insurance markets
due to inefficient pricing of a given set of contracts, see, e.g., Einav, Finkelstein, and Cullen
(2010) or Bundorf et al. (2012).33 However, in these papers the distribution function basi-
cally refers to total health care expenditures; it is not a distribution function of the proba-
bility of contracting a specific illness. While individualsmay easily be able to distinguish
a large number of risk types regarding total health expenditures, so that a continuous distri-
bution is a valid assumption, it is difficult to imagine that individuals can distinguish just as
many risk types for the probability of contracting a specificillness, say, diabetes. Here, it
may indeed be the case that individuals only distinguish whether they currently suffer from
this illness or not, and that all individuals who are not (chronically) ill hold quite similar be-
liefs about the (small) probability of contracting this illness during the next period. For our
setting, wherem denotes the level of medical services for a particular disease and not the
overall generosity of the benefit package, assuming two risktypes may therefore be more
appropriate than assuming a continuous distribution.

33For an early example, see Cutler and Reber (1998).
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5.2 Distributional assumption for εij

The model has been explicitly solved only under the assumption thatεij is i.i.d. extreme
value, but we think that the results that were derived also hold for different distributional
assumptions. As the main effects have also been explained graphically, the results should be
similar as long as the distributional assumption leads to shaded areas around the indifference
curves that represent a unimodal density.

We determined the equilibrium under various other distributional assumptions forεij than
the extreme value distribution for a large number of examples and always found the results
to be very similar.34 Table 4 presents the equilibrium values of the example of Section 2
for three distributional assumptions ofεij other than the extreme value: the normal, the
triangular and the uniform distribution.35 Even with a uniform distribution forεij, the
density represented by the shaded area is unimodal; (e.g., this density would be triangular
for n = 2).

Table 4: Example I withv(m) = ln(m), pL = 0.2, pH = 1, λ = 0.5, n = 10 for different
distributional assumptions

extreme value normal triangular uniform

nA nB σ mA mB σ mA mB σ mA mB σ mA mB

5 5 .01 .377 1.00 .01 .384 1.00 .01 .386 1.00 .01 .387 1.00

5 5 .02 .364 1.00 .02 .373 1.00 .02 .376 1.00 .02 .377 1.00

5 5 .04 .346 1.00 .04 .358 1.00 .04 .360 1.00 .04 .363 1.00

5 5 .06 .337 1.00 .06 .346 1.00 .06 .349 1.00 .06 .351 1.00

5 5 .08 .334 .998 .08 .340 1.00 .08 .340 1.00 .08 .343 1.00

6 4 .10 .324 .994 .14 .330 1.00 .15 .332 1.00 .21 .351 .996

7 3 .15 .362 .940 .18 .355 .994 .19 .361 .999 .28 .363 .981

8 2 .17 .395 .884 .20 .380 .982 .21 .380 .997 .33 .389 .954

9 1 .18 .418 .847 .22 .403 .973 .23 .406 .993 .38 .406 .940

pooling .19 .442 .442 .23 .421 .421 .24 .416 .416 .42 .423 .423

For low values ofσ (see the upper part of Table 4 withnA = nB = 5), the differences are
very small: For all four distributions,mA decreases inσ, whilemB remains at the efficient
level. AlsoPA

H , the share ofH-types choosing one of the insurers of typeA, is very similar
for all four distributions.

As σ increases so thatnA increases, two differences emerge: First, the levels ofσ at which
the jumps ofnA occur are not identical for the four distributions, see the lower part of
Table 4, where always the smallest value ofσ after an increase innA is presented. E.g., the
lowest level ofσ so thatnA = 6 is 0.10 for the extreme value distribution; it is somewhat
higher at0.14 and 0.15 for the normal and the triangular distribution, and considerably
higher for the uniform distribution at 0.21. However, this difference does not seem to be
important.

34The Gauss code is available from the author upon request.
35Note that for all four distributions, the variance is given asVar(εij) = σ2 π2

6
.
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Secondly, the distortion ofmB is much smaller for the other three distributions than for the
extreme value distribution. This is because for a given level of σ, the shaded area around the
indifference curves is widest for the extreme value distribution; as this distribution has fatter
tails, the shaded area around theIV

A
L -indifference curve ‘reaches’ contractB for a lower

level ofσ than is the case for the other distributions. In technical terms, the (excess) kurtosis
is largest for the extreme value distribution:kev = 2.4; it is considerably smaller for the
normal (kn = 0.0), the triangular (ktr = −0.6) and the uniform distribution (ku = −1.2).
The higher the kurtosis, the higher the distortion ofmB (for a given level ofσ).

On the other hand, the levels ofmA are very similar for the four distributions, as is the
level ofm when the pooling equilibrium is reached. Also, for each of the four distributions,
welfare decreases inσ for the separating equilibrium, and increases inσ for the pooling
equilibrium.

5.3 Multinomial Logit vs. Nested Logit

At first glance, it may appear as if for an individual who chooses a type-A insurer, another
type-A insurer is a closer substitute than a type-B insurer, so that a nested logit model may
seem more appropriate than the simple multinomial logit we considered.

From the perspective of an econometrician, this is certainly true because if he observes
mA to be the same among all type-A insurers, this may indicate that there are also some
unobserved factors that are more alike among type-A insurers than between type-A and
type-B insurers. The econometrician will simply test whether a nested logit model is more
appropriate than the multinomial logit. According to the result of this test, he will then infer
whether there are some unobserved factors or not.

Here, however, we want to explicitly analyze the effects that arise due to the differences
in the benefit packages. Assuming, in addition, that there are also some unobserved fac-
tors which are equal among the type-A insurers, i.e. assuming some non i.i.d.-error term
structure, then would only obscure the effects we are interested in.

Regarding the IIA assumption that is implied by the multinomial logit model, the famous
red bus-blue bus problem36 does not occur in our setting, because we explicitly model two
different risk types. Consider, e.g., the case ofλ = 0.5 and four insurers: Withσ small
enough, two insurers will be of typeA, each covering half of theL-types, and a small share
of theH-types, say 1% (i.e. 0.5% of the entire market); the other twoinsurers will be of
type B, each covering about half of theH-types. Each insurer of typeA will therefore
cover 25.5% of the entire market, and each insurer of typeB 24.5%. If we now add two
more insurers of typeA, these four type-A insurers will not cover two thirds of the entire
market, as in the red bus-blue bus example. Instead, allL-types are evenly distributed
among the four type-A insurers; in addition, the third and fourth type-A insurer will cover
about the same share ofH-types as the first and the second type-A insurer (1% of theH-
types, or 0.5% of the entire market). Therefore, each insurer of typeA will cover about
1
4 · 50% + 0.5% = 13%, and the aggregate market share of all type-A insurers will only
increase from 51% to about 52%.

36See Train (2009, p. 46).
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5.4 Insurers offering more than one contract

The results have been derived for a setting where each insurer offers one contract. A differ-
ent interpretation of our model would be that each insurer offered several contracts, but that
the demand responses regarding two contracts if offered by two different insurers are about
the same as if offered by one insurer.

This would require that not all individuals choose the optimal contract (with respect to
the benefit-premium-bundle) among all contracts offered bya particular insurer. For the
following reasons, this may indeed be the case: First, not all insured will immediately
become aware of when one of the contracts offered by their insurer is changed. Then,
there may be fixed costs of switching to a new contract, like filling out an application form,
even if it is from the same insurer. Insured may also find it difficult to understand a new
contract, regardless of whether it is offered by their insurer or another insurer, and hesitate
to switch; see Handel and Kolstad (2013) for these information problems. Also, Sinaiko
and Hirth (2011) have shown that some individuals choose a strictly dominated contract
even in a situation where they actively have to choose a new contract (so that switching
costs do not play a role). Some individuals seem to make mistakes when choosing their
health insurance contracts, or, put differently, there exists an error termεij which for some
individuals reverses the utility ordering of contracts.

Of course, if insurers could offer several contracts, they would have to take into account the
effect of changing one of their contracts on the profit they earn on the other contracts; ifn is
small, these additional effects may not be negligible and have an impact on the equilibrium.

5.5 Existence of equilibrium

In our model, an equilibrium may not exist for two different reasons. The first reason – a
share ofL-types that is too high – is identical to the model by Rothschild and Stiglitz (1976)
and has already been discussed at the beginning of Section 3.3.

The second reason is thatnA andnB have to be integer numbers. We think that this is a
much smaller problem than the nonexistence of equilibrium due to the first reason. Since we
explicitly consider the case of imperfect competition, it does not seem likely that an insurer
would indeed switch back and forth between being a type-A and type-B insurer. There
will certainly be some costs associated with such a switch, so these switches will not occur
very often. Note that a much smaller level of transaction costs than assumed by Newhouse
(1996) would suffice to stabilize the equilibrium, as in our setting each insurer covers only a
share of theL-types, while in the setting analyzed by Newhouse (1996), aninsurer offering
a new contract would be chosen by all theL-types (and none of theH-types), creating a
much larger profit than in our setting.

5.6 Premium set by regulator

We stated in the introduction that we preferred to formulatethe model inm-R-space, and
not in m1-m2-space withR set by a regulator, as was the setting of Glazer and McGuire
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(2000). We did this for the following reason: As has been shown in Section 3.1, profits
increase inσ. Therefore, a regulator would have to increaseR asσ increases; if not, welfare
would be decreased, as insurers would lower the level of medical services they offer. As
we saw in Section 3.4, for the case of unobservable risk types, profits for the two types of
insurers increase at a different rate. Therefore, it is not clear at which rate the regulator
would have to increaseR as σ increases: at the rate of insurerA, insurerB, or some
weighted average, and if so, which? To not obscure the welfare effects by an increase in
R that could always be considered arbitrary in some sense, themodel was presented inm-
R-space. However, all results regarding the distortions of the benefit packages are easily
transferred intom1-m2-space. There, a distortion always consists of a too low level of m1

(if s = 1 is the illness for which there is heterogeneity in risk) and atoo high level ofm2,
see Glazer and McGuire (2000). The shaded areas would then have to be drawn around the
indifference curves inm1-m2-space, but the arguments for the different effects would be
the same.

5.7 Total number of insurers fixed

We assumed the total number of insurers to be fixed atn. This number could easily be endo-
genized by considering fixed cost of setting up a new health insurance. Since we examine
insurers that are integrated to a certain degree, these fixedcost are probably substantial.
However, as we saw in Section 3.1, the main variable to capture different degrees of com-
petition is notn, butσ.

6 Conclusion

We have analyzed the interaction of imperfect competition and adverse selection in health
insurance markets. Within a discrete choice setting which endogenizes whether a separating
or a pooling equilibrium emerges, the following main results have been derived: First, in
a separating equilibrium, for intermediate levels of competition, both benefit packages are
distorted. As competition decreases, the distortion decreases for the low risk type, but in-
creases for the high risk type. As the level of competition decreases, the number of insurers
offering the contract for the low risk type increases, untila pooling equilibrium is reached.
The pooling equilibrium may be below, at, or above the ‘Wilson’-contract.

Our model complements a number of very recent empirical studies which analyze adverse
selection in health insurance markets with a focus on inefficient pricing of a given set of
benefit packages. These studies have found that the welfare loss caused by inefficient pric-
ing is surprisingly low, see Einav, Finkelstein, and Cullen(2010), Bundorf et al. (2012)
and Handel (2013). However, as explicitly stated by Einav, Finkelstein, and Levin (2010),
the welfare loss due to an inefficient set of benefit packages may be much larger than the
welfare loss due to inefficient pricing.

Our model focuses on these inefficiencies caused by the distortions of the benefit packages.
We identified that for intermediate levels of competition, the benefit package of the high risk
type will be distorted in a separating equilibrium. The moregenerous benefit package may
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therefore not be an unbiased indicator of the first best levelof medical services. Whether
this distortion exists and is of economic importance in realhealth insurance markets, could
– as a first step – be tested using the following prediction of our model: In those markets
that are less competitive, the relative number of insurers offering the more generous benefit
package should be smaller. Such an empirical test should be performed in future research,
to determine the validity of the theoretical model that was presented here.

We also determined the implications of imperfect competition on the effectiveness of a
risk adjustment scheme. For intermediate levels of competition we identified three welfare
decreasing effects that can occur if a RAS that is imprecise is only improved to a small
degree. If these effects are of economic importance, it is even more important for a regulator
to use a RAS that reduces the cost differences between risk types to a large degree, so that
one can be confident that the RAS creates the positive welfareeffects it is implemented for.
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A Appendix

A.1 Proof that all insurers offer m∗ if there is no heterogeneity in risk

An insurer not offeringm∗
s for some illnesss could always increase its profit by chang-

ing ms: If ms < m∗
s, then increasingms by some smalldms, and increasingR by

dR = psv
′(ms)dms will leave the utility of all individuals constant, so the group of indi-

viduals choosing this insurer does not change; however, profits increase bydR− psdms =
psv

′(ms)dms − psms > 0, becausev′(ms) > 1 for ms < m∗
s. By the same argument, if

ms > m∗
s, profits are increased by reducingms andR.

A.2 Graph of the distribution function P
k
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Figure 7: Distribution functionP k(V k) and density functionP k(1−P k) 1
σ

with n = 2 and

Ṽ = 1 for different values ofσ

A.3 Proof that PA
H increases inσ

In this section it is shown thatPA
H increases inσ. To do so, we will first consider a small,

noninfinitesimal increase inσ by ∆σ > 0, which allows to depict some of the effects
graphically; we can then let∆σ become arbitrarily small (∆σ → 0).

A ∼ is used to indicate all variables after the increase ofσ, so, e.g.,̃σ = σ +∆σ.

We denote bySA
L andSB

H the surplus generated bymA andmB for the respective risk type,
i.e.

SA
L = pLv(mA)− pLmA and SB

H = pHv(mB)− pHmB . (29)

We begin with insurerB. Using the FOC with respect toV B
H ,

πB
H =

σ

1− PB
H

,
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andπB
H = SB

H − V B
H , we have

V B
H = SB

H −
σ

1− PB
H

. (30)

Since for low levels ofσ, mB = m∗, and therefore does not depend onσ, we have

S̃B
H = SB

H , so ∆SB
H = 0.

Under the assumption thatPB
H does not change,∆V B

H is given by

∆V B
H = −

∆σ

1− PB
H

. (31)

This decrease ofV B
H is depicted in Figure 8 by the movement of insurerB’s contract from

B0 toB1.

We now turn to insurerA. We first rewrite the two FOCs with respect toV A
L andmA:

λ

[
PA
L (1− PA

L )

σ
πA
L − PA

L

]
+(1−λ)

[
PA
H (1− PA

H )

σ
πA
H − PA

H

]
= 0 (32)

[
λpLPA

L + (1− λ)pLPA
H + (1− λ)(pH − pL)

PA
H (1− PA

H )πA
H

σ

]
v′(mA) (33)

= λpLPA
L +(1−λ)pHPA

H .

Condition (33) can be considered as implicitly defining a function mA(V A
L ), which deter-

mines for each level ofV A
L the optimal level ofmA. Likewise, condition (32) implicitly

defines a functionV A
L (mA). The loci of these two curves of course pass throughA0, the

contract offered by insurerA before the increase ofσ.

With contractA0, insurerA will have a certain share ofH-types,PA
H . The set of all the

benefit-premium-bundles with which insurerA attracts this share ofH-types constitutes
the iso-PA

H -curve; it has the same shape as theIV
B
H -indifference curve, shifted upwards; see

Figure 8.

As V B
H is reduced whenσ is increased, this shifts theIV

B
H -curve upwards, and with it

the iso-PA
H -curve. Note that the distance between the two iso-PA

H -curves is larger than
the distance between the twoIV

B
H -curves; this is, because asσ increases, the shaded area

around the indifference curves becomes wider; see also Figure 7(a).

If insurerA still offered contractA0 afterσ has been increased, thenPA
H would increase.

To have the same share as before the increase inσ, insurerA would have to offer a contract
on the new iso-PA

H -curve, which is denoted byPA
H (σ̃) in Figure 8.

It is now argued that the new contract chosen by insurerA will be to the right of this new
iso-PA

H -curve, so that in equilibriumPA
H increases. To do so, it will be shown that the locus

of the functionm̃A(Ṽ A
L ), implicitly defined by (33) withσ increased, is partly to the right

of the new iso-PA
H -curve, and that the new contract is exactly on this part ofm̃A(Ṽ A

L ).
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Figure 8: Equilibrium for two different values ofσ

Consider first, that insurerA offers contractA1, which is on the same iso-πA
H -line as con-

tractA0. With A1, in (33) all variables except formA andσ are at the same level as before.
Becauseσ has been increased, which increases the bracket, and because mA has been re-
duced, which increasesv′(mA), the left hand side of condition (33) is now larger than the
right hand side; therefore,mA has to be increased, which increasesPA

H .

Consider now, instead, contractA2, which has been chosen so that
π̃A
H

σ̃
=

πA
H

σ
. At A2,

the bracket on the LHS of (33) attains the same value as beforethe increase ofσ. At all
points on the new iso-PA

H -curve aboveA2, the bracket is larger than before. In addition, for
m̃A < mA, we havev′(m̃A) > v′(mA). It can therefore be concluded that for all points on
the new iso-PA

H -curve betweenA2 andA3, the LHS of (33) is larger than the RHS, somA

has to be increased, which increasesPA
H . Condition (33) could only be satisfied for a point

belowA2, or aboveA3.37

If such a point belowA2 or aboveA3 did not exist, the locus of the functioñmA(Ṽ A
L ) would

always be to the right of the new iso-PA
H -curve; in this case, it follows immediately, thatPA

H

is increased. We therefore now consider the case that these points do exist.

Assume first, condition (33) is satisfied for a point belowA2. At such a point, we would

have π̃A
H

σ̃
<

πA
H

σ
. Condition (32) then requiresπ̃

A
L

σ̃
>

πA
L

σ
, which impliesπ̃A

L > πA
L . However,

for all points belowA2, we havẽπA
L < πA

L . Therefore, at such a point belowA2, V A
L is too

37Note that belowA2, the bracket is smaller andv′ is larger than before the increase ofσ; aboveA3 the
reverse holds. Therefore, (33) could indeed be satisfied below A2 and aboveA3.
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high, and has to be reduced.

Assume now, that condition (33) is satisfied for a contractA4 aboveA3, see Figure 8.38 At
A4, ∆mA > 0 und∆V A

L < 0. UsingV A
L = V A

H − (pH − pL)v(mA), we have

∆V A
L = ∆V A

H − (pH − pL)v′(m̂A)∆mA, (34)

for somem̂A ∈ [mA,mA +∆mA]. SincePA
H can be rewritten as

PA
H =

e
V A
H
σ

nAe
V A
H
σ + nBe

V B
H
σ

=
1

nA + nBe
V B
H

−V A
H

σ

, (35)

for PA
H to be identical for both levels ofσ, we have to have

V B
H − V A

H

σ
=

Ṽ B
H − Ṽ A

H

σ̃
, (36)

where
Ṽ B
H − Ṽ A

H

σ̃
=

V B
H +∆V B

H − (V A
H +∆V A

H )

σ +∆σ
. (37)

Solving for∆V A
H yields

∆V A
H = ∆V B

H − (V B
H − V A

H )
∆σ

σ
. (38)

Using condition (35),
V B
H

−V A
H

σ
can be expressed in terms ofPA

H as,

V B
H − V A

H

σ
= ln

(
1

nBPA
H

−
nA

nB

)
. (39)

Substituting in condition (38) yields

∆V A
H = −

∆σ

1− PB
H

− ln

(
1

nBPA
H

−
nA

nB

)
∆σ, (40)

so that for∆V A
L we have

∆V A
L = −

∆σ

1− PB
H

− ln

(
1

nBPA
H

−
nA

nB

)
∆σ − (pH − pL)v′(m̂A)∆mA. (41)

We now rewrite condition (32) as
[
λPA

L (1− PA
L ) + (1− λ)PA

H (1− PA
H )

]
(SA

L − V A
L ) (42)

−(1− λ)PA
H (1− PA

H )(pH − pL)mA − [λPA
L + (1− λ)PA

H ]σ = 0.

38Note that contractA4 has to be belowA5, the contract associated with the efficient level of care: Ifboth
A5 andB1 were offered, almost allL-types would chooseB1.
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Denote byF (σ) the LHS of (42) evaluated atσ, and likewise forF (σ̃). If, atA4, F (σ̃) > 0,
π̃A
L is too large and has to be reduced, i.e.Ṽ A

L has to be increased. SinceF (σ) = 0, Ṽ A
L has

to be increased ifF (σ̃)− F (σ) > 0. This difference is given by

[
λPA

L (1− PA
L ) + (1− λ)PA

H (1− PA
H )

]
(∆SA

L−∆V A
L ) (43)

−(1−λ)PA
H (1−PA

H )(pH −pL)∆mA− [λPA
L +(1−λ)PA

H ]∆σ = 0,

with
∆SA

L = pL[v′(m̂A)− 1]∆mA, (44)

wherem̂A is defined as above. Substituting (41) and (44) in (43), we have

[
λPA

L (1− PA
L ) + (1− λ)PA

H (1− PA
H )

] [
pL(v′(m̂A)− 1)∆mA +

∆σ

1− PB
H

(45)

+ ln

(
1

nBPA
H

−
nA

nB

)
∆σ + (pH − pL)v′(m̂A)∆mA

]

−(1−λ)PA
H (1−PA

H )(pH −pL)∆mA− [λPA
L +(1−λ)PA

H ]∆σ.

Sincev′ > 1, expression (45) is larger than

[
λPA

L (1− PA
L ) + (1− λ)PA

H (1− PA
H )

] [ ∆σ

1− PB
H

+ ln

(
1

nBPA
H

−
nA

nB

)
∆σ

]
(46)

−[λPA
L + (1− λ)PA

H ]∆σ.

SolvingnAPA
H + nBPB

H = 1 for PB
H and substituting in (46), expression (46) is positive if

[
λPA

L (1− PA
L ) + (1− λ)PA

H (1− PA
H )

] [
1 +

(
1−

1

nB
+

nA

nB
PA
H

)
ln

(
1

nBPA
H

−
nA

nB

)]

−
[
λPA

L + (1− λ)PA
H

](
1−

1

nB
+

nA

nB
PA
H

)
> 0.

As can be shown numerically, this condition is always satisfied for any values ofPA
H , PA

L ,
λ, nA andnB as long asPA

H < 0.6PB
H andλ > 0.08. Unless the share ofL-types is very

low, this condition is therefore satisfied for all reasonable values ofPA
H .

If there exists a pointA4 aboveA3, so that (33) is satisfied, condition (32) is violated in a
way, so thatV A

L has to be increased. Therefore, the crossing of the two curves m̃A(Ṽ A
L )

andṼ A
L (m̃A) occurs to the right of the new iso-PA

H -curve, soPA
H (σ̃) > PA

H (σ).

A.4 Proof that nA increases inσ

In this section it is shown that asσ increases, the difference in profitsπA − πB at some
point becomes large enough, so that it is profitable for a type-B insurer to become a type-A

insurer. To do so, it is shown thatπ
B

σ
decreases (with a lower bound of zero), whileπA

σ
does

not fall below the level whenPA
H = 0.
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For πB

σ
we have

πB

σ
= (1− λ)PB

H

πB
H

σ
. (47)

Solving the FOC

(1− λ)PB
H

[
(1− PB

H )
πB
H

σ
− 1

]
= 0

for
πB
H

σ
and substituting in (47), we have

πB

σ
= (1− λ)

PB
H

1− PB
H

, (48)

so πB

σ
decreases asPB

H decreases, with a lower bound of zero, i.e.

πB

σ

∣∣∣∣
PB
H
→0

→ 0. (49)

For insurerA, usingπA
H = πA

L − (pH − pL)mA, we have

πA

σ
=

[
λPA

L + (1− λ)PA
H

] πA
L

σ
− (1− λ)PA

H (pH − pL)
mA

σ
. (50)

Solving

∂πA

∂V A
L

=

[
λ
PA
L (1− PA

L )

σ
+ (1− λ)

PA
H (1− PA

H )

σ

]
πA
L (51)

−[λPA
L + (1− λ)PA

H ]− (1− λ)
PA
H (1 − PA

H )

σ
(pH − pL)mA

for
πA
L

σ
, and substituting in (50) yields

πA

σ
=

(λPA
L + (1− λ)PA

H )2

λPA
L (1−PA

L ) + (1−λ)PA
H (1−PA

H )
+

(1−λ)λ(pH−pL)PA
L PA

H (PA
L −PA

H )

λPA
L (1−PA

L ) + (1−λ)PA
H (1−PA

H )

mA

σ
.

(52)

Now, compare expression (52) withπ
A

σ
for PA

H → 0, (i.e. forσ → 0), where

πA

σ

∣∣∣∣
PA
H
→0

→ λ
PA
H

1− PA
H

. (53)

Note that in this case we haveπ
A

σ
→ λ nA

1−nA , wherenA andnB is set so thatπA = πB.

It is straightforward to show that for the first fraction of (52),

(λPA
L + (1− λ)PA

H )2

λPA
L (1− PA

L ) + (1− λ)PA
H (1− PA

H )
> λ

PA
L

1− PA
L

. (54)

The second fraction of (52) is positive sincePA
L > PA

H . It can be concluded thatπ
A

σ

∣∣∣
PA
H
>0

is bounded from below byλ
PA
H

1−PA
H

> 0, see (53), whileπ
B

σ
decreases inPB

H , approaching

zero asPB
H → 0, see (49). Therefore, ifPB

H is small enough,πA − πB is large enough, so
that it is profitable for one of the type-B insurers to become a type-A insurer.
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A.5 Comparison of the pooling equilibrium and the ‘Wilson’-contract

Solving condition (24)

RA − pmA =
nσ

n− 1
(55)

for RA and substituting inπA
H yields

πA
H = RA − pHmA =

nσ

n− 1
− (pH − p)mA. (56)

Substituting the condition for the ‘Wilson’-contract,v′(mW ) = p
pL

, in (25), we have

[
1−

λ(1− λ)(pH − pL)2

nσ
n−1p

mA

]
p

pL
= 1. (57)

Solving formA,

mA =
(p − pL) nσ

n−1

λ(1− λ)(pH − pL)2
, (58)

and substituting in (56) then yieldsπA
H = 0. Therefore the pooling equilibrium coincides

with the ‘Wilson’-contract forπA
H = 0.
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A.6 Example with risk adjustment

Table 5: Example II withv(m) = ln(m), pL = 0.2, pH = 1, λ = 0.5, n = 20 and risk
adjustment.

∑
SH denotes the sum of expected surplus for theH-types,

∑
SL the sum of

expected surplus for theL-types, with welfareW the weighted average of these two sums:
W = λ

∑
SL + (1 − λ)

∑
SH . For the pooling equilibrium, all insurers are denoted as

being of typeA.

RA nA nB mA mB PA
L PA

H PB
L PB

H

∑
PA
L

∑
PA
H

∑
SH

∑
SL W

.00 12 8 .328 .981 .0831 .0157 .00036 .1014 .997 .189 -1.0838 -.2883 -.6860

.01 12 8 .340 .978 .0831 .0170 .00042 .0995 .997 .204 -1.0856 -.2836 -.6846

.02 12 8 .352 .975 .0830 .0183 .00050 .0975 .996 .220 -1.0874 -.2788 -.6831

.03 12 8 .365 .970 .0829 .0198 .00059 .0952 .995 .238 -1.0890 -.2741 -.6815

.04 13 7 .375 .971 .0766 .0217 .00063 .1025 .996 .283 -1.1009 -.2709 -.6859

.05 13 7 .390 .965 .0765 .0236 .00076 .0990 .995 .307 -1.1022 -.2660 -.6841

.06 13 7 .406 .958 .0764 .0255 .00093 .0954 .993 .332 -1.1028 -.2612 -.6820

.07 14 6 .420 .957 .0710 .0286 .00102 .0998 .994 .401 -1.1158 -.2571 -.6865

.08 14 6 .438 .946 .0709 .0307 .00128 .0950 .992 .430 -1.1144 -.2524 -.6834

.09 15 5 .455 .942 .0662 .0344 .00146 .0968 .993 .516 -1.1257 -.2480 -.6869

.10 16 4 .475 .935 .0621 .0383 .00172 .0969 .993 .613 -1.1352 -.2436 -.6894

.11 17 3 .496 .925 .0585 .0420 .00209 .0954 .994 .714 -1.1416 -.2392 -.6904

.12 18 2 .517 .909 .0553 .0452 .00265 .0928 .995 .814 -1.1445 -.2351 -.6898

.13 pooling .542 .542 .0500 .0500 - - 1.00 1.00 -1.1545 -.2309 -.6927

.14 pooling .559 .559 .0500 .0500 - - 1.00 1.00 -1.1407 -.2281 -.6844

.15 pooling .576 .576 .0500 .0500 - - 1.00 1.00 -1.1277 -.2255 -.6766

.20 pooling .661 .661 .0500 .0500 - - 1.00 1.00 -1.0751 -.2150 -.6451

.25 pooling .746 .746 .0500 .0500 - - 1.00 1.00 -1.0392 -.2078 -.6235

.30 pooling .830 .830 .0500 .0500 - - 1.00 1.00 -1.0163 -.2033 -.6098

.35 pooling .915 .915 .0500 .0500 - - 1.00 1.00 -1.0038 -.2008 -.6023

.40 pooling 1.00 1.00 .0500 .0500 - - 1.00 1.00 -1.0000 -.2000 -.6000
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