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Non-technical Summary

Estimating the private return to R&D investment has been a major goal for decades and most
of the empirical literature has been built around the knowledge production function. In this
framework, investment in R&D creates a stock of knowledge within the firm that enters into
the firm’s production function as an additional input factor. Estimates of the effect of this
knowledge stock on output provides a measure of the ex post return to the firm’s investment in
R&D.

This paper provides a different approach to measuring the private payoff from R&D invest-
ment. We develop and estimate a dynamic, structural model of the firm’s decision to invest
in R&D and quantify the cost and long-run benefit of this investment. The dynamic model
incorporates and quantifies linkages between the firm’s R&D investment, product and process
innovations, and future productivity and profits. And it provides a natural measure of the
long-run payoff to R&D as the difference between the expected discounted sum of future profits
if the firm undertakes R&D versus if it does not. The firm will choose to invest in R&D if this
payoff is greater than the fixed or sunk cost they pay to invest in R&D.

We use firm-level data from the Mannheim Innovation Panel (MIP) for German manufac-
turing industries to estimate the dynamic structural model and to calculate the long-run payoffs
to R&D. Comparing across industries for the firm with the median productivity level, we find
that the expected long-run benefit of investing in R&D varies from a high of 43 million euros
in the vehicle industry and 20 million euros in the chemical industry to a low of about 350
thousand euros in the plastic, non-metallic mineral products, and manufacturing nec industries.
By combining estimates of the expected long-run benefit of R&D with the cost of R&D, we also
estimate the distribution of net benefits across firms in each industry. We find that the expected
net benefit varies substantially across industries and across firms that have already invested in
R&D and those that are just starting R&D investments because of the substantial differences
in the fixed versus sunk costs. Expressed as a proportion of firm value, our results show, for
instance, that the net benefit for the median firm with prior R&D experience varies from 2.4
to 3.2 percent across five high-tech industries but varies from -4.6 to 0.6 percent for firms with
no previous R&D experience. The negative value implies that the median inexperienced firm
would not find it profitable to invest in R&D. Given unexperienced firms find R&D investment
profitable and start performing R&D, we estimate a net benefit of 2.0 to 2.4 percent in the high
tech industries. These net benefits are substantially smaller, around 0.2 percent in low-tech
industries.

The estimated dynamic structural model of R&D demand can be used to simulate how a



change in the cost structure of R&D arising from, for example, a tax break or direct subsidy
for R&D investment, affects the firm’s investment choice and future productivity growth. We
find that, in high-tech industries, a 20 percent reduction in the fixed cost of R&D leads after
five years to an average increase of 7 percentage points in the probability a firm invests in
R&D and a 4 percent increase in mean productivity. A similar reduction in the cost faced by
firms just beginning to invest in R&D, however, has very little impact on the probability of
investing or the level of productivity. That is, the two cost changes have very different impacts
on firm incentives. Fixed cost reductions encourage all firms to invest. In contrast, the reduction
in startup costs encourages new firms to begin investing but also reduces the option value of
investing leading some firms to stop their R&D.



Das Wichtigste in Kürze

Die Schätzung der privaten Erträge aus Investitionen in Forschung und Entwicklung (FuE)
steht seit langem im Fokus vieler empirischer Arbeiten. Als Ansatz wird zumeist eine Wissens-
produktionsfunktion verwendet. In diesem Ansatz führen FuE-Investionen zu einer Erhöhung
des firmeninternen Wissenskapitalstocks, der wiederum als ein Inputfaktor in die Produktions-
funktion eines Unternehmens eingeht. Die Schätzung des Effekts des Wissenskapitalstocks auf
den Output eines Unternehmens stellt ein Maß für die Erträge aus FuE dar.

Dieses Papier stellt einen neuen Ansatz vor, die privaten Erträge aus Investitionen in FuE
zu messen. Wir entwickeln und schätzen ein dynamisches strukturelles Modell der Entschei-
dung eines Unternehmens in FuE zu investieren, das konsistent ist mit einer Maximierung der
langfristig erwarteten Nettoerträge aus dieser Investition. Das Modell berücksichtigt, dass die
Entscheidung eines Unternehmens in FuE zu investieren, die Wahrscheinlichkeit für zukünftige
Produkt- und Prozessinnovationen beeinflusst und sich die Einführung von Produkt- und Pro-
zessinnovationen wiederum auf die zukünftige Produktivität und die Gewinne des Unternehmens
auswirkt. Das Modell erlaubt es somit, den Einfluss der FuE-Entscheidung auf den Firmenwert
(abdiskontierte Summe aller zukünftigen Gewinne) zu identifizieren. Die Differenz zwischen den
Firmenwerten, wenn das Unternehmen in FuE investiert und wenn es nicht investiert, ist ein
Maß für die langfristigen Erträge aus FuE. Ein Unternehmen wird sich für FuE-Aktivitäten ent-
scheiden, wenn die langfristigen Erträge größer als die damit verbundenen Kosten sind. Dabei
erlaubt das Modell, dass sich die Kosten im Falle einer Aufnahme von FuE-Aktivitäten (Sunk
Costs) von denen bei Fortsetzung von FuE-Aktivitäten (Fixkosten) unterscheiden.

Wir verwenden Daten des Mannheimer Innovationspanels für das deutsche verarbeitende
Gewerbe, um das Modell zu schätzen und die langfristigen Erträge zu berechnen. Unsere Ergeb-
nisse zeigen eine hohe Variation in den erwarteten Erträgen aus FuE zwischen und innerhalb von
Industrien. So reichen die erwarteten Erträge für ein Medianunternehmen (gemessen anhand sei-
ner Produktivität) von 43 Millionen Euro in der Automobilindustries, über 20 Millionen Euro in
der Chemischen Industrie bis zu rund 350 Tausend Euro in der Gummi-/Kunststoffverarbeitung
oder in der Glas/Keramik/Steinwaren-Industrie. Berücksichtigt man neben den erwarteten lang-
fristigen Erträgen aus FuE auch deren Kosten, dann lassen sich mittels des Modells auch die
Nettoerträge aus FuE schätzen. Die Ergebnisse zeigen auch hier eine große Variation zwischen
den Industrien sowie zwischen Firmen, die bereits in der Vorperiode FuE durchgeführt haben und
solchen, die auf FuE in der Vorperiode verzichtet haben. Dies liegt auch darin begründet, dass
die geschätzten Fixkosten deutlich geringer sind als die Sunk costs. So variieren die Nettoerträge,
gemessen als Anteil am Firmenwert, für die Medianunternehmen in den fünf Hightech-Industrien



zwischen 2.4 und 3.2 Prozent, wenn das Unternehmen FuE in der Vorperiode durchgefürt hat.
Ohne FuE-Erfahrung liegen die Nettoerträge dagegen zwischen -4.6 to 0.6 Prozent. Ein nega-
tiver Wert bedeutet, dass in dieser Industrie das Medianunternehmen es als nicht profitabel
erachtet in FuE zu investieren. Betrachtet man innerhalb der Gruppe der Unternehmen ohne
FuE-Erfahrung nur solche, die FuE profitabel finden und daher FuE-Aktivitäten neu aufnehmen,
dann erzielen sie Nettoerträge von 2.0 bis 2.4 Prozent. Diese Nettoerträge sind in den sieben
Lowtech-Industrien deutlich niedriger und liegen bei rund 0.2 Prozent.

Das geschätzte dynamische strukturelle Modell kann genutzt werden, um kontrakfaktische
Politiksimulationen durchzuführen. Zum Beispiel kann analysiert werden, wie sich eine Redukti-
on der FuE-Kosten als Folge einer FuE-Subvention auf die Entscheidung eines Unternehmens in
FuE zu investieren und auf das zukünftige Produktivitätswachstum auswirkt. Unsere Ergebnis-
se zeigen, dass eine Reduktion der Fixkosten um 20 Prozent in den Hightech-Industrien nach 5
Jahren zu einem Anstieg der FuE-Beteiligung um etwa 7 Prozentpunkte und zu einer Zunahme
der durchschnittlichen Produktivität um 4 Prozent führt. Dagegen hat eine Reduktion der Sunk
Costs um 20 Prozent nur geringe Auswirkungen auf beide Größen. Beide Politikmaßnahmen ha-
ben somit sehr unterschiedliche Auswirkungen auf die FuE-Entscheidung eines Unternehmens.
Während geringere Fixkosten für alle Unternehmen einen größeren Anreiz darstellt in FuE zu
investieren, ist dies bei der Reduktion der Sunk Costs nicht der Fall. Einige Unternehmen werden
zwar dadurch FuE-Aktivitäten aufnehmen, gleichzeitig sinkt der Optionswert für Unternehmen
mit FuE-Erfahrung und ein Teil dieser Unternehmen stellt daher FuE-Aktivitäten ein.



Estimating Dynamic R&D Demand: An Analysis of
Costs and Long-Run Benefits∗

Bettina Peters†
Centre for European Economic Research (ZEW) and MaCCI

Mark J. Roberts
Pennsylvania State University and NBER

Van Anh Vuong
University of Cologne and Institute of Energy Economics

Helmut Fryges
Australian Innovation Research Centre, University of Tasmania

October 2013

Abstract

Using firm-level data from the German manufacturing sector, we estimate a dynamic,
structural model of the firm’s decision to invest in R&D and quantify the cost and long-
run benefit of this investment. The model incorporates and quantifies linkages between
the firm’s R&D investment, product and process innovations, and future productivity and
profits. The dynamic model provides a natural measure of the long-run payoff to R&D as
the difference in expected firm value generated by the R&D investment. For the median
productivity firm, investment in R&D raises firm value by 3.0 percent in a group of high-
tech industries but only 0.2 percent in low-tech industries. Simulations of the model show
that cost subsidies for R&D can significantly affect R&D investment rates and productivity
changes in the high-tech industries.

Keywords: R&D demand, Innovation, Productivity, Dynamic structural model

JEL-Classification: L60, O31, O32

∗We are grateful to Uli Doraszelski, Ken Judd, Jacques Mairesse, Joris Pinkse, Spiro Stefanou, Jim Tybout,
and Hongsong Zhang for helpful comments and discussions. We thank the Center for European Economic
Research (ZEW) for providing data access and research support.
†For further information on projects of the author see www.zew.de/staff_bpe as well as the ZEW annual

report on www.zew.de/en



1 Introduction

Firm investment in R&D is a key mechanism generating improvements in firm performance over

time. Estimating the ex post return to the firm’s investment has been a major focus of empirical

studies for decades and most of the empirical literature has been built around the knowledge

production function developed by Griliches (1979). In this framework, firm investment in R&D

creates a stock of knowledge within the firm that enters into the firm’s production function as

an additional input along with physical capital, labor, and materials. The marginal product of

this knowledge input provides a measure of the return to the firm’s investment in R&D and has

been the focus of the empirical innovation literature.1

The goal of this paper is to estimate the payoff to R&D investment at the firm level. However,

rather than focusing directly on how R&D impacts the production function, we focus on the

firm’s demand for R&D. This demand contains information on both the costs of R&D investment

to the firm and, importantly for our purposes, the expected long-run payoff to the firm of

undertaking R&D investment. We develop a dynamic structural model of the firm’s demand for

R&D, estimate it using micro data on German manufacturing firms, and summarize the implicit

long-run payoff to R&D which rationalizes the firm’s observed investment decision. Using this

model we estimate the expected return which a profit maximizing firm faces when it makes its

R&D investment decision.

Our model of the firm’s dynamic demand for R&D captures several important features of

the R&D investment process. First is the impact of R&D on the probability that the firm

realizes a product or process innovation. Second is the effect of these realized innovations on the

firm’s productivity and short-run profitability. Third, these effects can be long-lived affecting

the incentives of the firm to invest in the future and impacting the long-run value of the firm.

Fourth, there is uncertainty about both the effect of R&D on innovation and the effect of

innovation on productivity. Fifth, the cost of investing in R&D is likely to differ between firms

that are spending to maintain ongoing R&D activities and firms that are just establishing new

R&D activities. The structural parameters estimated in the model characterize the linkages
1See Hall, Mairesse, and Mohnen (2010) for a recent survey of the empirical studies using the knowledge

production function framework.

1



between R&D, innovation, and productivity as well as the costs of starting or maintaining an

R&D program.

We use the model to estimate the long-run payoff to R&D for a sample of German manufac-

turing firms in a range of high-tech and low-tech industries. The data source is the Mannheim

Innovation Panel (MIP) collected by the Centre for European Economic Research (ZEW), which

is the German contribution to the Community Innovation Survey (CIS) that is collected for most

OECD countries. A unique aspect of the CIS data is that it includes survey questions on the

product and process innovations realized by the firm as well as measures of R&D expenditure

and variables to construct firm productivity. Because it distinguishes product and process inno-

vation it will allow us to separate the effects of different innovation types on firms’ performance.

The structural estimates can be briefly summarized. First, firms that invest in R&D have a

substantially higher probability of realizing a product or process innovation but R&D investment

is neither necessary nor sufficient for firm innovation. The group of high-tech manufacturing

industries has a higher probability of innovation, given R&D, than the group of low-tech in-

dustries. Second, product innovation as well as process innovation lead to increases in future

firm productivity but product innovations are more important in the high-tech industries while

process innovations are more important for the low-tech industries. Third, firm productivity

is highly persistent over time which implies that innovations that raise productivity will have

long-run effects on firm performance. Fourth, fixed costs of maintaining ongoing R&D invest-

ment are significantly smaller than the sunk startup costs of beginning to invest in R&D. This

means that firm R&D history is an important determinant of current R&D behavior.

Using the structural estimates we construct the expected payoff to firm R&D as the difference

in the expected future value of the firm if it chooses to invest in R&D versus it does not. This

varies with the productivity and size of the firm and can be constructed for all firms, not just

firms that choose to invest. We find that the expected payoff, net of the cost of R&D, varies

substantially across industries and across firms within the industry. For the five high-tech

industries, the median firm with prior R&D experience has a net payoff equal to 3.0 percent

of firm value. In contrast, the net payoff is often negative for firms in the low-tech industries

or firms that must pay startup costs when they begin investing in R&D. In the seven low-

2



tech industries the median firm with prior R&D experience has a negative expected net payoff,

averaging -0.6 percent of firm value, which implies that it would not find it profitable to invest

in R&D. We also compare the impact that R&D investment has on the short-run profits of

the firm versus long-run firm value and find that the short-run payoff is a small fraction of the

total benefit. The one-period payoff averages only 2 percent of the total increase in firm value

for the median firm in the high-tech industries and 9 percent in the low-tech industries. This

emphasizes the need to measure the return to R&D in a dynamic framework that captures the

effect of the investment on long-run firm value.

The estimated dynamic structural model of R&D demand can be used to simulate how a

change in the cost structure of R&D arising from, for example, a tax break or direct subsidy for

R&D investment, affects the firm’s investment choice and future productivity growth. We find

that, in the high-tech industries, a 20 percent reduction in the fixed cost of R&D leads after five

years to an average increase of 7.16 percentage points in the probability a firm invests in R&D

and a 4.06 percent increase in mean productivity. A similar reduction in the cost faced by firms

just beginning to invest in R&D has very little impact on the probability of investing or the level

of productivity. The simulations also illustrate that the two cost changes have very different

impacts on firm incentives. Fixed cost reductions encourage firms to continue investing if they

already were or to begin investing if they were not. In contrast the reduction in startup costs

encourages new firms to begin investing but also reduces the option value of investing leading

some firms to stop their R&D.

In the next section of the paper we review some key ideas from the empirical literature

estimating the private return to R&D. The third section develops the theoretical model of

R&D investment. The fourth section discusses some important features of the data and section

five develops the empirical model and estimation strategy. Sections six and seven discuss the

empirical results and report counterfactual simulations of the model.

3



2 The Private Return to R&D Investment

The expected private return to a firm’s R&D investment is one of the main factors driving

the firm’s decision to invest. Understanding the magnitude and determinants of the private

return is key to explaining the observed patterns of R&D investment but also to predicting

the likely response of firm investment to changes in the economic environment including policy

changes that attempt to subsidize the cost of R&D activities. Estimating the private return

to R&D has been been a major area of empirical research for decades.2 Most of the empirical

literature is built upon the knowledge production function developed by Griliches (1979). In

this framework, firm investment in R&D, or innovation inputs more broadly defined, creates a

stock of knowledge or expertise within the firm that enters into the firm’s production function

as an additional input along with physical capital, labor, and materials. In addition to being

incremented positively by firm R&D expenditures, the knowledge stock can depreciate reflecting

the fact that the firm’s existing expertise can become irrelevant as new products, materials, and

production processes are developed. The key concept of interest in this production function

framework is the partial derivative of output with respect to the knowledge stock. This has

been estimated as either the elasticity of output with respect to the knowledge stock or the

marginal product of the knowledge stock. The marginal product can be interpreted as the gross

rate of return to R&D while the net rate of return is defined as the marginal product minus the

rate of depreciation.

This knowledge production function model has been extended in several ways, including

incorporating R&D spillovers across firms or industries and using firm market value or Tobin’s

q as a long-run output measure.3 Another extension incorporates more details on the innova-

tion process that links R&D expenditure and subsequent productivity gains. The Community

Innovation Surveys (CIS) have been developed to collect firm-level information on R&D ex-

penditures and firm innovations including the development of new products and the adoption
2Surveys of the empirical literature are given by Mairesse and Sassonou (1991), Hall (1996), and Hall, Mairesse,

and Mohnen (2010).
3See Griliches (1992) for discussion of spillovers and Hall, Mairesse and Mohnen (2010) for a recent review of

the empirical evidence. Czarnitzki, Hall, and Oriani (2006) review the literature that measures the effect of the
knowledge capital stock on firm market value.
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of new or improved production processes. A large empirical literature built around the model

of Crépon, Duguet, and Mairesse (1998) has extended the production function framework to

incorporate innovation data collected in the CIS.4 Even with these extensions the primary focus

of the literature remains the estimation of either the output elasticity or marginal product of

the knowledge capital stock.

An alternative approach to incorporating R&D in the firm’s production process has been

implemented by Aw, Roberts, and Xu (2011) and Doraszelski and Jaumandreu (forthcoming).

Rather than trying to measure the firm’s knowledge stock as a deterministic function of past

R&D, they model the firm’s productivity as a Markov process that is altered by the firm’s

endogenous choice of R&D. Changes in productivity resulting from both R&D investment and

random shocks carry over into future productivity and the degree of persistence is determined by

the parameters of the Markov process.5 Doraszelski and Jaumandreu (forthcoming) implement

hypothesis tests that allow them to discriminate between different variations of the knowledge

capital and stochastic productivity specifications. Their results favor the endogenous stochastic

productivity model. In this paper we adopt the endogenous stochastic productivity framework as

one component of the dynamic model of R&D demand but instead of R&D we allow innovation

outcomes to affect productivity using CIS data on firm product and process innovations.

Griliches (1979) identified several difficulties in applying the knowledge production frame-

work including estimating the knowledge capital stock and its rate of depreciation from time-

series data on R&D expenditures and clarifying the simultaneity between output and R&D

expenditure. The simultaneity is particulary important. Current R&D expenditures increase

the future knowledge stock which then increases future output through the production func-

tion. That is the mechanism of interest but, at the same time, current R&D expenditures are

determined by past output and the firm’s expectation of future output. Griliches warns that,

without careful attention to model specification and formulation, estimates of the effect of R&D
4See Hall (2011) for a survey of the empirical studies and Mairesse and Mohnen (2011) and Mairesse, Mohnen

and Kremp (2005) for discussion of the estimation issues that arise in using the CIS data. Roberts and Vuong
(2013) provide a comparison of the structural model of R&D investment we develop in this paper and the
framework from Crépon, Duguet, and Mairesse (1998).

5Griliches (1998) and Rogers (2010) estimate the knowledge capital model but also incorporate an exogenous
stochastic process for productivity.
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on output in this framework may largely reflect the effect of output on R&D (Griliches, 1979, p.

108). One limitation of the empirical studies of the return to R&D is that they tend to focus on

the production function itself but have not tried to utilize the additional information contained

in the firm’s demand curve for R&D.6 In this paper we develop an alternative approach to

estimating the private return to R&D that focuses on the firm’s dynamic demand curve for

R&D rather than solely on the production function. In this way we model the simultaneous

linkages between R&D and output that were identified by Griliches.

Our framework leads to a different formulation of the return to R&D. Rather than being

the marginal product of the knowledge capital input, we estimate the benefit of the firm’s R&D

as the impact of the R&D choice on the expected future profits of the firm. This depends on

how R&D affects output, the focus of the knowledge production function literature, but also on

how the output change translates into the discounted sum of future firm profits. The stochastic

nature of productivity in our framework generates a stochastic component in output and profits

so that firms that invest in R&D have different output and profit distributions in future periods

which leads to differences in expected long-run profits. This provides the basis for measuring

the private return to the firm’s R&D investment.

3 Theoretical Model

This section develops a theoretical model of a firm’s dynamic decision to undertake R&D in-

vestment. In this framework the firm’s current productivity is a key determinant of the decision

to invest in R&D and future productivity evolves endogenously as a result of the firm’s R&D

choice. The framework recognizes both the uncertainty the firm faces about the ultimate impact

of R&D spending on future productivity and the intertemporal tradeoff, with costs incurred up

front but benefits likely delayed in time, that characterizes R&D investment. In the model the

firm’s choice to invest in R&D alters the probability that the firm will realize a product or
6The exceptions to this include Aw, Roberts, and Xu (2011) who estimate a dynamic demand curve for R&D

using methods similar to the ones we apply here. Xu (2008) estimates a dynamic demand curve for R&D which
includes both a private return to R&D but also an across firm spillover that generates potential social benefits
from R&D. Bernstein and Nadiri (1989, 1991) also estimate a demand curve for R&D using a dynamic cost
function model. Their model of R&D investment is analogous to an investment model for physical capital and
they estimate an Euler equation for the knowledge capital stock.
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process innovation in the future. If the firm realizes an innovation, this shifts the distribution of

productivity and ultimately profits that they will be able to earn in future periods. The firm will

choose to invest in R&D if the expected long-run payoff from this R&D-innovation-productivity

process is greater than the current costs of investment.

The model contains four structural components that link R&D, innovations, productivity,

and profits. The first is the firm’s profit function π(ωit) where ωit is firm i’s productivity

in year t. The second is the effect of the firm’s R&D decision on the probability that the

firm realizes either a product or process innovation in the future. This is represented by a

cdf F (dit+1, zit+1|rdit) where d, z, rd are measures of product innovation, process innovation,

and R&D investment, respectively. The third component describes the process of productivity

evolution, where process and product innovations affect the probability distribution of the firm’s

future productivity, G(ωit+1|ωit, dit+1, zit+1). The final structural component is the cost function

for R&D investment, C(rdit|rdit−1). These costs will be either a sunk startup cost or a fixed

maintenance cost depending on the firm’s prior history of R&D investment. The next subsections

discuss each of these components in turn.

3.1 Productivity and the Firm’s Short-Run Profits

The firm’s short-run marginal cost is given by

cit = β0 + βkkit + βwwt − ψit, (1)

where cit is the log of marginal cost, kit is the log of firm capital stock, and wt is a vector of

market prices for variable inputs which every firm faces in period t. The firm-specific production

efficiency ψit captures differences in technology or managerial ability and is known by the firm

but not observable to the econometrician.7 The capital stock is treated as a fixed factor in the

short-run. Thus, there are two sources of cost heterogeneity across firms: the capital stock and

the unobserved production efficiency.

Each firm is assumed to produce one product. The demand for firm i’s product qit is given
7Variation in input quality, which leads to variation in input prices, across firms will also be captured in ψ.

We will model this source of quality variation as part of the unobserved firm efficiency.
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by

qit = Qt

(
pit
Pt

)η
exp(φit) = Φt(pit)

ηexp(φit), (2)

where Qt is the aggregate industry output in period t and Pt is the industry price index which

are combined into the industry aggregate Φt. The firm-specific variables are the firm’s output

price pit and a demand shifter φit that reflects product desirability or quality. The demand

shifter is known by the firm but not observed by the econometrician. The elasticity of demand

η is negative and assumed to be constant for all firms in the industry.

Assuming the firm operates in a monopolistically competitive market, it maximizes its short-

run profit by setting the price for its output equal to a constant markup over marginal cost:

pit =
(

η
1+η

)
exp(cit). Given this optimal price, the log of the firm’s revenue rit is:

rit = (1 + η)ln (
η

1 + η
) + ln Φt + (1 + η) (β0 + βkkit + βwwt − ωit) . (3)

Revenue productivity is denoted by ωit and is defined as ωit = ψit − 1
1+ηφit. Equation (3)

implies that for a given capital stock, heterogeneity in the firm’s revenue is driven by differences

in production efficiency ψ and the demand shifter φ. We will refer to the unobserved revenue

productivity ωit simply as productivity.8 Given the form of the firm’s pricing rule there is a

simple relationship between the firm’s short-run profits and revenue:

πit = π(ωit) = −1

η
exp(rit). (4)

The link between productivity ω and short-run profits will be an important determinant of the

firm’s demand for R&D.

3.2 R&D Investment and Endogenous Productivity

A key component of our framework for endogenous productivity growth is that the firm can

affect the evolution of productivity and profits over time by investing in R&D. By exploiting

data on actual firm innovations we disaggregate this linkage into two components. First, the
8Data on firm sales revenue will contain information on ωit. To estimate our model of R&D demand we do not

need to separate ψ and φ but only need to quantify the effect of ωit on firm profit. For studies identifying cost
and demand shocks using quantity and price data see Foster, Haltiwanger, and Syverson (2008) and Roberts,
Xu, Fan, and Zhang (2012).
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firm’s R&D affects the probability that the firm realizes a product or process innovation in the

future. Innovations are denoted as zit+1 and dit+1 which are dummy variables equal to 1 if firm

i realizes a process or product innovation in year t + 1 and 0 if it does not. We recognize that

innovations can take different forms, some may affect the production process and thus work

through the shock in the marginal cost function ψ while others may represent new or improved

products and work through the demand side shock φ. Throughout this paper we treat product

and process innovations as distinct and allow them to impact the firm’s productivity evolution in

different ways. The linkage between R&D and innovation is represented by the cumulative joint

distribution of product and process innovations conditional on whether or not the firm invests

in R&D, F (dit+1, zit+1|rdit). We expect that firms that invest in R&D will be more likely to

realize product and process innovations in the next period. This specification captures the first

aspect of the uncertainty that firms face when they invest in R&D, the technological uncertainty

about the innovation process. The cdf must be general enough to recognize that the firm may

have no product or process innovations when they invest in R&D and that they may realize one

or both innovations even without R&D investment. The latter can result from luck, the effect

of expenditures on R&D in the more distant past even if the firm is not currently investing,

ideas that are brought to the firm by hiring experienced workers or other spillover channels,

or changes in the production process that result from learning-by-doing without formal R&D

investment.

We treat the firm as making a discrete decision rdit ∈ {0, 1} on whether or not to invest in

R&D. This is driven by some aspects of the data set we will be using in the empirical application.

In general, the measurement error in the continuous measures of R&D expenditure, and the

product and process innovations, is more substantial than the error in the discrete variables.9

In addition, in our data the probabilities of product and process innovation differ substantially

between firms that invest in R&D and firms that do not (evidence is provided in Table 4) and

we choose to develop the theoretical and empirical model with this in mind.

The second step of the R&D-productivity linkage models firm productivity as a stochastic
9See Mairesse, Mohnen, and Kremp (2005) for discussion and evidence on this point using firm data from the

French innovation survey.
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variable that is affected by the firm’s past productivity and the current realizations of product

and process innovations. The cdf G(ωit+1|ωit, dit+1, zit+1) captures the second aspect of uncer-

tainty that firms face when they invest in R&D, the uncertainty about the economic value of

an innovation. Even when they realize an innovation, the exact impact of that on future pro-

ductivity and profits is unknown. It may also be the case that product and process innovations

have different impacts on future productivity because they work through different channels on

the demand and cost sides. Specifically, we assume that firm productivity evolves as:

ωit+1 = g(ωit, dit+1, zit+1) + εit+1 (5)

= α0 + α1ωit + α2ω
2
it + α3ω

3
it

+α4zit+1 + α5dit+1 + α6zit+1dit+1 + εit+1.

The function g(·) is the conditional expectation of future productivity and ε is a zero mean

stochastic shock. This captures several important aspects of productivity evolution. First, the

firm’s productivity is assumed to persist over time, with the degree of persistence captured

by the coefficients α1, α2, and α3. This intertemporal persistence is an important feature of

firm-level data on productivity. Second, innovations are allowed to systematically shift the

mean of the distribution of future firm productivity and the magnitude of this effect is captured

by the coefficients α4, α5, and α6. The coefficient α6 allows the possibility that the marginal

effect of either a product and process innovation on future productivity will depend on whether

the firm has the other type of innovation. Expected future productivity evolves only in the

cases where the firm realizes a product or process innovation and this captures the fact that

R&D expenditures alone are not sufficient to generate productivity improvements. Third, the

specification recognizes that productivity change is affected by stochastic shocks εit+1 that

reflect the inherent randomness in the productivity process. We assume the productivity shocks

εit+1 are iid across time and firms and are drawn from a normal distribution with zero mean

and variance σ2ε . Because of the persistence in productivity, the shocks in any period will be

incorporated into future productivity levels, rather than have transitory effects.

Combining these two stages captures both the uncertainty and the endogeneity of the pro-
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ductivity process. By making investments in R&D the firm will alter the probability of getting

a product or process innovation which in turn will alter the distribution of productivity that

they face in future periods. We will refer to the first step as the innovation process and the

second step as the productivity evolution process. By including the innovation process in the

model, rather than linking R&D directly to productivity as in Aw, Roberts and Xu (2011) and

Doraszelski and Jaumandreu (forthcoming), we can also gain some insight into whether R&D is

working to improve productivity through the demand side or cost side of the firm’s operations.

In this framework, productivity improves with either cost reductions or revenue expansions. If

we find that the overall linkage between R&D and productivity is primarily due to product

innovations it suggests that R&D is working through the demand side while a finding of a more

important role for process innovations suggests R&D is working through the cost side.

3.3 The Firm’s Dynamic Decision to Invest in R&D

This section develops the firm’s decision rule for whether or not to invest in R&D. The benefits

of investing depend upon the effect of R&D on the firm’s expected future productivity and the

effect of productivity on future profits as developed in the last two subsections. The firm’s

decision will also depend on the costs of investing in R&D and these may differ for firms that

are just beginning to invest in R&D activities and firms that are maintaining ongoing activities.

We assume that, at the start of period t, the firm observes its current productivity level ωit,

knows its short-run profit function and the processes for innovation and productivity evolution

F and G. In addition, if the firm is maintaining an ongoing R&D investment then it observes

a fixed cost γfit of conducting R&D. Alternatively, if it is just beginning an R&D program, then

it observes a sunk startup cost γsit. Defining the discrete indicator variable rdit−1 which equals

one if the firm invested in R&D in year t − 1 and zero if it did not, the cost that firm i must

pay in year t can be represented by the R&D cost function:

C(rdit|rdit−1) = γfitrdit−1 + γsit(1− rdit−1). (6)

Both fixed and sunk costs are assumed to be iid draws from a known joint cost distribution Cγ .

The combination of sunk startup costs together with the uncertainty about the profitability of
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R&D investment will create an option value to the firm’s investment decision.10

The firm’s state variables sit = (ωit, rdit−1) evolve endogenously as the firm makes its R&D

decision, rdit ∈ {0, 1}. Given its state vector and discount factor β, the firm’s value function

V (sit), before it observes the fixed and sunk cost, can be written as:

V (sit) = π(ωit) + (7)∫
γf ,γs

max
rd∈{0,1}

(βEtV (sit+1|ωit, rdit = 1)− C(rdit|rdit−1);βEtV (sit+1|ωit, rdit = 0)) dCγ

where the expected future value of the firm is defined as an expectation over the future levels

of productivity and innovation outcomes:

EtV (sit+1|ωit, rdit) =
∑
(d,z)

∫
ω
V (sit+1)dG(ωit+1|ωit, dit+1, zit+1)dF (dit+1, zit+1|rdit). (8)

Equation (7) shows that the firm will choose to invest in R&D if the discounted expected

future profits from doing R&D, βEV (sit+1|ωit, rdit = 1), net of the relevant fixed or sunk cost,

are greater than the expected future profits from not doing R&D, βEV (sit+1|ωit, rdit = 0).11

What makes these two expected future profits differ is the effect of R&D on the firm’s future

productivity. Using this specification we can define the marginal benefit of conducting R&D as:

∆EV (ωit) ≡ βEtV (sit+1|ωit, rdit = 1)− βEtV (sit+1|ωit, rdit = 0). (9)

The firm will choose to invest in R&D if ∆EV (ωit) ≥ C(rdit|rdit−1). This will be the condition

used in the empirical model to explain the firm’s observed R&D choice.

Overall, this model endogenizes the firm’s choice to undertake R&D investments as a com-

parison between the net expected future profits of the two alternatives. The optimal choice of
10See Dixit and Pindyck (1994) for models of uncertainty and sunk costs that generate hysteresis in investment

patterns.
11The profit function π(ωit) and value function Vit(sit) also depend on the exogenous variables in the firm’s

environment including the capital stock, variable input prices, aggregate demand shock, and industry demand
elasticity. We have suppressed notation for these to highlight the role of R&D, process and product innovations,
and productivity. In the empirical model we will define different firm types based on the exogenous variables
and calculate the profit and value functions separately for each type.
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whether or not to undertake R&D depends on whether the gains in expected future profits from

conducting R&D outweigh the relevant startup or fixed cost. Using the empirical model we

develop in section 5 we estimate the distribution of sunk and fixed costs faced by the firm and

quantify ∆EV , the expected long-run payoff to investing in R&D.

4 Data

4.1 Firm Sample

The data we use to analyze the role of R&D in the productivity evolution of German firms are

contained in the Mannheim Innovation Panel (MIP) survey collected by the Centre for European

Economic Research (ZEW). The survey is conducted every year for firms in the manufacturing,

mining, energy, water, construction and service sector. Firm samples are drawn from the Cred-

itreform database according to the stratifying variables firm size, region, and industry.12 These

are representative for firms with German headquarters and at least 5 employees.

The survey started in 1993 for the manufacturing, mining, energy, water and construction

sectors and added the service sector in 1995. The survey follows the form of the Community

Innovation Surveys (CIS) that are administered in many OECD countries and adheres to the

Oslo Manual which provides guidelines for the definition, classification, and measurement of

innovation (OECD (1992, 1997, 2005)). Every year the same set of firms are asked to participate

in the survey and to complete the questionnaire sent to them via mail. The sample is updated

every two years to account for exiting firms, newly founded firms, and firms that developed to

satisfy the selection criteria of the sample. Additionally a non-response analysis is performed

via phone to check and correct for non-response bias. Every firm is in the panel, on average,

for 2 to 3 years. Due to cost reasons, starting in 1998 the full questionnaire was only sent out

every other year to all firms in the full-sample. However, information on variables of interest

are asked retrospectively for the previous year to ensure the annual coverage. In odd years only

short questionnaires with core questions are sent to a subset of firms. Therefore, the number of

firms in odd years in the panel is significantly lower than in even years. This limits the ability
12The Creditreform database is the largest credit-rating agency in Germany and maintains comprehensive

database of approximately 3.3 million German firms.
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to follow individual firms over time. Participation in the survey is voluntary and the average

response rate is about 25 percent, so each year there are approximately 5000 firms answering

the questionnaires across all industries (see Rammer and Peters, 2013).

For the empirical analysis we focus on firms in the manufacturing sector, NACE industries 15

to 37, for a number of reasons. First, manufacturing has the best overall coverage in the survey.

Second, prior to 2001 the firm questionnaires differ across manufacturing and service sectors

and some of the necessary variables, such as the capital stock, are not always collected for other

sectors. Finally, much of the reported R&D expenditure occurs in the manufacturing industries.

We will focus on two groups of manufacturing industries. The high-tech (HT) industry group

consists of five aggregates of two-digit manufacturing industries (NACE codes), chemicals (23,

24), non-electrical machinery (29), electrical machinery (30, 31, 32), instruments (33), and motor

vehicles (34, 35). Based on OECD data these industries all have R&D-sales ratios that exceed

.025. The low-tech (LT) industry group will include seven aggregated industries, food (15, 16),

textiles (17, 18, 19), paper (20, 21, 22), plastic (25), non-metallic minerals (26), basic metals

(27, 28) and manufacturing n.e.c. (36, 37), that all have much lower R&D-sales ratios. Our data

covers the period 1993-2008. Due to the small number of observations in some industries we

will have to combine manufacturing industries for some of the empirical analyses, particularly

those requiring time-series data. In general, the parts of the model that can be estimated

using the cross-sectional observations in the data will be estimated separately for each of the

12 industries. There are 18,655 cross-sectional observations that are used in estimation. The

parts of the model that require time-series data because of the use of lagged variables will be

estimated separately for the high-tech and low-tech groups of industries. We have 3,337 and

4,298 time-series observations for the high-tech and low-tech industries, respectively.

4.2 Variable Measurement

For the estimation we use data on firm revenue, variable cost, capital stock, innovation expendi-

tures, and product and process innovations.13 Firm revenue is the sum of domestic and export
13For 1999 and 2000 the panel does not contain information on the firms’ capital stock and we impute these

missing years using linear interpolation.
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sales. Total variable cost is defined as the sum of expenditure on labor, materials, and energy

and the firm’s short-run profit is the difference between revenue and total variable cost. The

firm’s value is the discounted sum of the future short-run profits and thus measures the long-run

resources that the firm has available to pay its capital expenses plus economic profits.

A special feature of the Community Innovation Surveys is that they provide measures of

both innovation input and innovation outputs. Innovation input is measured by the firm’s ex-

penditure on a set of activities related to innovation. This measure includes R&D spending but

also spending on worker training in this area, acquisition of external knowledge and capital,

marketing, and design expenditures for producing a new product or introducing a new produc-

tion process. The R&D variable we will analyze in the empirical model (rdit) takes the value

one if the firm reports a positive level of spending on innovation activities.

Innovation output captures the introduction of a new product or a new production process

by the firm.14 The Oslo Manual defines a product innovation as a new or significantly improved

product or service. A process innovation refers to new or significant changes in the way products

are produced, delivered, or supplied. The main purpose of a process innovation is to reduce

production costs or to improve the quality of a product. For instance, the use of lasers to

increase the quality of products in metal processing or the introduction of automation concepts

are process innovations. The innovation does not have to be new to the market but only to

the firm. A firm could report an innovation if it adopted a production technology or business

practice from a competitor or expanded its product line even if the product was already offered

by other firms.

The timing assumptions in the theoretical model about the relationship between R&D spend-

ing, innovation outcomes, and productivity are fairly general: R&D spending precedes innova-

tion outcomes and innovations that are realized are assumed to affect productivity and profits

in the period they are introduced. In the survey in year t, the firms are asked whether they

introduced new or significantly improved products or services during the years (t− 2), (t− 1),

14Beginning in 2005 the survey also includes questions on organizational innovation, which is defined as new
business practices, workplace organization, or external relations, and marketing innovation, which refers to
changes in product design, packaging, product placement or promotion, and pricing methods. The time-series
information on these variables is too short for them to be utilized in this study.
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or t. The discrete variable product innovation dit takes the value one if the firm reports yes to

the question. The discrete variable for process innovation zit equals one if the firm reports new

or significantly improved internal processes during the years (t− 2) to t. In the empirical model

this outcome will be related to R&D spending in the previous year (t − 1), so there is not a

perfect match between the timing of the R&D and the realization of the innovations. This may

lead us to overestimate the effect of R&D on innovation since the innovation variable could be

capturing outcomes two years earlier. Attempting to use more distant lags of R&D spending

exaggerates the problems caused by sample attrition and reduces the number of observations

with the necessary current and lagged variables.

Table 1 summarizes the proportion of firms in the sample that report having positive in-

novation expenditures, the proportion of firms with successful product innovations, and the

proportion with successful process innovations in each industry. The industries are aggregated

into the high-tech and low-tech groups. In our sample the majority of firms report making

expenditures on innovation activities but the proportions differ across industries. In the five

high-tech industries the proportion varies from .731 to .818 while in the seven low-tech indus-

tries it varies from .514 to .642. The rate of product innovation is also higher in the high-tech

industries. Between .650 and .771 of the firm/year observations report having a new product

innovation while in the low-tech group the rate of product innovation varies from .392 to .592.

This same difference exists for process innovation but the difference in magnitude between the

high-tech and low-tech industries is not as large. The high-tech industries vary in a narrow

band between .330 and .398 and all but one of the the low-tech industries vary between .245

and .327. The model developed in the last section will allow product and process innovations

to occur at different rates given the firm’s R&D expenditure and will allow them to each have

a different impact on future productivity. This will lead to differences in the expected benefits

of R&D across industries and help to explain differences in the proportion of firms that choose

to invest in R&D.

By examining the data on R&D investment patterns we also see an important role for firm

size. Table 2 reports the transition rates for firms’ R&D activities between periods. The tran-

sition patterns in the data are important for estimating the sunk and fixed costs of conducting
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R&D. There is a substantial pattern of movement of firms into and out of R&D activities over

time. The rate at which firms begin conducting R&D varies from 17.63 to 33.71 percent de-

pending on the firm’s size class and this rate increases with the size class. The rate at which

they leave varies from a high of 21.75 percent for the smallest size step class to 6.77 percent for

the largest firms. The firm’s capital stock will be an important dimension that is controlled for

in the empirical work.

5 Empirical Model

5.1 Productivity Evolution

In this subsection we describe how we use the data in the MIP to estimate the R&D-innovation

and innovation-productivity relationships. The first step is to estimate the joint probability

distribution for innovations conditional on R&D, F (dit+1, zit+1|rdit). Given that the three vari-

ables are discrete and observed in the data we estimate the joint probabilities as the fraction of

observations reporting each of the four combinations of dit+1 and zit+1 conditioning on rdit = 0

and rdit = 1. The innovation probabilities are estimated separately for each industry.

Estimates of the process of productivity evolution, equation (5), are needed to construct

the transition probabilities for productivity G(ωit+1|ωit, dit+1, zit+1). Unlike the innovation and

R&D variables, the firm’s productivity is not observable and these parameters will be estimated

along with the firm’s revenue function using the data on firm sales. The key parameters to

be estimated are the cost elasticity of capital βk, the parameters of the productivity process

α0, . . . , α6 and the elasticity of demand η.

The demand elasticity for each industry is estimated using the expression for short-run profit

in the model, equation (4). The ratio of variable profit to firm revenue equals −1/η and we use

the mean profit-revenue ratio in each industry as an estimate of the inverse industry demand

elasticity.

To estimate α0, . . . , α6, and βk we follow the proxy variable approach pioneered by Olley

and Pakes (1996).15 Their insight is that if the firm observes its own productivity level before
15The revenue function cannot be estimated consistently using OLS because the productivity level ωit, which is

contained in the error term, is likely to be correlated with the firm’s capital stock kit. The capital stock depends
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choosing its variable input levels then input demands are functions of productivity and the

fixed factors of production and we can infer information about productivity from observing the

expenditure on variable inputs. Following Levinsohn and Petrin (2003) we focus on the choice

of material spending and write the firm’s demand for its intermediate input as mit = ft(kit, ωit),

where ft is assumed to be strictly monotone in ωit for a given kit. Inverting the material demand

function for ωit and substituting it into equation (3) the revenue function can be written as:

rit = δ0 +
∑

δtDt + (1 + η)
(
βkkit − f−1t (kit,mit)

)
+ uit (10)

= δ0 +
∑

δtDt + h(kit,mit) + vit

where uit and νit capture transitory shocks and measurement errors in firm revenue. The time

dummies Dt control for the factor prices and aggregate demand shock and the intercept contains

the demand elasticity. The function h(kit,mit) = (1+η)
[
βkkit−ωit

]
controls for the joint effect

of productivity and capital stock on the firm’s revenue. By replacing h(kit,mit) with a cubic

function of its arguments, equation (10) will be estimated separately for each industry using

OLS.

Using the fitted value ĥit from equation (10) and substituting it into equation (5) we can

recover the remaining structural parameters by estimating:

ĥit = β∗kkit − α∗0 + α1(ĥit−1 − β∗kkit−1)− α∗2(ĥit−1 − β∗kkit−1)2 + (11)

α∗3(ĥit−1 − β∗kkit−1)3 − α∗4zit − α∗5dit − α∗6ditzit − ε∗it

where α∗2 = α2
1

(1+η̂) and α∗3 = α3
1

(1+η̂)2
. All other parameters with an asterisk denote the

original parameter times (1 + η̂). Estimating this equation using NLLS yields the estimates

α̂0, . . . , α̂6, β̂k. An estimate of firm productivity can then be constructed as:

ω̂it = − 1

1 + η̂
ĥit + β̂kkit.

This process differs slightly from the methodology developed by Olley and Pakes (1996) in

two respects. First, productivity evolution is not an exogenous process but is affected by the

on the prior period investment which, in general, will be partly determined by the prior year’s productivity ωit−1.
The assumption that productivity is serially correlated implies that current productivity and capital stock are
correlated which causes the OLS estimates to be inconsistent.
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firm’s innovations and, as a result, the innovation variables enter into equation (11).16 Second,

because we are modeling productivity using the revenue function, we do not need to estimate

the production function coefficients on the variable inputs of labor and materials. This simplifies

equation (11) by removing the need to instrument variable input levels which would appear on

the right hand side when using the production function as the starting point.17

5.2 Value Function and the Dynamic Choice of R&D

As described in section 2, the firm bases its R&D investment decision on a comparison of the

long-run payoff from R&D, ∆EV (ωit), with the realized fixed cost or startup cost, C(rdit|rdit−1).

The probability that the firm chooses to invest in R&D is given by:

Pr (rdit = 1|sit) = Pr [C(rdit|rdit−1) ≤ ∆EV (ωit)] (12)

where the fixed costs and sunk startup costs of R&D investment are assumed to be distributed

exponentially with mean γF and γS , respectively.

It is reasonable to assume that firms that perform R&D continuously might have different

cost structures than firms that have to start the investment activity from scratch. It can be

costly to set up and equip the research department or hire employees for the research unit. In

this model, the firm’s R&D cost is viewed as the expenditure the firm will need to spend to

generate a process or product innovation. This cost includes the expenditure on employees and

materials reported by the firm in the innovation surveys but should also include any adjustment

cost that the firm incurs in starting or maintaining its operations. It should also include the

capital costs of buildings and equipment used in the R&D process and these are unlikely to be

reported in the innovation surveys. For this reason it is important to allow for some randomness

or measurement error in the R&D expenditure. In the implementation, we also allow the cost
16Doraszelski and Jaumandreu (forthcoming) adopt an alternative approach to deriving an equation similar to

(11). Like most of the recent production function literature, they specify a Cobb-Douglas production function
but then invert the labor demand function that is derived from it. In this paper we are not interested in
estimating the production function parameters but instead focus on the α parameters that describe the process
of productivity evolution because these are the parameters that affect the future returns from R&D investment.

17Variable input prices are also arguments of the revenue function. The component of prices common to all
firms will be captured by the time dummies. Firm-level variation in input prices will be one source of variation
in the error term in equation (10).
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distributions to differ across firms depending on firm size (measured by the value of the capital

stock). This is reasonable since large firms will generally have larger expenditures on R&D if

they choose to invest. The larger expenditures could reflect numerous projects being undertaken

across different product lines or production processes within the firm or better access to credit

which allows them to set up and maintain a larger research unit. One thing that the framework

does rule out is persistence in the firm’s R&D expenditure over time and we think that allowing

the cost distribution to vary across firms of different sizes will control for the likely persistence

that reflects differences in firm size.

The final piece of the empirical model is the construction of the value function and ∆EV (ωit),

the estimate of the payoff to R&D equations (7) and (9), respectively. Rust (1987) developed

the nested fixed point algorithm for estimating dynamic discrete choice models and we use this

methodology here. We discretize the state space sit = (ωit, rdit−1) into 100 grid points for

productivity and two values for lagged R&D choice and use value function iteration to solve for

the value function at each element of this discretized state space. In addition, firms are divided

into discrete firm types based on the value of their capital stock, using 100 grid points, and 12

industries and the value function is estimated at each discrete state point for each of these firm

types. We use a cubic spline to interpolate across the productivity and capital grid points for

each industry and impute the firm’s value function V (sit) at each data point in the sample.

Assuming the firm’s state variables sit are independent of the cost draws and that the costs

are iid across all periods and all firms, the likelihood function for the firms’ R&D choice data

can be expressed as

L(γ|rd, s) =

N∏
i

Ti∏
t

Pr(rdit|sit; γ), (13)

where γ = (γF , γS). The vectors rd and s contain every firm’s R&D choice and state variables

for each period, respectively. The total number of firms is denoted by N and Ti is the number

of observations for firm i. We estimate the parameters of the cost distribution using the firms’

discrete choices on R&D.
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6 Empirical Results

6.1 Estimates of the Productivity Process

Estimates of the probability of an innovation conditional on the firm’s prior period investment in

R&D, Pr(dit+1, zit+1|rdit), are reported for each industry in Table 3. There is a strong but not

perfect relationship between R&D investment and innovation outcomes. Columns (2) through

(5) show the probability of realizing each combination of product and process innovation given

that the firm does not engage in R&D. Columns (6) through (9) report these probability for firms

that conduct R&D. Focusing first on the firms that did not engage in R&D, column (2) shows

that, on average, they have approximately a 78 percent chance of not having either a product

or process innovation in the next year. This estimate is very similar across industries varying

only from a low of .716 in electronics to .822 in basic metals. It does not differ significantly

between the low-tech and high-tech industry groups. What is more important to note is that

approximately 22 percent of the firms still realize innovations even if their R&D spending is zero

and the most common outcome among the three combinations is that they have both product

and process innovations (d = 1, z = 1). This indicates that prior period R&D is neither necessary

or sufficient for the firm to report realizing an innovation. Our model recognizes this possibility

in the link between R&D and future productivity.

For the firms that invest in R&D we observe that they are much less likely to report no

innovation. Column (6) shows that between 9.0 and 27.1 percent of the firms that conduct

R&D report no innovations in the next year. This probability does vary between the industry

groups, being significantly higher for the low-tech industry group. This reflects a combination

of lower R&D effort in these industries, even when the firm reports conducting R&D, and

fewer technological opportunities for innovations. Among the three possible combinations of

innovation outcomes, the most common is that the firm reports both a product and process

innovation (d = 1, z = 1) with between 44.8 and 63.8 percent of the R&D firms reporting both

innovations. Among these firms the success rate for introducing a new product innovation is

in general much higher than the rate for a new process. The two exceptions are the paper and

basic metals industries where these two probabilities are similar. For both of these industries
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large scale production is important and this could give a strong incentive for firms to invest to

improve their production efficiency.18

Table 4 reports the estimates for the demand elasticities for each industry in the high-tech

and low-tech sectors. For instance, the estimate of (1 + 1/η̂) in the chemicals industry is .708.

This implies a demand elasticity η̂ of -3.425 which is reported in the third column. The demand

elasticity is important in converting productivity into profit as seen in equations (3) and (4).

The estimates vary substantially across industries ranging from -2.994 in the food industry to

-7.937 in vehicles.

Table 5 reports the estimates of the productivity evolution process for the high-tech and low-

tech sectors using equation (11). The double and single asteriks denote parameter estimates

different from zero at the .01 and .05 significance levels, respectively. The cost elasticity of

capital in the high-tech sector is estimated to be β̂k = −0.056 and in the low-tech sector is

−0.060. Negative values of βk imply firms with a higher capital stock have lower production

costs because they use less variable inputs.

The positive coefficient estimates for z and d indicate that firms that realize innovations

have, on average, higher future productivity levels compared to those that do not have any kind

of innovation. The marginal effects of adopting a new process or developing a new product

is nearly identical for high-tech firms. A new process innovation z contributes on average 1.4

percent to productivity gain and a new product innovation d contributes 1.3 percent. There is

no additional effect from having both product and process innovations. The coefficient on the

interaction term d ∗ z is -.014 which just outweighs the direct effect of the second innovation.

Basically, firms with either or both types of innovation have, on average, 1.4 percent higher

productivity in the next year.

The difference in the effect of the two types of innovations is more pronounced in the low-

tech industries. Firms that introduced a new product have on average 0.2 percent higher future
18If we construct Table 3 using rdit−1 as the conditioning variable, so there is a two-year lag between R&D

and innovation, we get a very similar pattern of innovation rates. Among the firms with rdit−1 = 0, 74.3 percent
report no innovation. There is no difference between the high-tech and low-tech industries. Among the firms with
rdit−1 = 1, 18.7 percent report no innovation and the average is twice as large in the low-tech sectors compared
with the high-tech sectors. The estimates of innovation probabilities by industry are not sensitive to the use of
one or two period lags in R&D.
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productivity while a new process innovation raises productivity by 1.0 percent. One reason

for the weaker impact of product innovation on future productivity is that new or improved

products may represent less substantial changes over existing products in these industries.19 If

a firm realizes both product and process innovation the estimated interaction term, which is

-0.002, partially offsets the marginal effect of the second innovation type. The three coefficients

together imply that firms with a process innovation have 1 percent higher future productivity

regardless of whether or not they also have a product innovation and firms with just a product

innovation do not have significantly higher productivity in the next period.20

The effect of past productivity on the current productivity level is measured by the coeffi-

cients of ωt−1, its squared and cubic terms. Past productivity is highly persistent. There is a

non-linear relationship between current and lagged productivity for high-tech firms as seen by

the statistically significant effect of ω2
t−1. These higher-order terms are not significant in the

low-tech industries implying a linear relationship between the current and lagged productivity

level. The persistence of the productivity process has a substantial impact on the long-run

payoff from R&D because it determines how quickly the productivity gains from an innovation

depreciate. Lower values of α1 imply more rapid depreciation of the productivity and profit

gains from an innovation d or z and, because it depends on the discounted stream of future

profits from the innovation, the long-run payoff to R&D will fall. Overall, larger coefficients on

the innovation variables and higher persistence of the productivity process both raise ∆EV, the

expected long-run payoff to R&D.

The empirical literature measuring the return to R&D has often constructed the elasticity

of output, usually measured as firm revenue, with respect to R&D expenditure. Hall, Mairesse,

and Mohnen (2010) review this literature and report that the elasticity estimates based on

production function models vary from .01 to .25 and are centered around .08. Doraszelski and

Jaumendreu (forthcoming, Table 5) report estimates of the distribution of firm-level estimates
19This interpretation is supported by data on products that are new to the market. In the MIP the proportion

of firms introducing products that are new to the market varies from 39 to 51 percent in the high-tech industries
but 16 to 31 percent in the low-tech industries.

20We conducted a sensitivity check on the specification of the productivity process by allowing separate industry
intercepts in the productivity evolution equation (5). They were never statistically significant and this is not
surprising given the strong effect of past productivity.
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for ten Spanish manufacturing industries. The average value over all firms is .015 and the

average at the industry level varies from -.006 to .046 across the ten industries with half of

the industries falling between .013 and .022. Using the results reported in Tables 3, 4, and 5

we construct an analogous measure using the discrete R&D variable: the proportional gain in

firm revenue resulting if the firm moves from not investing in R&D (rdt = 0) to investing in

R&D (rdt = 1).21 Table 6 provides estimates of this shift on the log of future revenue for each

industry. For the five high-tech industries, the elasticity of revenue with respect to discrete shift

in R&D varies from .021 to .058 while they are generally smaller, ranging from .008 to .026

for the low-tech industries. In our dynamic framework this is one component of the expected

benefit of R&D investment ∆EV but it is not the sole focus of our estimation.

6.2 Estimates of the Cost of an R&D Program

The final set of parameters we estimate is the startup and fixed costs of establishing and main-

taining an R&D program. To account for size differences across firms that will be reflected in

the magnitude of their R&D expenditures, we allow the startup cost and fixed cost distribution

Cγ to vary for three size groups of firms, small, medium and large.22 We estimate the fixed and

startup cost parameters (γFs , γ
F
m, γ

F
l , γ

S
s , γ

S
m, γ

S
l ) where the subscript denotes the size category

by maximizing the likelihood function in equation (13). Table 7 reports the estimated means

of the distribution of startup (γS) and fixed costs (γF ). The first three rows report the results

for the high-tech group distinguishing between firm sizes. The average costs for firms in the

low-tech group are reported in the last three rows.

A number of general patterns stand out across all specifications. First, fixed costs are smaller

than startup costs for all firm sizes. This means that firms that were previously engaged in R&D
21The revenue increase resulting from R&D depends on how R&D affects innovation, how innovation affects

productivity, and how productivity translates into revenue. The difference in log revenue when rd=1 and rd=0
is constructed as:

∆r = (1 + η)
∑
(d,z)

[g(ω, d, z)− g(ω, 0, 0)] [Pr(d, z|rd = 1)− Pr(d, z|rd = 0)]

for all (d, z) ∈ {(1, 0), (0, 1), (1, 1)}.
22Firms were divided into size categories based on their capital stock. Firms with a capital stock up to the

33rd percentile of the firm distribution are considered to be small. Large firms have capital stock exceeding the
66th percentile.
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have to incur a smaller cost if they want to continue their R&D activities while firms that did

not have any previous R&D activities will have to pay a higher amount to start their R&D

activities.

In Table 7 we estimate an average startup cost for doing R&D for small firms in high-tech

industries of EUR 3.98 mln, more than six times higher than the fixed cost of EUR 0.65 mln.

In the high-tech sector, the ratio of startup costs to fixed costs is approximately 6 for small,

medium, and large firms. In the low-tech sector the ratio is between 4 and 5. The difference

between fixed and startup costs is crucial in explaining the pattern of R&D choice in the data.

If the fixed cost is low relative to the startup cost, continuing to do R&D is more attractive

because it allows firms to avoid paying the higher cost if it restarts its investment. Even facing

negative shocks that lower the expected return of R&D would have less of an effect on the

firm quitting R&D. A high startup cost prevents firms from starting to do R&D which can

contribute to the high persistence for non-R&D firms seen in Table 2. On the other hand,

reducing the gap between fixed and startup costs would imply more switching between starting

and quitting R&D. The magnitude of the cost estimates in the low-tech sector ranges between

half and one-third of the estimates in high-tech.

A second pattern that stands out is that both fixed and startup costs increase with the firm’s

capital stock. There is a positive correlation in the data between capital stock and productivity

and the payoff to conducting R&D is increasing with the capital stock. Despite this higher

payoff not all large firms conduct R&D and this reflects the higher costs that they face.

We can assess the goodness of fit of the dynamic model by simulating the firms’ investment

choices, given their capital stock and productivity level, and computing the percentage of correct

predictions. Using the cost estimates in Table 7, the model fits the data well. In the high-tech

industries, the overall percent of correct prediction is 77.84 and the model does a better job

of correctly predicting that firm will chose to invest (84.46 percent) than not invest (54.16

percent). For the low-tech sector the model correctly predicts 65.73 percent of all cases, with

66.93 percent correct predictions for positive investment and 64.21 percent correct predictions

of no investment.
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6.3 Expected Benefits and Costs of R&D

Using these parameter estimates and equation (9), we construct ∆EV (ω) the expected long-run

payoff to investing in R&D. This measures the difference in the present value of expected future

profits that accrue to the firm if it engages in R&D in a year versus if it does not engage in

R&D. This benefit depends on the industry-level measures (profit function, demand elasticity,

and innovation probabilities) and the firm-level variables (productivity and the capital stock)

and varies across firms in an industry as a result. It captures the randomness that arises in

the relationship between R&D investment and a product or process innovation, captured in the

model by F (d′, z′|rd), as well as the randomness between innovation outcomes and productivity,

captured in the model by G(ω′|ω, d′, z′).

Tables 8 and 9 provide estimates of ∆EV (ω) using innovation outcomes at five different

percentiles (5, 25, 50, 75, and 95) of the productivity distribution within each industry. The

values in all cells in these tables are averaged over the capital stocks and years. Table 8 covers

the five high-tech industries and Table 9 reports the values for the seven low-tech industries.

The first five rows of Table 8 show that, as the productivity of a firm in the chemical industry

increases from the 5th (-.299) to 95th (2.053) percentile, ∆EV (ω) rises from 0.965 million to

87.131 million euros. This reflects the impact of the higher productivity resulting from R&D

on the firm’s expected future profits. Every industry shows the benefit of R&D increasing with

firm productivity but the level of the benefit differs across industries. Comparing the group of

industries in Tables 8 and 9 we see that the marginal benefits of R&D are much larger in the

high-tech industry group. At the upper end, in the electronics industry the high productivity

firms have benefits from an R&D program averaging over 111 million euros. In contrast, the

benefits of an R&D program in the low-tech industries is always less than four million euros and

generally only exceeds one million euros for the highest productivity firms. This illustrates that

the payoff to R&D is very specific to an industry reflecting differences in profit functions. If we

rank industries by the expected marginal benefit at the median of the productivity distribution,

the vehicle, chemical, and electronics industries have the highest expected payoffs to R&D,

followed by machinery and instruments. Minerals and manufacturing nec products have the
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lowest expected benefits.

In the model developed above, firm i will choose to do R&D if C(rdit|rdit−1) ≤ ∆EV (ωit).

The realized costs of firms that choose to do R&D will be described by a truncated cost dis-

tribution where ∆EV (ωit) is the truncation point. For example in the chemical industry, low-

productivity firms have a marginal benefit of R&D of 0.965 million euros, so only firms that

have R&D costs less than this will choose to invest. Because firms with the same observable

productivity and capital stock spend different amounts on R&D to realize the same expected

gross benefit ∆EV (ωit) they have different net benefits from their R&D investment. In section

6.4 we report the distribution of net benefits to R&D across firms.

The fourth and fifth columns of Table 8 report the mean fixed and startup costs among the

firms in the five high-tech industries that choose to conduct R&D (rd = 1). For example, in the

first row of the table, the low productivity firms in the chemical industry that invest in R&D

will have an average R&D expenditure of 0.437 million euros if they had previously conducted

R&D, and so were paying a fixed cost to maintain it, or 0.475 million euros if they were paying

a startup cost to begin an R&D program. The mean truncated expenditure on R&D rises with

the level of productivity because the truncation point ∆EV rises with productivity and thus

high productivity firms are willing, on average, to invest more money in R&D programs than low

productivity firms. The R&D expenditure differs across industries, reflecting differences in the

distribution of productivity, capital stocks, and profit function parameters but the differences

are fairly small for fixed costs (rdt−1 = 1) and larger for startup costs (rdt−1 = 0). The fixed

costs for the median productivity firm are almost always less than 3 million euros while the

expenditure by the median firm starting up an R&D program can range as high as 12.0 million

euros in the case of the vehicle industry. Examining the patterns for the low-tech industry

group in Table 9, we observe the same increase with productivity and higher costs for firms that

were inexperienced (rdt−1 = 0). Not surprisingly, the mean firm R&D costs are lower in these

industries reflecting the fact that the benefit of R&D investment is also lower.

The final two columns of Tables 8 and 9 report the probability a firm conducts R&D based

on its productivity, industry, and prior experience. Several patterns are evident. First, for

the high-tech industries the probability of maintaining an R&D program is generally above
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.90 for firms that have prior experience. This reflects the high benefits of conducting R&D

seen in column (3) and relatively low cost in column (4). For firms that do not have prior

R&D experience the probability is substantially lower, resulting from startup costs that are

higher than the maintenance fixed costs. The gap between the probabilities in the last two

columns is a measure of the effect of the higher startup costs, because the expected benefit of

conducting R&D faced by the firm is the same independent of their experience. Focusing on the

R&D probabilities in the low-tech industries in Table 9 we observe the same pattern of higher

probabilities with higher productivity, reflecting the higher marginal benefits seen in column

(3), and with experience, caused by the lower fixed costs relative to sunk startup costs. The

primary difference between these industries and the ones in Table 8 are that the magnitudes of

the estimates are substantially lower for the low-tech industries. This reflects a lower payoff to

R&D in these industries. While the cost distributions are lower, as seen in Table 7, they are

not enough to compensate for the lower benefits accruing to R&D.

6.4 The Return to R&D

The patterns of benefits and costs reported in Tables 8 and 9 are predictions from the estimated

model across different values of productivity and prior R&D experience and emphasize how

variations in the state variables impact the expected long-run benefits of R&D. In this section

we turn to the actual data and calculate the long-run expected benefit of R&D, ∆EV (ωit), for

each firm observation given its observed productivity, capital stock, and industry. We can then

compare this with the cost of R&D to calculate an expected net benefit for each observation.

Let γit be the fixed or startup cost draw that the firm gets, then the expected net benefit, prior

to observing the cost draw, is ∆EV (ωit)− E(γit) where E(γit) is the mean of the distribution

of γit. The E(γit) will depend upon the firm’s prior R&D experience and size category as seen

in Table 7. We will normalize this expected net benefit by the value of the firm V (sit) given by

equation (7) and define the summary measure:

NBit =
∆EV (ωit)− E(γit)

V (sit)
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This normalized expected net benefit of R&D will vary across firms and time depending on the

productivity, capital stock, and R&D history. Normalizing by the value of the firm corrects for

differences in firm size that will be reflected in ∆EV (ωit) and provides a more useful metric

for interpreting proportional differences in the benefit of R&D across firms and industries. For

many firms NB will be negative reflecting the fact that, given the expected costs and benefits

faced by the firm, it is optimal to not invest in R&D. This measure provides a useful description

of how the expected net payoff to R&D varies across the whole distribution of firms in operation,

even firms that do not invest in R&D.

Alternatively, the return to R&D can be calculated just for the firms that actually invest in

R&D. Firms will only choose to do R&D when ∆EV (ωit)−γit > 0, and we can characterize the

net benefit of R&D for firms that choose to do R&D using the truncated mean of the distribution

of γ. The expected net benefit of R&D when firms choose to do R&D is defined as:

TNBit =
∆EV (ωit)− E(γit|∆EV (ωit)− γit > 0)

V (sit)

Unlike NB, TNB will always be positive. This measure is the model equivalent of calculating

the returns to R&D using a sample of firms that all invested in R&D.

Both NB and TNB capture the fact that current R&D expenditure affects the future path

of productivity and R&D choices. They are useful measures of the firm-level, long-run net

expected benefit of investing in R&D. Given estimates of NB and TNB for all observations in

the data we can then summarize the entire distribution of expected R&D returns.

In Table 10 we present the 25th, 50th, and 75th percentiles of the distributions of NBit

and TNBit across observations in the data. We divide the firms by industry and by their prior

R&D status because this affects whether they pay a fixed cost (continuing firms columns 3-5)

or a startup cost (startup firm columns 6-8) when they invest in R&D. For example, in the case

of the chemical industry the three percentiles of the distribution of NB for continuing R&D

firms are .021, .031, and .037 indicating that the expected net benefit of R&D varies in a fairly

narrow range relative to firm value. The median firm will have an expected long-run net payoff

to an R&D program of 3.1 percent of firm value. When we truncate the payoffs to recognize
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that firms will choose not to do R&D in high cost situations, the distribution of net payoffs,

TNB, is not greatly affected. The truncated percentiles are .023, .033, and .037 indicating just

a slight rightward shift in the lower tail of the distribution. This occurs because the fraction

of firms with negative NB is small and so there is little difference between the truncated and

untruncated cost means for continuing firms.

The picture is different when we look at firms that were not previously conducting R&D. In

the chemical industry, the 25th, 50th and 75th percentilles of the distribution of NB are -.045,

.001, and .016. In particular, a large percentage of the firms would have negative expected

net benefits because the startup costs they would pay exceed ∆EV and so would not choose

to invest in R&D. The median firm would choose to do R&D but would have an expected net

payoff equal to one-tenth of one percent of the value of the firm. When we focus on the expected

returns of the firms that would actually choose to invest we observe that the percentiles for this

industry vary from .019 to .027. Each percentile of the distribution is less than the corresponding

percentile for the distribution of continuing firms because of the higher startup costs these firms

must pay.

Across the other four high-tech industries a similar pattern is observed. There are fairly

small differences in the distribution of NB and TNB for the continuing firms because the fixed

costs they would pay tend to be small relative to the benefits and so most firms would choose to

continue to invest. There are more substantial differences in the two distributions for starting

firms because many of these firms would not choose to do R&D. Even the median firm has a

negative expected return in the machinery and instruments industries. Comparing TNB across

industries for the continuing firms we find very similar distributions. The median firm in each

industry has an expected net benefit of R&D that is between 2.6 and 3.2 percent of the firm’s

value. For the firms beginning to do R&D, the median varies from 2.0 to 2.4 percent across

industries.

In the low-tech industry group we see a different picture reflecting much lower returns to

R&D investment. For all of the industries the median of the distribution of NB is negative and

the 75th percentile is at its highest .001. The percentiles of the distribution of TNB lie between

.001 and .003, indicating small net benefits of R&D relative to firm value even for the firms that
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find R&D profitable. The pattern is even stronger for the starting firms. The 75th percentile

of NB is negative across all industries and the 75th percentile of TNB does not exceed .003.

Overall, evaluating these returns at the mean cost levels, less than one quarter of the low-tech

firms would choose to invest in R&D.

The measures in Table 10 summarize the long-run payoff to R&D, including the effect on

the incentive to invest in R&D in future periods. We can also use the model to calculate the

short-run benefit of R&D. We define this as the increment to next period expected profits if the

firm chooses R&D in the current period versus if it does not. We will express this as a ratio to

the long-run benefit :

SNBit = (Eπ(ωit+1|rdit = 1)− Eπ(ωit+1|rdit = 0))/∆EV (ωit)

This measure recognizes that current R&D spending will affect productivity and profit in the

next period. Table 11 reports percentiles of the distribution of SNBit across observations. In

the case of the high-tech industry group, the table shows that the one-period payoff from R&D

is small relative to the long-run payoff. For the median firm, the next period profit accounts

for only between 0.9 and 2.7 percent of the total long-run payoff to R&D. Even at the 75th

percentile the short-run payoff is at most 6.6 percent of the long-run payoff. In the low-tech

sector, we observe that the short-run profit increase accounts for a larger fraction of the total

long-term benefit. At the 75th percentile, this fraction varies from 8.1 to 21.1 percent but the

short-run benefit is still small relative to the long-term payoff. This is not surprising because

this short-run effect only captures the immediate effect of R&D on productivity (a 1.4 percent

increase as seen in Table 4) and firm profit. It does not capture the payoff resulting from a

permanently higher level of productivity in future periods or the increase this will have on the

probability the firm continues to invest in R&D in the future. For at least 75 percent of the

firms in these industries, these long-run impacts account for over 79 percent, and often over 90

percent, of the payoff to current period R&D. This emphasizes the need to examine R&D choice

and its benefit in a dynamic framework.

One reason that the long-run benefit is much more substantial than the short-run benefit is
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that the productivity process is highly persistent. Given the coefficients on lagged ω reported

in Table 5 we see that productivity gains resulting from innovations (or random shocks) will

depreciate very slowly which implies that the gain in profits from an innovation and subsequent

productivity improvement will last over many periods. As the degree of productivity persistence

falls, the long-run gains, relative to the one-period gain, will decline. In the limit, if there was

no productivity persistence, so that innovations only affected the current period profits, the firm

would only invest in R&D if it could cover the entire fixed or sunk cost with the one-period

profit increase. Everything else equal, a reduction in the α1 coefficient in equation 5 has a large

impact on the probability of conducting R&D. To illustrate this we simulate the model using

the first observation for each firm in the high-tech industries and construct the mean probability

of R&D across the firms after 5, 10, and 20 years. We repeat the simulation for different values

of α1. The results show that when α1 = .961, as reported in Table 5, the mean R&D probability

stabilizes at .77. When α1 is reduced to .941, the mean probability falls to .49, at α1 = .923

it falls to .28, and at α1 = .903 it falls to .17. Any value of α1 < .7 generates a probability of

R&D that is virtually 0. More rapid depreciation of the productivity effect of the innovations

leads to substantial reductions in the incentive to invest in R&D.

7 Counterfactual Analysis: R&D Subsidies

In the previous section we showed that the expected net benefits of investing in R&D vary

across firms with differences in their productivity, capital stock, industry, and R&D history.

In addition, productivity is an endogenous determinant of the R&D decision. Changes in the

underlying economic environment in which the firms operate will shift the distribution of net

benefits, cause some firms to make a different choice about R&D investment, and thus lead to

different long-run changes in firm productivity and profits. Policy instruments such as direct

subsidies to firms or tax treatment of R&D expenditures can affect the cost of R&D. Using the

estimated model we simulate reductions in both the fixed and startup costs of investing in R&D.

We can simulate more favorable treatment of R&D costs for all firms by reducing the fixed

cost of R&D. The top panel of Table 12 shows the effect of reducing the fixed cost by 20 percent,
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relative to the estimates in Table 7, for the high-tech industries. The second through fourth

columns summarize the change in the cross-sectional distribution for the probability of investing

in R&D after 5, 10, and 20 years experience with the lower cost environment. After 5 years we

observe that the mean probability has increased by .0716 percentage points (from .7400 in the

initial regime to .8116 after the cost reduction). However, the changes in the percentiles indicate

that not all firms are more likely to invest in R&D. For at least 5 percent of the firms there is

no increase in the probability of doing R&D. This is due to the fact that their probability of

doing R&D is virtually one before the cost change so there is no impact of the lower fixed cost.

The median indicates that half of the firms have an increase of at least .064 percentage points.

For some firms the increase in the probability is substantial, the 75th percentile is .116. The

increased rate of investment in R&D then leads to a shift in the distribution of productivity.

In column (5), the mean of the firm productivity distribution increases by 4.06 percent after 5

years. The percentage improvement in productivity is not uniform across all firms. The lowest

five percent of the firms have no increase in productivity, the median firm increase is .38 percent,

and the top 5 percent of the firms have an increase of at least 8.77 percent. The reduction in

cost is most likely to alter the investment decision of firms that have costs that are near the

threshold of ∆EV while it will leave unchanged the decision of firms with very low or very high

initial costs. As a result the proportional improvements in productivity are not equal across

firms.

Table 12 also reports the R&D and productivity responses after 10 and 20 years of the

lower cost environment. These show that the heterogeneity in responses remains even after

many years. The R&D distibution does not shift substantially over the longer time period,

relative to the change after five years, while the productivity distribution continues to shift to

the right, especially between the 25th and 75th percentiles. This reflects the fact that once firms

begin investing in R&D they can continue to realize innovations and gain further productivity

improvements over time. The increase in R&D investment occurs fairly quickly and this can

generate a continual series of productivity improvements.

We also examine the effect of a 20 percent reduction in the startup costs of conducting R&D

in the lower panel of Table 12. The first row of the panel shows that there is very little change
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in the mean probability of investing in R&D. Correspondingly, the mean change in productivity

across all firms is also close to zero, rising .28 percent after 5 years and .51 percent after 20

years. The percentiles of the distribution indicate that for at least half the firms the reduction

in startup cost actually results in a decrease in the probability of investing in R&D. In contrast

to the fixed cost reduction, which always increases the firm’s probability of investing, a sunk

cost reduction has two effects. It lowers the entry cost for firms that are not investing and this

raises their probability of investment but it also lowers the option value of continuing to invest

for firms that are conducting R&D. This can lead some firms to stop investing. Overall, the

sunk cost reduction has a less powerful effect on investment incentives than the reduction in

fixed cost. However, it is important to point out that the two cost changes are not equivalent

in terms of the overall cost of the subsidy. The fixed cost reduction is applicable to all investing

firms while the sunk cost reduction only applies to the firms that begin to invest in R&D. The

latter is a much smaller number of firms in our sample.

If we disaggregate the fixed cost and sunk counterfactual results by the size of the firm we

observe that the change in R&D and productivity is not uniform across the size distribution.

Table 13 reports the mean change in the proportion of high-tech firms investing in R&D. The

top panel reports the change for the 20 percent reduction in fixed cost. Small, medium, and

large firms are distinguished where size is defined by the the capital stock and the categories

each contain one-third of the firms in the industry. We observe that after 5 years the small

and medium firms have a larger increase in their probability of investing than the larger firms.

Initially the increase in R&D investment observed in Table 12 is more concentrated among the

small and medium firms. The difference across size groups gradually diminishes over time. The

lower panel of the table reports the change in mean investment when the startup cost is reduced

by 20 percent. We observe that small firms increase their rate of investment when the startup

cost falls while the medium and large firms reduce theirs. The negative pattern observed in

Table 12 arises because the entry of small firms is outweighed by the exit of the medium and

large firms. While the overall impact of the startup cost reduction is small it does not uniformly

affect firms of different sizes.
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8 Conclusions

Measuring the private return to R&D investment has been a major goal of the productivity

literature and the knowledge production function model has been the primary empirical tool.

In this framework, firm investments in R&D accumulate and depreciate over time creating a

stock of knowledge within the firm that enters as an additional input in the production function.

Estimates of the effect of this knowledge stock on output provide a measure of the return to

R&D.

In this paper we take a different approach to measuring the private payoff from R&D in-

vestment. We develop an empirical model of the firm’s dynamic demand for R&D and use it

to measure the long-run expected payoff to a firm’s R&D. In this model a firm’s investment

in R&D raises the probability that it develops a product or process innovation. The firm’s

productivity is an endogenous state variable whose transition path is altered by these product

and process innovations. Realizations of productivity then determine the firm’s profits. The ex-

pected long-run payoff from investing in R&D is the difference between the expected discounted

sum of future profits if the firm undertakes R&D versus if it does not. The firm will choose to

invest in R&D if this payoff is greater than the fixed or sunk cost they pay to invest.

This dynamic demand model captures several important components of the R&D and inno-

vation process. It views R&D as an investment that raises the probability that the firm will be

on a higher productivity and profit path in the future. The difference in the expected value of

the firm between these two paths provides a natural measure of the expected payoff to the R&D

investment. There is uncertainty at two stages of the process; whether the firm successfully in-

troduces an innovation and the realization of the productivity level. The model also recognizes

that payoffs are realized in the future and expectations of these future payoffs are critical to

the firm’s R&D decision. Finally, since we estimate the firm’s decision rule for R&D investment

we can conduct counterfactual experiments that change the economic environment in which the

firm operates and simulate how this affects the firm’s R&D choice and future productivity.

The empirical model is designed to exploit the micro data that is collected in the Community

Innovation Surveys. For Germany, this includes firm panel data on R&D expenditures, product

35



and process innovations realized by the firm, and variables to construct productivity and short-

run profits. The four key structural components of the model are: the firm’s profit function

which relates productivity to profit, the evolution of firm productivity which depends upon

product and process innovations realized by the firm, the probability of a product or process

innovation given the firm’s choice of R&D, and the fixed and startup costs of investing in R&D.

The structural parameter estimates show, first, firms that invest in R&D have a higher prob-

ability of realizing a product or process innovation but R&D investment is neither necessary

nor sufficient for firm innovation. The group of high-tech manufacturing industries has a higher

probability of innovation, given R&D, than the group of low-tech industries. Second, product

innovation as well as process innovation lead to increases in future firm productivity but product

innovations are more important in the high-tech industries while process innovations are more

important for the low-tech industries. Third, firm productivity is highly persistent over time

which implies that innovations that raise productivity will have long-lived effects on firm per-

formance. Fourth, fixed costs of maintaining ongoing R&D investment are significantly smaller

than the sunk startup costs of beginning to invest in R&D. This means that firm R&D history

is an important determinant of current R&D choice.

Comparing across industries for the firm with the median productivity level we see that

the expected benefit of investing in R&D varies from a high of 43 million euros in the vehicle

industry and 20 million euros in the chemical industry to a low of about 350 thousand euros in

the plastic, non-metallic mineral products, and manufacturing nec industries. This difference in

the benefit of R&D will lead to very different rates of R&D investment across industries.

Combining estimates of the expected benefit of R&D with the cost of R&D we summarize

the distribution of net benefits across firms in each industry. This net benefit differs substan-

tially between firms that have already invested in R&D and those that are just starting R&D

investments because of the substantial differences in the fixed versus sunk cost of investment.

Expressed as a proportion of firm value, this net benefit for the median experienced firm in

an industry varies from .024 to .032 across five high-tech industries but varies from -.046 to

.006 for firms with no previous R&D experience. The negative value implies that the median

inexperienced firm would not find it profitable to invest in R&D. We also examine the distribu-
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tion of net benefits for firms that find R&D investment profitable. This distribution indicates

a net benefit of .020 to .024 for startup firms in the high tech industries. These net benefits

are substantially smaller, around .002 for the median firm, in the group of low-tech industries.

Finally, we compare the expected short-run (one period) benefit that the firm gets from R&D

with the expected long-run benefit and find that the long-run benefit is between five and 30

times larger depending on the industry. This emphasizes the need to examine R&D choice and

its benefit in a dynamic framework.

The empirical model is used to conduct counterfactual experiments simulating whether an

R&D subsidy leads to an increase in productivity. This question is at the heart of many

discussions regarding the costs and benefits of public subsidies and we simulate different subsidy

policies by changing the cost of R&D. The results show that in the high-tech industries, a 20

percent reduction in the fixed cost of R&D leads after five years to an average increase of 7.16

percentage points in the probability a firm invests in R&D and a 4.02 percent increase in mean

productivity. A similar reduction in the cost faced by firms just beginning to invest in R&D has

very little impact on the probability of investing or the level of productivity. The simulations

illustrate that the two cost changes have very different impacts on firm incentives. Fixed cost

reductions encourage all firms to invest. In contrast, the reduction in startup costs can lead

some firms to stop their R&D because the cost of restarting is now lower.
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Table 1: Innovation Rates by Industry - pooled over firms and years
Industries Proportion of Proportion with Proportion with

Innovating Firms rd Product Innovation d Process Innovation z
High-Tech
Chemicals 0.7866 0.7081 0.3633
Machinery 0.7702 0.7147 0.3609
Electronics 0.8053 0.7449 0.3977
Instruments 0.8176 0.7706 0.3300
Vehicles 0.7309 0.6504 0.3955
Low-Tech
Food 0.5425 0.4732 0.2580
Textiles 0.5135 0.4643 0.2027
Paper 0.5174 0.3919 0.2453
Plastic 0.6422 0.5915 0.3266
Mineral 0.5887 0.5257 0.3113
Basic Metals 0.5938 0.4785 0.3164
Manuf. nec 0.6060 0.5283 0.2697
Average 0.6596 0.5868 0.3148
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Table 2: Transition Rates for R&D Investment
rdit = 0 rdit = 1 Capital Rangea

rdit−1 = 0 .813 .188 [0, .15]
.824 .176 (.15, .42]
.772 .228 (.42, .92]
.745 .255 (.92, 1.75]
.787 .214 (1.75, 3.04]
.717 .283 (3.04, 5.49]
.663 .337 (5.49, 10.83]
.669 .331 > 10.83

rdit−1 = 1 .218 .783 [0, .15]
.194 .806 (.15, .42]
.215 .785 (.42, .92]
.169 .832 (.92, 1.75]
.172 .828 (1.75, 3.04]
.143 .857 (3.04, 5.49]
.081 .919 (5.49, 10.83]
.068 .932 > 10.83

a millions of Euros
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Table 3: Probability of Innovation Conditional on Past R&D: Pr(dt+1, zt+1| rdt)
rdt = 0 rdt = 1

Product Innovation d = 0 d = 1 d = 0 d = 1 d = 0 d = 1 d = 0 d = 1

Process Innovation z = 0 z = 0 z = 1 z = 1 z = 0 z = 0 z = 1 z = 1

High-Tech Industries
Chemicals 0.779 0.048 0.048 0.124 0.112 0.214 0.045 0.629
Machinery 0.786 0.055 0.039 0.120 0.100 0.249 0.035 0.616
Electronics 0.716 0.092 0.028 0.163 0.100 0.262 0.029 0.609
Instruments 0.779 0.044 0.035 0.142 0.090 0.317 0.010 0.582
Vehicles 0.783 0.058 0.050 0.108 0.139 0.172 0.052 0.638
Low-Tech Industries
Food 0.767 0.047 0.043 0.142 0.243 0.170 0.047 0.540
Textiles 0.791 0.072 0.038 0.099 0.251 0.247 0.054 0.448
Paper 0.782 0.038 0.082 0.097 0.271 0.136 0.141 0.453
Plastic 0.786 0.079 0.020 0.115 0.148 0.171 0.045 0.636
Mineral 0.776 0.068 0.021 0.135 0.188 0.156 0.043 0.613
Metals 0.822 0.023 0.041 0.113 0.171 0.123 0.115 0.590
Manuf. nec 0.775 0.085 0.035 0.106 0.170 0.258 0.066 0.507
Average 0.779 0.059 0.040 0.122 0.165 0.206 0.057 0.572
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Table 4: Demand Elasticity Estimates (standard error)
Industry 1+1/η η sample size

High-Tech
Chemicals 0.708 (0.005)∗∗ -3.425 1361
Machinery 0.803 (0.002)∗∗ -5.076 2644
Electronics 0.753 (0.005)∗∗ -4.049 1413
MPO 0.763 (0.006)∗∗ -4.219 1429
Vehicles 0.874 (0.003)∗∗ -7.937 911

Low-Tech
Food 0.666 (0.008)∗∗ -2.994 1162
Textiles 0.697 (0.003)∗∗ -3.300 990
Paper 0.697 (0.003)∗∗ -3.300 1669
Plastic 0.798 (0.003)∗∗ -4.950 1396
Mineral 0.675 (0.005)∗∗ -3.077 959
Metals 0.822 (0.001)∗∗ -5.618 2773
Manuf. nec 0.765 (0.004)∗∗ -4.255 872
∗∗ significant at the .01 level, ∗ significant at the .05 level
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Table 5: Productivity Evolution Parameters (standard error)
High-Tech Industries Low-Tech Industries

k -0.056 (0.002)∗∗ -0.060 (0.002)∗∗

ωt−1 0.961 (0.008)∗∗ 0.978 (0.005)∗∗

ω2
t−1 0.030 (0.012)∗ 0.006 (0.008)
ω3
t−1 -0.008 (0.005) 0.001 (0.004)
d 0.013 (0.005)∗∗ 0.002 (0.004)
z 0.014 (0.008) 0.010 (0.005)∗

d ∗ z -0.014 (0.009) -0.002 (0.007)
intercept 0.010 (0.003)∗∗ 0.010 (0.002)∗∗

SE(ε) 0.1010 0.1088
sample size 3337 4298
∗∗ significant at the .01 level, ∗ significant at the .05 level
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Table 6: Elasticity of Revenue w.r.t. R&D
High-Tech Industries
Chemicals 0.021
Machinery 0.036
Electronics 0.024
Instruments 0.029
Vehicles 0.058
Low-Tech Industries
Food 0.008
Textiles 0.009
Paper 0.010
Plastic 0.022
Mineral 0.011
Metals 0.026
Manuf. nec 0.015
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Table 7: Dynamic Parameter Estimates: Fixed Cost and Startup Cost
Fixed Cost Startup Cost

High-Tech Industries
Small Firms 0.655 (0.025) ∗∗ 3.980 (0.216) ∗∗

Medium Firms 1.933 (0.055) ∗∗ 12.215 (1.367) ∗∗

Large Firms 4.544 (0.154) ∗∗ 26.840 (1.009) ∗∗

Low-Tech Industries
Small Firms 0.368 (0.018) ∗∗ 1.540 (0.300) ∗∗

Medium Firms 0.907 (0.037) ∗∗ 3.986 (0.372) ∗∗

Large Firms 1.675 (0.016) ∗∗ 8.262 (0.066) ∗∗
∗∗ significant at the .01 level, ∗ significant at the .05 level
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Table 8: Benefits and Costs of Conducting R&D for High-Tech Industries
ω ∆EV (ω) E(γ|γ < ∆EV ) Pr(rdt = 1)

Industry rdt−1 = 1 rdt−1 = 0 rdt−1 = 1 rdt−1 = 0

Chemicals -0.299 0.965 0.437 0.475 0.378 0.088
0.316 6.328 1.949 2.921 0.877 0.377
0.849 20.506 2.921 8.136 0.998 0.731
1.251 37.870 2.971 12.282 1.000 0.896
2.053 87.131 2.972 16.702 1.000 0.990

Machinery -0.227 1.685 0.709 0.819 0.587 0.154
0.072 5.456 1.654 2.520 0.907 0.382
0.301 9.572 2.112 4.191 0.980 0.548
0.563 15.289 2.311 6.196 0.997 0.705
0.886 19.616 2.347 7.476 0.999 0.785

Electronics -0.296 3.367 1.273 1.610 0.724 0.231
0.048 9.028 2.319 4.055 0.946 0.466
0.332 16.882 2.766 6.950 0.994 0.669
0.765 37.807 2.868 12.119 1.000 0.901
1.445 111.846 2.869 16.709 1.000 0.997

Instruments -0.458 0.396 0.187 0.196 0.267 0.053
-0.078 1.620 0.640 0.780 0.648 0.193
0.204 3.499 1.135 1.630 0.849 0.343
0.565 7.653 1.754 3.351 0.972 0.553
0.944 10.773 1.948 4.500 0.992 0.660

Vehicles -0.071 14.532 2.568 5.919 0.896 0.426
0.090 28.995 2.959 9.607 0.983 0.632
0.242 43.650 3.060 11.995 0.997 0.756
0.391 56.940 3.081 13.433 0.999 0.824
0.581 61.831 3.084 13.831 1.000 0.842
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Table 9: Benefits and Costs of Conducting R&D for Low-Tech Industries
ω ∆EV (ω) E(γ|γ < ∆EV ) Pr(rdt = 1)

Industry rdt−1 = 1 rdt−1 = 0 rdt−1 = 1 rdt−1 = 0

Food -0.600 0.047 0.023 0.024 0.058 0.014
-0.065 0.120 0.059 0.060 0.141 0.035
0.590 0.409 0.187 0.200 0.399 0.115
1.296 1.884 0.631 0.864 0.857 0.404
2.031 4.009 0.913 1.687 0.978 0.632

Textiles -0.569 0.040 0.020 0.020 0.058 0.014
-0.190 0.096 0.047 0.048 0.132 0.032
0.532 0.414 0.187 0.202 0.451 0.136
0.957 1.074 0.407 0.506 0.759 0.307
1.360 2.198 0.641 0.977 0.929 0.504

Paper -0.554 0.045 0.022 0.022 0.059 0.014
-0.108 0.122 0.059 0.061 0.152 0.038
0.492 0.414 0.188 0.203 0.424 0.124
0.983 1.250 0.467 0.587 0.778 0.320
1.492 2.826 0.758 1.236 0.954 0.551

Plastic -0.266 0.060 0.030 0.030 0.070 0.016
-0.010 0.202 0.097 0.100 0.216 0.054
0.204 0.358 0.166 0.176 0.349 0.094
0.496 0.624 0.273 0.303 0.520 0.158
0.761 0.594 0.262 0.289 0.503 0.151

Mineral -0.653 0.048 0.024 0.024 0.059 0.014
-0.129 0.111 0.054 0.055 0.132 0.032
0.457 0.324 0.151 0.160 0.337 0.092
0.906 0.824 0.343 0.396 0.624 0.217
1.706 2.304 0.709 1.038 0.908 0.465

Metals -0.250 0.130 0.063 0.065 0.115 0.027
-0.007 0.476 0.216 0.233 0.352 0.094
0.178 0.872 0.363 0.420 0.535 0.163
0.397 1.504 0.547 0.707 0.719 0.262
0.684 2.061 0.668 0.946 0.817 0.339

Manuf. nec -0.369 0.054 0.027 0.027 0.071 0.017
-0.035 0.175 0.084 0.087 0.210 0.053
0.277 0.356 0.164 0.175 0.377 0.106
0.576 0.628 0.272 0.304 0.558 0.178
0.954 0.631 0.273 0.306 0.559 0.179
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Table 10: Long-Run Return to R&D Given R&D History
Continuing Firms Startup Firms
25th 50th 75th 25th 50th 75th

High-Tech Industries
Chemicals NB 0.021 0.032 0.037 -0.045 0.001 0.016

TNB 0.023 0.033 0.037 0.019 0.024 0.027
Machinery NB 0.024 0.031 0.035 -0.042 -0.013 0.002

TNB 0.026 0.032 0.035 0.020 0.023 0.026
Electronics NB 0.027 0.032 0.037 -0.014 0.006 0.020

TNB 0.027 0.032 0.037 0.020 0.024 0.027
Instruments NB 0.008 0.024 0.029 -0.095 -0.046 -0.019

TNB 0.018 0.026 0.030 0.015 0.020 0.023
Vehicles NB 0.020 0.028 0.031 -0.015 0.003 0.011

TNB 0.020 0.029 0.031 0.015 0.020 0.022
Low-Tech Industries
Food NB -0.018 -0.007 0.001 -0.087 -0.044 -0.012

TNB 0.002 0.002 0.003 0.001 0.002 0.003
Textiles NB -0.014 -0.006 0.001 -0.074 -0.040 -0.015

TNB 0.002 0.002 0.003 0.002 0.002 0.003
Paper NB -0.014 -0.005 0.000 -0.074 -0.039 -0.019

TNB 0.002 0.002 0.003 0.002 0.002 0.003
Plastic NB -0.011 -0.006 -0.003 -0.061 -0.041 -0.029

TNB 0.002 0.002 0.002 0.002 0.002 0.002
Mineral NB -0.016 -0.008 -0.001 -0.081 -0.048 -0.022

TNB 0.002 0.002 0.003 0.002 0.002 0.002
Metals NB -0.006 -0.002 0.000 -0.042 -0.029 -0.018

TNB 0.002 0.003 0.003 0.002 0.003 0.003
Manuf. nec NB -0.011 -0.006 -0.003 -0.063 -0.044 -0.028

TNB 0.002 0.002 0.002 0.002 0.002 0.002
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Table 11: Ratio of Short-Run to Long-Run Return on R&D
25th percentile 50th percentile 75th percentile

High-Tech Industries
Chemicals 0.015 0.017 0.023
Machinery 0.012 0.018 0.033
Electronics 0.007 0.009 0.014
Instruments 0.015 0.020 0.030
Vehicles 0.014 0.027 0.066
Low-Tech Industries
Food 0.075 0.083 0.089
Textiles 0.059 0.069 0.081
Paper 0.065 0.077 0.087
Plastic 0.087 0.110 0.211
Mineral 0.087 0.103 0.113
Metals 0.063 0.079 0.129
Manuf. nec 0.070 0.096 0.150
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Table 12: Counterfactual Reductions in Cost for High-Tech Industries
Change in R&D Proportion Proportional Change in Productivity

Percentile 5 years 10 years 20 years 5 years 10 years 20 years
20 Percent Reduction in Fixed Cost

Mean 0.0716 0.0709 0.0658 0.0406 0.0559 0.0494
5th 0.0000 0.0000 0.0020 0.0000 0.0000 0.0002
25th 0.0180 0.0300 0.0340 0.0005 0.0023 0.0056
Median 0.0640 0.0740 0.0660 0.0038 0.0110 0.0185
75th 0.1160 0.1080 0.0980 0.0122 0.0297 0.0383
95th 0.1660 0.1440 0.1280 0.0877 0.1593 0.1128

20 Percent Reduction in Sunk Startup Cost
Mean -0.0007 0.0002 -0.0009 0.0028 0.0018 0.0051
5th -0.0220 -0.0160 -0.0160 -0.0065 -0.0046 -0.0032
25th -0.0100 -0.0060 -0.0060 -0.0010 -0.0013 -0.0016
Median -0.0020 -0.0020 -0.0020 -0.0003 -0.0003 -0.0004
75th 0.0060 0.0060 0.0040 0.0002 0.0015 0.0015
95th 0.0240 0.0220 0.0180 0.0086 0.0148 0.0141
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Table 13: Mean Change in R&D by Firm Size
Change in R&D Proportion

Firm Size 5 years 10 years 20 years
20% Reduction in Fixed Cost

Small 0.0777 0.0745 0.0621
Medium 0.0782 0.0747 0.0704
Large 0.0589 0.0635 0.0651

20% reduction in Sunk Startup Cost
Small 0.0027 0.0021 0.0001
Medium -0.0009 0.0003 -0.0005
Large -0.0040 -0.0017 -0.0022
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